JP4279932B2 - Collective sealed secondary battery - Google Patents

Collective sealed secondary battery Download PDF

Info

Publication number
JP4279932B2
JP4279932B2 JP5561299A JP5561299A JP4279932B2 JP 4279932 B2 JP4279932 B2 JP 4279932B2 JP 5561299 A JP5561299 A JP 5561299A JP 5561299 A JP5561299 A JP 5561299A JP 4279932 B2 JP4279932 B2 JP 4279932B2
Authority
JP
Japan
Prior art keywords
cooling medium
sides
medium passages
passages
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5561299A
Other languages
Japanese (ja)
Other versions
JP2000251951A (en
Inventor
貢 高木
真介 福田
真一 湯浅
真治 浜田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Toyota Motor Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Toyota Motor Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Toyota Motor Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP5561299A priority Critical patent/JP4279932B2/en
Priority to US09/516,556 priority patent/US6482542B1/en
Priority to EP20000301601 priority patent/EP1033772A3/en
Publication of JP2000251951A publication Critical patent/JP2000251951A/en
Priority to US09/670,525 priority patent/US6586132B1/en
Application granted granted Critical
Publication of JP4279932B2 publication Critical patent/JP4279932B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、単電池を複数個直列配置して一体電槽としてなる集合型密閉二次電池に関するものである。
【0002】
【従来の技術】
この種の集合型密閉二次電池としては、特開平7−85847号公報に開示されたものが知られている。その集合型密閉二次電池61は、図14に示すように、有底矩形筒形状に形成された電槽63内に発電要素を収容し、電槽63の開口部を蓋体64により封止してなる単電池62を複数個直列配置し、これら単電池62の電槽63を端板65及び拘束バンド66にて緊締状態で連結し、また各単電池62の正極端子67及び負極端子68を蓋体64を貫通させて上方に突出させ、これら端子67、68を電気接続バー69で順次直列に接続した構造となっている。
【0003】
また、特開平6−215804号公報には、プラスチック製の電槽と蓋体を熱溶着したモノブロック蓄電池において、その電槽の2つの対向する側壁の外面にそれぞれ内側に凹入空間を形成した側板を熱溶着して電槽の側壁と側板との間に冷却ジャケット部を構成し、側板の両端部の上部に冷却液体の入口オリフィスと出口オリフィスを設けたものが開示されている。
【0004】
また、特開昭61−45571号公報には、モノブロック電槽のセル間の隔壁に上下に貫通する冷却通路を設けるとともにその上下に冷却媒体を流入・排出用のヘッダを設け、各セル毎に分離された蓋体を設けたものが開示されている。
【0005】
【発明が解決しようとする課題】
しかしながら、特開平7−85847号公報の集合型密閉二次電池では、各単電池が密接配置されて緊締されているので、周囲温度が高い場合や大電流で充放電した場合に各単電池からの放熱が十分に行われず、電池温度が上昇して電池寿命が低下するという問題がある。
【0006】
これに対して、特開平6−215804号公報の蓄電池では、電槽の両側面が水冷ジャケット部で冷却されるため、ある程度温度上昇を抑制できるが、図14のように単電池を集合した二次電池では、特に単電池間を冷却できないために、単電池の温度上昇を十分に抑制できないという問題がある。
【0007】
一方、特開昭61−45571号公報の蓄電池では、モノブロック電槽におけるセル間の隔壁における上下の冷却通路を形成した部分は強制冷却されるが、各セルの外側面の全体を強制冷却するものでないために冷却効果が十分でなく、また電槽の構造が複雑であるために製造コストが高くなり、またセル毎に蓋体を設ける必要があって、組立工数が多くなってコスト高になる等の問題がある。
【0008】
本発明は、上記従来の問題点に鑑み、安価な構成で各単電池を効果的に冷却できる集合型密閉二次電池を提供することを目的としている。
【0009】
【課題を解決するための手段】
本発明の集合型密閉二次電池は、有底矩形筒形状の電槽内に発電要素を収容してその開口部を封止して成る単電池を複数個直列配置した集合型密閉二次電池において、単電池の配置方向に対してその両側に冷却媒体通路を配設するとともに、各単電池の電槽間に両側の冷却媒体通路間を連通する電槽間冷却媒体通路を形成し、かつ電槽間冷却媒体通路の両端で圧力差を発生させる手段を設けたものであり、両側の冷却媒体通路及び電槽間冷却媒体通路を通る冷却媒体にて単電池間を含めて単電池のすべての側面を冷却媒体にて強制冷却できるとともに、特に冷却媒体を両側の冷却媒体通路に流通させた場合にそのまま流出し易く、両側の冷却媒体通路から分岐した電槽間冷却媒体通路には流通し難い傾向があるのに対して、電槽間冷却媒体通路の両端に圧力差を発生するようにしたことにより、冷却媒体を滞留することなく電槽間冷却媒体通路に確実に流通させることができ、すべての単電池を効果的に冷却することができる。
【0010】
上記電槽間冷却媒体通路の両端で圧力差を発生させる手段の具体構成には、両側の冷却媒体通路の流路断面積を互いに異ならせること、または各電槽の対向壁面を一側から他側に向けてテーパさせ、電槽間冷却媒体通路を他側から一側に向けてテーパさせること、または両側の冷却媒体通路内に整流突条にて蛇行流通路を形成し、両側の冷却媒体通路の互いに対向する流通路の厚みを異ならせること、その場合に両側の冷却媒体通路の壁面の厚さを異ならせて流通路の厚みを異ならせること、または整流突条の高さを異ならせて流通路の厚みを異ならせること、または両側の冷却媒体通路内に整流突条にて蛇行流通路を形成するとともに、整流突条間の流通路幅を交互にかつ両側の冷却媒体通路の互いに対向する流通路間で異ならせること、または両側の冷却媒体通路に冷却媒体を分配・集合する分配ヘッダを両端に配設するとともに、一端の分配ヘッダに入口オリフィスを、他端の分配ヘッダに出口オリフィスを設け、少なくとも一方のオリフィスと両側の冷却媒体通路との間に互いに流路断面積の異なる部分を設けること、または両側の冷却媒体通路に冷却媒体を分配・集合する分配ヘッダを両端に配設するとともに、一端の分配ヘッダに入口オリフィスを、他端の分配ヘッダに出口オリフィスを設け、少なくとも一方のオリフィスと両側の冷却媒体通路との間の流路長さを互いに異ならせること等の手段を含むことができ、それぞれ比較的簡単な構成にてかつ大きな圧力損失を発生せずに、槽間冷却媒体通路に適切に冷却媒体を流通させるような圧力差を発生することができる。
【0011】
【発明の実施の形態】
以下、本発明の集合型密閉二次電池の一実施形態について、図1〜図7を参照して説明する。
【0012】
本実施形態の集合型密閉二次電池1は、電気自動車用の駆動電源として好適に用いることができるニッケル・水素二次電池であり、図1〜図3に示すように、単電池2を複数個直列配置して相互に接合して一体電槽とし、単電池列の両端に端板6を接合し、単電池2及び端板6の配列方向に対してその両側に内側に扁平な空間を凹入形成した板状の冷却ジャケット部材3を接合し、その上に単一体の蓋体5を接合して各単電池2及び端板6を密閉し、端板6、6間を拘束バンド7にて緊締して構成されている。8は一端と他端の単電池2から上方に突出された正極端子や負極端子が貫通するように蓋体5に形成された端子装着穴、9は各単電池2に対応して蓋体5に貫通形成された安全弁装着穴である。10、11は冷却媒体の入口オリフィスと出口オリフィスであり、蓋体5の両端部に一体的に装着される。上記単電池2、冷却ジャケット部材3、蓋体5、端板6、入口オリフィス10、出口オリフィス11等は、PP/PPEアロイなどの合成樹脂にて構成され、溶着によって相互に一体接合されている。また、隣接する単電池2、2は、図2、図3に示すように、接続体12にて電気的に接続されている。
【0013】
以下、詳細に説明すると、単電池2は、図2、図3に示すように、有底矩形筒形状の電槽14内に発電要素15を収容して成り、各単電池2を直列に配列した状態で互いに対向する電槽14の対向壁面16に、相互に当接する多数の突部17がマトリックス状に突設され、これら突部17にて両対向壁面16、16間に形成された空間にて電槽間冷却媒体通路18が構成されている。なお、単電池列の両端の単電池2の外側の対向壁面16には端板6が当てられて接合され、本実施形態ではその端板6と対向壁面16との間にも冷却媒体通路(この冷却媒体通路も電槽間冷却媒体通路18に含まれる)18が形成されている。また、適当箇所の複数(図示例では4箇所)の突部17は大径に形成され、その端面に互いに嵌入係合する係合突起19aと係合凹部19bが形成されて電槽14相互の位置決めがなされている。また、電槽14の上端から適当距離下方位置と下端縁部には互いに当接する接合縁部20が突設されている。そして、単電池2を直列に配列した状態で互いに当接している突部17及び接合縁部20を相互に溶着することによって各単電池2が一体電槽として一体接合されている。
【0014】
この単電池2の配列方向に対してその両側における単電池2と冷却ジャケット部材3の内側面との間に形成された空間にて両側の冷却媒体通路21が構成されている。また、上記端板6の上縁には両側の冷却媒体通路21に連通して冷却媒体(水)を分配する分配ヘッダ形成樋22が形成されている。
【0015】
一体電槽とされた各単電池2の電槽14における上方の接合縁部20より上部の上部枠26には、図2、図3及び図4に示すように、隣接する単電池2を電気的に接続する接続体12を配置する略三角形状の切欠13が千鳥状に形成されており、接続体12は切欠13に配置された状態で電槽14及び蓋体5に密封状態で一体接合されている。
【0016】
接続体12は、図2、図3及び図5に示すように、金属(ニッケル等)製の接続軸27と合成樹脂製の支持体28にて構成され、接続軸27が支持体28の保持筒部29に圧入状態で貫通されるとともに、接続軸27の鍔部27aと保持筒部29内周との間に介装したOリング31にて完全に密封されている。また、支持体28には保持筒部29から一対の三角形状の翼部30が突設され、この接続体12を切欠13に配置したときそれぞれ個別枠26に接合されるように構成されている。
【0017】
蓋体5は、図2、図3及び図6に示すように、内面に各電槽14の上部枠26に対応するように個別枠32が形成されるとともに、外周部に断面倒立L字状に外周枠33が垂下され、長手方向両端部には分配ヘッダ形成樋22の上端に接合されて分配ヘッダ35を密閉形成する密封突条34が突設されている。
【0018】
また、蓋体5の両端部の一側部には端子装着穴8が形成され、他側部には入口オリフィス10と出口オリフィス11を接合する接合突条36が突設されている。これらオリフィス10、11は、平面形状が略J字状で下面開放のJ字ボックス片37の短辺の先端から接続口38を突出させて構成されている。また、蓋体5のJ字ボックス片37の長辺先端部に対向する部分に分配ヘッダ35に連通する連通開口39が形成されている。
【0019】
また、冷却ジャケット部材3の内側面には、図7に示すように、両側の冷却媒体通路21の全面を冷却媒体が均等に流れるように、上下に蛇行する蛇行流通路40(図13参照)を形成する整流突条41が突設されるとともに、一側の冷却媒体通路21aの整流突条41aの高さh1を他側の冷却媒体通路21bの整流突条41bの高さh2よりも高くし、一側の冷却媒体通路21aの流路断面積が他側の冷却媒体通路21bの流路断面積よりも大きくなるように構成されている。
【0020】
なお、整流突条41は単電池2の電槽14側に設けてもよく、また場合によっては上下に蛇行する蛇行流通路40を形成するようなものでなくてもよく、さらには整流突条41を設けない構成であってもよい。
【0021】
以上の構成の集合型密閉二次電池1においては、入口オリフィス10から冷却媒体を供給すると、分配ヘッダ35を通って両側の冷却媒体通路21a、21bに流入し、これらの冷却媒体通路21a、21b内を下流側に向かって流れるとともに、単電池2間の電槽間冷却媒体通路18を通って両冷却媒体通路21、21間でも流通した後出口オリフィス11から排出される。
【0022】
その際に、両側の冷却媒体通路21a、21bの流路断面積を互いに異ならせているので、両冷却媒体通路21a、21b内の圧力に差を生じ、電槽間冷却媒体通路18の両端で圧力差が存在することによって、冷却媒体通路21a、21bから分岐した電槽間冷却媒体通路18にも冷却媒体が滞留することなく確実に流通することになる。したがって、単電池2の電槽14の対向壁面16を含めてすべての側面が冷却媒体にて強制冷却され、すべての単電池2が冷却媒体にて効果的に冷却される。また、整流突条41a、41bの高さを異ならせるだけでよいので簡単に構成でき、かつ多数の単電池2間の電槽間冷却媒体通路18に冷却媒体を流通させるために大きな圧力損失を発生するというようなこともない。
【0023】
また、本実施形態では両側の冷却媒体通路21a、21bに対して冷却媒体を供給、排出する冷却媒体の入口オリフィス10と出口オリフィス11を単電池配置方向の両端に配設するとともに分配ヘッダ35を介して両側の冷却媒体通路21a、21bに接続しているので、複数の二次電池1を接続して使用する場合に単一の冷却媒体経路によって上記構成と相まってすべての単電池2の全周を効果的に冷却することができる。
【0024】
また、各単電池2を溶着して相互に一体接合して一体電槽とするとともにその開口部に一体型の蓋体5を溶着して封止しているので、少ない部品数と組立工数にて一体電槽とした集合型密閉二次電池1を得ることができ、また各単電池2の電槽14の対向壁面16に突部17を形成して突部17を当接させて相互に溶着しているので簡単かつ安価に対向壁面16、16間の略全面にわたる電槽間冷却媒体通路18を形成することができる。
【0025】
また、単電池列の両側にコンパクトな板状の冷却ジャケット部材3を接合して両側の冷却媒体通路21を構成しているので軽量に構成することができる。
【0026】
以上の説明では、電槽間冷却媒体通路18に確実に冷却媒体を流通させるためにその両端間に圧力差を発生させる手段として、両側の冷却媒体通路21a、21bの流路断面積を異ならせた例を示したが、その他の各種手段を講じてもよい。
【0027】
例えば、図8に示すように、各電槽14の対向壁面16を若干テーパさせることにより電槽間冷却媒体通路18の一側の幅w1に対して他側の幅w2が小さくなるようにし、電槽間冷却媒体通路18を一側から他側に向けてテーパさせてもよい。この場合、電槽間冷却媒体通路18の一側の圧力が他側に比して高くなり、冷却媒体は一側から他側に向け流れることになる。
【0028】
また、図9に示すように、両側の冷却媒体通路21a、21bに形成した蛇行流通路40における互いに対向する流通路の壁面厚さをt1、t2のように異ならせることによって、流通路の断面積を互いにかつ交互に異ならせてもよい。この場合も両側の冷却媒体通路21a、21b間で流通路断面積の大きい方の圧力が高く、小さい方の圧力が低くなり、高い方から低い方に電槽間冷却媒体通路18を冷却媒体が流れることになる。
【0029】
また、図10に示すように、両側の冷却媒体通路21a、21bにおいて蛇行流通路40を形成する整流突条41の高さをh1、h2のように互いにかつ交互に異ならせることによって、両側の冷却媒体通路21a、21bに形成した蛇行流通路40における互いに対向する流通路の断面積を互いにかつ交互に異ならせてもよい。この場合も両側の冷却媒体通路21a、21b間で流通路断面積の大きい方の圧力が高く、小さい方の圧力が低くなり、高い方から低い方に冷却媒体が流れることになる。
【0030】
また、図11に示すように、両側の冷却媒体通路21a、21bにおいて蛇行流通路40を形成する整流突条41、41間の間隔をc1、c2のように互いにかつ交互に異ならせることによって、両側の冷却媒体通路21a、21bに形成した蛇行流通路40の互いに対向する流通路間でその流通路の断面積を互いにかつ交互に異ならせてもよい。この場合も、両側の冷却媒体通路21a、21b間で流通路断面積の大きい方の圧力が高く、小さい方の圧力が低くなり、高い方から低い方に向けて電槽間冷却媒体通路18を通って冷却媒体が流れることになる。
【0031】
また、図12(a)に示すように、両側の冷却媒体通路21a、21bに冷却媒体を分配する分配ヘッダ35に設けた入口オリフィス10と両側の冷却媒体通路21a、21bとの間に規制流路部44a、44bを設けてそれらの流路断面積s1とs2を異ならせたり、或いは図12(b)に示すように、分配ヘッダ35に設けた入口オリフィス10と両側の冷却媒体通路21a、21bとの接続部45a、45bとの間の距離d1とd2を異ならせたりすることによって、両側の冷却媒体通路21a、21bの圧力を異ならせてもよい。この場合も圧力の高い冷却媒体通路21aから各電槽間冷却媒体通路18を通って低い冷却媒体通路21bに向けて冷却媒体が流れることになる。
【0032】
なお、図12に代えて出口オリフィス11が配設されて両側の冷却媒体通路21a、21bからの冷却媒体を集合する分配ヘッダ35において同様に構成してもよく、若しくは両方の分配ヘッダ35にそれらの作用が相乗するように規制流路部44a、44bを設けたり、入口・出口オリフィス10、11の配置位置を設定したりしてもよい。
【0033】
また、上記実施形態では蓋体5が端板6上に被さり、入口オリフィス10及び出口オリフィス11が蓋体5に設けられた例を示したが、図13に示すように、蓋体5は単電池2群上のみを覆い、両端の端板6の上端部に分配ヘッダ部52を一体的に設け、その上面に入口オリフィス10や出口オリフィス11を突設し、冷却ジャケット部材3の両端の上端部に内部の冷却媒体通路21を分配ヘッダ部52の両端に対して接続する接続部53を屈曲形成してもよい。なお、図13中で斜線で示した部分は、単電池2の集合体と冷却ジャケット部材3の溶着部54である。
【0034】
本実施形態においても基本的に上記実施形態と同様の作用効果が得られる。
【0035】
また、上記実施形態では各構成部材を溶着によって一体接合する例を示したが、接着材にて一体接合してもよい。
【0036】
【発明の効果】
本発明の集合型密閉二次電池によれば、以上の説明から明らかなように、単電池の配置方向に対してその両側に冷却媒体通路を配設するとともに、各単電池の電槽間に両側の冷却媒体通路間を連通する電槽間冷却媒体通路を形成し、かつ電槽間冷却媒体通路の両端で圧力差を発生させる手段を設けたので、両側の冷却媒体通路及び電槽間冷却媒体通路を通る冷却媒体にて単電池間を含めて単電池のすべての側面を冷却媒体にて強制冷却できるとともに、特に電槽間冷却媒体通路の両端に圧力差を発生するようにしたことより冷却媒体を滞留することなく電槽間冷却媒体通路に確実に流通させることができ、すべての単電池を効果的に冷却することができる。
【図面の簡単な説明】
【図1】本発明の集合型密閉二次電池の一実施形態の外観斜視図である。
【図2】同実施形態の縦断側面図である。
【図3】同実施形態の部分縦断正面図である。
【図4】同実施形態の単電池群の上端部における部分斜視図である。
【図5】同実施形態の電気接続体の斜視図である。
【図6】同実施形態の蓋体の斜視図である。
【図7】同実施形態における電槽間冷却媒体通路の両端に圧力差を発生する手段の第1の構成例を示す概略横断平面図である。
【図8】同実施形態における電槽間冷却媒体通路の両端に圧力差を発生する手段の第2の構成例を示す概略横断平面図である。
【図9】同実施形態における電槽間冷却媒体通路の両端に圧力差を発生する手段の第3の構成例を示す概略横断平面図である。
【図10】同実施形態における電槽間冷却媒体通路の両端に圧力差を発生する手段の第4の構成例を示す概略横断平面図である。
【図11】同実施形態における電槽間冷却媒体通路の両端に圧力差を発生する手段の第5の構成例を示す概略横断平面図である。
【図12】同実施形態における電槽間冷却媒体通路の両端に圧力差を発生する手段の第6と第7の構成例を示す斜視図である。
【図13】本発明の集合型密閉二次電池の他の実施形態の分解斜視図である。
【図14】従来例の集合型密閉二次電池の正面図である。
【符号の説明】
1 集合型密閉二次電池
2 単電池
10 入口オリフィス
11 出口オリフィス
14 電槽
15 発電要素
16 対向壁面
18 電槽間冷却媒体通路
21(21a、21b) 両側の冷却媒体通路
35 分配ヘッダ
40 蛇行流通路
41(41a、41b) 整流突条
44a、44b 規制流路部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a collective sealed secondary battery in which a plurality of single cells are arranged in series to form an integrated battery case.
[0002]
[Prior art]
As this type of collective sealed secondary battery, a battery disclosed in Japanese Patent Laid-Open No. 7-85847 is known. As shown in FIG. 14, the collective sealed secondary battery 61 houses a power generation element in a battery case 63 formed in a bottomed rectangular cylindrical shape, and the opening of the battery case 63 is sealed with a lid 64. A plurality of the unit cells 62 are arranged in series, and the battery case 63 of the unit cells 62 is connected in a tightened state by the end plate 65 and the restraining band 66, and the positive terminal 67 and the negative terminal 68 of each unit cell 62 are connected. And the terminals 67 and 68 are sequentially connected in series by an electric connection bar 69.
[0003]
Japanese Patent Laid-Open No. 6-215804 discloses a monoblock storage battery in which a plastic battery case and a lid are heat-welded, and indented spaces are formed on the outer surfaces of two opposite side walls of the battery case, respectively. A side plate is thermally welded to form a cooling jacket portion between the side wall and the side plate of the battery case, and an inlet orifice and an outlet orifice for the cooling liquid are provided at the upper portions of both end portions of the side plate.
[0004]
Japanese Patent Application Laid-Open No. 61-45571 provides a cooling passage penetrating vertically in a partition between cells of a monoblock battery case, and a header for inflow / discharge of a cooling medium above and below the cooling passage. The thing which provided the cover body isolate | separated by this is disclosed.
[0005]
[Problems to be solved by the invention]
However, in the collective sealed secondary battery disclosed in Japanese Patent Application Laid-Open No. 7-85847, each single battery is closely arranged and tightened. Therefore, when the ambient temperature is high or when charging / discharging with a large current, Is not sufficiently dissipated, and there is a problem that the battery temperature rises and the battery life decreases.
[0006]
On the other hand, in the storage battery disclosed in Japanese Patent Laid-Open No. 6-215804, since both side surfaces of the battery case are cooled by the water cooling jacket portion, the temperature rise can be suppressed to some extent. In the secondary battery, there is a problem that the rise in the temperature of the single cells cannot be sufficiently suppressed because the space between the single cells cannot be cooled.
[0007]
On the other hand, in the storage battery disclosed in Japanese Patent Application Laid-Open No. 61-45571, the upper and lower cooling passages in the partition between the cells in the monoblock battery case are forcibly cooled, but the entire outer surface of each cell is forcibly cooled. Because it is not a thing, the cooling effect is not enough, and the structure of the battery case is complicated, so the manufacturing cost is high, and it is necessary to provide a lid for each cell, which increases the number of assembly steps and increases the cost. There are problems such as.
[0008]
In view of the above-described conventional problems, an object of the present invention is to provide a collective sealed secondary battery that can effectively cool each single battery with an inexpensive configuration.
[0009]
[Means for Solving the Problems]
The collective sealed secondary battery of the present invention is a collective sealed secondary battery in which a plurality of single cells formed by housing a power generation element in a bottomed rectangular cylindrical battery case and sealing the opening are arranged in series. In addition, a cooling medium passage is disposed on both sides of the unit cell in the arrangement direction, and an inter-bath cooling medium passage communicating between the cooling medium passages on both sides is formed between the battery cases of each unit cell, and A means for generating a pressure difference at both ends of the inter-bath cooling medium passage is provided, and all of the single cells including between the single cells in the cooling medium passage on both sides and the inter-battery cooling medium passage. The cooling medium can be forcibly cooled by the cooling medium, and in particular, when the cooling medium is circulated through the cooling medium passages on both sides, it easily flows out as it is, and is circulated through the inter-bath cooling medium passage branched from the cooling medium passages on both sides. While there is a tendency to Of the fact that so as to generate a pressure differential across, it is possible to reliably flow to the cooling medium passage between the container without staying cooling medium, it is possible that all the unit cells to effectively cool.
[0010]
The specific configuration of the means for generating a pressure difference at both ends of the inter-battery cooling medium passages is that the cross-sectional areas of the cooling medium passages on both sides are different from each other, or the opposite wall surfaces of each of the battery cases are different from one side. Taper toward the side, taper the inter-bath cooling medium path from one side to the other, or form a meandering flow path with rectifying ridges in the cooling medium path on both sides, Change the thickness of the flow passages facing each other in the passage, in that case, change the thickness of the flow passages by changing the thickness of the wall surfaces of the cooling medium passages on both sides, or change the height of the straightening ridges. The thickness of the flow passages is made different, or the meandering flow passages are formed by the straightening ridges in the cooling medium passages on both sides, and the flow passage widths between the straightening ridges are alternately changed and the cooling medium passages on both sides are mutually connected. Differentiating between opposing flow paths, In addition, a distribution header that distributes and collects the cooling medium in the cooling medium passages on both sides is disposed at both ends, an inlet orifice is provided in one distribution header, and an outlet orifice is provided in the other distribution header. Provide different sections of the flow path cross-sectional area between the cooling medium passages on both sides, or arrange distribution headers at both ends to distribute and collect the cooling medium to the cooling medium passages on both sides. The inlet orifice may include means such as providing an outlet orifice in the distribution header at the other end and making the flow path lengths between at least one orifice and the cooling medium passages on both sides different from each other. With a simple configuration and without generating a large pressure loss, it is possible to generate a pressure difference that allows the cooling medium to flow properly in the inter-tank cooling medium passage. .
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the collective sealed secondary battery of the present invention will be described with reference to FIGS.
[0012]
The collective sealed secondary battery 1 of the present embodiment is a nickel-hydrogen secondary battery that can be suitably used as a drive power source for an electric vehicle. As shown in FIGS. They are arranged in series and joined together to form an integrated battery case, end plates 6 are joined to both ends of the unit cell row, and flat spaces are formed on both sides of the unit cells 2 and end plates 6 with respect to the arrangement direction. A plate-shaped cooling jacket member 3 formed in a recess is joined, a single lid body 5 is joined thereon, each cell 2 and the end plate 6 are sealed, and a restraint band 7 is provided between the end plates 6 and 6. The structure is tightened. Reference numeral 8 denotes a terminal mounting hole formed in the lid body 5 so that a positive electrode terminal or a negative electrode terminal protruding upward from the unit cell 2 at one end and the other end penetrates, and 9 denotes a lid body 5 corresponding to each unit cell 2. It is a safety valve mounting hole formed in the through hole. Reference numerals 10 and 11 denote an inlet orifice and an outlet orifice for the cooling medium, which are integrally attached to both ends of the lid 5. The unit cell 2, the cooling jacket member 3, the lid 5, the end plate 6, the inlet orifice 10, the outlet orifice 11 and the like are made of synthetic resin such as PP / PPE alloy and are integrally joined to each other by welding. . Moreover, the adjacent unit cells 2 and 2 are electrically connected by the connection body 12, as shown in FIG. 2, FIG.
[0013]
Hereinafter, in detail, as shown in FIGS. 2 and 3, the unit cell 2 is configured by housing a power generation element 15 in a bottomed rectangular cylindrical battery case 14, and arranging the unit cells 2 in series. In this state, a large number of protrusions 17 that are in contact with each other are formed in a matrix on the opposing wall surface 16 of the battery case 14 facing each other, and a space formed between the opposing wall surfaces 16 and 16 by these protrusions 17. The inter-battery cooling medium passage 18 is configured at. In addition, the end plate 6 is applied to and joined to the opposing wall surface 16 outside the unit cell 2 at both ends of the unit cell array, and in this embodiment, the cooling medium passage (between the end plate 6 and the opposing wall surface 16 is also provided. This cooling medium passage is also included in the inter-bath cooling medium passage 18). In addition, a plurality of (17 in the illustrated example) projections 17 at appropriate locations are formed with a large diameter, and engagement projections 19a and engagement recesses 19b that are fitted and engaged with each other are formed on the end surfaces of the projections 17 to each other. Positioning has been made. Further, a joining edge portion 20 that protrudes from the upper end of the battery case 14 at an appropriate distance below and the lower end edge protrudes from each other. Then, the unit cells 2 are integrally joined as an integrated battery case by welding the protrusions 17 and the joining edge portions 20 that are in contact with each other in a state where the unit cells 2 are arranged in series.
[0014]
The cooling medium passages 21 on both sides are formed in a space formed between the unit cells 2 and the inner side surface of the cooling jacket member 3 on both sides of the arrangement direction of the unit cells 2. Further, a distribution header forming rod 22 for distributing the cooling medium (water) is formed on the upper edge of the end plate 6 so as to communicate with the cooling medium passages 21 on both sides.
[0015]
As shown in FIGS. 2, 3, and 4, adjacent unit cells 2 are electrically connected to the upper frame 26 above the joint edge 20 above the battery case 14 of each unit cell 2 that is an integrated battery case. The substantially triangular cutouts 13 for arranging the connection bodies 12 to be connected to each other are formed in a staggered manner, and the connection bodies 12 are integrally joined to the battery case 14 and the lid body 5 in a sealed state while being arranged in the cutouts 13. Has been.
[0016]
As shown in FIGS. 2, 3, and 5, the connection body 12 includes a connection shaft 27 made of metal (such as nickel) and a support body 28 made of synthetic resin, and the connection shaft 27 holds the support body 28. The tube portion 29 is penetrated in a press-fit state, and is completely sealed by an O-ring 31 interposed between the flange portion 27a of the connection shaft 27 and the inner periphery of the holding tube portion 29. Further, a pair of triangular wing portions 30 project from the holding cylinder portion 29 on the support body 28 and are configured to be joined to the individual frames 26 when the connecting body 12 is disposed in the notch 13. .
[0017]
As shown in FIGS. 2, 3, and 6, the cover 5 has an individual frame 32 formed on the inner surface so as to correspond to the upper frame 26 of each battery case 14, and an inverted L-shaped cross section on the outer periphery. The outer peripheral frame 33 hangs down, and sealing ridges 34 are formed on both ends in the longitudinal direction, which are joined to the upper end of the distribution header forming rod 22 to form the distribution header 35 in a sealed manner.
[0018]
In addition, a terminal mounting hole 8 is formed on one side of both ends of the lid 5, and a joining protrusion 36 that joins the inlet orifice 10 and the outlet orifice 11 is provided on the other side. These orifices 10 and 11 are configured by projecting a connection port 38 from the tip of the short side of the J-shaped box piece 37 whose plane shape is substantially J-shaped and whose lower surface is open. In addition, a communication opening 39 that communicates with the distribution header 35 is formed at a portion of the lid 5 that faces the front end of the long side of the J-shaped box piece 37.
[0019]
In addition, on the inner side surface of the cooling jacket member 3, as shown in FIG. 7, a meandering flow passage 40 (see FIG. 13) meandering up and down so that the cooling medium flows uniformly over the entire surface of the cooling medium passage 21 on both sides. And a height h1 of the straightening protrusion 41a of the cooling medium passage 21a on the one side is higher than a height h2 of the straightening protrusion 41b of the cooling medium passage 21b on the other side. In addition, the flow passage cross-sectional area of the cooling medium passage 21a on one side is configured to be larger than the flow passage cross-sectional area of the cooling medium passage 21b on the other side.
[0020]
Note that the rectifying ridge 41 may be provided on the battery case 14 side of the unit cell 2, and may not be provided with a meandering flow passage 40 that meanders up and down in some cases. The structure which does not provide 41 may be sufficient.
[0021]
In the collective sealed secondary battery 1 having the above configuration, when the cooling medium is supplied from the inlet orifice 10, it flows through the distribution header 35 into the cooling medium passages 21 a and 21 b on both sides, and these cooling medium passages 21 a and 21 b. While flowing toward the downstream side in the interior, it also flows between the cooling medium passages 21 and 21 through the inter-bath cooling medium passage 18 between the single cells 2 and then discharged from the outlet orifice 11.
[0022]
At this time, since the flow passage cross-sectional areas of the cooling medium passages 21a and 21b on both sides are different from each other, a difference occurs in the pressure in both the cooling medium passages 21a and 21b. Due to the presence of the pressure difference, the cooling medium reliably flows in the inter-bath cooling medium passage 18 branched from the cooling medium passages 21a and 21b without stagnation. Therefore, all the side surfaces including the opposing wall surface 16 of the battery case 14 of the unit cell 2 are forcibly cooled by the cooling medium, and all the unit cells 2 are effectively cooled by the cooling medium. Further, the height of the straightening ridges 41a and 41b only needs to be different, so that it can be easily configured, and a large pressure loss is caused to circulate the cooling medium in the inter-battery cooling medium passage 18 between a large number of single cells 2. It does n’t happen.
[0023]
Further, in this embodiment, the inlet orifice 10 and the outlet orifice 11 of the cooling medium that supplies and discharges the cooling medium to and from the cooling medium passages 21a and 21b on both sides are arranged at both ends in the unit cell arrangement direction, and the distribution header 35 is provided. Are connected to the cooling medium passages 21a and 21b on both sides, and therefore, when a plurality of secondary batteries 1 are connected and used, the entire circumference of all the unit cells 2 is combined with the above configuration by a single cooling medium path. Can be effectively cooled.
[0024]
In addition, since the unit cells 2 are welded and integrally joined to each other to form an integrated battery case, and the integrated lid 5 is welded and sealed to the opening, the number of parts and assembly man-hours are reduced. The integrated sealed secondary battery 1 can be obtained as an integrated battery case, and the protrusions 17 are formed on the opposing wall surface 16 of the battery case 14 of each unit cell 2 so that the protrusions 17 are brought into contact with each other. Since it is welded, the inter-bath cooling medium passage 18 can be formed over the substantially entire surface between the opposing wall surfaces 16 and 16 easily and inexpensively.
[0025]
Moreover, since the compact cooling plate member 3 is joined to the both sides of the unit cell row to form the cooling medium passages 21 on both sides, the weight can be reduced.
[0026]
In the above description, as a means for generating a pressure difference between both ends in order to surely flow the cooling medium through the inter-bath cooling medium passage 18, the flow passage cross-sectional areas of the cooling medium passages 21a and 21b on both sides are made different. However, various other means may be taken.
[0027]
For example, as shown in FIG. 8, the opposite wall surface 16 of each battery case 14 is slightly tapered so that the width w2 on the other side becomes smaller than the width w1 on one side of the cooling medium passage 18 between the battery cases, The inter-bath cooling medium passage 18 may be tapered from one side to the other side. In this case, the pressure on one side of the inter-bath cooling medium passage 18 becomes higher than that on the other side, and the cooling medium flows from one side to the other side.
[0028]
Further, as shown in FIG. 9, the wall thicknesses of the flow passages facing each other in the meandering flow passages 40 formed in the cooling medium passages 21a and 21b on both sides are made different as shown by t1 and t2, thereby breaking the flow passages. The areas may be different from each other and alternately. In this case as well, the pressure between the cooling medium passages 21a and 21b on both sides is larger, the pressure on the larger flow passage cross-sectional area is lower, the pressure on the smaller flow passage is lower, and the cooling medium passage 18 passes through the inter-bath cooling medium passage 18 from the higher to the lower. Will flow.
[0029]
Further, as shown in FIG. 10, the heights of the straightening ridges 41 forming the meandering flow passages 40 in the cooling medium passages 21a and 21b on both sides are made different from each other like h1 and h2, so that The cross-sectional areas of the flow paths facing each other in the meandering flow path 40 formed in the cooling medium paths 21a and 21b may be different from each other. In this case as well, the pressure with the larger flow passage cross-sectional area between the cooling medium passages 21a and 21b on both sides is higher, the pressure with the smaller flow passage is lower, and the cooling medium flows from higher to lower.
[0030]
In addition, as shown in FIG. 11, by changing the spacing between the straightening ridges 41, 41 forming the meandering flow passage 40 in the cooling medium passages 21a, 21b on both sides like each other and alternately like c1, c2, The cross-sectional areas of the flow paths facing each other of the meandering flow paths 40 formed in the cooling medium paths 21a and 21b on both sides may be different from each other. Also in this case, the pressure between the cooling medium passages 21a and 21b on both sides is larger, the pressure of the larger flow passage cross-sectional area is higher, the pressure of the smaller one is lower, and the inter-battery cooling medium passage 18 is moved from higher to lower. The cooling medium will flow through.
[0031]
Further, as shown in FIG. 12A, a restricted flow is provided between the inlet orifice 10 provided in the distribution header 35 for distributing the cooling medium to the cooling medium passages 21a and 21b on both sides and the cooling medium passages 21a and 21b on both sides. The passage sections 44a and 44b are provided to make the flow passage cross-sectional areas s1 and s2 different, or as shown in FIG. 12B, the inlet orifice 10 provided in the distribution header 35 and the cooling medium passages 21a on both sides, The pressures of the cooling medium passages 21a and 21b on both sides may be made different by changing the distances d1 and d2 between the connecting portions 45a and 45b to the 21b. Also in this case, the cooling medium flows from the cooling medium passage 21a having a high pressure through the inter-battery cooling medium passages 18 toward the low cooling medium passage 21b.
[0032]
In addition, instead of FIG. 12, the outlet orifice 11 may be provided and the distribution header 35 that collects the cooling medium from the cooling medium passages 21a and 21b on both sides may be configured in the same manner, or both of the distribution headers 35 may have the same structure. The regulation flow path portions 44a and 44b may be provided so that the operations of the two are synergistic, or the arrangement positions of the inlet / outlet orifices 10 and 11 may be set.
[0033]
In the above-described embodiment, the lid 5 is covered on the end plate 6 and the inlet orifice 10 and the outlet orifice 11 are provided on the lid 5. However, as shown in FIG. Covering only the battery 2 group, the distribution header portion 52 is integrally provided at the upper end portions of the end plates 6 at both ends, the inlet orifice 10 and the outlet orifice 11 are provided on the upper surface thereof, and the upper ends at both ends of the cooling jacket member 3. A connecting portion 53 that connects the internal cooling medium passage 21 to both ends of the distribution header portion 52 may be bent. In FIG. 13, hatched portions are the assembly of the unit cells 2 and the welded portion 54 of the cooling jacket member 3.
[0034]
Also in this embodiment, the same operation effect as the above embodiment can be basically obtained.
[0035]
Moreover, although the example which integrally bonds each structural member by welding was shown in the said embodiment, you may integrally bond with an adhesive material.
[0036]
【The invention's effect】
According to the collective sealed secondary battery of the present invention, as is clear from the above description, the cooling medium passages are arranged on both sides of the unit cell in the arrangement direction, and between the battery cells of each unit cell. Since the cooling medium passage between the battery chambers communicating between the cooling medium passages on both sides is formed and a means for generating a pressure difference is provided at both ends of the cooling medium passage between the battery baths, the cooling medium passage on both sides and the cooling between the battery cases are provided. From the fact that the cooling medium passing through the medium passage can forcibly cool all sides of the unit cell, including between the single cells, with the cooling medium, and in particular a pressure difference is generated at both ends of the cooling medium passage between the battery cases. The cooling medium can be reliably circulated in the inter-bath cooling medium passage without staying in the cooling medium, and all the single cells can be effectively cooled.
[Brief description of the drawings]
FIG. 1 is an external perspective view of an embodiment of a collective sealed secondary battery of the present invention.
FIG. 2 is a longitudinal side view of the embodiment.
FIG. 3 is a partially longitudinal front view of the same embodiment;
FIG. 4 is a partial perspective view of an upper end portion of the unit cell group of the same embodiment.
FIG. 5 is a perspective view of the electrical connection body of the embodiment.
FIG. 6 is a perspective view of the lid according to the embodiment.
FIG. 7 is a schematic cross-sectional plan view showing a first configuration example of a means for generating a pressure difference at both ends of the inter-bath cooling medium passage in the same embodiment.
FIG. 8 is a schematic transverse plan view showing a second configuration example of a means for generating a pressure difference at both ends of the inter-bath cooling medium passage in the same embodiment.
FIG. 9 is a schematic cross-sectional plan view showing a third configuration example of a means for generating a pressure difference at both ends of the inter-bath cooling medium passage in the same embodiment.
FIG. 10 is a schematic cross-sectional plan view showing a fourth configuration example of a means for generating a pressure difference at both ends of the inter-bath cooling medium passage in the same embodiment.
FIG. 11 is a schematic cross-sectional plan view showing a fifth configuration example of means for generating a pressure difference at both ends of the inter-bath cooling medium passage in the same embodiment.
12 is a perspective view showing sixth and seventh configuration examples of means for generating a pressure difference at both ends of the inter-bath cooling medium passage in the same embodiment. FIG.
FIG. 13 is an exploded perspective view of another embodiment of the collective sealed secondary battery of the present invention.
FIG. 14 is a front view of a collective sealed secondary battery of a conventional example.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Collective type | mold sealed secondary battery 2 Single cell 10 Inlet orifice 11 Outlet orifice 14 Battery case 15 Electric power generation element 16 Opposite wall surface 18 Cooling medium path 21 between batteries (21a, 21b) Cooling medium path 35 on both sides Distribution header 40 Serpentine flow path 41 (41a, 41b) Rectifying ridges 44a, 44b Restricted flow path

Claims (8)

有底矩形筒形状の電槽内に発電要素を収容してその開口部を封止して成る単電池を複数個直列配置した集合型密閉二次電池において、単電池の配置方向に対してその両側に冷却媒体通路を配設するとともに、各単電池の電槽間に両側の冷却媒体通路間を連通する電槽間冷却媒体通路を形成し、かつ電槽間冷却媒体通路の両端で圧力差を発生させる手段を設け
両側の冷却媒体通路の流路断面積を互いに異ならせたことを特徴とする集合型密閉二次電池。
In a collective sealed secondary battery in which a plurality of single cells formed by housing a power generation element in a bottomed rectangular cylindrical battery case and sealing the opening thereof are arranged in series, The cooling medium passages are arranged on both sides, and the inter-bath cooling medium passages are formed between the electric tanks of each unit cell so that the cooling medium passages on both sides communicate with each other. the means for generating is provided,
A collective hermetic secondary battery, characterized in that the cross-sectional areas of the cooling medium passages on both sides are different from each other .
有底矩形筒形状の電槽内に発電要素を収容してその開口部を封止して成る単電池を複数個直列配置した集合型密閉二次電池において、単電池の配置方向に対してその両側に冷却媒体通路を配設するとともに、各単電池の電槽間に両側の冷却媒体通路間を連通する電槽間冷却媒体通路を形成し、かつ電槽間冷却媒体通路の両端で圧力差を発生させる手段を設け、
各電槽の対向壁面を一側から他側に向けてテーパさせ、電槽間冷却媒体通路を他側から一側に向けてテーパさせたことを特徴とする集合型密閉二次電池。
In a collective sealed secondary battery in which a plurality of single cells formed by housing a power generation element in a bottomed rectangular cylindrical battery case and sealing the opening thereof are arranged in series, The cooling medium passages are arranged on both sides, and the inter-bath cooling medium passages are formed between the electric tanks of each unit cell so that the cooling medium passages on both sides communicate with each other. Providing means for generating
A collective sealed secondary battery in which the opposing wall surface of each battery case is tapered from one side to the other side, and the cooling medium passage between the battery cases is tapered from the other side to the one side .
有底矩形筒形状の電槽内に発電要素を収容してその開口部を封止して成る単電池を複数個直列配置した集合型密閉二次電池において、単電池の配置方向に対してその両側に冷却媒体通路を配設するとともに、各単電池の電槽間に両側の冷却媒体通路間を連通する電槽間冷却媒体通路を形成し、かつ電槽間冷却媒体通路の両端で圧力差を発生させる手段を設け、
両側の冷却媒体通路内に整流突条にて蛇行流通路を形成し、両側の冷却媒体通路の互いに対向する流通路の厚みを異ならせたことを特徴とする集合型密閉二次電池。
In a collective sealed secondary battery in which a plurality of single cells formed by housing a power generation element in a bottomed rectangular cylindrical battery case and sealing the opening thereof are arranged in series, The cooling medium passages are arranged on both sides, and the inter-bath cooling medium passages are formed between the electric tanks of each unit cell so that the cooling medium passages on both sides communicate with each other. Providing means for generating
A collective hermetic secondary battery, wherein meandering flow passages are formed in the cooling medium passages on both sides by rectifying ridges, and the thicknesses of the opposing flow passages of the cooling medium passages on both sides are made different .
両側の冷却媒体通路の壁面の厚さを異ならせて流通路の厚みを異ならせたことを特徴とする請求項記載の集合型密閉二次電池。4. The collective sealed secondary battery according to claim 3, wherein the thickness of the wall surface of the cooling medium passage on both sides is made different to make the thickness of the flow passage different. 整流突条の高さを異ならせて流通路の厚みを異ならせたことを特徴とする請求項記載の集合型密閉二次電池。4. The collective sealed secondary battery according to claim 3, wherein the flow path has a different thickness by varying the height of the straightening ridge. 有底矩形筒形状の電槽内に発電要素を収容してその開口部を封止して成る単電池を複数個直列配置した集合型密閉二次電池において、単電池の配置方向に対してその両側に冷却媒体通路を配設するとともに、各単電池の電槽間に両側の冷却媒体通路間を連通する電槽間冷却媒体通路を形成し、かつ電槽間冷却媒体通路の両端で圧力差を発生させる手段を設け、
両側の冷却媒体通路内に整流突条にて蛇行流通路を形成するとともに、整流突条間の流通路幅を交互にかつ両側の冷却媒体通路の互いに対向する流通路間で異ならせたことを特徴とする集合型密閉二次電池。
In a collective sealed secondary battery in which a plurality of single cells formed by housing a power generation element in a bottomed rectangular cylindrical battery case and sealing the opening thereof are arranged in series, The cooling medium passages are arranged on both sides, and the inter-bath cooling medium passages are formed between the electric tanks of each unit cell so that the cooling medium passages on both sides communicate with each other. Providing means for generating
The meandering flow passages are formed by the straightening ridges in the cooling medium passages on both sides, and the flow passage width between the straightening ridges is alternately changed between the opposite flow passages of the cooling medium passages on both sides. The collective sealed secondary battery is characterized.
有底矩形筒形状の電槽内に発電要素を収容してその開口部を封止して成る単電池を複数個直列配置した集合型密閉二次電池において、単電池の配置方向に対してその両側に冷却媒体通路を配設するとともに、各単電池の電槽間に両側の冷却媒体通路間を連通する電槽間冷却媒体通路を形成し、かつ電槽間冷却媒体通路の両端で圧力差を発生させる手段を設け、
両側の冷却媒体通路に冷却媒体を分配・集合する分配ヘッダを両端に配設するとともに、一端の分配ヘッダに入口オリフィスを、他端の分配ヘッダに出口オリフィスを設け、少なくとも一方のオリフィスと両側の冷却媒体通路との間に互いに流路断面積の異なる部分を設けたことを特徴とする集合型密閉二次電池。
In a collective sealed secondary battery in which a plurality of single cells formed by housing a power generation element in a bottomed rectangular cylindrical battery case and sealing the opening thereof are arranged in series, The cooling medium passages are arranged on both sides, and the inter-bath cooling medium passages are formed between the electric tanks of each unit cell so that the cooling medium passages on both sides communicate with each other. Providing means for generating
A distribution header that distributes and collects the cooling medium in the cooling medium passages on both sides is provided at both ends, an inlet orifice is provided in one distribution header, and an outlet orifice is provided in the other distribution header. A collective sealed secondary battery , characterized in that portions having different flow path cross-sectional areas are provided between the cooling medium passages .
有底矩形筒形状の電槽内に発電要素を収容してその開口部を封止して成る単電池を複数個直列配置した集合型密閉二次電池において、単電池の配置方向に対してその両側に冷却媒体通路を配設するとともに、各単電池の電槽間に両側の冷却媒体通路間を連通する電槽間冷却媒体通路を形成し、かつ電槽間冷却媒体通路の両端で圧力差を発生させる手段を設け、
両側の冷却媒体通路に冷却媒体を分配・集合する分配ヘッダを両端に配設するとともに、一端の分配ヘッダに入口オリフィスを、他端の分配ヘッダに出口オリフィスを設け、少なくとも一方のオリフィスと両側の冷却媒体通路との間の流路長さを互いに異ならせたことを特徴とする集合型密閉二次電池。
In a collective sealed secondary battery in which a plurality of single cells formed by housing a power generation element in a bottomed rectangular cylindrical battery case and sealing the opening thereof are arranged in series, The cooling medium passages are arranged on both sides, and the inter-bath cooling medium passages are formed between the electric tanks of each unit cell so that the cooling medium passages on both sides communicate with each other. Providing means for generating
A distribution header that distributes and collects the cooling medium in the cooling medium passages on both sides is provided at both ends, an inlet orifice is provided in one distribution header, and an outlet orifice is provided in the other distribution header. A collective sealed secondary battery , characterized in that the flow path length between the cooling medium passages is different from each other .
JP5561299A 1999-03-03 1999-03-03 Collective sealed secondary battery Expired - Fee Related JP4279932B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP5561299A JP4279932B2 (en) 1999-03-03 1999-03-03 Collective sealed secondary battery
US09/516,556 US6482542B1 (en) 1999-03-03 2000-02-29 Integrated sealed secondary battery
EP20000301601 EP1033772A3 (en) 1999-03-03 2000-02-29 Integrated sealed secondary battery
US09/670,525 US6586132B1 (en) 1999-03-03 2000-09-26 Sealed battery pack

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5561299A JP4279932B2 (en) 1999-03-03 1999-03-03 Collective sealed secondary battery

Publications (2)

Publication Number Publication Date
JP2000251951A JP2000251951A (en) 2000-09-14
JP4279932B2 true JP4279932B2 (en) 2009-06-17

Family

ID=13003601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5561299A Expired - Fee Related JP4279932B2 (en) 1999-03-03 1999-03-03 Collective sealed secondary battery

Country Status (1)

Country Link
JP (1) JP4279932B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4442628B2 (en) * 2007-03-30 2010-03-31 トヨタ自動車株式会社 Power supply device and vehicle
KR101084972B1 (en) * 2009-02-27 2011-11-23 주식회사 엘지화학 Middle or Large-sized Battery Pack Case Providing Improved Distribution Uniformity in Coolant Flux
JP2011065907A (en) 2009-09-18 2011-03-31 Panasonic Corp Battery module, method for manufacturing the same, and temperature control system
JP5422596B2 (en) 2011-04-22 2014-02-19 株式会社日立製作所 Secondary battery module and secondary battery pack
JP5472212B2 (en) * 2011-06-06 2014-04-16 三菱自動車工業株式会社 Assembled battery
CN110010999B (en) * 2019-05-06 2024-03-15 西南交通大学 Battery heat abstractor

Also Published As

Publication number Publication date
JP2000251951A (en) 2000-09-14

Similar Documents

Publication Publication Date Title
JP4298867B2 (en) Collective sealed secondary battery
US6482542B1 (en) Integrated sealed secondary battery
US6555264B1 (en) Battery module having a plurality of interconnected batteries
JP4568388B2 (en) Integrated coupling battery with built-in circulating fluid heat exchanger
US6586132B1 (en) Sealed battery pack
EP1091438B1 (en) Battery pack
US6780538B2 (en) Battery module, and rechargeable battery for constituting the battery module
EP0962993B1 (en) Integrated closed secondary battery
EP1059680B1 (en) Battery module
US6197446B1 (en) Integrated enclosed secondary battery
JP6627682B2 (en) Battery pack
EP1033771B1 (en) Integrated sealed secondary battery
CN215869534U (en) Heat exchanger with cross-over passage for cold fluid distribution
JP4279932B2 (en) Collective sealed secondary battery
US7138205B2 (en) Battery with proportional collectors, straps, and plates
JP4242501B2 (en) Collective sealed secondary battery
JP4404982B2 (en) Collective sealed secondary battery
JP4107828B2 (en) Storage battery
JP4242500B2 (en) Collective sealed secondary battery
JP3770539B2 (en) Storage battery
JP4317609B2 (en) Collective sealed secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070424

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070810

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070811

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090217

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090313

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees