JP4336913B2 - Method for producing amide derivative - Google Patents

Method for producing amide derivative Download PDF

Info

Publication number
JP4336913B2
JP4336913B2 JP03372599A JP3372599A JP4336913B2 JP 4336913 B2 JP4336913 B2 JP 4336913B2 JP 03372599 A JP03372599 A JP 03372599A JP 3372599 A JP3372599 A JP 3372599A JP 4336913 B2 JP4336913 B2 JP 4336913B2
Authority
JP
Japan
Prior art keywords
general formula
production method
atom
amide derivative
benzene derivative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03372599A
Other languages
Japanese (ja)
Other versions
JP2000229920A (en
Inventor
晋治 安藝
正嗣 石上
孝文 藤岡
純一 南川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Otsuka Pharmaceutical Co Ltd
Original Assignee
Otsuka Pharmaceutical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Otsuka Pharmaceutical Co Ltd filed Critical Otsuka Pharmaceutical Co Ltd
Priority to JP03372599A priority Critical patent/JP4336913B2/en
Publication of JP2000229920A publication Critical patent/JP2000229920A/en
Application granted granted Critical
Publication of JP4336913B2 publication Critical patent/JP4336913B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、アミド誘導体の製造方法に関する。
【0002】
【従来の技術】
一般式
【0003】
【化3】

Figure 0004336913
【0004】
〔式中、R1及びR2は、同一又は異なって、水素原子又は低級アルコキシ基を示す。またこのR1及びR2は互いに結合して低級アルキレンジオキシ基を形成してもよい。Xは硫黄原子又は酸素原子を示す。〕
で表されるアミド誘導体は、例えば特開平5−51318号公報に記載の活性酸素抑制剤を製造するための中間体として有用な化合物である。
【0005】
従来、上記アミド誘導体は、例えば上記特許公報、Indian.J.Chem.Seet(B),18B(5),p455,1979 及びJ.Org.Chem.,41(1),p148,1976等に記載の方法で製造されている。
【0006】
【発明が解決しようとする課題】
しかしながら、これらの方法は、アミド基の導入される位置(立体配向性)、目的物の収率、操作性等の点で問題点を有している。
【0007】
【課題を解決するための手段】
本発明者は、上記一般式(1)のアミド誘導体の製造方法につき鋭意研究を重ねた結果、スルホン酸の存在下、下記一般式(2)のベンゼン誘導体にシアン化合物を反応させた場合に、簡便な操作で、位置選択的に(立体配向性よく)、従って高純度且つ高収率で、所望のアミド誘導体が製造されることを見い出した。本発明は、斯かる知見に基づき完成されたものである。
【0008】
即ち、本発明は、一般式
【0009】
【化4】
Figure 0004336913
【0010】
〔式中、R1及びR2は前記に同じ。〕
で表されるベンゼン誘導体をスルホン酸の存在下に一般式
MXCN (3)
〔式中、Mはアルカリ金属原子を示す。Xは前記に同じ。〕
で表されるシアン化合物と反応させて、一般式(1)で表されるアミド誘導体を得ることを特徴とするアミド誘導体の製造方法に係る。
【0011】
【発明の実施の形態】
本明細書において示される各基は、より具体的には次の通りである。
【0012】
低級アルコキシ基としては、例えばメトキシ、エトキシ、n−プロポキシ、イソプロポキシ、n−ブトキシ、n−ペンチルオキシ、n−ヘキシルオキシ基等の炭素数1〜6の直鎖又は分枝鎖状アルコキシ基が挙げられる。
【0013】
低級アルキレンジオキシ基としては、例えばメチレンジオキシ、エチレンジオキシ、プロピレンジオキシ等の炭素数1〜3のアルキレンジオキシ基が挙げられる。
【0014】
アルカリ金属原子としては、例えばカリウム、ナトリウム等が挙げられる。
【0015】
本発明において、出発原料として用いられる一般式(2)のベンゼン誘導体及び一般式(3)のシアン化合物は、いずれも入手容易な公知の化合物である。
【0016】
本発明によれば、一般式(2)のベンゼン誘導体と一般式(3)のシアン化合物との反応は、スルホン酸の存在下に行われる。スルホン酸としては、従来公知のものを広く使用でき、例えばメタンスルホン酸、エタンスルホン酸等のアルカンスルホン酸、ベンゼンスルホン酸、トルエンスルホン酸等のアレンスルホン酸等を挙げることができる。本発明では、これらスルホン酸は、1種単独で又は2種以上混合して使用できる。スルホン酸の使用量としては、特に限定されるものではないが、通常一般式(2)のベンゼン誘導体に対して等モル〜30倍モル量、好ましくは3〜25倍モル量とするのがよい。
【0017】
本発明では、一般式(2)のベンゼン誘導体と一般式(3)のシアン化合物との反応は、適当な溶媒の存在下又は不存在下にて、好ましくは溶媒の不存在下にて行われる。用いられる溶媒としては、例えばジクロロメタン、ジクロロエタン、クロロホルム、四塩化炭素等のハロゲン化炭化水素類、クロロベンゼン、ジクロロベンゼン等の芳香族ハロゲン化炭化水素類、酢酸メチル、酢酸エチル、酢酸ブチル等のエステル類、ジエチルエーテル、ジオキサン、テトラヒドロフラン、エチレングリコールジメチルエーテル等のエーテル類、ニトロメタン等の非プロトン性極性溶媒、又はこれらの混合溶媒等が挙げられる。
【0018】
一般式(2)のベンゼン誘導体と一般式(3)のシアン化合物との反応において、両者の使用割合としては、特に制限されるものではなく、広い範囲内から適宜選択され得るが、通常前者に対して後者を少なくとも等モル量、好ましくは等モル〜3倍モル量使用するのがよい。
【0019】
本発明の反応は、冷却下、室温下及び加温下のいずれでも進行するが、通常0〜100℃程度、好ましくは0〜50℃程度で反応を行うのがよく、一般に1〜24時間程度で該反応は完結する。
【0020】
【発明の効果】
本発明の方法によれば、簡便な操作で、位置選択的に(立体配向性よく)、従って高純度且つ高収率で、一般式(1)のアミド誘導体が製造され得る。本発明で製造される一般式(1)のアミド誘導体は、後記参考例に示す方法に従って活性酸素抑制剤として重要な2−(3,4−ジエトキシフェニル)−4−(2−カルボキシ−6−ピリジル)チアゾール等の2−(置換フェニル)−4−(2−カルボキシ−6−ピリジル)チアゾールに誘導され得る。
【0021】
【実施例】
以下に実施例及び参考例を掲げて、本発明をより一層明らかにする。
【0022】
実施例1
4−メトキシベンズチオアミドの製造
アニソール7.60gに氷冷下メタンスルホン酸87ml、次いでロダンカリ(チオシアン酸カリウム)7.85gを加えた。氷浴を外し、室温で5時間攪拌した。氷水300mlを注入し、析出晶を濾取した。60℃で終夜乾燥し、酢酸エチル/n−ヘキサンにより再結晶して7.63gの4−メトキシベンズチオアミドを得た。再結晶母液と濾取時の水層からの残渣をシリカゲルカラムクロマトグラフィーにより精製し、4−メトキシベンズチオアミド0.82gを得、トータルとして8.45gの4−メトキシベンズチオアミドを黄色針状結晶として得た。
【0023】
融点:151.5−152.0℃
1H−NMR(200MHz,CDCl3)δppm;3.86(3H,s),6.89(2H,d,J=9.0Hz),7.05−7.30(1H,br.s),7.55−7.80(1H,br.s),7.90(2H,d,J=9.0Hz)。
【0024】
実施例2
3,4−ジエトキシベンズチオアミドの製造
o−ジエトキシベンゼン50.00gに氷冷下メタンスルホン酸371ml、次いでロダンカリ(チオシアン酸カリウム)33.60gを加えた。氷浴を外し、室温で4時間20分攪拌した。氷水1リットルを注入し、析出晶を濾取した。60℃で終夜乾燥し、酢酸エチル/n−ヘキサンにより再結晶して57.53gの3,4−ジエトキシベンズチオアミドを得た。再結晶母液と濾取時の水層からの残渣をシリカゲルカラムクロマトグラフィーにより精製し、3,4−ジエトキシベンズチオアミド5.39gを得、トータルとして62.92g(収率92.8%)の3,4−ジエトキシベンズチオアミドを黄色針状結晶として得た。
【0025】
融点:151.5−153.0℃
1H−NMR(200MHz,CDCl3)δppm;1.46(3H,t,J=7.0Hz),1.47(3H,t,J=7.0Hz),4.14(2H,q,J=7.0Hz),4.15(2H,q,J=7.0Hz),6.82(1H,d,J=8.6Hz),7.10−7.40(1H,br.s),7.38(1H,dd,J=2.4Hz,8.6Hz),7.55−7.80(1H,br.s),7.60(1H,d,J=2.4Hz)。
【0026】
実施例3
3,4−ジメトキシベンズチオアミドの製造
ベラトロール(1,2−ジメトキシベンゼン)5.00gを用い、実施例1と同様にして黄色顆粒状の3,4−ジメトキシベンズチオアミド5.92gを得た。
【0027】
1H−NMR(200MHz,DMSO−d6)δppm;3.80(3H,s),3.81(3H,s),6.98(1H,d,J=8.0Hz),7.59(1H,d,J=2.2Hz),7.61(1H,dd,J=2.2Hz,8.0Hz),9.33(1H,br.s),9.65(1H,br.s)。
【0028】
実施例4
4−メトキシベンズアミドの製造
アニソール5.00gに氷冷下メタンスルホン酸57ml、次いでシアン酸カリウム4.31gを加えた。室温で4時間30分攪拌した。更にシアン酸カリウム4.31gを追加し、室温で更に19時間攪拌した。氷水200mlを注入し、析出晶を濾取した。60℃で終夜乾燥し、3.67gの4−メトキシベンズアミドを得た。濾取時の水層は塩化メチレンで抽出し、硫酸マグネシウムで乾燥後、減圧濃縮して、2位及び4位の混合物としてメトキシベンズアミド(2位:4位=1:2)を2.06gを得、トータルとして5.73gの2位及び4位の混合物(2位:4位=1:7)を酢酸エチルで再結晶して3.99gの無色柱状の4−メトキシベンズアミドを得た。
【0029】
融点:166.5−167.0℃
1H−NMR(200MHz,CDCl3)δppm;3.86(3H,s),5.80−6.15(2H,br.s),6.93(2H,d,J=9.0Hz),7.79(2H,d,J=9.0Hz)。
【0030】
参考例1
6−カルボキシ−2−メトキシカルボニルピリジン180gをジクロロメタンに懸濁させた。この懸濁液に室温でN,N−ジメチルホルムアミド(0.3等量)、次いで塩化チオニル(1.0等量)を加えた。4時間加熱還流後、室温に冷却して6−メトキシカルボニル−2−ピリジンカルボニルクロライドの塩化メチレン溶液を得た。
【0031】
マロン酸モノエチルエステルカリウム塩(1.4等量)をアセトニトリルに懸濁させた。この懸濁液に氷冷下トリエチルアミン(3.0等量)、次いで塩化マグネシウム(3.0等量)を加えた。30℃前後で3時間30分攪拌後、氷冷下、この反応液に、上記で得られた6−メトキシカルボニル−2−ピリジンカルボニルクロライドの塩化メチレン溶液を加えた。室温で1時間攪拌後、氷冷下希塩酸を加えクエンチした。常法に従い抽出及び洗浄処理し、エチル 3−オキソ−3−(6−メトキシカルボニル−2−ピリジル)プロピオネート210gを得た。
【0032】
上記で得られたエチル 3−オキソ−3−(6−メトキシカルボニル−2−ピリジル)プロピオネートをジクロロメタンに溶解し、氷冷下に塩化スルフリル(1.05等量)のジクロロメタン溶液を滴下した。20分攪拌後、氷水(3.6倍容量)及び濃塩酸(4.2等量)を反応液に加えた。加熱してジクロロメタンを除去した後、更に90℃で3時間30分間攪拌した。室温でエチレングリコールジメチルエーテル及び上記実施例2で得られた3,4−ジエトキシベンズチオアミド(1.0等量)を加えた後、2時間還流した。氷冷し、析出した結晶を濾取して、2−(3,4−ジエトキシフェニル)−4−(2−カルボキシ−6−ピリジル)チアゾールの粗結晶を得た。これを精製し、60℃で乾燥して、2−(3,4−ジエトキシフェニル)−4−(2−カルボキシ−6−ピリジル)チアゾール174gを得た。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing an amide derivative.
[0002]
[Prior art]
General formula
[Chemical 3]
Figure 0004336913
[0004]
[Wherein, R 1 and R 2 are the same or different and each represents a hydrogen atom or a lower alkoxy group. R 1 and R 2 may be bonded to each other to form a lower alkylenedioxy group. X represents a sulfur atom or an oxygen atom. ]
Is a compound useful as an intermediate for producing an active oxygen inhibitor described in, for example, JP-A No. 5-51318.
[0005]
Conventionally, the amide derivatives are described in, for example, the above-mentioned patent publication, Indian. J. et al. Chem. Seee (B), 18B (5), p455, 1979 and J.A. Org. Chem. 41 (1), p148, 1976 and the like.
[0006]
[Problems to be solved by the invention]
However, these methods have problems in terms of the position where the amide group is introduced (steric orientation), the yield of the target product, operability, and the like.
[0007]
[Means for Solving the Problems]
As a result of intensive studies on the method for producing the amide derivative of the above general formula (1), the present inventor, when a cyanide compound is reacted with a benzene derivative of the following general formula (2) in the presence of sulfonic acid, It has been found that the desired amide derivative can be produced regioselectively (with a good stereo-orientation) and thus with a high purity and a high yield by a simple operation. The present invention has been completed based on such findings.
[0008]
That is, the present invention has the general formula
[Formula 4]
Figure 0004336913
[0010]
[Wherein, R 1 and R 2 are the same as defined above. ]
A benzene derivative represented by the general formula MXCN (3) in the presence of sulfonic acid
[Wherein, M represents an alkali metal atom. X is the same as above. ]
The amide derivative represented by the general formula (1) is obtained by reacting with a cyanide compound represented by general formula (1).
[0011]
DETAILED DESCRIPTION OF THE INVENTION
More specifically, each group shown in the present specification is as follows.
[0012]
Examples of the lower alkoxy group include linear or branched alkoxy groups having 1 to 6 carbon atoms such as methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, n-pentyloxy, and n-hexyloxy groups. Can be mentioned.
[0013]
Examples of the lower alkylenedioxy group include C1-C3 alkylenedioxy groups such as methylenedioxy, ethylenedioxy, propylenedioxy and the like.
[0014]
Examples of the alkali metal atom include potassium and sodium.
[0015]
In the present invention, the benzene derivative of the general formula (2) and the cyan compound of the general formula (3) used as starting materials are both known compounds that are easily available.
[0016]
According to the present invention, the reaction of the benzene derivative of the general formula (2) and the cyanide compound of the general formula (3) is performed in the presence of sulfonic acid. As the sulfonic acid, conventionally known ones can be widely used, and examples thereof include alkanesulfonic acids such as methanesulfonic acid and ethanesulfonic acid, and allenesulfonic acids such as benzenesulfonic acid and toluenesulfonic acid. In this invention, these sulfonic acids can be used individually by 1 type or in mixture of 2 or more types. The amount of sulfonic acid used is not particularly limited, but is usually equimolar to 30-fold molar amount, preferably 3 to 25-fold molar amount relative to the benzene derivative of the general formula (2). .
[0017]
In the present invention, the reaction of the benzene derivative of the general formula (2) and the cyanide compound of the general formula (3) is performed in the presence or absence of a suitable solvent, preferably in the absence of a solvent. . Examples of the solvent used include halogenated hydrocarbons such as dichloromethane, dichloroethane, chloroform and carbon tetrachloride, aromatic halogenated hydrocarbons such as chlorobenzene and dichlorobenzene, and esters such as methyl acetate, ethyl acetate and butyl acetate. , Diethyl ether, dioxane, tetrahydrofuran, ethers such as ethylene glycol dimethyl ether, aprotic polar solvents such as nitromethane, or mixed solvents thereof.
[0018]
In the reaction of the benzene derivative of the general formula (2) and the cyan compound of the general formula (3), the usage ratio of both is not particularly limited and can be appropriately selected from a wide range. On the other hand, the latter should be used in at least equimolar amount, preferably equimolar to 3-fold molar amount.
[0019]
The reaction of the present invention proceeds under cooling, at room temperature, or under heating, but is usually carried out at about 0 to 100 ° C., preferably about 0 to 50 ° C., and generally about 1 to 24 hours. The reaction is complete.
[0020]
【The invention's effect】
According to the method of the present invention, the amide derivative of the general formula (1) can be produced by a simple operation in a regioselective manner (with good stereo orientation), and thus with high purity and high yield. The amide derivative of the general formula (1) produced according to the present invention is 2- (3,4-diethoxyphenyl) -4- (2-carboxy-6) which is important as an active oxygen inhibitor according to the method shown in Reference Examples below. Can be derived to 2- (substituted phenyl) -4- (2-carboxy-6-pyridyl) thiazole such as -pyridyl) thiazole.
[0021]
【Example】
The present invention will be further clarified by the following examples and reference examples.
[0022]
Example 1
Preparation of 4-methoxybenzthioamide To 7.60 g of anisole, 87 ml of methanesulfonic acid and then 7.85 g of rhodankari (potassium thiocyanate) were added under ice cooling. The ice bath was removed and the mixture was stirred at room temperature for 5 hours. 300 ml of ice water was poured, and the precipitated crystals were collected by filtration. The mixture was dried at 60 ° C. overnight and recrystallized from ethyl acetate / n-hexane to obtain 7.63 g of 4-methoxybenzthioamide. The residue from the recrystallized mother liquor and the aqueous layer upon filtration was purified by silica gel column chromatography to obtain 0.82 g of 4-methoxybenzthioamide, totaling 8.45 g of 4-methoxybenzthioamide as yellow needle crystals Obtained.
[0023]
Melting point: 151.5-152.0 ° C
1 H-NMR (200 MHz, CDCl 3 ) δ ppm; 3.86 (3H, s), 6.89 (2H, d, J = 9.0 Hz), 7.05-7.30 (1H, br. S) 7.55-7.80 (1H, br.s), 7.90 (2H, d, J = 9.0 Hz).
[0024]
Example 2
Production of 3,4-diethoxybenzthioamide To 50.00 g of o-diethoxybenzene, 371 ml of methanesulfonic acid and then 33.60 g of rhodankari (potassium thiocyanate) were added under ice cooling. The ice bath was removed and the mixture was stirred at room temperature for 4 hours and 20 minutes. 1 liter of ice water was poured, and the precipitated crystals were collected by filtration. It was dried at 60 ° C. overnight and recrystallized from ethyl acetate / n-hexane to obtain 57.53 g of 3,4-diethoxybenzthioamide. The residue from the recrystallized mother liquor and the aqueous layer at the time of filtration was purified by silica gel column chromatography to obtain 5.39 g of 3,4-diethoxybenzthioamide, totaling 62.92 g (yield 92.8%). 3,4-diethoxybenzthioamide was obtained as yellow needle crystals.
[0025]
Melting point: 151.5-153.0 ° C
1 H-NMR (200 MHz, CDCl 3 ) δ ppm; 1.46 (3H, t, J = 7.0 Hz), 1.47 (3H, t, J = 7.0 Hz), 4.14 (2H, q, J = 7.0 Hz), 4.15 (2H, q, J = 7.0 Hz), 6.82 (1H, d, J = 8.6 Hz), 7.10-7.40 (1H, br.s) ), 7.38 (1H, dd, J = 2.4 Hz, 8.6 Hz), 7.55-7.80 (1H, br.s), 7.60 (1H, d, J = 2.4 Hz) .
[0026]
Example 3
Production of 3,4-dimethoxybenzthioamide Using 5.00 g of veratrol (1,2-dimethoxybenzene), 5.92 g of yellow granular 3,4-dimethoxybenzthioamide was obtained in the same manner as in Example 1.
[0027]
1 H-NMR (200 MHz, DMSO-d 6 ) δ ppm; 3.80 (3H, s), 3.81 (3H, s), 6.98 (1H, d, J = 8.0 Hz), 7.59 (1H, d, J = 2.2 Hz), 7.61 (1H, dd, J = 2.2 Hz, 8.0 Hz), 9.33 (1H, br.s), 9.65 (1H, br. s).
[0028]
Example 4
Preparation of 4-methoxybenzamide 57 ml of methanesulfonic acid and then 4.31 g of potassium cyanate were added to 5.00 g of anisole under ice cooling. The mixture was stirred at room temperature for 4 hours and 30 minutes. Further, 4.31 g of potassium cyanate was added, and the mixture was further stirred at room temperature for 19 hours. 200 ml of ice water was poured, and the precipitated crystals were collected by filtration. After drying at 60 ° C. overnight, 3.67 g of 4-methoxybenzamide was obtained. The aqueous layer at the time of filtration was extracted with methylene chloride, dried over magnesium sulfate, and concentrated under reduced pressure to obtain 2.06 g of methoxybenzamide (2nd position: 4th position = 1: 2) as a mixture of the 2nd and 4th positions. In total, 5.73 g of the mixture of the 2nd and 4th positions (2nd position: 4th position = 1: 7) was recrystallized from ethyl acetate to obtain 3.99 g of colorless columnar 4-methoxybenzamide.
[0029]
Melting point: 166.5-167.0 ° C
1 H-NMR (200 MHz, CDCl 3 ) δ ppm; 3.86 (3H, s), 5.80-6.15 (2H, br. S), 6.93 (2H, d, J = 9.0 Hz) , 7.79 (2H, d, J = 9.0 Hz).
[0030]
Reference example 1
180 g of 6-carboxy-2-methoxycarbonylpyridine was suspended in dichloromethane. To this suspension was added N, N-dimethylformamide (0.3 eq) followed by thionyl chloride (1.0 eq) at room temperature. After heating under reflux for 4 hours, the mixture was cooled to room temperature to obtain a methylene chloride solution of 6-methoxycarbonyl-2-pyridinecarbonyl chloride.
[0031]
Malonic acid monoethyl ester potassium salt (1.4 equivalents) was suspended in acetonitrile. Triethylamine (3.0 equivalents) and then magnesium chloride (3.0 equivalents) were added to the suspension under ice cooling. After stirring for 3 hours and 30 minutes at around 30 ° C., the methylene chloride solution of 6-methoxycarbonyl-2-pyridinecarbonyl chloride obtained above was added to the reaction solution under ice cooling. After stirring at room temperature for 1 hour, the reaction mixture was quenched by adding dilute hydrochloric acid under ice cooling. Extraction and washing were performed according to a conventional method to obtain 210 g of ethyl 3-oxo-3- (6-methoxycarbonyl-2-pyridyl) propionate.
[0032]
The ethyl 3-oxo-3- (6-methoxycarbonyl-2-pyridyl) propionate obtained above was dissolved in dichloromethane, and a solution of sulfuryl chloride (1.05 equivalents) in dichloromethane was added dropwise under ice cooling. After stirring for 20 minutes, ice water (3.6 times volume) and concentrated hydrochloric acid (4.2 equivalents) were added to the reaction solution. After heating to remove dichloromethane, the mixture was further stirred at 90 ° C. for 3 hours and 30 minutes. Ethylene glycol dimethyl ether and 3,4-diethoxybenzthioamide (1.0 equivalent) obtained in Example 2 were added at room temperature, and the mixture was refluxed for 2 hours. The mixture was cooled with ice, and the precipitated crystals were collected by filtration to obtain 2- (3,4-diethoxyphenyl) -4- (2-carboxy-6-pyridyl) thiazole crude crystals. This was purified and dried at 60 ° C. to obtain 174 g of 2- (3,4-diethoxyphenyl) -4- (2-carboxy-6-pyridyl) thiazole.

Claims (8)

一般式
Figure 0004336913
〔式中、R1及びR2は、同一又は異なって、水素原子又は低級アルコキシ基を示す。またこのR1及びR2は互いに結合して低級アルキレンジオキシ基を形成してもよい。〕
で表されるベンゼン誘導体をスルホン酸の存在下に一般式
MXCN
〔式中、Mはアルカリ金属原子、Xは硫黄原子又は酸素原子を示す。〕
で表されるシアン化合物と反応させて、一般式
Figure 0004336913
〔式中、R1、R2及びXは前記に同じ。〕
で表されるアミド誘導体を得ることを特徴とするアミド誘導体の製造方法。
General formula
Figure 0004336913
[Wherein, R 1 and R 2 are the same or different and each represents a hydrogen atom or a lower alkoxy group. R 1 and R 2 may be bonded to each other to form a lower alkylenedioxy group. ]
A benzene derivative represented by the general formula MXCN in the presence of sulfonic acid
[Wherein, M represents an alkali metal atom, and X represents a sulfur atom or an oxygen atom. ]
Is reacted with a cyanide represented by the general formula
Figure 0004336913
[Wherein, R 1 , R 2 and X are the same as above. ]
A process for producing an amide derivative, characterized in that an amide derivative represented by the formula:
Xが硫黄原子である請求項1に記載の製造方法。The production method according to claim 1, wherein X is a sulfur atom. 1及びR2が共にエトキシ基である請求項2に記載の製造方法。The process according to claim 2, wherein R 1 and R 2 are both ethoxy groups. ベンゼン誘導体に対してスルホン酸を等モル〜30倍モル量使用する請求項1に記載の製造方法。The production method according to claim 1, wherein the sulfonic acid is used in an equimolar to 30-fold molar amount with respect to the benzene derivative. ベンゼン誘導体に対してシアン化合物を少なくとも等モル量使用する請求項1に記載の製造方法。The production method according to claim 1, wherein at least an equimolar amount of a cyanide compound is used with respect to the benzene derivative. Mがカリウム原子である請求項1に記載の製造方法。The production method according to claim 1, wherein M is a potassium atom. 反応温度が0〜100℃である請求項1に記載の製造方法。The production method according to claim 1, wherein the reaction temperature is 0 to 100 ° C. 反応時間が1〜24時間である請求項1に記載の製造方法。The production method according to claim 1, wherein the reaction time is 1 to 24 hours.
JP03372599A 1999-02-12 1999-02-12 Method for producing amide derivative Expired - Fee Related JP4336913B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03372599A JP4336913B2 (en) 1999-02-12 1999-02-12 Method for producing amide derivative

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03372599A JP4336913B2 (en) 1999-02-12 1999-02-12 Method for producing amide derivative

Publications (2)

Publication Number Publication Date
JP2000229920A JP2000229920A (en) 2000-08-22
JP4336913B2 true JP4336913B2 (en) 2009-09-30

Family

ID=12394385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03372599A Expired - Fee Related JP4336913B2 (en) 1999-02-12 1999-02-12 Method for producing amide derivative

Country Status (1)

Country Link
JP (1) JP4336913B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4711494B2 (en) * 2000-08-10 2011-06-29 住友精化株式会社 Method for producing thiobenzamides
TWI394753B (en) 2006-03-17 2013-05-01 Otsuka Pharma Co Ltd Novel tetomilast crystal

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL7505904A (en) * 1974-05-25 1975-11-27 Hoechst Ag PROCESS FOR PREPARING AROMATIC THIOCARBON ACID AMIDES.
TW311136B (en) * 1990-11-30 1997-07-21 Otsuka Pharma Co Ltd
IE71647B1 (en) * 1991-01-28 1997-02-26 Rhone Poulenc Rorer Ltd Benzamide derivatives
JPH05320126A (en) * 1992-05-19 1993-12-03 Kawaguchi Kagaku Kogyo Kk Production of 2-amino-5-nitrothiobenzamide
JP2706037B2 (en) * 1993-04-13 1998-01-28 帝人株式会社 Cyano compound and method for producing the same
JP4302207B2 (en) * 1997-08-04 2009-07-22 大正製薬株式会社 Aryloxyaniline derivatives

Also Published As

Publication number Publication date
JP2000229920A (en) 2000-08-22

Similar Documents

Publication Publication Date Title
JP3179515B2 (en) Method for producing 2-chlorothiazoles
CA3158165A1 (en) Process for the preparation of (2-cyanoethyl (4s)-4-(4-cyano-2-methoxy-phenyl)-5-hydroxy-2,8-dimethyl-1,4-dihydro-1,6-naphthyridin-3-carboxylate by racemate separation by means of diastereomeric tartaric acid esters
KR850000923B1 (en) Process for preparing piroxicam
CZ304015B6 (en) Process for preparing iopamidol
EP3088391B1 (en) Method for producing benzyl ester 2-aminonicotinate derivative
JP4336913B2 (en) Method for producing amide derivative
CA2127945C (en) Process of producing 2-cyano-4-oxo-4h-benzopyran compounds
KR100481570B1 (en) Intermediates for the preparation of 2-imidazoline-5-ones
EP1928869B1 (en) Chemical process
JP2001064282A (en) Imidazoline compound, its intermediate and production thereof and production of azepine compound and its salt
JP7237385B2 (en) Synthesis of 3-bromo-5-(2-ethylimidazo[1,2-a]pyridine-3-carbonyl)-2-hydroxybenzonitrile
US20040199002A1 (en) Process for producing(2-nitrophenyl)acetonitrile derivative and intermediate therefor
SU1192623A3 (en) Method of producing esters
EP2011792A1 (en) 2-alkenyl-3-aminothiophene derivative and method for producing the same
KR100424341B1 (en) A process for preparing 1-Methyl- indazole-3-carboxylic acid
JPS6241510B2 (en)
KR0173036B1 (en) 2-sulfonylthiazolcarboxamide derivatives and process for their preparation
PL138793B1 (en) Method of obtqining nysatidine
EP1367049A1 (en) Cyanothioacetamide derivative and process for producing the same
KR0157511B1 (en) Process for the preparation of 2-sulfonylthiazole carboxamide derivatives
JPS61158962A (en) Production of 1,4-dihydropyridine derivative
JPH07252234A (en) Production of 2-cyanoimidazole type compound
JPH03153660A (en) Sulfonic acid ester of 4-halo-3-hydroxybutane nitrile and preparation thereof
JPS6327348B2 (en)
JPH0667941B2 (en) 6-Aryloxy-1H-pyrazolo [1,5-b] -1,2,4-triazole compound

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090527

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090616

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120710

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120710

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130710

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees