JP4242501B2 - Collective sealed secondary battery - Google Patents

Collective sealed secondary battery Download PDF

Info

Publication number
JP4242501B2
JP4242501B2 JP05561499A JP5561499A JP4242501B2 JP 4242501 B2 JP4242501 B2 JP 4242501B2 JP 05561499 A JP05561499 A JP 05561499A JP 5561499 A JP5561499 A JP 5561499A JP 4242501 B2 JP4242501 B2 JP 4242501B2
Authority
JP
Japan
Prior art keywords
cooling medium
medium passage
secondary battery
collective
sealed secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP05561499A
Other languages
Japanese (ja)
Other versions
JP2000251953A (en
Inventor
貢 高木
真介 福田
真一 湯浅
真治 浜田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Toyota Motor Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Toyota Motor Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Toyota Motor Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP05561499A priority Critical patent/JP4242501B2/en
Priority to US09/516,556 priority patent/US6482542B1/en
Priority to EP20000301601 priority patent/EP1033772A3/en
Publication of JP2000251953A publication Critical patent/JP2000251953A/en
Priority to US09/670,525 priority patent/US6586132B1/en
Application granted granted Critical
Publication of JP4242501B2 publication Critical patent/JP4242501B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Mounting, Suspending (AREA)
  • Secondary Cells (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、単電池を複数個直列配置して一体電槽としてなる集合型密閉二次電池に関するものである。
【0002】
【従来の技術】
この種の集合型密閉二次電池としては、特開平7−85847号公報に開示されたものが知られている。その集合型密閉二次電池61は、図10に示すように、有底矩形筒形状に形成された電槽63内に発電要素を収容し、電槽63の開口部を蓋体64により封止してなる単電池62を複数個直列配置し、これら単電池62の電槽63を端板65及び拘束バンド66にて緊締状態で連結し、また各単電池62の正極端子67及び負極端子68を蓋体64を貫通させて上方に突出させ、これら端子67、68を電気接続バー69で順次直列に接続した構造となっている。
【0003】
また、特開平6−215804号公報には、プラスチック製の電槽と蓋体を熱溶着したモノブロック蓄電池において、その電槽の2つの対向する側壁の外面にそれぞれ内側に凹入空間を形成した側板を熱溶着して電槽の側壁と側板との間に冷却ジャケット部を構成し、側板の両端部の上部に冷却液体の入口オリフィスと出口オリフィスを設けたものが開示されている。また、その冷却ジャケット部内には蛇行流通路を形成するようにその上端面と下端面から交互に整流突条が突設され、さらに上端面から垂下される整流突条の上端と上端面との間には、1〜3mm程度の空気逃がし口が形成されている。
【0004】
【発明が解決しようとする課題】
しかしながら、特開平7−85847号公報の集合型密閉二次電池では、各単電池が密接配置されて緊締されているので、周囲温度が高い場合や大電流で充放電した場合に各単電池からの放熱が十分に行われず、電池温度が上昇して電池寿命が低下するという問題がある。
【0005】
これに対して、特開平6−215804号公報の蓄電池では、電槽の両側面が水冷ジャケット部で冷却されるためにある程度温度上昇を抑制でき、またその水冷ジャケット部内に蛇行流通路が形成されているために電槽の側面の全面を略均等に冷却することができ、さらに水冷ジャケット部の上端壁と整流突条とが接続される隅部に空気逃がし穴が形成されているためその隅部に生じる空気溜まりによって冷却能力が低下するのをある程度抑制できるが、上記と同様に単電池間の冷却ができないために電池温度が上昇するという問題がある。
【0006】
なお、本発明者による研究の結果、上記特開平7−85847号公報の集合型密閉二次電池の問題を解消するために単電池間に空間部を設け、上記特開平6−215804号公報に開示された水冷ジャケット部と組み合わせて構成し、空間部が冷却通路となるように構成した場合には、特に水冷ジャケット部の上端壁と整流突条の隅部に冷却媒体の流れが滞って空気溜まりが発生し易いために、空気溜まりの発生による冷却性能の低下が一層大きな障害になるということが判明した。さらには、上記隅部に小さな空気逃がし口を設けただけでは、空気が冷却媒体の流れに乗って速やかに排出するのは困難で、上記障害の解消は容易でないということも判明した。
【0007】
本発明は、上記従来の問題点に鑑み、単電池間に冷却通路となる空間部を設けて各単電池を効果的に冷却してその温度上昇を防止でき、かつ両側の水冷媒体通路の蛇行流通路に空気溜まりが発生して冷却能力が低下するのを防止した集合型密閉二次電池を提供することを目的としている。
【0008】
【課題を解決するための手段】
本発明の集合型密閉二次電池は、有底矩形筒形状の電槽内に発電要素を収容してその開口部を封止して成る単電池を複数個直列配置し、それら単電池間に空間部を設けた集合型密閉二次電池において、単電池の配置方向に対してその両側に冷却媒体通路を配設するとともに、冷却媒体通路に蛇行流通路を形成するように整流突条を突設し、冷却媒体通路の上端部から垂下される整流突条の上端と冷却媒体通路の上端壁との間に空気逃がし口を形成したものであり、単電池間の空間部が両側の冷却媒体通路間を連通する冷却媒体通路となることによって、各単電池を効果的に冷却してその温度上昇を防止でき、かつ単電池間の空間部を冷却媒体通路としたことによって整流突条の上端と冷却媒体通路の上端壁との間の隅部に空気が溜まり易くなっても、その空気が空気逃がし口を通って下流側の蛇行流通路に移動し、最終的に冷却媒体通路から排出されるので、蛇行流通路に空気溜まりが発生して冷却能力が低下するのを確実に防止することができる。
【0009】
また、冷却媒体通路の上端壁の少なくとも空気逃がし口に対向する部分にその側方に向けて傾斜する傾斜面を形成すると、上記隅部に空気が溜まっても空気逃がし口を通って傾斜面にて蛇行流通路の中央側に移動させることができるので、蛇行流通路を流れる冷却媒体の強い流れに乗って下流側に移動し、蛇行流通路に空気溜まりが発生して冷却能力が低下するのをより一層確実に防止することができる。
【0010】
また、冷却媒体通路の上端壁に、冷却媒体通路の入口端から出口端に向けて上方に傾斜する傾斜面を形成すると、空気はこの傾斜面に沿って空気逃がし口を順次通過して冷却媒体通路の出口端まで円滑に排出される。
【0011】
また、整流突条の上端の高さ位置を略同一高さにし、空気逃がし口の開口面積を冷却媒体通路の入口端から出口端に向けて順次大きくすると、下流側ほど空気が流出し易くなり、一層円滑に排出され、空気溜まりが発生して冷却能力が低下するのを確実に防止することができる。
【0012】
また、冷却媒体通路の上端壁に、各空気逃がし口に対向する部分から両側に向けて上方に傾斜する傾斜面を形成しても、空気を円滑に排出できる。
【0013】
また、傾斜面の水平面に対する傾斜角を3〜5°とし、また空気逃がし穴の上下幅を3〜5mmとすると、整流突条の上端と冷却媒体通路の上端壁との間の隅部に溜まった空気を確実に蛇行流通路の中央側に移動させることができ、空気溜まりが発生して冷却能力が低下するのを確実に防止することができる。
【0014】
【発明の実施の形態】
以下、本発明の集合型密閉二次電池の一実施形態について、図1〜図8を参照して説明する。
【0015】
本実施形態の集合型密閉二次電池1は、電気自動車用の駆動電源として好適に用いることができるニッケル・水素二次電池であり、図1〜図3に示すように、単電池2を複数個直列配置して相互に接合して一体電槽とし、単電池列の両端に端板6を接合し、単電池2及び端板6の配列方向に対してその両側に内側に扁平な空間を凹入形成した板状の冷却ジャケット部材3を接合し、その上に単一体の蓋体5を接合して各単電池2及び端板6を密閉し、端板6、6間を拘束バンド7にて緊締して構成されている。8は一端と他端の単電池2から上方に突出された正極端子や負極端子が貫通するように蓋体5に形成された端子装着穴、9は各単電池2に対応して蓋体5に貫通形成された安全弁装着穴である。10、11は冷却媒体の入口オリフィスと出口オリフィスであり、蓋体5の両端部に一体的に装着される。上記単電池2、冷却ジャケット部材3、蓋体5、端板6、入口オリフィス10、出口オリフィス11等は、PP/PPEアロイなどの合成樹脂にて構成され、溶着によって相互に一体接合されている。また、隣接する単電池2、2は、図2、図3に示すように、接続体12にて電気的に接続されている。
【0016】
以下、詳細に説明すると、単電池2は、図2、図3に示すように、有底矩形筒形状の電槽14内に発電要素15を収容して成り、各単電池2を直列に配列した状態で互いに対向する電槽14の対向壁面16に、相互に当接する多数の突部17がマトリックス状に突設され、これら突部17にて両対向壁面16、16間に冷却媒体通路となる空間部18が構成されている。なお、単電池列の両端の単電池2の外側の対向壁面16には端板6が当てられて接合され、その端板6と対向壁面16との間にも空間部18が形成されている。また、適当箇所の複数(図示例では4箇所)の突部17は大径に形成され、その端面に互いに嵌入係合する係合突起19aと係合凹部19bが形成されて電槽14相互の位置決めがなされている。また、電槽14の上端から適当距離下方位置と下端縁部には互いに当接する接合縁部20が突設されている。そして、単電池2を直列に配列した状態で互いに当接している突部17及び接合縁部20を相互に溶着することによって各単電池2が一体電槽として一体接合されている。
【0017】
この単電池2の配列方向に対してその両側における単電池2と水冷ジャケット部材3の内側面との間に形成された空間にて冷却媒体通路21が構成されている。また、上記端板6の上縁には両側の冷却媒体通路21に連通して冷却媒体(水)を分配する分配ヘッダ形成樋22が形成されている。
【0018】
一体電槽とされた各単電池2の電槽14における上方の接合縁部20より上部の上部枠26には、図2、図3及び図4に示すように、隣接する単電池2を電気的に接続する接続体12を配置する略三角形状の切欠13が千鳥状に形成されており、接続体12は切欠13に配置された状態で電槽14及び蓋体5に密封状態で一体接合されている。
【0019】
接続体12は、図2、図3及び図5に示すように、金属(ニッケル等)製の接続軸27と合成樹脂製の支持体28にて構成され、接続軸27が支持体28の保持筒部29に圧入状態で貫通されるとともに、接続軸27の鍔部27aと保持筒部29内周との間に介装したOリング31にて完全に密封されている。また、支持体28には保持筒部29から一対の三角形状の翼部30が突設され、この接続体12を切欠13に配置したときそれぞれ上部枠26に接合されるように構成されている。
【0020】
蓋体5は、図2、図3及び図6に示すように、内面に各電槽14の上部枠26に対応するように個別枠32が形成されるとともに、外周部に断面倒立L字状に外周枠33が垂下され、長手方向両端部には分配ヘッダ形成樋22の上端に接合されて分配ヘッダ35を密閉形成する密封突条34が突設されている。
【0021】
また、蓋体5の両端部の一側部には端子装着穴8が形成され、他側部には入口オリフィス10と出口オリフィス11を接合する接合突条36が突設されている。これらオリフィス10、11は、平面形状が略J字状で下面開放のJ字ボックス片37の短辺の先端から接続口38を突出させて構成されている。また、蓋体5のJ字ボックス片37の長辺先端部に対向する部分に分配ヘッダ35に連通する連通開口39が形成されている。
【0022】
また、冷却ジャケット部材3の両側壁内面には、図7に示すように、冷却媒体通路21の全面を冷却媒体が均等に流れるように、上下に蛇行する蛇行流通路40を形成する整流突条41が突設されている。また、冷却ジャケット部21の上端部から垂下される整流突条41の上端41aと冷却ジャケット部21の上端壁42との間には空気逃がし口43が形成されている。さらに、冷却媒体通路21の上端壁42は、その入口端21a側の厚さt1に対して出口端21b側の厚さt2が小さく設定され、それによって上端壁42に冷却媒体通路21の入口端21aから出口端21bに向けて上方に傾斜する傾斜面44が形成されている。一方、冷却媒体通路21の上端部から垂下される各整流突条41の上端41aの高さ位置は略同一高さにしてあり、それによって空気逃がし口43の高さ寸法が冷却媒体通路21の入口端21aから出口端21bに向けてd1、d2、d3、d4のように順次大きくなっている。d1〜d4は、3〜5mm程度が好適である。なお、整流突条41は単電池2の電槽14側に設けてもよい。
【0023】
以上の構成の集合型密閉二次電池1においては、入口オリフィス10から冷却媒体を供給すると、分配ヘッダ35を通って両側の冷却媒体通路21に流入し、この冷却媒体通路21内を下流側に向かって流れるとともに、単電池2間の空間部18を通って両冷却媒体通路21、21間でも流通し、単電池2の電槽14の対向壁面16を含めてすべての側面が冷却媒体にて強制冷却され、冷却媒体はその後出口オリフィス11から排出される。したがって、すべての単電池2の四周側面が冷却媒体にて効果的に冷却される。
【0024】
また、上記冷却媒体通路21内において、整流突条41の上端41aと上端壁42との間の隅部に空気が溜まっても空気逃がし口43を通って傾斜面44にて蛇行流通路44の中央側に移動し、蛇行流通路40を流れる冷却媒体の強い流れに乗って下流側に移動し、流れに乗らなかった空気も傾斜面44に沿って空気逃がし口43を順次通過して冷却媒体通路21の出口端21bまで円滑に排出される。さらに、空気逃がし口43の高さ寸法が冷却媒体通路21の入口端21aから出口端21bに向けてd1〜d4のように順次大きくなっているので、空気逃がし口43の開口寸法が順次大きくなり、下流側ほど空気が流出し易くなり、一層円滑に冷却媒体通路21から排出される。かくして、蛇行流通路40に空気溜まりが発生して冷却能力が低下するのを確実に防止することができる。
【0025】
また、本実施形態では各単電池2を溶着して相互に一体接合して一体電槽とするとともにその開口部に一体型の蓋体5を溶着して封止しているので、少ない部品数と組立工数にて一体電槽とした集合型密閉二次電池1を得ることができ、また各単電池2の電槽14の対向壁面16に突部17を形成して突部17を当接させて相互に溶着しているので簡単かつ安価に対向壁面16、16間の略全面にわたる冷却媒体通路18を形成することができる。
【0026】
また、単電池列の両側にコンパクトな板状の冷却ジャケット部材3を接合して冷却媒体通路21を構成しているので軽量に構成することができる。
【0027】
また、冷却媒体通路21に対して冷却媒体を供給、排出する冷却媒体の入口オリフィス10と出口オリフィス11を単電池配置方向の両端に配設するとともに分配ヘッダ35を介して両側の冷却媒体通路21に接続しているので、単一の冷却媒体経路にて上記構成と相まってすべての単電池2の全周を効果的に冷却することができる。
【0028】
なお、上記冷却媒体通路21の構成例においては、その上端壁42に入口端21aから出口端21bにわたって傾斜するように傾斜面44を形成したが、図8に示すように、冷却媒体通路21の上端壁42に、各空気逃がし口43に対向する部分から両側に向けて上方に傾斜するように傾斜面44を形成してもよい。この場合も、冷却媒体通路21の上端壁42と整流突条41の上端41aとの間の隅部に溜まった空気を確実に蛇行流通路40の中央側に移動させることができ、冷却媒体の強い流れに乗せて排出することができ、空気溜まりが発生して冷却能力が低下するのを防止することができる。なお、空気逃がし口43の高さ寸法は、3〜5mm程度が適当であり、また傾斜面43の水平面に対する傾斜角度θは3〜5°程度が好適である。
【0029】
次に、本発明の集合型密閉二次電池の他の実施形態について、図9を参照して説明する。上記実施形態では蓋体5が端板6上に被さり、入口オリフィス10及び出口オリフィス11が蓋体5に設けられた例を示したが、本実施形態では蓋体5は単電池2群上のみを覆い、両端の端板6の上端部に分配ヘッダ部52を一体的に設け、その上面に入口オリフィス10や出口オリフィス11を突設し、冷却ジャケット部材3の両端の上端部に内部の冷却媒体通路21を分配ヘッダ部52の両端に対して接続する接続部53を屈曲形成している。また、図9中で斜線で示した部分は、単電池2の集合体と冷却ジャケット部材3の溶着部54である。
【0030】
本実施形態においても基本的に上記実施形態と同様の作用効果が得られる。
【0031】
また、上記実施形態では各構成部材を溶着によって一体接合する例を示したが、接着材にて一体接合してもよい。
【0032】
【発明の効果】
本発明の集合型密閉二次電池によれば、以上の説明から明らかなように、有底矩形筒形状の電槽内に発電要素を収容してその開口部を封止して成る単電池を複数個、単電池間に空間部を設けて直列配置し、それら単電池の配置方向に対してその両側に冷却媒体通路を配設するとともに、冷却媒体通路に蛇行流通路を形成するように整流突条を突設し、冷却媒体通路の上端部から垂下される整流突条の上端と冷却媒体通路の上端壁との間に空気逃がし口を形成したので、単電池間の空間が両側の冷却媒体通路間を連通する冷却媒体通路となることによって、各単電池を効果的に冷却してその温度上昇を防止でき、かつ整流突条の上端と冷却媒体通路の上端壁との間の隅部に空気が溜まり易くなってもその空気が空気逃がし口を通って下流側の蛇行流通路に移動し、最終的に冷却媒体通路から排出されるので、蛇行流通路に空気溜まりが発生して冷却能力が低下するのを確実に防止することができる。
【0033】
また、冷却媒体通路の上端壁の少なくとも空気逃がし口に対向する部分にその側方に向けて傾斜する傾斜面を形成すると、上記隅部に空気が溜まっても空気逃がし口を通って傾斜面にて蛇行流通路の中央側に移動させることができるので、蛇行流通路を流れる冷却媒体の強い流れに乗って下流側に移動し、蛇行流通路に空気溜まりが発生して冷却能力が低下するのをより一層確実に防止することができる。
【0034】
また、冷却媒体通路の上端壁に、冷却媒体通路の入口端から出口端に向けて上方に傾斜する傾斜面を形成すると、空気はこの傾斜面に沿って空気逃がし口を順次通過して冷却媒体通路の出口端まで円滑に排出される。
【0035】
また、整流突条の上端の高さ位置を略同一高さにし、空気逃がし口の開口面積を冷却媒体通路の入口端から出口端に向けて順次大きくすると、下流側ほど空気が流出し易くなり、一層円滑に排出され、空気溜まりが発生して冷却能力が低下するのを確実に防止することができる。
【0036】
また、冷却媒体通路の上端壁に、各空気逃がし口に対向する部分から両側に向けて上方に傾斜する傾斜面を形成しても、空気を円滑に排出できる。
【0037】
また、傾斜面の水平面に対する傾斜角を3〜5°とし、また空気逃がし穴の上下幅を3〜5mmとすると、整流突条の上端と冷却媒体通路の上端壁との間の隅部に溜まった空気を確実に蛇行流通路の中央側に移動させることができ、空気溜まりが発生して冷却能力が低下するのを確実に防止することができる。
【図面の簡単な説明】
【図1】本発明の集合型密閉二次電池の一実施形態の外観斜視図である。
【図2】同実施形態の縦断側面図である。
【図3】同実施形態の部分縦断正面図である。
【図4】同実施形態の単電池群の上端部における部分斜視図である。
【図5】同実施形態の電気接続体の斜視図である。
【図6】同実施形態の蓋体の斜視図である。
【図7】同実施形態の冷却媒体通路内の構成を示す縦断面図である。
【図8】同実施形態の冷却媒体通路内の他の構成例を示す縦断面図である。
【図9】本発明の集合型密閉二次電池の他の実施形態の分解斜視図である。
【図10】従来例の集合型密閉二次電池の正面図である。
【符号の説明】
1 集合型密閉二次電池
2 単電池
18 空間部
21 冷却媒体通路
21a 入口端
21b 出口端
40 蛇行流通路
41 整流突条
41a 上端
42 上端壁
43 空気逃がし口
44 傾斜面
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a collective sealed secondary battery in which a plurality of single cells are arranged in series to form an integrated battery case.
[0002]
[Prior art]
As this type of collective sealed secondary battery, a battery disclosed in Japanese Patent Laid-Open No. 7-85847 is known. As shown in FIG. 10, the collective sealed secondary battery 61 accommodates a power generation element in a battery case 63 formed in a bottomed rectangular cylindrical shape, and the opening of the battery case 63 is sealed with a lid 64. A plurality of the unit cells 62 are arranged in series, and the battery case 63 of the unit cells 62 is connected in a tightened state by the end plate 65 and the restraining band 66, and the positive terminal 67 and the negative terminal 68 of each unit cell 62 are connected. And the terminals 67 and 68 are sequentially connected in series by an electric connection bar 69.
[0003]
Japanese Patent Laid-Open No. 6-215804 discloses a monoblock storage battery in which a plastic battery case and a lid are heat-welded, and indented spaces are formed on the outer surfaces of two opposite side walls of the battery case, respectively. A side plate is thermally welded to form a cooling jacket portion between the side wall and the side plate of the battery case, and an inlet orifice and an outlet orifice for the cooling liquid are provided at the upper portions of both end portions of the side plate. Further, in the cooling jacket portion, straightening ridges are alternately projected from the upper end surface and the lower end surface so as to form a meandering flow passage, and further, the upper end and upper end surface of the straightening ridge hanging from the upper end surface. An air escape port of about 1 to 3 mm is formed between them.
[0004]
[Problems to be solved by the invention]
However, in the collective sealed secondary battery disclosed in Japanese Patent Application Laid-Open No. 7-85847, each single battery is closely arranged and tightened. Therefore, when the ambient temperature is high or when charging / discharging with a large current, Is not sufficiently dissipated, and there is a problem that the battery temperature rises and the battery life decreases.
[0005]
On the other hand, in the storage battery disclosed in Japanese Patent Laid-Open No. 6-215804, since both sides of the battery case are cooled by the water cooling jacket portion, the temperature rise can be suppressed to some extent, and a meandering flow passage is formed in the water cooling jacket portion. As a result, the entire side surface of the battery case can be cooled substantially uniformly, and an air escape hole is formed at the corner where the upper end wall of the water cooling jacket and the straightening ridge are connected. Although it can be suppressed to some extent that the cooling capacity is lowered due to the air pool generated in the section, there is a problem that the battery temperature rises because the cooling between the single cells cannot be performed as described above.
[0006]
As a result of the research by the present inventor, in order to solve the problem of the collective sealed secondary battery disclosed in the above Japanese Patent Application Laid-Open No. 7-85847, a space is provided between the single cells. When it is configured in combination with the disclosed water cooling jacket portion and the space portion is configured as a cooling passage, the flow of the cooling medium stagnate particularly in the upper end wall of the water cooling jacket portion and the corner of the rectifying ridge. It has been found that since the accumulation tends to occur, the deterioration of the cooling performance due to the occurrence of the air accumulation becomes a further obstacle. Further, it has also been found that it is difficult to quickly discharge the air along the flow of the cooling medium simply by providing a small air vent at the corner, and it is not easy to eliminate the obstacle.
[0007]
In view of the above-described conventional problems, the present invention can provide a space portion serving as a cooling passage between the single cells to effectively cool each single cell to prevent the temperature from rising, and meander the water refrigerant passages on both sides. It is an object of the present invention to provide a collective sealed secondary battery that prevents an air pool from being generated in a flow path and thereby reducing a cooling capacity.
[0008]
[Means for Solving the Problems]
The collective sealed secondary battery of the present invention has a plurality of cells arranged in series in which a power generation element is housed in a bottomed rectangular tube-shaped battery case and its opening is sealed, and the cells are arranged between the cells. In a collective sealed secondary battery having a space, a cooling medium passage is provided on both sides of the unit cell arrangement direction, and a rectifying ridge is projected so as to form a serpentine flow passage in the cooling medium passage. And an air escape port is formed between the upper end of the straightening ridge suspended from the upper end of the cooling medium passage and the upper end wall of the cooling medium passage, and the space between the single cells is the cooling medium on both sides. By providing a cooling medium passage that communicates between the passages, each unit cell can be effectively cooled to prevent the temperature from rising, and the space between the unit cells serves as a cooling medium passage, so that the upper end of the rectifying ridge And air tends to collect in the corner between the cooling medium passage and the upper end wall of the cooling medium passage. However, since the air moves to the meandering flow passage on the downstream side through the air escape port and is finally discharged from the cooling medium passage, an air pool is generated in the meandering passage and the cooling capacity is reduced. Can be reliably prevented.
[0009]
In addition, if an inclined surface that is inclined toward the side is formed at least on the portion of the upper end wall of the cooling medium passage that faces the air escape port, even if air accumulates in the corner portion, the inclined surface passes through the air escape port. Can be moved to the center side of the meandering flow passage, so that it moves on the downstream side with the strong flow of the cooling medium flowing through the meandering flow passage, an air pool is generated in the meandering flow passage, and the cooling capacity is reduced. Can be more reliably prevented.
[0010]
In addition, when an inclined surface inclined upward from the inlet end to the outlet end of the cooling medium passage is formed on the upper end wall of the cooling medium passage, the air sequentially passes through the air escape port along the inclined surface. It is discharged smoothly to the exit end of the passage.
[0011]
Also, if the height of the upper end of the straightening ridge is made substantially the same height and the opening area of the air escape port is increased sequentially from the inlet end to the outlet end of the cooling medium passage, the air is more likely to flow out toward the downstream side. Thus, the air can be discharged more smoothly, and it can be reliably prevented that the air capacity is generated and the cooling capacity is lowered.
[0012]
Further, even if an inclined surface is formed on the upper end wall of the cooling medium passage so as to incline upward from the portion facing each air escape port toward both sides, the air can be discharged smoothly.
[0013]
Further, if the inclination angle of the inclined surface with respect to the horizontal plane is 3 to 5 ° and the vertical width of the air escape hole is 3 to 5 mm, the inclined surface is accumulated at the corner between the upper end of the straightening ridge and the upper end wall of the cooling medium passage. Therefore, it is possible to reliably move the air to the center side of the meandering flow passage and prevent the cooling capacity from being lowered due to the occurrence of air pool.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the collective sealed secondary battery of the present invention will be described with reference to FIGS.
[0015]
The collective sealed secondary battery 1 of the present embodiment is a nickel-hydrogen secondary battery that can be suitably used as a drive power source for an electric vehicle. As shown in FIGS. They are arranged in series and joined together to form an integrated battery case, end plates 6 are joined to both ends of the unit cell row, and flat spaces are formed on both sides of the unit cells 2 and end plates 6 with respect to the arrangement direction. A plate-shaped cooling jacket member 3 formed in a recess is joined, a single lid body 5 is joined thereon, each cell 2 and the end plate 6 are sealed, and a restraint band 7 is provided between the end plates 6 and 6. The structure is tightened. Reference numeral 8 denotes a terminal mounting hole formed in the lid body 5 so that a positive electrode terminal or a negative electrode terminal protruding upward from the unit cell 2 at one end and the other end penetrates, and 9 denotes a lid body 5 corresponding to each unit cell 2. It is a safety valve mounting hole formed in the through hole. Reference numerals 10 and 11 denote an inlet orifice and an outlet orifice for the cooling medium, which are integrally attached to both ends of the lid 5. The unit cell 2, the cooling jacket member 3, the lid 5, the end plate 6, the inlet orifice 10, the outlet orifice 11 and the like are made of synthetic resin such as PP / PPE alloy and are integrally joined to each other by welding. . Moreover, the adjacent unit cells 2 and 2 are electrically connected by the connection body 12, as shown in FIG. 2, FIG.
[0016]
Hereinafter, in detail, as shown in FIGS. 2 and 3, the unit cell 2 is configured by housing a power generation element 15 in a bottomed rectangular cylindrical battery case 14, and arranging the unit cells 2 in series. In this state, a large number of protrusions 17 that are in contact with each other are provided in a matrix on the opposing wall surface 16 of the battery case 14 that are opposed to each other, and the cooling medium passage is formed between the opposing wall surfaces 16 and 16 by these protrusions 17. A space 18 is formed. An end plate 6 is applied to and joined to the opposing wall surface 16 outside the unit cells 2 at both ends of the cell array, and a space 18 is also formed between the end plate 6 and the opposing wall surface 16. . In addition, a plurality of (17 in the illustrated example) projections 17 at appropriate locations are formed with a large diameter, and engagement projections 19a and engagement recesses 19b that are fitted and engaged with each other are formed on the end surfaces of the projections 17 to each other. Positioning has been made. Further, a joining edge portion 20 that protrudes from the upper end of the battery case 14 at an appropriate distance below and the lower end edge protrudes from each other. Then, the unit cells 2 are integrally joined as an integrated battery case by welding the protrusions 17 and the joining edge portions 20 that are in contact with each other in a state where the unit cells 2 are arranged in series.
[0017]
A cooling medium passage 21 is formed in a space formed between the unit cells 2 and the inner surface of the water cooling jacket member 3 on both sides of the unit cells 2 in the arrangement direction. Further, a distribution header forming rod 22 for distributing the cooling medium (water) is formed on the upper edge of the end plate 6 so as to communicate with the cooling medium passages 21 on both sides.
[0018]
As shown in FIGS. 2, 3, and 4, adjacent unit cells 2 are electrically connected to the upper frame 26 above the joint edge 20 above the battery case 14 of each unit cell 2 that is an integrated battery case. The substantially triangular cutouts 13 for arranging the connection bodies 12 to be connected to each other are formed in a staggered manner, and the connection bodies 12 are integrally joined to the battery case 14 and the lid body 5 in a sealed state while being arranged in the cutouts 13. Has been.
[0019]
As shown in FIGS. 2, 3, and 5, the connection body 12 includes a connection shaft 27 made of metal (such as nickel) and a support body 28 made of synthetic resin, and the connection shaft 27 holds the support body 28. The tube portion 29 is penetrated in a press-fit state, and is completely sealed by an O-ring 31 interposed between the flange portion 27a of the connection shaft 27 and the inner periphery of the holding tube portion 29. Further, a pair of triangular wings 30 project from the holding cylinder 29 on the support 28 and are configured to be joined to the upper frame 26 when the connecting body 12 is disposed in the notch 13. .
[0020]
As shown in FIGS. 2, 3, and 6, the cover 5 has an individual frame 32 formed on the inner surface so as to correspond to the upper frame 26 of each battery case 14, and an inverted L-shaped cross section on the outer periphery. The outer peripheral frame 33 hangs down, and sealing ridges 34 are formed on both ends in the longitudinal direction, which are joined to the upper end of the distribution header forming rod 22 to form the distribution header 35 in a sealed manner.
[0021]
In addition, a terminal mounting hole 8 is formed on one side of both ends of the lid 5, and a joining protrusion 36 that joins the inlet orifice 10 and the outlet orifice 11 is provided on the other side. These orifices 10 and 11 are configured by projecting a connection port 38 from the tip of the short side of the J-shaped box piece 37 whose plane shape is substantially J-shaped and whose lower surface is open. In addition, a communication opening 39 that communicates with the distribution header 35 is formed at a portion of the lid 5 that faces the front end of the long side of the J-shaped box piece 37.
[0022]
Further, as shown in FIG. 7, on the inner surfaces of both side walls of the cooling jacket member 3, straightening ridges forming a meandering flow passage 40 that meanders up and down so that the cooling medium flows evenly over the entire surface of the cooling medium passage 21. 41 is protrudingly provided. In addition, an air escape port 43 is formed between the upper end 41 a of the rectifying ridge 41 suspended from the upper end portion of the cooling jacket portion 21 and the upper end wall 42 of the cooling jacket portion 21. Further, the upper end wall 42 of the cooling medium passage 21 is set such that the thickness t2 on the outlet end 21b side is smaller than the thickness t1 on the inlet end 21a side. An inclined surface 44 that is inclined upward from 21a toward the outlet end 21b is formed. On the other hand, the height positions of the upper ends 41a of the respective straightening ridges 41 suspended from the upper end portion of the cooling medium passage 21 are substantially the same height, so that the height dimension of the air escape port 43 is the height of the cooling medium passage 21. From the inlet end 21a toward the outlet end 21b, it gradually increases like d1, d2, d3, d4. d3 to d4 are preferably about 3 to 5 mm. The rectifying ridge 41 may be provided on the battery case 14 side of the unit cell 2.
[0023]
In the collective sealed secondary battery 1 having the above configuration, when the cooling medium is supplied from the inlet orifice 10, it flows into the cooling medium passages 21 on both sides through the distribution header 35, and the inside of the cooling medium passage 21 is set downstream. And flows between the cooling medium passages 21 and 21 through the space 18 between the unit cells 2, and all side surfaces including the opposing wall surface 16 of the battery case 14 of the unit cell 2 are the cooling medium. After forced cooling, the cooling medium is then discharged from the outlet orifice 11. Therefore, the four side surfaces of all the unit cells 2 are effectively cooled by the cooling medium.
[0024]
In the cooling medium passage 21, even if air accumulates at the corner between the upper end 41 a and the upper end wall 42 of the flow straightening ridge 41, the airflow passage 44 passes through the air escape port 43 and the meandering flow passage 44. The air that has moved to the center side, moved to the downstream side by riding the strong flow of the cooling medium flowing through the meandering flow passage 40, and the air that did not get on the flow passes through the air escape port 43 along the inclined surface 44 in order. It is smoothly discharged to the outlet end 21b of the passage 21. Furthermore, since the height dimension of the air escape port 43 is sequentially increased from the inlet end 21a of the cooling medium passage 21 toward the outlet end 21b as d1 to d4, the opening size of the air escape port 43 is sequentially increased. The air flows out more easily toward the downstream side, and is more smoothly discharged from the cooling medium passage 21. Thus, it is possible to surely prevent the cooling capacity from being reduced due to the occurrence of air accumulation in the meandering flow passage 40.
[0025]
Further, in the present embodiment, the unit cells 2 are welded and integrally joined to each other to form an integrated battery case, and the integrated lid body 5 is welded and sealed to the opening, so that the number of parts is small. As a result, it is possible to obtain the collective sealed secondary battery 1 as an integrated battery case in the number of assembly steps, and to form a protrusion 17 on the opposing wall surface 16 of the battery case 14 of each unit cell 2 to contact the protrusion 17 Since they are welded to each other, the cooling medium passage 18 over the substantially entire surface between the opposing wall surfaces 16 and 16 can be formed easily and inexpensively.
[0026]
Further, since the cooling medium passage 21 is formed by joining the compact plate-like cooling jacket members 3 to both sides of the unit cell row, it is possible to reduce the weight.
[0027]
In addition, an inlet orifice 10 and an outlet orifice 11 for supplying and discharging the cooling medium to and from the cooling medium passage 21 are arranged at both ends in the unit cell arrangement direction, and the cooling medium passages 21 on both sides via the distribution header 35 are arranged. Therefore, it is possible to effectively cool the entire circumference of all the unit cells 2 in combination with the above-described configuration through a single cooling medium path.
[0028]
In the configuration example of the cooling medium passage 21, the inclined surface 44 is formed on the upper end wall 42 so as to incline from the inlet end 21a to the outlet end 21b. However, as shown in FIG. An inclined surface 44 may be formed on the upper end wall 42 so as to incline upward from the portion facing each air escape port 43 toward both sides. Also in this case, the air accumulated in the corner between the upper end wall 42 of the cooling medium passage 21 and the upper end 41a of the flow straightening ridge 41 can be reliably moved to the center side of the meandering passage 40, and the cooling medium It is possible to discharge the air in a strong flow, and it is possible to prevent an air pool from being generated and a cooling capacity from being lowered. In addition, about 3-5 mm is suitable for the height dimension of the air escape port 43, and about 3-5 degrees of inclination angles (theta) with respect to the horizontal surface of the inclined surface 43 are suitable.
[0029]
Next, another embodiment of the collective sealed secondary battery of the present invention will be described with reference to FIG. In the above embodiment, the cover 5 is covered on the end plate 6 and the inlet orifice 10 and the outlet orifice 11 are provided on the cover 5. However, in the present embodiment, the cover 5 is only on the unit cell 2 group. The distribution header portion 52 is integrally provided at the upper end portions of the end plates 6 at both ends, the inlet orifice 10 and the outlet orifice 11 project from the upper surface thereof, and the internal cooling is provided at the upper end portions at both ends of the cooling jacket member 3. A connecting portion 53 that connects the medium passage 21 to both ends of the distribution header portion 52 is bent. Further, the hatched portions in FIG. 9 are the assembly of the unit cells 2 and the welded portion 54 of the cooling jacket member 3.
[0030]
Also in this embodiment, the same operation effect as the above embodiment can be basically obtained.
[0031]
Moreover, although the example which integrally bonds each structural member by welding was shown in the said embodiment, you may integrally bond with an adhesive material.
[0032]
【The invention's effect】
According to the collective sealed secondary battery of the present invention, as is apparent from the above description, a unit cell in which a power generation element is accommodated in a bottomed rectangular cylindrical battery case and its opening is sealed. A plurality of cells are arranged in series with a space between them, and a cooling medium passage is arranged on both sides of the arrangement direction of the single cells, and rectification is performed so that a meandering flow passage is formed in the cooling medium passage. An air vent is formed between the upper end of the straightening ridge hanging from the upper end of the cooling medium passage and the upper end wall of the cooling medium passage so that the space between the unit cells is cooled on both sides. By providing a cooling medium passage that communicates between the medium passages, each cell can be effectively cooled to prevent its temperature from rising, and the corner between the upper end of the straightening ridge and the upper end wall of the cooling medium passage Even if air easily collects in the air, the air passes through the air escape port and the downstream snake Go to passage, is exhausted from the final cooling medium passages, the cooling capacity air pocket occurs serpentine flow path can be reliably prevented.
[0033]
In addition, if an inclined surface that is inclined toward the side is formed at least on the portion of the upper end wall of the cooling medium passage that faces the air escape port, even if air accumulates in the corner portion, the inclined surface passes through the air escape port. Can be moved to the center side of the meandering flow passage, so that it moves on the downstream side with the strong flow of the cooling medium flowing through the meandering flow passage, an air pool is generated in the meandering flow passage, and the cooling capacity is reduced. Can be more reliably prevented.
[0034]
In addition, when an inclined surface inclined upward from the inlet end to the outlet end of the cooling medium passage is formed on the upper end wall of the cooling medium passage, the air sequentially passes through the air escape port along the inclined surface. It is discharged smoothly to the exit end of the passage.
[0035]
Also, if the height of the upper end of the straightening ridge is made substantially the same height and the opening area of the air escape port is increased sequentially from the inlet end to the outlet end of the cooling medium passage, the air is more likely to flow out toward the downstream side. Thus, the air can be discharged more smoothly, and it can be reliably prevented that the air capacity is generated and the cooling capacity is lowered.
[0036]
Further, even if an inclined surface is formed on the upper end wall of the cooling medium passage so as to incline upward from the portion facing each air escape port toward both sides, the air can be discharged smoothly.
[0037]
Further, if the inclination angle of the inclined surface with respect to the horizontal plane is 3 to 5 ° and the vertical width of the air escape hole is 3 to 5 mm, the inclined surface is accumulated at the corner between the upper end of the straightening ridge and the upper end wall of the cooling medium passage. Therefore, it is possible to reliably move the air to the center side of the meandering flow passage and prevent the cooling capacity from being lowered due to the occurrence of air pool.
[Brief description of the drawings]
FIG. 1 is an external perspective view of an embodiment of a collective sealed secondary battery of the present invention.
FIG. 2 is a longitudinal side view of the embodiment.
FIG. 3 is a partially longitudinal front view of the same embodiment;
FIG. 4 is a partial perspective view of an upper end portion of the unit cell group of the same embodiment.
FIG. 5 is a perspective view of the electrical connection body of the embodiment.
FIG. 6 is a perspective view of the lid according to the embodiment.
FIG. 7 is a longitudinal sectional view showing a configuration in a cooling medium passage according to the embodiment;
FIG. 8 is a longitudinal sectional view showing another configuration example in the cooling medium passage of the same embodiment;
FIG. 9 is an exploded perspective view of another embodiment of the collective sealed secondary battery of the present invention.
FIG. 10 is a front view of a collective sealed secondary battery of a conventional example.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Collective type | mold sealed secondary battery 2 Single cell 18 Space part 21 Cooling medium channel | path 21a Inlet end 21b Outlet end 40 Meandering channel | path 41 Upper end 42 Upper end wall 43 Air escape port 44 Inclined surface

Claims (7)

有底矩形筒形状の電槽内に発電要素を収容してその開口部を封止して成る単電池を複数個直列配置し、それら単電池間に空間部を設けた集合型密閉二次電池において、単電池の配置方向に対してその両側に冷却媒体通路を配設するとともに、冷却媒体通路に蛇行流通路を形成するように整流突条を突設し、冷却媒体通路の上端部から垂下される整流突条の上端と冷却媒体通路の上端壁との間に空気逃がし口を形成したことを特徴とする集合型密閉二次電池。A collective hermetic secondary battery in which a plurality of unit cells are arranged in series in which a power generation element is housed in a bottomed rectangular cylindrical battery case and the opening is sealed, and a space is provided between the unit cells. , A cooling medium passage is provided on both sides of the unit cell arrangement direction, a rectifying ridge is provided so as to form a meandering flow passage in the cooling medium passage, and is suspended from the upper end of the cooling medium passage. A collective sealed secondary battery, wherein an air escape port is formed between the upper end of the straightening ridge and the upper end wall of the cooling medium passage. 冷却媒体通路の上端壁の少なくとも空気逃がし口に対向する部分にその側方に向けて傾斜する傾斜面を形成したことを特徴とする請求項1記載の集合型密閉二次電池。2. The collective sealed secondary battery according to claim 1, wherein an inclined surface inclined toward the side is formed in at least a portion of the upper end wall of the cooling medium passage facing the air escape port. 冷却媒体通路の上端壁に、冷却媒体通路の入口端から出口端に向けて上方に傾斜する傾斜面を形成したことを特徴とする請求項1記載の集合型密閉二次電池。2. The collective sealed secondary battery according to claim 1, wherein an inclined surface that is inclined upward from the inlet end to the outlet end of the cooling medium passage is formed on an upper end wall of the cooling medium passage. 整流突条の上端の高さ位置を略同一高さにし、空気逃がし口の開口面積を冷却媒体通路の入口端から出口端に向けて順次大きくしたことを特徴とする請求項1記載の集合型密閉二次電池。2. The collective die according to claim 1, wherein the height of the upper end of the straightening ridge is substantially the same height, and the opening area of the air escape port is sequentially increased from the inlet end to the outlet end of the cooling medium passage. Sealed secondary battery. 冷却媒体通路の上端壁に、各空気逃がし口に対向する部分から両側に向けて上方に傾斜する傾斜面を形成したことを特徴とする請求項1記載の集合型密閉二次電池。2. The collective sealed secondary battery according to claim 1, wherein an inclined surface is formed on the upper end wall of the cooling medium passage so as to incline upward toward both sides from a portion facing each air escape port. 傾斜面の水平面に対する傾斜角は3〜5°としたことを特徴とする請求項2、3又は5に記載の集合型密閉二次電池。6. The collective sealed secondary battery according to claim 2, 3 or 5, wherein an inclination angle of the inclined surface with respect to a horizontal plane is 3 to 5 °. 空気逃がし口の上下幅が3〜5mmであることを特徴とする請求項1〜6の何れかに記載の集合型密閉二次電池。The collective sealed secondary battery according to any one of claims 1 to 6, wherein the vertical width of the air escape port is 3 to 5 mm.
JP05561499A 1999-03-03 1999-03-03 Collective sealed secondary battery Expired - Fee Related JP4242501B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP05561499A JP4242501B2 (en) 1999-03-03 1999-03-03 Collective sealed secondary battery
US09/516,556 US6482542B1 (en) 1999-03-03 2000-02-29 Integrated sealed secondary battery
EP20000301601 EP1033772A3 (en) 1999-03-03 2000-02-29 Integrated sealed secondary battery
US09/670,525 US6586132B1 (en) 1999-03-03 2000-09-26 Sealed battery pack

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05561499A JP4242501B2 (en) 1999-03-03 1999-03-03 Collective sealed secondary battery

Publications (2)

Publication Number Publication Date
JP2000251953A JP2000251953A (en) 2000-09-14
JP4242501B2 true JP4242501B2 (en) 2009-03-25

Family

ID=13003662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05561499A Expired - Fee Related JP4242501B2 (en) 1999-03-03 1999-03-03 Collective sealed secondary battery

Country Status (1)

Country Link
JP (1) JP4242501B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100649561B1 (en) * 2004-09-21 2006-11-24 삼성에스디아이 주식회사 Can, secondary battery and secondary battery module
KR20060102853A (en) 2005-03-25 2006-09-28 삼성에스디아이 주식회사 Secondary battery module
KR100684795B1 (en) 2005-03-29 2007-02-20 삼성에스디아이 주식회사 Secondary battery and secondary battery module
US9759495B2 (en) * 2008-06-30 2017-09-12 Lg Chem, Ltd. Battery cell assembly having heat exchanger with serpentine flow path
US8216713B2 (en) 2009-02-25 2012-07-10 Sb Limotive Co., Ltd. Battery housing formed with cooling passages and battery pack having the same
KR101084972B1 (en) * 2009-02-27 2011-11-23 주식회사 엘지화학 Middle or Large-sized Battery Pack Case Providing Improved Distribution Uniformity in Coolant Flux
KR101450274B1 (en) * 2010-12-13 2014-10-23 에스케이이노베이션 주식회사 Cell Case for Secondary Battery
JP2013211197A (en) * 2012-03-30 2013-10-10 Primearth Ev Energy Co Ltd Battery module and battery pack
JP5893133B2 (en) * 2012-05-17 2016-03-23 日立オートモティブシステムズ株式会社 Battery module
JP2014060088A (en) 2012-09-19 2014-04-03 Toshiba Corp Secondary battery device and secondary battery system
JP7016844B2 (en) * 2019-09-03 2022-02-07 本田技研工業株式会社 Battery pack

Also Published As

Publication number Publication date
JP2000251953A (en) 2000-09-14

Similar Documents

Publication Publication Date Title
US6555264B1 (en) Battery module having a plurality of interconnected batteries
US7189474B2 (en) Battery pack
JP4298867B2 (en) Collective sealed secondary battery
JP4046463B2 (en) Power supply
KR101095346B1 (en) Battery Module Having Excellent Heat Dissipation Ability and Battery Pack Employed with the Same
US7291421B2 (en) Battery pack
JP4118014B2 (en) Power supply
KR101084969B1 (en) Battery Module Having Temperature Sensor and Battery Pack Employed with the Same
US9759495B2 (en) Battery cell assembly having heat exchanger with serpentine flow path
KR101071537B1 (en) Battery Module Having Heat Dissipation Member of Novel Structure and Battery Pack Employed with the Same
JP4625755B2 (en) Secondary battery module
EP1071153A2 (en) Battery module, and rechargeable battery
KR101259757B1 (en) Battery Module with Excellent Cooling Efficiency and Compact Structure and Middle or Large-sized Battery Pack
US11296377B2 (en) Cover for an electrochemical cell with enhanced heat conduction
EP1033772A2 (en) Integrated sealed secondary battery
KR100669424B1 (en) Secondary battery module and wall of secondary battery module
JP4242501B2 (en) Collective sealed secondary battery
JP2006156406A (en) Secondary battery module
JP4086490B2 (en) Power supply
US20030087149A1 (en) Battery
JP4404982B2 (en) Collective sealed secondary battery
KR20070099843A (en) Secondary battery module
JP4279932B2 (en) Collective sealed secondary battery
JP4107828B2 (en) Storage battery
JP7127586B2 (en) Battery pack and power storage system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070424

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070810

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070811

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081225

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140109

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees