JP4305681B2 - Seamless steel pipe manufacturing method - Google Patents
Seamless steel pipe manufacturing method Download PDFInfo
- Publication number
- JP4305681B2 JP4305681B2 JP2008539962A JP2008539962A JP4305681B2 JP 4305681 B2 JP4305681 B2 JP 4305681B2 JP 2008539962 A JP2008539962 A JP 2008539962A JP 2008539962 A JP2008539962 A JP 2008539962A JP 4305681 B2 JP4305681 B2 JP 4305681B2
- Authority
- JP
- Japan
- Prior art keywords
- steel pipe
- less
- content
- corrosion cracking
- stress corrosion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910000831 Steel Inorganic materials 0.000 title claims description 92
- 239000010959 steel Substances 0.000 title claims description 92
- 238000004519 manufacturing process Methods 0.000 title claims description 21
- 239000012535 impurity Substances 0.000 claims abstract description 13
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 10
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 10
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 9
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 7
- 229910052720 vanadium Inorganic materials 0.000 claims abstract description 7
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 4
- 239000000203 mixture Substances 0.000 claims description 12
- 239000000126 substance Substances 0.000 claims description 12
- 238000005096 rolling process Methods 0.000 claims description 10
- 230000009466 transformation Effects 0.000 claims description 7
- 229910052758 niobium Inorganic materials 0.000 claims description 5
- 230000007797 corrosion Effects 0.000 abstract description 47
- 238000005260 corrosion Methods 0.000 abstract description 47
- 238000005336 cracking Methods 0.000 abstract description 45
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 abstract description 42
- 229910000851 Alloy steel Inorganic materials 0.000 abstract description 6
- 239000002244 precipitate Substances 0.000 abstract description 6
- 229910052751 metal Inorganic materials 0.000 abstract description 3
- 239000002184 metal Substances 0.000 abstract description 3
- 229910052717 sulfur Inorganic materials 0.000 abstract description 3
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 21
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 21
- 238000010791 quenching Methods 0.000 description 19
- 230000000171 quenching effect Effects 0.000 description 19
- 230000000694 effects Effects 0.000 description 14
- 230000001965 increasing effect Effects 0.000 description 14
- 238000005496 tempering Methods 0.000 description 11
- 238000010438 heat treatment Methods 0.000 description 10
- 238000000034 method Methods 0.000 description 9
- 229910045601 alloy Inorganic materials 0.000 description 8
- 239000000956 alloy Substances 0.000 description 8
- 150000001247 metal acetylides Chemical class 0.000 description 8
- 239000000463 material Substances 0.000 description 7
- 229910000734 martensite Inorganic materials 0.000 description 6
- 229910052761 rare earth metal Inorganic materials 0.000 description 6
- 229910001566 austenite Inorganic materials 0.000 description 5
- 239000003129 oil well Substances 0.000 description 5
- 238000001816 cooling Methods 0.000 description 4
- 239000013078 crystal Substances 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 238000003303 reheating Methods 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 230000009471 action Effects 0.000 description 3
- 229910052796 boron Inorganic materials 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 150000004767 nitrides Chemical class 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 238000013001 point bending Methods 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 229910052684 Cerium Inorganic materials 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 238000007550 Rockwell hardness test Methods 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 239000008186 active pharmaceutical agent Substances 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 230000003749 cleanliness Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000005486 sulfidation Methods 0.000 description 1
- 230000009469 supplementation Effects 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- -1 that is Inorganic materials 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/002—Heat treatment of ferrous alloys containing Cr
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0226—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
- C21D8/0263—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/08—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
- C21D9/14—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes wear-resistant or pressure-resistant pipes
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/22—Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/24—Ferrous alloys, e.g. steel alloys containing chromium with vanadium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/28—Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Steel (AREA)
- Heat Treatment Of Articles (AREA)
- Rigid Pipes And Flexible Pipes (AREA)
Abstract
Description
【技術分野】
【0001】
本発明は、高圧の硫化水素を含有する腐食性の高い深井戸に用いるのに適した継目無鋼管の製造方法に関する。
【0002】
過酷な油井環境、高温環境等で使用される鋼には、強度、靱性、耐サワー性等の各種性能の向上が求められている。油井の更なる深井戸化によって、油井用鋼には更に高い強度、さらに優れた耐応力腐食割れ性が要求される。
【0003】
鋼材は、強度を高めるにしたがって硬度が高くなり、その結果、転位密度が上昇し、鋼材に進入する水素量が増加して応力に対して脆弱化する。このため、鋼材を高強度化すると、耐硫化物応力腐食割れ性が悪くなるのが一般的である。特に「降伏強度/引張強度」の比(以下、「降伏比」という。)が低い鋼材は、所望の降伏強度の部材を製造すると、引張強度および硬度が高くなりやすく、耐硫化物応力腐食割れ性が著しく低下する。従って、鋼材の強度を上昇させるに際し、硬度を低く保つためには降伏比を高めることが肝要である。
【0004】
鋼の降伏比を高めるためには、鋼材を均一な焼戻しマルテンサイト組織とするのが好ましい。また、旧オーステナイト粒の微細化も有効である。
【0005】
例えば、特許文献1および2には、V、Nb、Ti、CrおよびMoといった炭化物形成元素の含有量のバランスを調整することにより、結晶粒界でのM23C6型の炭化物の析出を抑制して耐硫化物応力腐食割れ性を向上させた継目無鋼管に関する発明が開示されている。また、特許文献3には結晶粒微細化による耐硫化物応力腐食割れ性の改善が開示されている。更に、特許文献4には、所定の化学組成を有し、0.0003〜0.005%のBを含有させ、靭性を向上させた油井用継目無鋼管に関する発明が開示されている。
【0006】
【特許文献1】
特許第3449311号公報
【特許文献2】
特開平2000−17389号公報
【特許文献3】
特開平9−111343号公報
【特許文献4】
WO 2005/073421 A1
【発明の開示】
【発明が解決しようとする課題】
【0007】
上記文献は、いずれも1atm程度の硫化水素環境で使用される低合金鋼についての耐サワー性能を詳細に検討したものである。しかし、本発明者らの研究により、1atm程度の低圧硫化水素環境における低合金鋼の耐サワー性能の挙動は、より高圧の硫化水素環境とは異なることが判明した。
【0008】
本発明者らが、各種の低合金鋼に4点曲げにより硫化物応力腐食割れ試験を実施した結果等に基づき、本発明者らは下記の知見を得た。この実験で用いた低合金鋼は、質量%で、0.5〜1.3%のMn、0.2〜1.1%のCrおよび0〜0.7%のMoを含有するものである。
【0009】
(1)腐食速度は、2atm以上、特に、5〜10atm硫化水素で特に高くなるが、15atm硫化水素では、低くなる。
(2)硫化物応力腐食割れは、従来、環境中の硫化水素の分圧が1atm付近のところで生じやすいとされてきた。しかしながら、本実験で、むしろ硫化水素の分圧が2atm以上、特に、5〜10atmで生じ易いことが初めて明らかになった。また、硫化水素の分圧が15atmまで高くなると、硫化物応力腐食割れは逆に生じにくくなった。
【0010】
以上の知見に基づき、本発明者らは、まず、2atm以上、特に、5〜10atm硫化水素環境で用いられる可能性がある低合金鋼については、Cr含有量を1.0%以上に高めることで、高圧硫化水素環境における腐食速度を低減することとした。
【0011】
ここで、前掲の特許文献4に記載される油井用継目無鋼管などにおいては、焼入性を向上させて耐硫化物応力腐食割れ性を向上させることを目的としてBが添加されている。しかし、特許文献4に記載の発明のようにインラインで焼入れを実施して油井用継目無鋼管を製造する場合、オーステナイト粒が細粒化しにくい。この場合、Cr含有量が高い合金中にBが存在すると、合金中のM23C6型の炭化物が、焼入れ後の熱処理工程において旧オーステナイト粒界に析出粗大化し、引いては、耐硫化物応力腐食割れ性が低下する。従って、本発明においては、Bを添加しないこととし、焼入性および靭性を確保することとした。
【0012】
なお、インラインで焼入れを実施するとは、マンネスマン製管法などにより得た継目無管をインラインで補熱後、急冷することを意味する(以下、「インライン焼入れ」と呼ぶ。但し、焼入れ後に必要に応じて実施される焼戻し、焼なまし、焼き均しといった熱処理は、オフラインで行っても良い。
【0013】
インライン焼入れでは、別工程で再加熱してから焼入れ等を実施するよりも、製造コストを低く抑えることができ、また、製管後、そのまま焼入れする、いわゆる直接焼入れに比べて、焼入れ温度を確保できる点において優れている。しかし、インライン焼入れでは、上述のように、低合金中のM23C6型の粒界炭化物が粗大化する傾向がある。そのような製造方法で製造される鋼中にBが含まれると、粒界炭化物の粗大化がより顕著となる。
【0014】
本発明は、このような知見に基づいてなされたものであり、Cr量を増加させると共に、通常添加されるBを非添加とすることで、焼入れ性および靭性を確保して、耐硫化物応力腐食割れ性を向上させた継目無鋼管の製造方法を提供することを目的とする。本発明によって得られる継目無鋼管では、その降伏強度(YS)を654〜793MPa(95〜115ksi)とすることを目標とするが、必ずしも満足しなくてもよい。
【0015】
なお、本発明によって得られる継目無鋼管は、既に述べたように、2atm以上、特に、5〜10atm硫化水素という最も硫化物応力腐食割れが生じやすい環境で用いることができるが、これよりも低圧の硫化水素環境でも、これよりも高圧の硫化水素環境でも用いることができるのはいうまでもない。
【0016】
本発明は、上記の課題を解決するためになされたものであり、下記の(A)〜(C)に示す継目無鋼管の製造方法を要旨とする。
【0017】
(A)質量%で、C:0.10〜0.20%、Si:0.05〜1.0%、Mn:0.05〜1.5%、Cr:1.0〜2.0%、Mo:0.05〜2.0%、Al:0.10%以下およびTi:0.002〜0.05%を含有し、残部がFeおよび不純物からなり、不純物中のPが0.025%以下、Sが0.010%以下、Nが0.007%以下およびBが0.0003%未満である化学組成を有し、かつ、下記の式(1)で求められるCeqの値が0.65以上である鋼片を熱間で穿孔し、延伸圧延した後、最終圧延温度を800〜1100℃となるように製管し、得られた鋼管をインラインでAr 3 変態点から1000℃までの温度域で補熱し、かつAr 3 変態点以上の温度から焼入れし、次いで、Ac 1 変態点よりも低い温度で焼戻すことを特徴とする継目無鋼管の製造方法。
Ceq=C+(Mn/6)+(Cr+Mo+V)/5・・・・(1)
但し、(1)式中のC、Mn、Cr、MoおよびVは、それぞれの元素の含有量(質量%)を意味する。
【0018】
(B)鋼片の化学組成が、Feの一部に代えて、V:0.03〜0.2%およびNb:0.002〜0.04%の一方または両方を含有することを特徴とする上記(A)に記載の継目無鋼管の製造方法。
【0019】
(C)鋼片の化学組成が、Feの一部に代えて、Ca:0.0003〜0.005%、Mg:0.0003〜0.005%およびREM:0.0003〜0.005%から選択される1種以上を含有することを特徴とする上記(A)または(B)に記載の継目無鋼管の製造方法。
【0022】
本発明によれば、継目無鋼管の焼入れ性および靭性を確保して耐硫化物応力腐食割れ性を向上させることができる。本発明によって得られる継目無鋼管は、2atm以上、特に、5〜10atm硫化水素という最も硫化物応力腐食割れが生じやすい環境で用いられる場合に有用である。
【発明を実施するための最良の形態】
【0023】
本発明によって得られる継目無鋼管は、既に述べたとおり、Cr含有量を高めることで高圧硫化水素環境における腐食速度を低減するとともに、Bを非添加として焼入れ性および靭性を確保して、耐硫化物応力腐食割れ性を向上させたものである。以下、各成分の限定理由を説明する。
【0024】
C:0.10〜0.20%
Cは、鋼の強度を高める効果を有する元素である。Cの含有量が0.1%未満の場合、所望の強度を得るためには低温の焼戻しが必要となる。その結果、耐硫化物応力腐食割れ性が低下する。焼戻し軟化抵抗を向上させる成分を添加して焼戻し温度を向上させることによりこれを補おうとすると、高価な元素を多量に添加することが必要となる。一方、Cの含有量が0.20%を超えると降伏比が低下する。この過剰のC含有量のままで所望の強度を得ようとすると、硬度が上昇し、耐硫化物応力腐食割れ性が低下する。従って、C含有量は0.10〜0.20%とした。C含有量の好ましい下限値は0.14%である。また、C含有量の好ましい上限値は0.18%である。
【0025】
Si:0.05〜1.0%
Siは、脱酸作用を有する元素である。また、この元素は、鋼の焼入れ性を高めて、強度を向上させる元素である。この効果を得るためにはSiが0.05%以上含まれていることが必要である。しかし、その含有量が1.0%を超えると、耐硫化物応力腐食割れ性が低下する。従って、Siの含有量は、0.05〜1.0%とした。Si含有量の好ましい下限値は0.1%である。また、好ましい上限値は0.6%である。
【0026】
Mn:0.05〜1.5%
Mnは、脱酸作用を有する元素である。また、この元素は、鋼の焼入れ性を高めて強度を向上させる元素である。この効果を得るためにはMnを0.05%以上含有させる必要がある。しかし、その含有量が1.5%を超えると、耐硫化物応力腐食割れ性が低下する。従って、Mnの含有量を0.05〜1.5%とした。
【0027】
Cr:1.0〜2.0%
Crは、鋼の焼入れ性を高めて耐硫化物応力腐食割れ性を向上させるのに有効な元素である。その効果を発揮させるためには1.0%以上含有させる必要がある。しかし、その含有量が2.0%を超えると、かえって耐硫化物応力腐食割れ性の低下を招く。従って、Crの含有量は1.0〜2.0%とした。Cr含有量の好ましい下限値は1.1%であり、より好ましいのは1.2%である。また、Cr含有量の好ましい上限値は1.8%である。
【0028】
Mo:0.05〜2.0%
Moは、鋼の焼入れ性を高めて高強度を確保するのに有効な元素である。また、この元素は、耐硫化物応力腐食割れ性を高める効果も有する。これらの効果を得るには、Moは0.05%以上の含有量とする必要がある。しかし、Moの含有量が2.0%を超えると、旧オーステナイト粒界に粗大な炭化物を形成し、耐硫化物応力腐食割れ性が低下する。従って、Moの含有量は0.05〜2.0%とするのがよい。Mo含有量の好ましい範囲は、0.1〜0.8%である。
【0029】
Al:0.10%以下
Alは、脱酸作用を有する元素である。この元素は、鋼の靱性および加工性を高めるのにも有効である。しかし、その含有量が0.10%を超えると、地疵の発生が著しくなる。従って、Alの含有量を0.10%以下とした。Al含有量は不純物レベルであってもよいが、0.005%以上とすることが好ましい。Al含有量の好ましい上限値は、0.05%である。なお、本発明にいうAl含有量とは、酸可溶Al(いわゆるsol.Al)の含有量を指す。
【0030】
Ti:0.002〜0.05%
Tiは、鋼中のNを窒化物として固定して焼入れ性向上させるのに有効な元素である。この効果を得るには0.002%以上のTiを含有させる必要がある。しかし、Tiの含有量が0.05%を超えると、粗大な窒化物が生成し、硫化物応力割れが生じやすくなる。従って、Tiの含有量は0.002〜0.05%とした。好ましい下限値は0.005%であり、好ましい上限値は0.025%である。
【0031】
本発明によって得られる継目無鋼管の一つは、上記の各元素を含み、残部はFeおよび不純物からなる化学組成を有するものである。また、本発明によって得られる継目無鋼管には、炭化物等の微細析出のために、上記の各元素に加え、さらに、V:0.03〜0.2%およびNb:0.002〜0.04%の一方または両方を含有させてもよい。
【0032】
V:0.03〜0.2%
Vは、焼戻し時に微細な炭化物として析出し、継目無鋼管の強度を高める効果を有する元素である。この効果を得るためには、Vを0.03%以上含有させるのが好ましい。しかし、Vの含有量が0.2%を超えると靭性が低下するおそれがある。従って、Vを添加する場合には、その含有量を0.03〜0.2%とするのが好ましい。
【0033】
Nb:0.002〜0.04%
Nbは、高温域で炭窒化物を形成して、結晶粒の粗大化を抑制し、耐硫化物応力腐食割れ性を向上させるのに有効な元素である。その効果を得るためにはNbを0.002%以上含有させるのが好ましい。しかし、その含有量が0.04%を超えると、炭窒化物が粗大になりすぎて、かえって硫化物応力割れを生じさせやすくする。従って、Nbを添加する場合には、その含有量を0.002〜0.04%とするのが好ましい。好ましい上限値は0.02%である。
【0034】
本発明によって得られる継目無鋼管には、鋼の耐硫化物応力腐食割れ性の向上のために、上記の各元素に加え、さらに、Ca:0.0003〜0.005%、Mg:0.0003〜0.005%およびREM:0.0003〜0.005%から選択される1種以上を含有させてもよい。
【0035】
Ca:0.0003〜0.005%
Mg:0.0003〜0.005%
REM:0.0003〜0.005%
Ca、MgおよびREMは、いずれも鋼中のSと反応して硫化物を形成することにより介在物の形態を改善し、鋼の耐硫化物応力腐食割れ性を向上させる効果を有する。このような効果を得るためには、Ca、MgおよびREM(希土類元素、即ち、Ce、La、Yなど)のうちから選ばれた1種以上を添加することができる。しかし、上記の効果は、これらの元素の含有量がそれぞれ0.0003%以上の場合に顕著となる。一方、いずれの元素もその含有量が0.005%を超えると、鋼中の介在物量が増大、鋼の清浄度が低下するので、硫化物応力割れが生じやすくなるおそれがある。従って、これらの元素を添加する場合には、それぞれの含有量を0.0003〜0.005%とするのが好ましい。
【0036】
本発明によって得られる継目無鋼管においては、不純物中のP、S、NおよびBは、下記の範囲に制限しなければならない。
【0037】
P:0.025%以下
Pは、不純物として鋼中に存在する元素である。この元素は、靱性を低下させ、特に、その含有量が0.025%を超えると、耐硫化物応力腐食割れ性の低下が著しくなる。したがって、Pの含有量は0.025%以下に抑えることとした。好ましいPの含有量は0.020%以下であり、より好ましいのは0.015%以下である。
【0038】
S:0.010%以下
Sも不純物として鋼中に存在する元素である。その含有量が0.010%を超えると、耐硫化物応力腐食割れ性の劣化が大きくなる。したがって、Sの含有量は0.010%以下に制限することとした。Sの含有量は0.005%以下とするのが好ましい。
【0039】
N:0.007%以下
Nも不純物として鋼中に存在する元素である。Al、TiまたはNbと結合して窒化物を形成する。Nが多量に存在すると、AlN、TiNの粗大化を招く。従って、Nの含有量は0.007%以下に制限することとした。
【0040】
B:0.0003%未満
Bも不純物として鋼中に存在する元素である。Bは、合金中のCr含有量を高めた場合に、合金中のM23C6型の粒界炭化物を粗大化させ、靭性の低下、引いては、耐硫化物応力腐食割れ性の低下を招く。従って、Bの含有量は0.0003%未満に制限することとした。
【0041】
Ceq:0.65以上
上記の化学組成を有する場合であっても、焼入性に劣る場合があるため、本発明によって得られる継目無鋼管においては、下記の(1)式で表されるCeqを0.65以上となるように、化学組成を調整しなければならない。
Ceq=C+(Mn/6)+(Cr+Mo+V)/5・・・・(1)
但し、(1)式中のC、Mn、Cr、MoおよびVは、それぞれの元素の含有量(質量%)を意味する。
【0042】
ここで、Cは、焼入れ性の向上に有効な元素であるが、C含有量を増加させると、硬度が上昇し、YRを低下させてしまう。このため、本発明においては、C以外の焼入れ性の向上に寄与する元素(Mn、Cr、MoおよびV)の関係式(1)から得られるCeqを焼入れ性確保のための指標として用いる。ここで、上記(1)式から求められるCeqが0.65未満の場合、焼入れ性が不十分となり、特に厚肉製品において、耐硫化物応力腐食割れ性能が低下する。このため、本発明では、Ceqを0.65以上に調製することとした。
【0043】
粒径が1μm以上のM23C6系析出物は、靭性および耐サワー性を低下させるため、本発明によって得られる継目無鋼管においては、その単位面積あたりの個数が0.1個/mm2以下とする必要がある。
【0044】
本発明によって得られる継目無鋼管は、主な組織が焼戻しマルテンサイトで、旧オーステナイト結晶粒度がJIS G 0551に規定される粒度番号で7番以下であるような粗粒組織であっても、降伏比が高く耐硫化物応力腐食割れ性に優れるものである。従って、上記の化学組成を有する鋼の鋼塊を素材とすれば、継目無鋼管の製造方法の選択の自由度が高い。以下、本発明に係る継目無鋼管の製造方法を説明する。
【0045】
例えば、マンネスマン−マンドレルミル製管法によって穿孔し、延伸圧延されて成形された鋼管を、冷却することなく、仕上げ圧延機の後段に設けられた熱処理設備に供給してAr3変態点以上の温度に保持して、焼入れ処理し、その後、例えば600〜750℃で焼戻し処理することによって製造する、省エネルギー型のインライン製管−熱処理プロセスを選択したとしても降伏比の高い鋼管が製造でき、所望の高強度で高耐硫化物応力腐食割れ性の鋼管が得られる。
【0046】
また、熱間仕上げ成形された鋼管を、一旦室温まで冷却した後、焼入れ炉で再加熱して900℃〜1000℃の温度範囲で均熱して水焼入れし、その後600〜750℃で焼戻し処理することによって製造する、オフライン製管−熱処理プロセスを選択すれば、旧オーステナイト粒径の細粒効果と相まってより高い降伏比を有する鋼管を製造でき、より高強度で高耐硫化物応力腐食割れ性の鋼管が得られる。
【0047】
しかしながら、以下に述べる製造方法が最も望ましい。その理由は、製管から焼入れまでの間で管が高温に保たれるので、VやMoのような元素を固溶状態のままに保つことが容易であり、耐硫化物応力腐食割れ性の向上に有利な高温焼戻しにおいて、これらの元素が微細炭化物として析出し、鋼管の高強度化に寄与するからである。
【0048】
本発明の継目無鋼管の製造方法は、延伸圧延の最終圧延温度、および圧延終了後の熱処理に特徴がある。以下、それぞれについて説明する。
【0049】
(1)延伸圧延の最終圧延温度
この温度は、800〜1100℃とする。800℃よりも低いと鋼管の変形抵抗が大きくなりすぎて、工具摩耗の問題が生じる。一方、1100℃よりも高いと結晶粒が粗大になりすぎて、耐硫化物応力腐食割れ性が劣化する。なお、延伸圧延よりも前の穿孔工程は、通常の方法、例えばマンネスマン穿孔法でよい。
【0050】
(2)補熱処理
延伸圧延を終えた鋼管は、インラインで、即ち、一連の鋼管製造ライン内に設けられた補熱炉に装入して、Ar3点から1000℃までの温度域で補熱する。この補熱の目的は、鋼管の長手方向の温度のバラツキをなくし、組織を均一化することにある。
【0051】
補熱の温度がAr3点よりも低いとフェライトが生成しはじめて均一な焼入れ組織が得られない。一方、1000℃よりも高いと結晶粒成長が促進されて、粗粒化による耐硫化物応力腐食割れ性の劣化がおきる。補熱の時間は、管の肉厚全体が均一な温度になるのに必要な時間とする。およそ5〜10分程度でよい。なお、延伸圧延の最終圧延温度がAr3点から1000℃までの温度域にある場合には、補熱工程は省略してもよいが、管の長手方向と肉厚方向の温度バラツキを小さくするために、補熱を行うのが望ましい。
【0052】
(3)焼入れ焼戻し
上記の工程を経てAr3点から1000℃までの温度域にある鋼管を焼入れする。焼入れは、管の肉厚全体がマルテンサイト組織になるのに十分な冷却速度で行う。通常は水冷でよい。焼戻しは、Ac1点よりも低い温度で行う。望ましいのは、600〜700℃である。焼戻し時間は、管の肉厚にもよるが、概ね20〜60分でよい。
【0053】
以上により焼戻しマルテンサイトからなる、優れた性質の継目無鋼管が得られる。
【0054】
表1に示す化学組成を有する低合金鋼からなるビレットを製造し、これをマンネスマン−マンドレル製管法によって外径273.1mm、肉厚16.5mmの継目無鋼管に成形し、この鋼管の温度がAr3点を下回らないうちに、直ちに補熱炉に装入し、950℃で10分間均熱した後、水焼き入れを施し、さらに、焼戻し熱処理を施し、鋼管の長手方向の降伏強度(YS)が、APIで規定される弧状引張試験において、110ksi付近になるように調整した。
【0055】
10atmの高圧硫化水素環境における腐食試験については、以下の方法で実施した。上記のように成形および熱処理した鋼管の長手方向から、各供試材から厚さ2mm、幅10mm、長さ75mmの応力腐食試験片を採取した。試験片には、ASTM―G39に規定される方法に従って4点曲げにより所定量のひずみを付与することにより、上記降伏応力の90%の応力を負荷した。この状態の試験片を試験治具ごとオートクレーブ中に封入した後、オートクレーブ中に脱気した5%の食塩水を、気相部を残して注入した。その後、オートクレーブ内に10atmの硫化水素ガスを加圧封入し、液相の攪拌によりこの高圧の硫化水素ガスを液相に飽和させた。オートクレーブを封じた後、液を攪拌しつつ、25℃で720時間保持し、その後減圧して試験片を取り出した。
【0056】
試験後、試験片の硫化物応力腐食割れ(SSC)の有無を目視で観察した。表1中の「耐SSC」の「×」は、SSCが発生したことを示し、「○」はSSCが発生しなかったことを示す。
【0057】
粒径が1μm以上のM23C6系析出物(Mは金属元素)の単位面積あたりの個数は、次のように測定した。上記のように製管・焼入れ・焼戻して製造された鋼管の任意の位置から、炭化物観察用の抽出レプリカ試料(一枚のレプリカ試料の視野面積は3mm2)を10枚採りだし、TEMにて各旧γ粒界について観察し、粒界炭化物の大きさが径で1μmあれば、その炭化物の回折パターンからM23C6型なのか否かを判定し、M23C6型であればその個数をカウントして、観察視野の合計面積で除して単位面積あたりの個数とした。
【0058】
表1中の「M23C6の個数」の「○」は、粒径が1μm以上のM23C6系析出物(Mは金属元素)の単位面積あたりの個数が0.1個/mm2以下であったことを意味し、「×」は、0.1個/mm2を超えたことを意味する。
【0059】
均一なマルテンサイト組織が得られているかどうかは、次の方法で判定した。表1に示す化学組成を有する低合金鋼からなるビレットを製造し、これをマンネスマン−マンドレル製管法によって外径273.1mm、肉厚16.5mmの継目無鋼管に成形し、この鋼管の温度がAr3点を下回らないうちに、直ちに補熱炉に装入し、950℃で10分間均熱した後、水焼き入れを施して、焼入れままの鋼管を作製した。なお、水焼入れにおける800〜500℃における平均冷却速度は、鋼管長手方向中央の肉厚中央部において10℃/秒程度であった。この焼入れままの鋼管の肉厚中央部の硬度をロックウェル硬度試験で測定し、その値が各鋼の90%マルテンサイト率に対応する硬度のロックウェルC硬度の予測値である「(C%×58)+27」の値より高い場合を焼き入れ組織が良好、低い場合を焼き入れ組織が不良とした。
【0060】
【表1】
【0061】
表1に示すように、本発明で規定される条件を満足したNo.1〜6では、硫化物応力腐食割れ(SSC)が発生しなかった。本発明で規定される条件を満足しなかったNo.7〜10では、硫化物応力腐食割れ(SSC)が発生した。
【0062】
本発明によれば、継目無鋼管の焼入れ性および靭性を確保して耐硫化物応力腐食割れ性を向上させることができる。本発明によって得られる継目無鋼管は、2atm以上、特に、5〜10atm硫化水素という最も硫化物応力腐食割れが生じやすい環境で用いられる場合に有用である。【Technical field】
[0001]
The present invention relates to a method for producing a welt steel pipe suitable for use in high deep wells corrosive containing hydrogen sulfide of a high pressure.
[0002]
Steels used in harsh oil well environments, high temperature environments, and the like are required to improve various performances such as strength, toughness, and sour resistance. With the deepening of wells, oil well steels are required to have higher strength and better stress corrosion cracking resistance.
[0003]
The steel material becomes harder as the strength is increased. As a result, the dislocation density increases, the amount of hydrogen entering the steel material increases, and the steel material becomes weak against stress. For this reason, when steel materials are strengthened, the resistance to sulfide stress corrosion cracking generally deteriorates. In particular, a steel material having a low ratio of “yield strength / tensile strength” (hereinafter referred to as “yield ratio”) tends to have high tensile strength and hardness when a member having a desired yield strength is produced, and is resistant to sulfide stress corrosion cracking. Remarkably deteriorates. Therefore, when increasing the strength of the steel material, it is important to increase the yield ratio in order to keep the hardness low.
[0004]
In order to increase the yield ratio of steel, it is preferable that the steel material has a uniform tempered martensite structure. Further, refinement of prior austenite grains is also effective.
[0005]
For example, in Patent Documents 1 and 2, precipitation of M 23 C 6 type carbides at grain boundaries is suppressed by adjusting the balance of the contents of carbide forming elements such as V, Nb, Ti, Cr and Mo. Thus, an invention relating to a seamless steel pipe having improved resistance to sulfide stress corrosion cracking is disclosed. Patent Document 3 discloses improvement of resistance to sulfide stress corrosion cracking by crystal grain refinement. Furthermore, Patent Document 4 discloses an invention related to a seamless steel pipe for oil wells having a predetermined chemical composition, containing 0.0003 to 0.005% B, and improving toughness.
[0006]
[Patent Document 1]
Japanese Patent No. 3449311 [Patent Document 2]
JP 2000-17389 A [Patent Document 3]
JP-A-9-111343 [Patent Document 4]
WO 2005/073421 A1
DISCLOSURE OF THE INVENTION
[Problems to be solved by the invention]
[0007]
All of the above documents have examined in detail the sour resistance performance of low alloy steels used in a hydrogen sulfide environment of about 1 atm. However, the inventors' research has revealed that the behavior of sour resistance of low alloy steel in a low-pressure hydrogen sulfide environment of about 1 atm is different from that of a higher-pressure hydrogen sulfide environment.
[0008]
Based on the results of the inventors conducting a sulfide stress corrosion cracking test by four-point bending on various low alloy steels, the inventors obtained the following knowledge. The low alloy steel used in this experiment contains 0.5 to 1.3% Mn, 0.2 to 1.1% Cr and 0 to 0.7% Mo in mass%. .
[0009]
(1) The corrosion rate is 2 atm or higher, particularly high with 5 to 10 atm hydrogen sulfide, but lower with 15 atm hydrogen sulfide.
(2) Sulfide stress corrosion cracking has conventionally been considered to occur easily when the partial pressure of hydrogen sulfide in the environment is around 1 atm. However, in this experiment, it became clear for the first time that the partial pressure of hydrogen sulfide is more likely to occur at 2 atm or more, particularly 5 to 10 atm. On the other hand, when the partial pressure of hydrogen sulfide increased to 15 atm, sulfide stress corrosion cracking hardly occurred.
[0010]
Based on the above findings, the present inventors first increase the Cr content to 1.0% or more for low alloy steels that may be used in a hydrogen sulfide environment of 2 atm or more, particularly 5 to 10 atm hydrogen sulfide. Therefore, it was decided to reduce the corrosion rate in the high-pressure hydrogen sulfide environment.
[0011]
Here, in the oil well seamless steel pipe described in the above-mentioned Patent Document 4, B is added for the purpose of improving the hardenability and improving the resistance to sulfide stress corrosion cracking. However, when a seamless steel pipe for oil wells is produced by in-line quenching as in the invention described in Patent Document 4, austenite grains are difficult to refine. In this case, if B is present in the alloy having a high Cr content, the M 23 C 6 type carbide in the alloy precipitates and becomes coarse at the prior austenite grain boundaries in the heat treatment step after quenching, and in turn pulls it out. Stress corrosion cracking is reduced. Therefore, in the present invention, B is not added, and hardenability and toughness are secured.
[0012]
The term “in-line quenching” means that the seamless pipe obtained by the Mannesmann pipe manufacturing method is in-line heated and then rapidly cooled (hereinafter referred to as “in-line quenching”. However, it is necessary after quenching. The heat treatment such as tempering, annealing, and leveling performed accordingly may be performed off-line.
[0013]
With in-line quenching, manufacturing costs can be kept lower than when quenching is performed after reheating in a separate process, and the quenching temperature is ensured compared to so-called direct quenching, where tube quenching is performed as it is. It is excellent in that it can be done. However, in-line quenching tends to coarsen the M 23 C 6 type grain boundary carbide in the low alloy as described above. When B is contained in steel produced by such a production method, coarsening of grain boundary carbides becomes more prominent.
[0014]
The present invention has been made on the basis of such findings. By increasing the amount of Cr and not adding B, which is usually added, hardenability and toughness are ensured, and sulfide stress resistance is ensured. and to provide a method for producing a welt steel pipe with improved corrosion cracking resistance. The seamless steel pipe obtained by the present invention aims to have a yield strength (YS) of 654 to 793 MPa (95 to 115 ksi), but it is not necessarily satisfied.
[0015]
Note that seamless steel pipe obtained by the present invention, as already mentioned, more than 2 atm, particularly, but most sulfide stress corrosion cracking that 5~10atm hydrogen sulfide Ru can be used in a prone environment, than this Needless to say, it can be used in a low-pressure hydrogen sulfide environment or a higher-pressure hydrogen sulfide environment.
[0016]
The present invention has been made to solve the above problems, is summarized as a manufacturing method of the shown to welt steel pipe in the following (A) ~ (C).
[0017]
(A) By mass%, C: 0.10 to 0.20%, Si: 0.05 to 1.0%, Mn: 0.05 to 1.5%, Cr: 1.0 to 2.0% , Mo: 0.05~2.0%, Al: 0.10% or less and Ti: containing from 0.002 to 0.05%, the remaining part being Fe and impurities, P in the impurities 0. 025% or less, S is 0.010% or less, N has a chemical composition is less than 0.0003% 0.007% or less and B, and the value of Ceq obtained by the following formula (1) A steel slab having a thickness of 0.65 or more was hot pierced and stretch-rolled, and then piped so that the final rolling temperature was 800 to 1100 ° C., and the obtained steel pipe was 1000 ° C. from the Ar 3 transformation point in- line. Heat complement in a temperature range of up to and quenched from Ar 3 transformation point or more of the temperature, and then, at a temperature lower than the Ac 1 transformation point Seamless steel pipe production method, wherein the back.
Ceq = C + (Mn / 6) + (Cr + Mo + V) / 5 (1)
However, C, Mn, Cr, Mo and V in the formula (1) mean the content (mass%) of each element.
[0018]
(B) The chemical composition of the steel slab is characterized by containing one or both of V: 0.03-0.2% and Nb: 0.002-0.04% instead of a part of Fe. The manufacturing method of the seamless steel pipe as described in said (A) .
[0019]
(C) The chemical composition of the steel slab is replaced with a part of Fe, Ca: 0.0003 to 0.005%, Mg: 0.0003 to 0.005%, and REM: 0.0003 to 0.005% 1 or more types selected from these , The manufacturing method of the seamless steel pipe as described in said (A) or (B) characterized by the above-mentioned .
[0022]
ADVANTAGE OF THE INVENTION According to this invention, the hardenability and toughness of a seamless steel pipe can be ensured and sulfide stress corrosion cracking resistance can be improved. The seamless steel pipe obtained by the present invention is useful when used in an environment where sulfide stress corrosion cracking is most likely to occur, such as 2 atm or more, particularly 5 to 10 atm hydrogen sulfide.
BEST MODE FOR CARRYING OUT THE INVENTION
[0023]
As described above, the seamless steel pipe obtained by the present invention reduces the corrosion rate in the high-pressure hydrogen sulfide environment by increasing the Cr content, and also ensures hardenability and toughness without adding B, thereby preventing sulfidation. those with improved things stress corrosion cracking resistance. Hereinafter, the reason for limitation of each component is demonstrated.
[0024]
C: 0.10 to 0.20%
C is an element having an effect of increasing the strength of steel. When the C content is less than 0.1%, low temperature tempering is required to obtain the desired strength. As a result, the resistance to sulfide stress corrosion cracking is reduced. In order to compensate for this by adding a component for improving the temper softening resistance and improving the tempering temperature, it is necessary to add a large amount of an expensive element. On the other hand, if the C content exceeds 0.20%, the yield ratio decreases. If the desired strength is obtained with this excessive C content, the hardness increases and the resistance to sulfide stress corrosion cracking decreases. Therefore, the C content is set to 0.10 to 0.20%. A preferable lower limit of the C content is 0.14%. Moreover, the preferable upper limit of C content is 0.18%.
[0025]
Si: 0.05-1.0%
Si is an element having a deoxidizing action. Moreover, this element is an element which improves the hardenability of steel and improves strength. In order to obtain this effect, it is necessary that 0.05% or more of Si is contained. However, when the content exceeds 1.0%, the resistance to sulfide stress corrosion cracking is lowered. Therefore, the Si content is set to 0.05 to 1.0%. A preferable lower limit of the Si content is 0.1%. Moreover, a preferable upper limit is 0.6%.
[0026]
Mn: 0.05 to 1.5%
Mn is an element having a deoxidizing action. Moreover, this element is an element which improves the hardenability of steel and improves strength. In order to obtain this effect, it is necessary to contain 0.05% or more of Mn. However, when the content exceeds 1.5%, the resistance to sulfide stress corrosion cracking is lowered. Therefore, the Mn content is set to 0.05 to 1.5%.
[0027]
Cr: 1.0-2.0%
Cr is an element effective for enhancing the hardenability of steel and improving the resistance to sulfide stress corrosion cracking. In order to exhibit the effect, it is necessary to contain 1.0% or more. However, when the content exceeds 2.0%, the resistance to sulfide stress corrosion cracking is lowered. Therefore, the Cr content is set to 1.0 to 2.0%. The preferable lower limit of the Cr content is 1.1%, and more preferably 1.2%. Moreover, the preferable upper limit of Cr content is 1.8%.
[0028]
Mo: 0.05-2.0%
Mo is an element effective for increasing the hardenability of steel and ensuring high strength. This element also has the effect of increasing the resistance to sulfide stress corrosion cracking. In order to obtain these effects, the Mo content needs to be 0.05% or more. However, if the Mo content exceeds 2.0%, coarse carbides are formed at the prior austenite grain boundaries, and the resistance to sulfide stress corrosion cracking is reduced. Therefore, the Mo content is preferably 0.05 to 2.0%. A preferable range of the Mo content is 0.1 to 0.8%.
[0029]
Al: 0.10% or less Al is an element having a deoxidizing action. This element is also effective in increasing the toughness and workability of steel. However, if the content exceeds 0.10%, the generation of ground will become remarkable. Therefore, the Al content is set to 0.10% or less. The Al content may be at the impurity level, but is preferably 0.005% or more. A preferable upper limit of the Al content is 0.05%. In addition, Al content said to this invention refers to content of acid-soluble Al (what is called sol.Al).
[0030]
Ti: 0.002 to 0.05%
Ti is an element effective for fixing N in steel as a nitride and improving hardenability. In order to obtain this effect, it is necessary to contain 0.002% or more of Ti. However, if the Ti content exceeds 0.05%, coarse nitrides are formed, and sulfide stress cracking is likely to occur. Therefore, the Ti content is set to 0.002 to 0.05%. A preferable lower limit is 0.005%, and a preferable upper limit is 0.025%.
[0031]
One of the seamless steel pipes obtained by the present invention contains the above-mentioned elements, and the balance has a chemical composition composed of Fe and impurities. In addition to the above elements, the seamless steel pipe obtained by the present invention , in addition to the above-mentioned elements, for fine precipitation of carbides and the like, V: 0.03-0.2% and Nb: 0.002-0. One or both of 04% may be included.
[0032]
V: 0.03-0.2%
V is an element that precipitates as fine carbides during tempering and has the effect of increasing the strength of the seamless steel pipe . In order to acquire this effect, it is preferable to contain V 0.03% or more. However, if the V content exceeds 0.2%, the toughness may be reduced. Therefore, when V is added, its content is preferably 0.03 to 0.2%.
[0033]
Nb: 0.002 to 0.04%
Nb is an element effective in forming carbonitrides in a high temperature range, suppressing coarsening of crystal grains, and improving resistance to sulfide stress corrosion cracking. In order to acquire the effect, it is preferable to contain 0.002% or more of Nb. However, if its content exceeds 0.04%, the carbonitride becomes too coarse, and it tends to cause sulfide stress cracking. Therefore, when Nb is added, its content is preferably 0.002 to 0.04%. A preferable upper limit is 0.02%.
[0034]
In order to improve the resistance to sulfide stress corrosion cracking of steel, the seamless steel pipe obtained by the present invention is further added with Ca: 0.0003 to 0.005%, Mg: 0.005%. One or more selected from 0003 to 0.005% and REM: 0.0003 to 0.005% may be contained.
[0035]
Ca: 0.0003 to 0.005%
Mg: 0.0003 to 0.005%
REM: 0.0003 to 0.005%
Ca, Mg, and REM all have the effect of improving the form of inclusions by reacting with S in the steel to form sulfides and improving the resistance to sulfide stress corrosion cracking of the steel. In order to obtain such an effect, one or more selected from Ca, Mg, and REM (rare earth elements, that is, Ce, La, Y, etc.) can be added. However, the above-mentioned effect becomes remarkable when the content of these elements is 0.0003% or more. On the other hand, if the content of any element exceeds 0.005%, the amount of inclusions in the steel increases, and the cleanliness of the steel decreases, so that sulfide stress cracking is likely to occur. Therefore, when adding these elements, it is preferable to make each content into 0.0003 to 0.005%.
[0036]
In the seamless steel pipe obtained by the present invention, P, S, N and B in impurities must be limited to the following ranges.
[0037]
P: 0.025% or less P is an element present in steel as an impurity. This element lowers toughness. In particular, when its content exceeds 0.025%, the resistance to sulfide stress corrosion cracking is significantly reduced. Therefore, the P content is limited to 0.025% or less. P content is preferably 0.020% or less, and more preferably 0.015% or less.
[0038]
S: 0.010% or less S is an element present in steel as an impurity. When the content exceeds 0.010%, the deterioration of the resistance to sulfide stress corrosion cracking increases. Therefore, the S content is limited to 0.010% or less. The S content is preferably 0.005% or less.
[0039]
N: 0.007% or less N is also an element present in steel as an impurity. Bonds with Al, Ti or Nb to form a nitride. When N is present in a large amount, it causes coarsening of AlN and TiN. Therefore, the N content is limited to 0.007% or less.
[0040]
B: Less than 0.0003% B is also an element present in steel as an impurity. B, when the Cr content in the alloy is increased, the M 23 C 6 type grain boundary carbide in the alloy is coarsened and the toughness is lowered, and in turn, the resistance to sulfide stress corrosion cracking is lowered. Invite. Therefore, the B content is limited to less than 0.0003%.
[0041]
Ceq: 0.65 or more Even if it has the above chemical composition, since it may be inferior in hardenability, in the seamless steel pipe obtained by the present invention , Ceq represented by the following formula (1) Must be adjusted to 0.65 or more.
Ceq = C + (Mn / 6) + (Cr + Mo + V) / 5 (1)
However, C, Mn, Cr, Mo and V in the formula (1) mean the content (mass%) of each element.
[0042]
Here, C is an element effective for improving the hardenability, but when the C content is increased, the hardness is increased and the YR is decreased. For this reason, in the present invention, Ceq obtained from the relational expression (1) of elements (Mn, Cr, Mo, and V) that contribute to improvement of hardenability other than C is used as an index for ensuring hardenability. Here, when Ceq calculated | required from the said (1) Formula is less than 0.65, hardenability will become inadequate and a sulfide stress corrosion cracking performance will fall especially in a thick product. Therefore, in the present invention, Ceq is adjusted to 0.65 or more.
[0043]
Since the M 23 C 6 -based precipitate having a particle size of 1 μm or more reduces toughness and sour resistance, the number per unit area of the seamless steel pipe obtained by the present invention is 0.1 / mm 2. It is necessary to do the following.
[0044]
The seamless steel pipe obtained by the present invention has a yield structure even when the main structure is tempered martensite and the coarse grain structure is a grain size number of 7 or less as defined in JIS G 0551. The ratio is high and the resistance to sulfide stress corrosion cracking is excellent. Therefore, if a steel ingot having the above chemical composition is used as a raw material, the degree of freedom in selecting a method for producing a seamless steel pipe is high. Hereinafter , the manufacturing method of the seamless steel pipe concerning the present invention is explained.
[0045]
For example, a steel pipe that has been perforated by the Mannesmann-Mandrel Mill pipe manufacturing method and stretched and rolled is supplied to a heat treatment facility provided at the subsequent stage of the finishing mill without cooling, and the temperature is higher than the Ar 3 transformation point. Even if the energy-saving type in-line pipe making and heat treatment process is selected, a steel pipe having a high yield ratio can be produced, for example, by tempering at 600 to 750 ° C. A steel pipe with high strength and high resistance to sulfide stress corrosion cracking can be obtained.
[0046]
In addition, the hot-finished steel pipe is once cooled to room temperature, then reheated in a quenching furnace, soaked in a temperature range of 900 ° C. to 1000 ° C. and water-quenched, and then tempered at 600 to 750 ° C. By selecting an off-line pipe-heat treatment process, a steel pipe with a higher yield ratio combined with a fine grain effect of the prior austenite grain size can be produced, with higher strength and higher resistance to sulfide stress corrosion cracking. A steel pipe is obtained.
[0047]
However, the manufacturing method described below is most desirable. The reason is that since the pipe is kept at a high temperature from pipe making to quenching, it is easy to keep elements such as V and Mo in a solid solution state, and resistance to sulfide stress corrosion cracking. This is because in high-temperature tempering advantageous for improvement, these elements are precipitated as fine carbides and contribute to increasing the strength of the steel pipe.
[0048]
The method for producing a seamless steel pipe according to the present invention is characterized by the final rolling temperature of stretch rolling and the heat treatment after the end of rolling. Each will be described below.
[0049]
(1) Final rolling temperature of stretch rolling This temperature is 800-1100 ° C. When the temperature is lower than 800 ° C., the deformation resistance of the steel pipe becomes too large, causing a problem of tool wear. On the other hand, when the temperature is higher than 1100 ° C., the crystal grains become too coarse and the resistance to sulfide stress corrosion cracking deteriorates. The piercing process prior to the drawing and rolling may be performed by a normal method, for example, Mannesmann piercing method.
[0050]
(2) Supplementary heat treatment The steel pipe that has been drawn and rolled is in-line, that is, charged in a reheating furnace provided in a series of steel pipe production lines, and reheated in the temperature range from Ar 3 to 1000 ° C. To do. The purpose of this heat supplementation is to eliminate the temperature variation in the longitudinal direction of the steel pipe and to make the structure uniform.
[0051]
If the temperature of the auxiliary heat is lower than the Ar 3 point, ferrite starts to form and a uniform quenched structure cannot be obtained. On the other hand, when the temperature is higher than 1000 ° C., crystal grain growth is promoted, and the resistance to sulfide stress corrosion cracking due to coarsening is deteriorated. The time for supplementary heating is the time required for the entire thickness of the tube to reach a uniform temperature. About 5 to 10 minutes may be sufficient. In addition, when the final rolling temperature of the stretch rolling is in the temperature range from the Ar 3 point to 1000 ° C., the heating step may be omitted, but the temperature variation in the longitudinal direction and the thickness direction of the pipe is reduced. Therefore, it is desirable to perform supplementary heat.
[0052]
(3) Quenching and tempering The steel pipe in the temperature range from the Ar 3 point to 1000 ° C. is quenched through the above steps. Quenching is performed at a cooling rate sufficient for the entire wall thickness of the tube to be martensitic. Usually, water cooling is sufficient. Tempering is performed at a temperature lower than the Ac 1 point. Desirable is 600 to 700 ° C. The tempering time may be approximately 20 to 60 minutes, although it depends on the wall thickness of the tube.
[0053]
As a result, a seamless steel pipe made of tempered martensite and having excellent properties is obtained.
[0054]
A billet made of a low alloy steel having the chemical composition shown in Table 1 was manufactured and formed into a seamless steel pipe having an outer diameter of 273.1 mm and a wall thickness of 16.5 mm by the Mannesmann-Mandrel pipe manufacturing method. Before the temperature falls below the Ar 3 point, it was immediately charged into a reheating furnace, soaked at 950 ° C. for 10 minutes, then subjected to water quenching, further subjected to tempering heat treatment, and yield strength in the longitudinal direction of the steel pipe ( YS) was adjusted to be around 110 ksi in an arc-shaped tensile test defined by API.
[0055]
The corrosion test in a high-pressure hydrogen sulfide environment at 10 atm was performed by the following method. A stress corrosion test piece having a thickness of 2 mm, a width of 10 mm, and a length of 75 mm was collected from each specimen from the longitudinal direction of the steel pipe formed and heat-treated as described above. The test piece was subjected to a stress of 90% of the yield stress by applying a predetermined amount of strain by four-point bending according to the method specified in ASTM-G39. After the test piece in this state was enclosed in the autoclave together with the test jig, 5% saline solution degassed into the autoclave was injected leaving the gas phase portion. Thereafter, 10 atm hydrogen sulfide gas was pressurized and sealed in the autoclave, and the high-pressure hydrogen sulfide gas was saturated to the liquid phase by stirring the liquid phase. After sealing the autoclave, the liquid was stirred and held at 25 ° C. for 720 hours, and then the pressure was reduced and the test piece was taken out.
[0056]
After the test, the test piece was visually observed for the presence of sulfide stress corrosion cracking (SSC). “X” of “SSC resistance” in Table 1 indicates that SSC has occurred, and “◯” indicates that SSC has not occurred.
[0057]
The number per unit area of M 23 C 6 -based precipitates (M is a metal element) having a particle size of 1 μm or more was measured as follows. Ten extracted replica samples for observation of carbides (viewing area of one replica sample is 3 mm 2 ) are taken from any position of the steel pipe manufactured by pipe making, quenching, and tempering as described above. was observed for each old γ grain boundaries, if 1μm in diameter the size of grain boundary carbides, determines whether from the diffraction pattern of the carbide M 23 C 6 type of the, if M 23 C 6 type thereof The number was counted and divided by the total area of the observation field to obtain the number per unit area.
[0058]
“◯” in “Number of M 23 C 6 ” in Table 1 indicates that the number per unit area of M 23 C 6 -based precipitates (M is a metal element) having a particle size of 1 μm or more is 0.1 / mm. It means that it was 2 or less, and “x” means that it exceeded 0.1 / mm 2 .
[0059]
Whether or not a uniform martensite structure was obtained was determined by the following method. A billet made of a low alloy steel having the chemical composition shown in Table 1 was manufactured and formed into a seamless steel pipe having an outer diameter of 273.1 mm and a wall thickness of 16.5 mm by the Mannesmann-Mandrel pipe manufacturing method. Before the temperature fell below the Ar 3 point, it was immediately charged into a reheating furnace, soaked at 950 ° C. for 10 minutes, and then subjected to water quenching to produce an as-quenched steel pipe. In addition, the average cooling rate in 800-500 degreeC in water quenching was about 10 degreeC / second in the thickness center part of the steel pipe longitudinal direction center. The hardness at the center of the thickness of the as-quenched steel pipe is measured by the Rockwell hardness test, and the value is a predicted value of Rockwell C hardness corresponding to the 90% martensite ratio of each steel “(C% When the value was higher than the value of (× 58) +27 ”, the quenched structure was good, and when the value was low, the quenched structure was poor.
[0060]
[Table 1]
[0061]
As shown in Table 1, No. 1 satisfying the conditions defined in the present invention. In Nos. 1 to 6, sulfide stress corrosion cracking (SSC) did not occur. No. which did not satisfy the conditions defined in the present invention. In 7-10 , sulfide stress corrosion cracking (SSC) occurred.
[0062]
ADVANTAGE OF THE INVENTION According to this invention, the hardenability and toughness of a seamless steel pipe can be ensured and sulfide stress corrosion cracking resistance can be improved. The seamless steel pipe obtained by the present invention is useful when used in an environment where sulfide stress corrosion cracking is most likely to occur, such as 2 atm or more, particularly 5 to 10 atm hydrogen sulfide.
Claims (3)
Ceq=C+(Mn/6)+(Cr+Mo+V)/5・・・・(1)
但し、(1)式中のC、Mn、Cr、MoおよびVは、それぞれの元素の含有量(質量%)を意味する。 In mass%, C: 0.10 to 0.20%, Si: 0.05 to 1.0%, Mn: 0.05 to 1.5%, Cr: 1.0 to 2.0%, Mo: 0.05 to 2.0%, Al: 0.10% or less and Ti: 0.002 to 0.05%, the balance is made of Fe and impurities, and P in the impurities is 0.025% or less, It has a chemical composition in which S is 0.010% or less, N is 0.007% or less, and B is less than 0.0003% , and the Ceq value obtained by the following formula (1) is 0.65 or more The steel slab is pierced hot and stretch-rolled, and then the final rolling temperature is 800-1100 ° C., and the obtained steel pipe is in-line in the temperature range from the Ar 3 transformation point to 1000 ° C. in heated auxiliary and quenched from Ar 3 transformation point or more of the temperature, then tempered at a temperature lower than the Ac 1 transformation point Seamless steel pipe manufacturing method characterized by and.
Ceq = C + (Mn / 6) + (Cr + Mo + V) / 5 (1)
However, C, Mn, Cr, Mo and V in the formula (1) mean the content (mass%) of each element.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007092144 | 2007-03-30 | ||
JP2007092144 | 2007-03-30 | ||
PCT/JP2008/056113 WO2008123422A1 (en) | 2007-03-30 | 2008-03-28 | Low-alloy steel, seamless steel pipe for oil well, and process for producing seamless steel pipe |
Publications (2)
Publication Number | Publication Date |
---|---|
JP4305681B2 true JP4305681B2 (en) | 2009-07-29 |
JPWO2008123422A1 JPWO2008123422A1 (en) | 2010-07-15 |
Family
ID=39830907
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008539962A Active JP4305681B2 (en) | 2007-03-30 | 2008-03-28 | Seamless steel pipe manufacturing method |
Country Status (13)
Country | Link |
---|---|
US (1) | US20090047166A1 (en) |
EP (1) | EP2133442B1 (en) |
JP (1) | JP4305681B2 (en) |
CN (1) | CN101542002B (en) |
AT (1) | ATE543922T1 (en) |
AU (1) | AU2008221597B8 (en) |
BR (1) | BRPI0802627B1 (en) |
CA (1) | CA2650208A1 (en) |
EA (1) | EA012256B1 (en) |
MX (1) | MX2008016193A (en) |
MY (1) | MY145393A (en) |
UA (1) | UA90947C2 (en) |
WO (1) | WO2008123422A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103469081A (en) * | 2013-09-10 | 2013-12-25 | 内蒙古包钢钢联股份有限公司 | Rare earth (RE)-containing BT90H steel grade casing for heavy oil thermal recovery wells and rolling method |
Families Citing this family (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101340165B1 (en) | 2006-06-29 | 2013-12-10 | 테나리스 커넥션즈 아.게. | Seamless precision steel tubes with improved isotropic toughness at low temperature for hydraulic cylinders and process for obtaining the same |
AR075976A1 (en) | 2009-03-30 | 2011-05-11 | Sumitomo Metal Ind | METHOD FOR THE MANUFACTURE OF PIPE WITHOUT SEWING |
EP2325435B2 (en) | 2009-11-24 | 2020-09-30 | Tenaris Connections B.V. | Threaded joint sealed to [ultra high] internal and external pressures |
US20110253265A1 (en) | 2010-04-15 | 2011-10-20 | Nisshin Steel Co., Ltd. | Quenched and tempered steel pipe with high fatigue life, and its manufacturing method |
CN101899621B (en) * | 2010-07-20 | 2012-07-04 | 攀钢集团钢铁钒钛股份有限公司 | 3Cr seamless steel pipe and production method thereof |
US9163296B2 (en) | 2011-01-25 | 2015-10-20 | Tenaris Coiled Tubes, Llc | Coiled tube with varying mechanical properties for superior performance and methods to produce the same by a continuous heat treatment |
IT1403689B1 (en) * | 2011-02-07 | 2013-10-31 | Dalmine Spa | HIGH-RESISTANCE STEEL TUBES WITH EXCELLENT LOW TEMPERATURE HARDNESS AND RESISTANCE TO CORROSION UNDER VOLTAGE SENSORS. |
IT1403688B1 (en) * | 2011-02-07 | 2013-10-31 | Dalmine Spa | STEEL TUBES WITH THICK WALLS WITH EXCELLENT LOW TEMPERATURE HARDNESS AND RESISTANCE TO CORROSION UNDER TENSIONING FROM SULFUR. |
US8414715B2 (en) | 2011-02-18 | 2013-04-09 | Siderca S.A.I.C. | Method of making ultra high strength steel having good toughness |
US8636856B2 (en) | 2011-02-18 | 2014-01-28 | Siderca S.A.I.C. | High strength steel having good toughness |
CA2808458C (en) * | 2011-02-24 | 2015-10-20 | Nippon Steel & Sumitomo Metal Corporation | High-strength steel sheet exhibiting excellent stretch-flange formability and bending workability, and method of producing molten steel for the high-strength steel sheet |
CN102719752B (en) * | 2011-03-29 | 2015-03-11 | 鞍钢股份有限公司 | Seamless steel pipe with excellent hydrogen sulfide stress corrosion resistance and manufacturing method thereof |
AR088424A1 (en) | 2011-08-22 | 2014-06-11 | Nippon Steel & Sumitomo Metal Corp | STEEL TUBE FOR PETROLEUM WELL WITH EXCELLENT CORROSION RESISTANCE UNDER VOLTAGE SULFIDE PRESENCE |
JP5387799B1 (en) | 2012-03-07 | 2014-01-15 | 新日鐵住金株式会社 | Manufacturing method of high strength steel with excellent resistance to sulfide stress cracking |
US9340847B2 (en) * | 2012-04-10 | 2016-05-17 | Tenaris Connections Limited | Methods of manufacturing steel tubes for drilling rods with improved mechanical properties, and rods made by the same |
CN104662193B (en) * | 2012-09-19 | 2017-03-08 | 杰富意钢铁株式会社 | The excellent wear-resistant steel plate of low-temperature flexibility and corrosion wear resistance |
US9970242B2 (en) | 2013-01-11 | 2018-05-15 | Tenaris Connections B.V. | Galling resistant drill pipe tool joint and corresponding drill pipe |
US9187811B2 (en) | 2013-03-11 | 2015-11-17 | Tenaris Connections Limited | Low-carbon chromium steel having reduced vanadium and high corrosion resistance, and methods of manufacturing |
US9803256B2 (en) | 2013-03-14 | 2017-10-31 | Tenaris Coiled Tubes, Llc | High performance material for coiled tubing applications and the method of producing the same |
EP2789700A1 (en) | 2013-04-08 | 2014-10-15 | DALMINE S.p.A. | Heavy wall quenched and tempered seamless steel pipes and related method for manufacturing said steel pipes |
EP2789701A1 (en) | 2013-04-08 | 2014-10-15 | DALMINE S.p.A. | High strength medium wall quenched and tempered seamless steel pipes and related method for manufacturing said steel pipes |
EP2885440B1 (en) | 2013-06-25 | 2016-03-23 | Tenaris Connections Ltd. | High-chromium heat-resistant steel |
RU2647403C2 (en) * | 2014-01-17 | 2018-03-15 | Ниппон Стил Энд Сумитомо Метал Корпорейшн | Martensitic chromium-containing steel and pipes used in the oil industry |
CN103834868B (en) * | 2014-02-21 | 2017-01-25 | 内蒙古包钢钢联股份有限公司 | Preparation method of high-strength high-toughness H2S/CO2 corrosion resistant oil tube |
US20160305192A1 (en) | 2015-04-14 | 2016-10-20 | Tenaris Connections Limited | Ultra-fine grained steels having corrosion-fatigue resistance |
CN109154053B (en) | 2016-05-20 | 2020-08-11 | 日本制铁株式会社 | Seamless steel pipe and method for producing same |
US11124852B2 (en) | 2016-08-12 | 2021-09-21 | Tenaris Coiled Tubes, Llc | Method and system for manufacturing coiled tubing |
CN106244934B (en) * | 2016-08-24 | 2017-12-22 | 宁波乾豪金属制品有限公司 | A kind of hinge |
CN106222575B (en) * | 2016-08-24 | 2017-12-22 | 宁波乾豪金属制品有限公司 | A kind of corrosion resistant hinge |
US10434554B2 (en) | 2017-01-17 | 2019-10-08 | Forum Us, Inc. | Method of manufacturing a coiled tubing string |
CN107385350A (en) * | 2017-06-21 | 2017-11-24 | 内蒙古包钢钢联股份有限公司 | Marine drilling platform containing rare earth spud leg 700MPa seamless steel pipes and its production method |
CN107217201A (en) * | 2017-06-27 | 2017-09-29 | 包头钢铁(集团)有限责任公司 | A kind of marine drilling platform containing rare earth spud leg 600MPa seamless steel pipes and its production method |
AR118071A1 (en) * | 2019-02-15 | 2021-09-15 | Nippon Steel Corp | STEEL MATERIAL SUITABLE FOR USE IN AGRI ENVIRONMENT |
AR118070A1 (en) * | 2019-02-15 | 2021-09-15 | Nippon Steel Corp | STEEL MATERIAL SUITABLE FOR USE IN AGRI ENVIRONMENT |
BR112021026504A2 (en) | 2019-08-27 | 2022-03-03 | Nippon Steel Corp | Steel material suitable for use in acidic environment |
US20230366070A1 (en) | 2020-11-11 | 2023-11-16 | Nippon Steel Corporation | Steel material suitable for use in sour environment |
JP7406177B1 (en) | 2022-02-17 | 2023-12-27 | 日本製鉄株式会社 | Steel suitable for use in sour environments |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54119324A (en) * | 1978-03-08 | 1979-09-17 | Kawasaki Steel Co | Production of steel pipe for oil well |
JPS6046317A (en) * | 1983-08-23 | 1985-03-13 | Sumitomo Metal Ind Ltd | Preparation of steel excellent in sulfide cracking resistance |
JPS616208A (en) * | 1984-06-21 | 1986-01-11 | Nippon Steel Corp | Manufacture of low-alloy high-tension steel having superior resistance to sulfide stress corrosion cracking |
JPS6240345A (en) * | 1985-08-13 | 1987-02-21 | Nippon Kokan Kk <Nkk> | High tension steel pipe for oil well having superior delayed fracture resistance |
JPH0250915A (en) * | 1988-08-11 | 1990-02-20 | Nippon Steel Corp | Production of low alloy high tension seamless steel pipe having fine grained structure |
JPH06172859A (en) * | 1992-12-04 | 1994-06-21 | Nkk Corp | Production of high strength steel tube excellent in sulfide stress corrosion cracking resistance |
JPH07197125A (en) * | 1994-01-10 | 1995-08-01 | Nkk Corp | Production of high strength steel pipe having excellent sulfide stress corrosion crack resistance |
DE69617002T4 (en) * | 1995-05-15 | 2003-03-20 | Sumitomo Metal Industries, Ltd. | METHOD FOR PRODUCING HIGH-STRENGTH SEAMLESS STEEL TUBES WITH EXCELLENT SULFUR-INDUCED TENSION crack cracking resistance |
JP2000017389A (en) * | 1998-06-29 | 2000-01-18 | Sumitomo Metal Ind Ltd | Cr-Mo SERIES LOW ALLOY SEAMLESS STEEL PIPE EXCELLENT IN TOUGHNESS AND ITS Cr-Mo SERIES LOW ALLOY STEEL |
JP2003041341A (en) * | 2001-08-02 | 2003-02-13 | Sumitomo Metal Ind Ltd | Steel material with high toughness and method for manufacturing steel pipe thereof |
JP3858072B2 (en) * | 2001-11-28 | 2006-12-13 | 独立行政法人海洋研究開発機構 | Drill pipe and manufacturing method thereof |
JP3969328B2 (en) * | 2003-03-26 | 2007-09-05 | 住友金属工業株式会社 | Non-tempered seamless steel pipe |
AR047467A1 (en) * | 2004-01-30 | 2006-01-18 | Sumitomo Metal Ind | STEEL TUBE WITHOUT SEWING FOR OIL WELLS AND PROCEDURE TO MANUFACTURE |
JP2006265668A (en) * | 2005-03-25 | 2006-10-05 | Sumitomo Metal Ind Ltd | Seamless steel tube for oil well |
CN1840731A (en) * | 2005-03-31 | 2006-10-04 | 住友金属工业株式会社 | Method for manufacturing seamless steel pipe for mechanical parts |
-
2008
- 2008-03-28 WO PCT/JP2008/056113 patent/WO2008123422A1/en active Application Filing
- 2008-03-28 AT AT08739231T patent/ATE543922T1/en active
- 2008-03-28 AU AU2008221597A patent/AU2008221597B8/en not_active Ceased
- 2008-03-28 EA EA200870436A patent/EA012256B1/en not_active IP Right Cessation
- 2008-03-28 UA UAA200813107A patent/UA90947C2/en unknown
- 2008-03-28 JP JP2008539962A patent/JP4305681B2/en active Active
- 2008-03-28 EP EP08739231A patent/EP2133442B1/en not_active Not-in-force
- 2008-03-28 CN CN200880000319.7A patent/CN101542002B/en not_active Expired - Fee Related
- 2008-03-28 BR BRPI0802627-0A patent/BRPI0802627B1/en not_active IP Right Cessation
- 2008-03-28 CA CA002650208A patent/CA2650208A1/en not_active Abandoned
- 2008-03-28 MY MYPI20083875A patent/MY145393A/en unknown
- 2008-03-28 MX MX2008016193A patent/MX2008016193A/en active IP Right Grant
- 2008-10-01 US US12/285,251 patent/US20090047166A1/en not_active Abandoned
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103469081A (en) * | 2013-09-10 | 2013-12-25 | 内蒙古包钢钢联股份有限公司 | Rare earth (RE)-containing BT90H steel grade casing for heavy oil thermal recovery wells and rolling method |
Also Published As
Publication number | Publication date |
---|---|
UA90947C2 (en) | 2010-06-10 |
CA2650208A1 (en) | 2008-10-16 |
AU2008221597A1 (en) | 2008-10-16 |
US20090047166A1 (en) | 2009-02-19 |
BRPI0802627A2 (en) | 2011-08-30 |
EP2133442A4 (en) | 2010-04-28 |
EP2133442A1 (en) | 2009-12-16 |
JPWO2008123422A1 (en) | 2010-07-15 |
CN101542002A (en) | 2009-09-23 |
BRPI0802627B1 (en) | 2017-07-18 |
EA200870436A1 (en) | 2009-02-27 |
CN101542002B (en) | 2016-03-30 |
WO2008123422A1 (en) | 2008-10-16 |
AU2008221597B8 (en) | 2010-04-22 |
EP2133442B1 (en) | 2012-02-01 |
AU2008221597B2 (en) | 2010-04-01 |
EA012256B1 (en) | 2009-08-28 |
MX2008016193A (en) | 2009-04-15 |
ATE543922T1 (en) | 2012-02-15 |
MY145393A (en) | 2012-01-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4305681B2 (en) | Seamless steel pipe manufacturing method | |
JP4390081B2 (en) | Seamless steel pipe for oil well with excellent resistance to sulfide stress cracking and method for producing the same | |
US10287645B2 (en) | Method for producing high-strength steel material excellent in sulfide stress cracking resistance | |
JP4632000B2 (en) | Seamless steel pipe manufacturing method | |
EP3153597B1 (en) | Low alloy steel pipe for oil well | |
WO2009004741A1 (en) | Martensitic stainless-steel seamless pipe for oil well pipe and process for producing the same | |
JP2001271134A (en) | Low-alloy steel excellent in sulfide stress cracking resistance and toughness | |
JP5582307B2 (en) | High strength martensitic stainless steel seamless pipe for oil wells | |
JPH1150148A (en) | Production of high strength and high corrosion resistance seamless steel pipe | |
JPH10280037A (en) | Production of high strength and high corrosion-resistant seamless seamless steel pipe | |
JP6583532B2 (en) | Steel and oil well steel pipes | |
JP6859921B2 (en) | Stainless steel materials and stainless steel pipes | |
JP6468301B2 (en) | Material for steel pipe for high strength oil well and method for producing steel pipe for high strength oil well using the material | |
JP2008057007A (en) | Low alloy steel material and manufacturing method therefor | |
JP3589066B2 (en) | Manufacturing method of high strength and high toughness seamless steel pipe | |
JP3938738B2 (en) | High chromium steel having high toughness and method for producing the same | |
JPH07179943A (en) | Production of high toughness martensitic strainless steel pipe excellent in corrosion resistance | |
JPH08109444A (en) | Production of seamless martensitic stainless steel tube for oil well use, excellent in crushing pressure | |
JP2580407B2 (en) | Manufacturing method of martensitic stainless steel seamless steel pipe with excellent corrosion resistance | |
JP4629059B2 (en) | High chromium steel with high toughness | |
JP6519025B2 (en) | Low alloy high strength seamless steel pipe for oil well | |
WO2002103070A1 (en) | Method for producing steel pipe having high ductility |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090408 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090421 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4305681 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120515 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120515 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130515 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130515 Year of fee payment: 4 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130515 Year of fee payment: 4 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140515 Year of fee payment: 5 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |