JP4240899B2 - Semiconductor device and manufacturing method of semiconductor device - Google Patents

Semiconductor device and manufacturing method of semiconductor device Download PDF

Info

Publication number
JP4240899B2
JP4240899B2 JP2002086422A JP2002086422A JP4240899B2 JP 4240899 B2 JP4240899 B2 JP 4240899B2 JP 2002086422 A JP2002086422 A JP 2002086422A JP 2002086422 A JP2002086422 A JP 2002086422A JP 4240899 B2 JP4240899 B2 JP 4240899B2
Authority
JP
Japan
Prior art keywords
wiring body
substrate
semiconductor
wiring
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002086422A
Other languages
Japanese (ja)
Other versions
JP2002359323A (en
Inventor
洋一郎 栗田
武彦 前田
純 塚野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Electronics Corp
Original Assignee
NEC Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Electronics Corp filed Critical NEC Electronics Corp
Priority to JP2002086422A priority Critical patent/JP4240899B2/en
Publication of JP2002359323A publication Critical patent/JP2002359323A/en
Application granted granted Critical
Publication of JP4240899B2 publication Critical patent/JP4240899B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1532Connection portion the connection portion being formed on the die mounting surface of the substrate
    • H01L2924/1533Connection portion the connection portion being formed on the die mounting surface of the substrate the connection portion being formed both on the die mounting surface of the substrate and outside the die mounting surface of the substrate
    • H01L2924/15331Connection portion the connection portion being formed on the die mounting surface of the substrate the connection portion being formed both on the die mounting surface of the substrate and outside the die mounting surface of the substrate being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • H01L2924/1815Shape
    • H01L2924/1816Exposing the passive side of the semiconductor or solid-state body
    • H01L2924/18161Exposing the passive side of the semiconductor or solid-state body of a flip chip

Landscapes

  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)
  • Wire Bonding (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、半導体装置と、半導体装置を多段に積層した半導体装置とその製造方法に係わり、特に三次元実装可能にすることで集積度を向上に関する。
【0002】
【従来の技術】
近年、電子機器の小型化、高機能化は、LSIの微細化技術によって半導体装置そのものが小型化、高集積化、高機能化が進展し、特にメモリやASIC(Application Specific Integrated Circuit)のLSIを積み重ねて実装したスタック型半導体装置が携帯端末等に広く使われている。
【0003】
上記のような半導体装置を実現するための従来技術としては、例えば、特開2000−20869号公報の図1に示されるようにTABテープ、フレキシル基板、リジッド基板に半導体素子を搭載し樹脂封止して厚みを100μm程度まで薄くしたパッケージを複数個積み重ねて実装したスタック型半導体装置用モジュールや、特開平7―106509号公報の図1に示されるように外部端子が基板の両面に設けられ配線基板の凹部に半導体素子を搭載し、前記基板の両面で交互に外部端子を接続したモジュールや、特開2000−183283号公報の図4(c)に示されるように配線基板に第1の半導体素子をフリップチップし、その周囲にスタッドバンプを設け、そのスタッドバンプに第2の半導体素子の配線体を接続して樹脂封止した構造などが挙げられる。
【0004】
【発明が解決しようとする課題】
上述した従来例のうち、特開2000−20869号公報に開示されるものでは、薄型でスタック型に複数個実装してもモジュールの厚さはそれほど厚くならない。しかし、構造上外部接続端子をチップの面上に設けることができず、チップ周囲に設けられているので平面的に大きな面積を必要とする。例えば、テープキャリアパッケージの例ではチップの面積に対してチップの外側に3〜5mmの領域に外部接続端子が設けられるために占める面積は非常に大きくなるという問題点がある。
【0005】
特開平7―106509号公報に開示される構造は、配線基板の凹部にチップを搭載する構造であり、これを複数個スタック構造に積み重ねるために、全体の厚さが厚くなってしまうという問題点がある。また、平面方向の面積が大きくなってしまうという問題点は特開2000−20869号公報に開示されるものと同様である。
【0006】
特開2000−183283号公報に開示される従来例は、配線基板の厚さ分だけ厚くなり、このため、特開2000−20869号公報および特開平7―106509号公報に開示されるものと同様に平面方向の面積が小さくならないという問題点がある。
【0007】
以上のようにスタック構造に実装すると厚くなり、平面方向の実装面積が大きくなる問題点があった。
【0008】
本発明は、このような従来技術の課題を解決するものであり、その目的とするところは大幅に小型、薄型、高密度実装することできるようにした半導体装置の製造方法とこれにより製造された半導体装置を提供することにある。
【0009】
【課題を解決するための手段】
本発明の半導体装置は、半導体素子および該半導体素子と接続する端子部を備えた半導体装置において、
前記半導体素子と接続する第1の配線体と第2の配線体が、前記半導体素子の両面を覆うように挟み込む形態で対向配置され、
前記第1および第2の配線体のうちの少なくとも第1の配線体は基板上に形成した配線体に半導体素子を接続し、前記配線体を被覆し、前記半導体素子の周囲を充填する樹脂を形成した後、前記基板を除去して得られる埋め込み配線体であり、
前記端子部が前記半導体装置の表面と裏面に備えられていることを特徴とする。
【0010】
この場合、前記埋め込み配線体が多層配線により形成されているとしてもよい。
【0011】
また、前記第2の配線体は、基板上に形成された配線パターンを形成した後に該基板を除去することにより得られる埋め込み配線体であるとしてもよい。
【0012】
また、前記第2の配線体がテープ配線基板であるとしてもよい。
【0013】
また、前記第2の配線体は、ビルドアップ法により形成されているとしてもよい。
【0014】
また、前記第2の配線体が多層配線により形成されているとしてもよい。
【0015】
本発明の半導体装置の製造方法は、基板上に複数の半導体素子が接続される第1の配線体を形成する工程と、
前記複数の半導体素子を前記第1の配線体に接続または接着する工程と、
前記基板に接続された複数の半導体素子間に絶縁性樹脂を充填し、硬化させる工程と、
前記充填した樹脂と半導体素子を所定の厚さに研削する工程と、
前記研削した樹脂にスルーホールを形成する工程と、
前記スルーホール内を金属粒子で充填し、先端部に接続部材を被着する工程と、
第2の配線体を前記半導体素子を覆い、かつ前記第1の配線体とで挟み込むように形成する工程と、
前記第1の配線体の端子部に前記第2の配線体の端子部を接続する工程と、
前記基板を除去する工程と、を有することを特徴とする。
【0016】
この場合、前記第2の配線体は基板に複数形成されたものであるとしてもよい。
【0017】
本発明の他の形態による半導体装置の製造方法は、
基板上に複数の半導体素子が接続される第1の配線体を形成する工程と、
前記第1の配線体の、前記半導体素子の周囲に導体柱からなる端子部を形成する工程と、
前記複数の半導体素子を前記第1の配線体に接続または接着する工程と、
前記基板に接続された複数の半導体素子間に樹脂を充填し、硬化させる工程と、
前記半導体素子間に充填された樹脂と半導体素子を所定の厚さに研削する工程と、
第2の配線体を前記半導体素子を覆い、かつ前記第1の配線体とで挟み込むように形成する工程と、
前記第1の配線体の端子部に前記第2の配線体の端子部を接続する工程と、
前記基板を除去する工程とを有することを特徴とする。
【0018】
本発明の他の形態による半導体装置の製造方法は、
基板上に複数の半導体素子が接続される第1の配線体を形成する工程と、
前記複数の半導体素子を前記配線体に接続または接着する工程と、
前記基板に接続された複数の半導体素子間に樹脂を充填し、硬化させる工程と、
前記充填した樹脂と半導体素子を所定の厚さに研削する工程と、
前記研削した樹脂にスルーホールを形成する工程と、
前記スルーホール内を金属粒子で充填し、先端部に接続部材を被着する工程と、
第2の配線体を前記半導体素子を覆い、かつ前記第1の配線体とで挟み込むように形成する工程と、
前記第1の配線体の端子部に前記第2の配線体の端子部を接続する工程と、
前記各工程を経て得られた半導体素子搭載基板を多段に積層して接着し、端子部を電気的に接続する工程と、
を含むことを特徴とする。
【0019】
上記のいずれかの製造装置において、前記配線体に接続された複数の各半導体素子間を行方向と列方向に切断する工程を含むこととしてもよい。
【0020】
本発明の積層型半導体装置は、上記の半導体装置を複数個積層し、相対する端子部で接続したことを特徴とする。
【0021】
本発明の他の形態による半導体装置は、半導体素子および該半導体素子と接続する端子部を備えた半導体装置において、
前記半導体素子は、基板上に配線パターンおよび感光性樹脂を形成した後に該基板を除去することにより得られる埋め込み配線体と接続され、
前記端子部が前記半導体装置の表面と裏面に備えられ、
前記埋め込み配線体に複数形成された端子部のうち少なくとも一つが、平面視で、半導体素子内側に配置されていることを特徴とする。
【0022】
本発明の他の形態による半導体装置は、基板上に配線パターンおよび感光性樹脂を形成した後に該基板を除去することにより得られる埋め込み配線体と、
該配線体上に配置される樹脂により封止された半導体素子と、を備える半導体装置であって、
前記埋め込み配線体に複数形成された端子部を備え、
前記埋め込み配線体は前記半導体素子と接続され、該埋め込み配線体に形成された端子部は配線体を介して前記半導体素子と接続されており、
前記半導体素子の周囲となる位置の前記樹脂に埋設され、前記配線体と接続され、反配線体側の面の樹脂から露出する導体柱とを有し、
前記埋め込み配線体に複数形成された端子部のうち少なくとも一つが、平面視で、半導体素子内側に配置されていることを特徴とする。
【0028】
【発明の実施の形態】
以下に本発明の実施形態を図面に基づいて説明する。
【0029】
図1は、本発明による半導体装置の平面図であり、図2は、図1中のA−A′の断面図である。図3は図1に示す半導体装置の製造工程を説明するための図である。
【0030】
ここで、図1、図2に示す半導体装置について説明する。
【0031】
半導体素子4の電極5には第1配線体3が接続され、第1配線体3には半導体素子4の面内から外部にわたって延在する端子部15が設けられている。第1配線体3の端子部15は、半導体素子4の周囲に放射状に複数形成され、その厚さは15μm程度であり、絶縁性の樹脂6により固定されている。
【0032】
半導体素子4の反第1配線体側となる面には配線体19が設けられ、配線体19の端子部16は、半導体素子4の周囲に樹脂6を貫通する形態で設けられた導体柱10を介して接続されている。端子部16以外の部分は接着材、例えばエポキシ系接着剤によって強固に接着されている。
【0033】
次に、図1および図2に示した半導体装置の製造方法について図3を参照して説明する。
【0034】
図3(a)に示される基板1は、第1の配線体としての第1配線体3を形成するための平らな銅基板であり、一枚の基板に形成する第1配線体3の数量は半導体素子の大きさによって取り数は異なる。基板1の大きさはおおよそ縦100mm、横300mm、板厚は0.25mmである。この基板1の板厚と大きさは第1配線体3の取り数によって適宜決められる。
【0035】
次に、図3(a)に示した基板1に第1配線体3をパターン形成する方法について説明する。
【0036】
一つの方法としては、図3(b)に示すように、銅板全面にメッキ(または圧延)によって10〜15μm程度の厚さに積層したAu/Ni/Auメッキ2を形成する。その後、感光性レジスト(図示せず)を塗布し、マスク露光した後に現像する。これにより、第1の第1配線体3を形成する部分が被覆され、それ以外が剥離されるようにパターニングする。次に、レジストパターンをマスクにしてNiを例えばメルテックス社製、商品名エンストリップ NP(アルカリ性)やエンストリップ 165S(硫酸系)でエッチングしてNiの配線体形成後、レジストを溶剤またはプラズマ等で除去する。これにより、第1配線体3が複数個同時に形成される。その後、第1配線体3のパターン上に0.1μm程度のAuメッキをして接続時の酸化防止とする。
【0037】
また、別の方法としては、配線体パターン形状に感光性レジストを塗布、マスク露光、現像して配線体形成部分のレジストが剥離されるようにパターニングする。その後薄いAuメッキの上に、10〜15μmのNiをメッキし、さらにその上にAuメッキをして接続時の酸化防止とする。その後、レジストは上述と同じ方法で除去する。Auメッキは0.1μm程度でよい。
【0038】
その後、基板1上のAu/Ni/Auからなる第1配線体3に、図3(c)に示すように半導体素子4の電極5(図2参照)を位置合わせして加熱圧接によるフリップチップ接続を行う。その後、第1配線体3と半導体素子4との間にアンダーフィル封止剤として低粘度樹脂(例えば住友ベークライト(株)社製、商品名CRP−4711A等の大チップ低応力性の樹脂)を充填・加熱硬化させた後に一般的なトランスファー成形により樹脂6を半導体素子の周囲を充填して半導体素子と基板を接着して応力に対して耐性を持たせる。
【0039】
上記のアンダーフィル樹脂を注入する方法とは別の方法としては、金属基板1と第1配線体3上にシート状または高粘度の樹脂を付着させておき、半導体素子4を第1配線体3の接続部に位置合わせして加熱圧着または加熱溶融させて接続すると同時に接着材も硬化させてアンダーフィル樹脂の代わりにすることも可能である。
【0040】
次いで、図3(d)に示すように半導体素子4と充填した樹脂6とを研削機100により研削する。研削前の半導体素子4の厚さは800μm程度であり、これを樹脂6と一緒に10μm程度の厚さまで薄く削る。ここで用いた研削機100は、ディスコ社製の一般的な装置を用いて充分に目的の薄さに研削・制御できる。
【0041】
その後、半導体素子4の研削面には応力歪みや微細なクラック、欠けが発生するために、50〜60℃の3%NaOHに1〜2分間浸し、表面を1〜2μm程度エッチングした。
【0042】
次に、樹脂6にスルーホールを形成する。図3(e)〜図3(h)は、説明しやすいようにスルーホール形成部分を拡大して示している。第1配線体3の周辺近傍にレーザー光8を照射し、第1配線体3上の樹脂6を蒸発させ、第1配線体3上の樹脂6にスルーホール9を形成する。このスルーホール9の径は50〜100μm程度であり、配線ピッチに応じて適宜選択できる。
【0043】
続いて、スルーホール9内を銅メッキにより充填する。この方法について図3(f)を参照して説明する。基板1をアノード電極とし、カソード電極を銅板(不図示)に接続し、硫酸銅またはシアン化銅を電解液としてスルーホール9内を銅金属11で充填させる。メッキ層は樹脂面より若干突出させ、突出部12を形成する。その後に、錫メッキ浴、半田メッキ浴、または金メッキ浴に移して、突出部12に錫メッキ、半田メッキまたは金メッキをする方法等が可能である。この様にして柱状の導体からなる端子部10を形成する。
【0044】
次に、図3(g)に示すように、研削された半導体素子4の裏面13とスルーホール9内を銅金属で充填し、表面に金または等がメッキされた突出部12に、図2における配線体19に相当するテープ配線基板14の内部電極を接続する。テープ配線基板14はベースフィルム上に銅により導体配線パターンが形成されており、該導体配線パターンの表面にニッケル/金のメッキが施されている。接続後、樹脂101により接続部を封止し、はんだなどにより端子部103を形成する。突出部12とテープ配線基板の内部電極との接続は、突出部12が金メッキの場合には加熱圧接、または超音波接合法などで接続し、また、突出部12が半田メッキの場合は、250℃程度の温度で溶融接続をすることが出来る。
【0045】
上記のテープ配線基板14を配線体19として用いる方法の他に、感光性樹脂の塗布、露光、現像によるパターン形成方法によるビルドアップ工法を用いる方法もある。この方法については後に詳細に述べる。この場合にも上述した金メッキ、半田メッキの方法は同じである。
【0046】
その後、この状態で各半導体素子を個別にするダイシング装置で半導体素子間に切り溝を設ける(図示せず)。
【0047】
その後、図3(h)に示すように、研削面とスルーホール9が形成された面にエッチング時の保護樹脂(図示せず)を塗布し、熱硬化させた後に基板である銅を塩化第二鉄、または、塩化第二銅で銅基板全部をエッチング除去して10〜50μm程度の厚さとする。
【0048】
この後にダイシング装置で半導体素子間を行方向、列方向に切断後、保護樹脂を溶剤で溶かすと個片化された半導体素子の両面に薄膜を用いた配線体で挟まれた半導体装置ができあがる。
【0049】
以上の説明では、配線体を形成する基板として金属基板を用いて説明したが、他にもエッチングや機械的な剥離が可能な基板を用いることにより同様な構造の形成が可能である。
【0050】
次に、導体柱からなる端子部10の他の製造方法について説明する。
【0051】
図3(e)に示した状態において、樹脂にスルーホールを形成し、メッキにより金属粒を充填する代わりに、図3(b)に示す工程で第1配線体3を形成後、端子部10として25〜30μm径の金細線をワイヤーボンディングにより所定位置に接続すると、ワイヤーが熱と圧力と超音波のエネルギーで変形して5〜60μm径の太さになるとともに金細線の一部が細り、そこからクランプ操作により切断され、端子部10と同様のものが形成される。
【0052】
また、導体柱の端子部10の高さを必要に応じて1個または2個積み重ねたスタッドバンプを形成した後に樹脂を充填する方法がある。
【0053】
図10(a)〜(g)はスタッドバンプを用いた端子部の形成方法を説明するための図である。
【0054】
図10(a)に示すように基板201上に第1配線体202を形成する。
【0055】
次に、図10(b)に示すように半導体素子203をその電極が第1配線体202と接続するように搭載する。
【0056】
続いて、図10(c)に示すように導体柱としてのスタッドバンプ204を積層し、図10(d)に示すように半導体素子203と基板201との間をアンダーフィル205を充填させる。
【0057】
次に、図10(e)に示すように半導体素子203の周囲を樹脂206により封止する。
【0058】
この後、図10(f)に示すように基板201をエッチング除去し、図10(g)に示すように樹脂206を研削除去する。
【0059】
また、導体柱を形成した後に、樹脂封止を行う他の例について図11を参照して説明する。
【0060】
図11において、301はICチップ、302はICチップ301の電極、303は、ICチップ301の電極302が電気的に接続される平面状の配線体であり、この配線体303は、基板304上に固着して設けられている。
【0061】
306は、ICチップ301が組み付けられた前記配線体303の一方の面303a上で、前記配線体303に接続して設けられる導体柱、307は、配線体303の一方の面303a上で、ICチップ301及び導体柱306が設けられていない部分に充填された絶縁樹脂である。
【0062】
次に、このように構成した半導体装置の製造方法について、説明する。
【0063】
まず、図11(a),(b)に示すように、基板304上に形成された配線体303と、配線体303上に設けた導体柱(導体突起)306とからなる配線基板304の配線体303の一方の面303aに、ICチップ301をフリプチップ接続し、次に、図11(c)示すように、基板304の一方の面303a上で、ICチップ301及び導体柱306を絶縁樹脂307で覆い、封止する。
【0064】
次に、図11(d)に示すように、樹脂307を研削し、導体柱306の端面308を露出させ、また、配線体304から基材305を除去する。
【0065】
上記の方法は、メッキ作業を用いる製造方法に比べてメッキ作業等が途中工程で入らないために製造工程を単純化することができる。
【0066】
次に、第2配線体を感光性樹脂の塗布、露光、現像によるパターン形成方法によるビルドアップ工法を用いて形成する方法について説明する。
【0067】
図5は、第2配線体を埋め込み型の配線体で形成する製造方法の手順を示すものである。
【0068】
図5(a)に示される第2金属基板22上には、図3(a)に示した第1配線体3と同様の配線体25が形成されている。なお、メモリをスタック構造に積層する場合には第1配線体と第2配線体のパターンは同じ場合が多い。
【0069】
次いで、図5(b)に示すように金属基板12に第2配線体の端子部に、半完成品の半導体装置24を接続する。半導体装置24は、図3(f)に示した状態の半導体装置であり、図3(f)における第1配線体3と接続する端子部10の突出部12配線体5の所定の位置に合わせて接続する。
【0070】
次に、接続した両者の間にアンダーフィル樹脂26を充填し、熱硬化させる。このアンダーフィル樹脂を半導体装置24と配線体25の間に充填においては、これらの間隔が狭く、また、側面から注入しなければならないため、金属基板の一辺を真空装置のノズル形状の治具で挟み込み減圧しながら対辺から低粘度のアンダーフィル樹脂を注入して毛細管現象と減圧の作用で基板間全面に充填させる方法が有効となる。
【0071】
続いて、基板1および第2金属基板22をエッチング除去し、その後、半田浴により第1配線体3および配線体25に端子部27を形成し、図5(c)に示す状態とする。
【0072】
上記の半導体装置24と配線体25との間にアンダーフィル樹脂を注入する方法に代えて、配線体25上にシート状または高粘度の接着材を予め適量の厚さに塗布してから半導体装置24を配線体25に接続して加圧接着すると共に接着材を硬化する方法も一般的に用いられる方法である。
【0073】
これらの方法で製造された半導体装置の具体的な寸法は、配線基板25(第2配線体)および第1配線体3(第1配線体)の厚さがそれぞれ10〜15μm、半導体素子厚が10μm、配線基板と半導体素子間を接着するアンダーフィル樹脂厚が5〜10μm程度であり、これらの最大の厚さを合計しても60μm程度の半導体装置ができあがる。
【0074】
図3に示した第2配線体としてテープ配線基板14を用いた場合には、テープ配線基板14の厚さは50〜80μm程度あり、合計厚さは125μmの厚さになる。
【0075】
次に、第1配線体および第2配線体を多層に形成する製造方法について説明する。
【0076】
図3に示した金属基板1にNi/Auのパターンを形成してからポリイミド等の感光性樹脂を塗布、露光、現像してコンタクト孔を設けた後に、銅配線をパターニング形成する。こうすることによって多層配線が形成できる。この方法は、ビルドアップ法と一般的に呼ばれている。
【0077】
上記のようにして作製した第1配線基板および第2配線基板を備える半導体素子を上述した方法を組み合わせて接続する。
【0078】
上記の方法で第1配線体および第2配線体を多層配線することによって、端子部を半導体素子の周辺及び半導体素子上に配置することが自由にでき、さらなる半導体装置の小面積化が可能となる。
【0079】
次に、半導体装置の第2実施例について図4を用いて説明する。
【0080】
図4は、図3(g)における第2の配線体に相当するテープ配線基板14を接続する工程を省略し、半導体素子4の片側のみに薄膜を用いた配線体が用いられた半導体装置としたものである。この場合には、第2配線体を用いない分薄く形成できるが、素子4の裏面13に端子部(図3(g)における103)を設けることができず、その分半導体素子4の外部に設けなければならないため、半導体装置の大きさが若干大きくなる。
【0081】
次に、上記のように構成された半導体装置を多段に積層した半導体モジュールについて説明する。
【0082】
図6は、図2に示した状態の半導体装置70を位置決め治具21に多段に重ねてリフロー炉に通して端子部同志を接続したものである。このため、図6には示さないが、以下の説明では図2に示した符号を用いて説明する。
【0083】
図6は、図2に示した状態の半導体装置70を複数個スタック構造に積層した半導体モジュールの断面図である。図2に示した状態の半導体装置70の第1配線体3の端子部15に、印刷法またはメッキ法により半田ボールをあらかじめ設けておく。配線体19には半田のような材料を設けておく必要はなく、半田と塗れ性の良い材料、例えば金を0.1μm程度被着させておく。これは、例えば、図3に示したように配線体19としてテープ配線基板14を使用する場合には、その製造工程から材料構成は一般的なものであり全く問題ない。
【0084】
次に、半導体装置70の端子部を治具21で位置決めして、一つ目の半導体装置の上に2つ目、3つ目と重ねていくと1つ目の半導体装置70の第2配線基板19の端子部16に2つ目の半導体装置70の第1配線基板3の端子部15が接触し、窒素雰囲気のソルダーリフロー装置で加熱溶融すると図6に示すように各端子部が電気的に導通した積層型半導体装置が完成する。
【0085】
図7は、図4に示した状態の半導体装置80を多段に重ねてリフロー炉に通して端子部同志を接続したものである。このため、図7には示さないが、以下の説明では図4に示した符号を用いて説明する。
【0086】
図7は、図4に示した状態の半導体装置80を同様に重ねて端子部をリフローして電気的に導通させた構造である。本実施例においても図6に示した実施例と同様に位置決め治具使用しているが図示省略している。本実施例の場合には、端子部15が半導体装置80の周辺部に形成されている点のみが図6に示した実施例との違いであり、図6に示した積層型半導体装置よりも第2配線基板19がない分だけ厚さが薄くなるが、ピン数が同じ場合には平面的な面積は大きくなる可能性がある。
【0087】
次に、図6および図7に示すようなスタック構造の積層型半導体装置を効率よく製造する方法について、図8の断面図および図9の平面図を参照して説明する。
【0088】
まず、図3(a)〜(g)の工程を経て図2に示す構造の半導体装置を作製する。このとき、基板から半導体素子を個片に切り出す切断工程を実施せず、半完成品の半導体装置26とする。
【0089】
次に、半完成品の半導体装置26を多段に積層して基板の表面と裏面に設けられた端子部を位置合わせして接続部に被着されている接合部材をリフロー炉に通して溶融接続する。この状態の積層された基板をダイシング装置によって半導体素子間を切り離すことによって4段重ねの積層型半導体装置が完成する。
【0090】
以上では半導体装置間の接続方法としてリフロー法による溶融接続を例に用いて説明したが、例えばこの他に端子部に金バンプを形成しておくことにより、金−金圧着法や、圧接法などの工法を用いることも可能である。
【0091】
また、半導体装置を積層した後、半導体装置間に樹脂を注入、硬化させるか、もしくは半導体装置間に、あらかじめシート状、もしくは液状の接着剤を供給しておくことにより、接続部を封止することで、より信頼性の高い積層型半導体装置を得ることも可能である。
【0092】
【発明の効果】
本発明は以上説明したように構成されているので、以下に記載するような硬化を奏する。
【0093】
半導体素子の両面に極薄の配線体を配置し、半導体素子を挟み込んで両配線体を半導体素子に平行して林立する導体柱で相互に接続しているために、最小面積で厚さが100μm以下の半導体装置が実現できる。
【0094】
第2配線体を用いないものの場合には、面積が若干大きくなるが厚さは60μm以下の半導体装置が実現できる。
【0095】
単体の半導体装置を多段に積み重ねて接続した積層型半導体装置としたものでは非常に薄い高集積の半導体装置が簡単に得られる。
【0096】
第1配線体を埋め込み配線で形成し、第2配線体をテープキャリア配線体で形成する場合には、工程が簡単となり最小面積の半導体装置が得られる。
【0097】
第1配線体と第2配線体を相互に接続する導体柱の形成時期を、半導体素子を接続する前に形成する場合には、メッキ作業等が途中工程で入らないために製造工程が単純化する。
【0098】
第1配線体と第2配線体を共に埋め込み型の配線体で形成する場合には極薄の半導体装置が簡単に製造できる。
【0099】
個片化されていない半完成品の半導体装置を多層に積み重ねて端子部を接続と接着した状態でまとめて所定領域を切断する場合には積層型半導体装置を効率よく生産することができる。
【0100】
第1,2配線体を多層配線にすることによって端子部が半導体素子の周辺及び半導体素子上に配置することが自由にでき、さらなる半導体装置の小面積化が可能となる。
【図面の簡単な説明】
【図1】本発明による半導体装置の平面図である。
【図2】図1中のA−A′の断面図である。
【図3】(a)〜(h)3は図1に示す半導体装置の製造工程を説明するための図である。
【図4】本発明の第2実施例の断面図である。
【図5】(a)〜(c)は第2配線体を埋め込み型の配線体で形成する製造方法の手順を示すものである。
【図6】複数個の半導体装置をスタック構造に積層した積層型半導体装置の断面図である。
【図7】複数個の半導体装置をスタック構造に積層した積層型半導体装置の断面図である。
【図8】半導体素子を複数個搭載した基板を更に多段に積層した基板の断面図である。
【図9】半導体素子を複数個搭載した基板を更に多段に積層した基板の平面図である。
【図10】(a)〜(g)はスタッドバンプを用いた端子部の形成方法を説明するための図である。
【図11】導体柱を形成した後に、樹脂封止を行う他の例を説明するための図である。
【符号の説明】
1 基板
2 Niメッキ
3 第1配線体
4 半導体素子
5 電極
6 樹脂
7 アンダーフィル
8 レーザー光
9 スルーホール
10 導体柱
11 銅金属
12 突出部
13 半導体素子の裏面
14 テープ配線基板
15,16 端子部
19 第2配線体
21 位置決め治具
22 第2金属基板
25 配線体
26 半完成品の半導体装置
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a semiconductor device, a semiconductor device in which semiconductor devices are stacked in multiple stages, and a method for manufacturing the same, and more particularly to improvement in integration by enabling three-dimensional mounting.
[0002]
[Prior art]
In recent years, miniaturization and higher functionality of electronic devices have led to the miniaturization of LSIs, and semiconductor devices themselves have been reduced in size, high integration, and high functionality. Stacked semiconductor devices stacked and mounted are widely used for portable terminals and the like.
[0003]
As a conventional technique for realizing the semiconductor device as described above, for example, as shown in FIG. 1 of Japanese Patent Laid-Open No. 2000-20869, a semiconductor element is mounted on a TAB tape, a flexible substrate, or a rigid substrate, and resin sealing is performed. Then, a stack type semiconductor device module in which a plurality of packages whose thickness is reduced to about 100 μm are stacked and mounted, or external terminals are provided on both sides of the substrate as shown in FIG. 1 of Japanese Patent Laid-Open No. 7-106509. A module in which a semiconductor element is mounted in a concave portion of a substrate and external terminals are alternately connected on both surfaces of the substrate, or a first semiconductor on a wiring substrate as shown in FIG. 4C of Japanese Patent Laid-Open No. 2000-183283. Flip-chip the device, provide stud bumps around it, connect the wiring of the second semiconductor device to the stud bumps, and seal with resin Structure and the like.
[0004]
[Problems to be solved by the invention]
Of the conventional examples described above, the one disclosed in Japanese Patent Application Laid-Open No. 2000-20869 is thin, and even if a plurality of stacks are mounted, the thickness of the module does not increase so much. However, the external connection terminals cannot be provided on the surface of the chip because of the structure, and are provided around the chip, so that a large area in plan is required. For example, in the case of the tape carrier package, there is a problem that the area occupied by the external connection terminals in the region of 3 to 5 mm outside the chip is very large with respect to the area of the chip.
[0005]
The structure disclosed in Japanese Patent Application Laid-Open No. 7-106509 is a structure in which a chip is mounted in a concave portion of a wiring board, and since a plurality of these are stacked in a stack structure, the overall thickness becomes thick. There is. Further, the problem that the area in the plane direction becomes large is the same as that disclosed in Japanese Patent Laid-Open No. 2000-20869.
[0006]
The conventional example disclosed in Japanese Patent Laid-Open No. 2000-183283 is thicker by the thickness of the wiring board, and is therefore the same as that disclosed in Japanese Patent Laid-Open No. 2000-20869 and Japanese Patent Laid-Open No. 7-106509. However, there is a problem that the area in the plane direction is not reduced.
[0007]
As described above, when mounted on a stack structure, it becomes thick, and there is a problem that the mounting area in the plane direction becomes large.
[0008]
The present invention solves such problems of the prior art, and the object of the present invention is a method for manufacturing a semiconductor device that can be significantly reduced in size, thickness, and high-density mounting, and manufactured thereby. It is to provide a semiconductor device.
[0009]
[Means for Solving the Problems]
  The semiconductor device of the present invention is a semiconductor device including a semiconductor element and a terminal portion connected to the semiconductor element.
The first wiring body and the second wiring body connected to the semiconductor element are arranged opposite to each other so as to sandwich both surfaces of the semiconductor element,
At least a first wiring body of the first and second wiring bodies is made of resin that connects a semiconductor element to a wiring body formed on a substrate, covers the wiring body, and fills the periphery of the semiconductor element. After forming, it is an embedded wiring body obtained by removing the substrate,
The terminal portion is provided on a front surface and a back surface of the semiconductor device.
[0010]
  In this case, the embedded wiring body may be formed of a multilayer wiring.
[0011]
  The second wiring body may be an embedded wiring body obtained by forming a wiring pattern formed on the substrate and then removing the substrate.
[0012]
  Further, the second wiring body may be a tape wiring board.
[0013]
  Further, the second wiring body may be formed by a build-up method.
[0014]
  The second wiring body may be formed of a multilayer wiring.
[0015]
  The method for manufacturing a semiconductor device of the present invention includes a step of forming a first wiring body to which a plurality of semiconductor elements are connected on a substrate,
Connecting or bonding the plurality of semiconductor elements to the first wiring body;
Filling and curing an insulating resin between a plurality of semiconductor elements connected to the substrate; and
Grinding the filled resin and semiconductor element to a predetermined thickness;
Forming a through hole in the ground resin;
Filling the through hole with metal particles and attaching a connecting member to the tip; and
Forming a second wiring body so as to cover the semiconductor element and be sandwiched between the first wiring body;
Connecting the terminal portion of the second wiring body to the terminal portion of the first wiring body;
And removing the substrate.
[0016]
  In this case, a plurality of the second wiring bodies may be formed on the substrate.
[0017]
  A method for manufacturing a semiconductor device according to another aspect of the present invention includes:
Forming a first wiring body to which a plurality of semiconductor elements are connected on a substrate;
Forming a terminal portion made of a conductive pillar around the semiconductor element of the first wiring body;
Connecting or bonding the plurality of semiconductor elements to the first wiring body;
Filling a resin between a plurality of semiconductor elements connected to the substrate, and curing the resin;
Grinding the resin filled between the semiconductor elements and the semiconductor element to a predetermined thickness;
Forming a second wiring body so as to cover the semiconductor element and be sandwiched between the first wiring body;
Connecting the terminal portion of the second wiring body to the terminal portion of the first wiring body;
And a step of removing the substrate.
[0018]
  A method for manufacturing a semiconductor device according to another aspect of the present invention includes:
Forming a first wiring body to which a plurality of semiconductor elements are connected on a substrate;
Connecting or bonding the plurality of semiconductor elements to the wiring body;
Filling a resin between a plurality of semiconductor elements connected to the substrate, and curing the resin;
Grinding the filled resin and semiconductor element to a predetermined thickness;
Forming a through hole in the ground resin;
Filling the through hole with metal particles and attaching a connecting member to the tip; and
Forming a second wiring body so as to cover the semiconductor element and be sandwiched between the first wiring body;
Connecting the terminal portion of the second wiring body to the terminal portion of the first wiring body;
A step of laminating and bonding the semiconductor element mounting substrate obtained through each of the steps in multiple stages, and electrically connecting the terminal portions;
It is characterized by including.
[0019]
  Any one of the above manufacturing apparatuses may include a step of cutting a plurality of semiconductor elements connected to the wiring body in a row direction and a column direction.
[0020]
  A stacked semiconductor device according to the present invention is characterized in that a plurality of the above-described semiconductor devices are stacked and connected at opposing terminal portions.
[0021]
  A semiconductor device according to another embodiment of the present invention is a semiconductor device including a semiconductor element and a terminal portion connected to the semiconductor element.
The semiconductor element is connected to a buried wiring body obtained by removing the substrate after forming a wiring pattern and a photosensitive resin on the substrate,
The terminal portions are provided on the front and back surfaces of the semiconductor device;
At least one of a plurality of terminal portions formed in the embedded wiring body is arranged inside the semiconductor element in a plan view.
[0022]
  A semiconductor device according to another embodiment of the present invention includes an embedded wiring body obtained by forming a wiring pattern and a photosensitive resin on a substrate and then removing the substrate,
A semiconductor device sealed with a resin disposed on the wiring body,
A plurality of terminal portions formed in the embedded wiring body;
The embedded wiring body is connected to the semiconductor element, and a terminal portion formed in the embedded wiring body is connected to the semiconductor element via the wiring body;
Embedded in the resin at a position around the semiconductor element, connected to the wiring body, and having a conductor column exposed from the resin on the surface opposite to the wiring body,
At least one of a plurality of terminal portions formed in the embedded wiring body is arranged inside the semiconductor element in a plan view.
[0028]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
[0029]
FIG. 1 is a plan view of a semiconductor device according to the present invention, and FIG. 2 is a cross-sectional view taken along the line AA 'in FIG. FIG. 3 is a diagram for explaining a manufacturing process of the semiconductor device shown in FIG.
[0030]
Here, the semiconductor device illustrated in FIGS. 1 and 2 will be described.
[0031]
The first wiring body 3 is connected to the electrode 5 of the semiconductor element 4, and the first wiring body 3 is provided with a terminal portion 15 extending from the surface of the semiconductor element 4 to the outside. A plurality of terminal portions 15 of the first wiring body 3 are radially formed around the semiconductor element 4 and have a thickness of about 15 μm and are fixed by an insulating resin 6.
[0032]
A wiring body 19 is provided on the surface on the side opposite to the first wiring body of the semiconductor element 4, and the terminal portion 16 of the wiring body 19 has a conductor column 10 provided in a form penetrating the resin 6 around the semiconductor element 4. Connected through. Portions other than the terminal portion 16 are firmly bonded with an adhesive, for example, an epoxy adhesive.
[0033]
Next, a method of manufacturing the semiconductor device shown in FIGS. 1 and 2 will be described with reference to FIG.
[0034]
The substrate 1 shown in FIG. 3A is a flat copper substrate for forming the first wiring body 3 as the first wiring body, and the number of the first wiring bodies 3 formed on one substrate. The number varies depending on the size of the semiconductor element. The substrate 1 is approximately 100 mm long, 300 mm wide, and 0.25 mm thick. The thickness and size of the substrate 1 are appropriately determined depending on the number of first wiring bodies 3 to be taken.
[0035]
Next, a method for patterning the first wiring body 3 on the substrate 1 shown in FIG.
[0036]
As one method, as shown in FIG. 3B, Au / Ni / Au plating 2 laminated to a thickness of about 10 to 15 μm is formed on the entire surface of the copper plate by plating (or rolling). Then, a photosensitive resist (not shown) is applied, developed after mask exposure. As a result, patterning is performed so that the portion forming the first first wiring body 3 is covered and the other portions are peeled off. Next, using a resist pattern as a mask, Ni is etched with, for example, a product name, Enstrip NP (alkaline) or Enstrip 165S (sulfuric acid), manufactured by Meltex, and a Ni wiring body is formed. Remove with. Thereby, a plurality of first wiring bodies 3 are formed simultaneously. Thereafter, Au plating of about 0.1 μm is applied on the pattern of the first wiring body 3 to prevent oxidation at the time of connection.
[0037]
As another method, a photosensitive resist is applied to the wiring body pattern shape, mask exposure and development are performed, and patterning is performed so that the resist on the wiring body forming portion is peeled off. Thereafter, 10 to 15 μm of Ni is plated on the thin Au plating, and further Au plating is applied thereon to prevent oxidation at the time of connection. Thereafter, the resist is removed by the same method as described above. Au plating may be about 0.1 μm.
[0038]
After that, as shown in FIG. 3 (c), the electrode 5 (see FIG. 2) of the semiconductor element 4 is aligned with the first wiring body 3 made of Au / Ni / Au on the substrate 1, and the flip chip is formed by heating and pressing. Connect. Thereafter, a low-viscosity resin (for example, a large chip low-stress resin such as CRP-4711A manufactured by Sumitomo Bakelite Co., Ltd.) is used as an underfill sealant between the first wiring body 3 and the semiconductor element 4. After filling and heat-curing, resin 6 is filled around the semiconductor element by general transfer molding, and the semiconductor element and the substrate are bonded to have resistance against stress.
[0039]
As a method different from the method of injecting the underfill resin, a sheet-like or high-viscosity resin is adhered on the metal substrate 1 and the first wiring body 3, and the semiconductor element 4 is attached to the first wiring body 3. It is also possible to replace the underfill resin by aligning with the connecting portion and heating and press-bonding or heat-melting to connect and simultaneously curing the adhesive.
[0040]
Next, the semiconductor element 4 and the filled resin 6 are ground by a grinding machine 100 as shown in FIG. The thickness of the semiconductor element 4 before grinding is about 800 μm, and this is thinned to a thickness of about 10 μm together with the resin 6. The grinding machine 100 used here can be sufficiently ground and controlled to a desired thickness using a general apparatus manufactured by DISCO.
[0041]
Thereafter, since stress strain, fine cracks, and chips were generated on the ground surface of the semiconductor element 4, it was immersed in 3% NaOH at 50 to 60 ° C. for 1 to 2 minutes, and the surface was etched by about 1 to 2 μm.
[0042]
Next, a through hole is formed in the resin 6. FIG. 3E to FIG. 3H show the through hole forming portion in an enlarged manner for easy explanation. Laser light 8 is irradiated near the periphery of the first wiring body 3 to evaporate the resin 6 on the first wiring body 3, thereby forming a through hole 9 in the resin 6 on the first wiring body 3. The diameter of the through hole 9 is about 50 to 100 μm, and can be appropriately selected according to the wiring pitch.
[0043]
Subsequently, the through hole 9 is filled with copper plating. This method will be described with reference to FIG. The substrate 1 is used as an anode electrode, the cathode electrode is connected to a copper plate (not shown), and the inside of the through hole 9 is filled with copper metal 11 using copper sulfate or copper cyanide as an electrolytic solution. The plating layer is slightly protruded from the resin surface to form the protruding portion 12. Thereafter, a method of transferring to a tin plating bath, a solder plating bath, or a gold plating bath and performing tin plating, solder plating, or gold plating on the protruding portion 12 is possible. Thus, the terminal part 10 which consists of a columnar conductor is formed.
[0044]
Next, as shown in FIG. 3 (g), the back surface 13 and the through hole 9 of the ground semiconductor element 4 are filled with copper metal, and the protrusion 12 having the surface plated with gold or the like is formed on the protrusion 12 shown in FIG. The internal electrode of the tape wiring board 14 corresponding to the wiring body 19 is connected. The tape wiring board 14 has a conductor wiring pattern formed of copper on a base film, and the surface of the conductor wiring pattern is plated with nickel / gold. After the connection, the connection portion is sealed with the resin 101, and the terminal portion 103 is formed with solder or the like. The protrusion 12 and the internal electrode of the tape wiring board are connected by heat pressure welding or ultrasonic bonding when the protrusion 12 is gold-plated, or 250 when the protrusion 12 is solder-plated. Melt connection can be made at a temperature of about ℃.
[0045]
In addition to the method of using the tape wiring substrate 14 as the wiring body 19, there is a method of using a build-up method by a pattern forming method by applying a photosensitive resin, exposing and developing. This method will be described in detail later. Also in this case, the gold plating and solder plating methods described above are the same.
[0046]
Thereafter, in this state, a dicing device that separates each semiconductor element is provided with a kerf between the semiconductor elements (not shown).
[0047]
Thereafter, as shown in FIG. 3 (h), a protective resin (not shown) at the time of etching is applied to the ground surface and the surface on which the through-holes 9 are formed, and after heat-curing, the substrate copper is chlorinated. The entire copper substrate is etched away with ferric or cupric chloride to a thickness of about 10 to 50 μm.
[0048]
Thereafter, the semiconductor elements are cut in a row direction and a column direction by a dicing apparatus, and then the protective resin is dissolved in a solvent, whereby a semiconductor device is obtained in which both sides of the separated semiconductor elements are sandwiched by wiring bodies using a thin film.
[0049]
In the above description, the metal substrate is used as the substrate on which the wiring body is formed, but a similar structure can be formed by using a substrate that can be etched or mechanically peeled.
[0050]
Next, another method for manufacturing the terminal portion 10 made of a conductive pillar will be described.
[0051]
In the state shown in FIG. 3E, instead of forming a through hole in the resin and filling the metal particles by plating, the first wiring body 3 is formed in the process shown in FIG. When connecting a gold wire with a diameter of 25 to 30 μm to a predetermined position by wire bonding, the wire is deformed by heat, pressure and ultrasonic energy to become a thickness of 5 to 60 μm and a part of the gold wire is thinned. From there, it is cut by a clamping operation, and the same thing as the terminal portion 10 is formed.
[0052]
Further, there is a method of filling a resin after forming a stud bump in which one or two of the terminal portions 10 of the conductor pillars are stacked as required.
[0053]
FIGS. 10A to 10G are views for explaining a method of forming a terminal portion using stud bumps.
[0054]
As shown in FIG. 10A, the first wiring body 202 is formed on the substrate 201.
[0055]
Next, as shown in FIG. 10B, the semiconductor element 203 is mounted so that the electrode is connected to the first wiring body 202.
[0056]
Subsequently, stud bumps 204 as conductor pillars are stacked as shown in FIG. 10C, and an underfill 205 is filled between the semiconductor element 203 and the substrate 201 as shown in FIG.
[0057]
Next, as shown in FIG. 10E, the periphery of the semiconductor element 203 is sealed with a resin 206.
[0058]
Thereafter, the substrate 201 is removed by etching as shown in FIG. 10 (f), and the resin 206 is removed by grinding as shown in FIG. 10 (g).
[0059]
Another example in which resin sealing is performed after the conductor pillars are formed will be described with reference to FIG.
[0060]
In FIG. 11, 301 is an IC chip, 302 is an electrode of the IC chip 301, and 303 is a planar wiring body to which the electrode 302 of the IC chip 301 is electrically connected. It is fixed and provided.
[0061]
Reference numeral 306 denotes a conductor pillar provided on one surface 303a of the wiring body 303 on which the IC chip 301 is assembled and connected to the wiring body 303, and reference numeral 307 denotes an IC surface on one surface 303a of the wiring body 303. This is an insulating resin filled in a portion where the chip 301 and the conductor pillar 306 are not provided.
[0062]
Next, a method for manufacturing the semiconductor device configured as described above will be described.
[0063]
First, as shown in FIGS. 11A and 11B, the wiring of the wiring board 304 including the wiring body 303 formed on the substrate 304 and the conductor pillars (conductor protrusions) 306 provided on the wiring body 303. The IC chip 301 is flip-chip connected to one surface 303a of the body 303. Next, as shown in FIG. 11C, the IC chip 301 and the conductor column 306 are connected to the insulating resin 307 on one surface 303a of the substrate 304. Cover and seal.
[0064]
Next, as shown in FIG. 11D, the resin 307 is ground to expose the end face 308 of the conductor pillar 306, and the base material 305 is removed from the wiring body 304.
[0065]
The above method can simplify the manufacturing process because the plating operation or the like is not performed in the middle of the manufacturing method using the plating operation.
[0066]
Next, a method of forming the second wiring body by using a build-up method by a pattern forming method by applying a photosensitive resin, exposing, and developing will be described.
[0067]
FIG. 5 shows the procedure of the manufacturing method for forming the second wiring body with an embedded wiring body.
[0068]
On the second metal substrate 22 shown in FIG. 5A, a wiring body 25 similar to the first wiring body 3 shown in FIG. 3A is formed. When the memories are stacked in a stack structure, the patterns of the first wiring body and the second wiring body are often the same.
[0069]
Next, as shown in FIG. 5B, a semi-finished semiconductor device 24 is connected to the metal substrate 12 at the terminal portion of the second wiring body. The semiconductor device 24 is the semiconductor device in the state shown in FIG. 3F, and is aligned with a predetermined position of the protruding portion 12 wiring body 5 of the terminal portion 10 connected to the first wiring body 3 in FIG. Connect.
[0070]
Next, the underfill resin 26 is filled between the two connected, and cured. In filling the underfill resin between the semiconductor device 24 and the wiring body 25, these intervals are narrow and must be injected from the side surface. Therefore, one side of the metal substrate is formed with a nozzle-shaped jig of a vacuum device. It is effective to inject a low-viscosity underfill resin from the opposite side while sandwiching and reducing the pressure to fill the entire surface between the substrates by the action of capillary action and pressure reduction.
[0071]
Subsequently, the substrate 1 and the second metal substrate 22 are removed by etching, and thereafter, terminal portions 27 are formed on the first wiring body 3 and the wiring body 25 by a solder bath to obtain the state shown in FIG.
[0072]
Instead of the method of injecting an underfill resin between the semiconductor device 24 and the wiring body 25 described above, a sheet-like or high-viscosity adhesive material is applied to the wiring body 25 in advance to an appropriate thickness, and then the semiconductor device. A method of connecting the wiring 24 to the wiring body 25 and performing pressure bonding and curing the adhesive is also a generally used method.
[0073]
The specific dimensions of the semiconductor device manufactured by these methods are as follows: the thickness of the wiring board 25 (second wiring body) and the first wiring body 3 (first wiring body) is 10 to 15 μm, respectively, and the semiconductor element thickness is The thickness of the underfill resin for bonding between the wiring substrate and the semiconductor element is about 5 to 10 μm, and even when these maximum thicknesses are combined, a semiconductor device of about 60 μm is completed.
[0074]
When the tape wiring substrate 14 is used as the second wiring body shown in FIG. 3, the thickness of the tape wiring substrate 14 is about 50 to 80 μm, and the total thickness is 125 μm.
[0075]
Next, a manufacturing method for forming the first wiring body and the second wiring body in multiple layers will be described.
[0076]
  After forming a Ni / Au pattern on the metal substrate 1 shown in FIG.resinAfter coating, exposing, and developing to provide contact holes, copper wiring is patterned. By doing so, a multilayer wiring can be formed. This method is generally called a build-up method.
[0077]
The semiconductor elements including the first wiring board and the second wiring board manufactured as described above are connected by combining the above-described methods.
[0078]
By the multilayer wiring of the first wiring body and the second wiring body by the above method, the terminal portion can be freely arranged around the semiconductor element and on the semiconductor element, and the area of the semiconductor device can be further reduced. Become.
[0079]
Next, a second embodiment of the semiconductor device will be described with reference to FIG.
[0080]
4 omits the step of connecting the tape wiring substrate 14 corresponding to the second wiring body in FIG. 3G, and includes a semiconductor device in which a wiring body using a thin film is used only on one side of the semiconductor element 4. It is a thing. In this case, the second wiring body can be thinned without using the second wiring body. However, the terminal portion (103 in FIG. 3G) cannot be provided on the back surface 13 of the element 4, and accordingly, outside the semiconductor element 4 accordingly. Since it must be provided, the size of the semiconductor device is slightly increased.
[0081]
Next, a semiconductor module in which the semiconductor devices configured as described above are stacked in multiple stages will be described.
[0082]
FIG. 6 shows the semiconductor device 70 in the state shown in FIG. 2 stacked in multiple stages on the positioning jig 21 and passed through a reflow furnace to connect the terminals. For this reason, although not shown in FIG. 6, in the following description, it demonstrates using the code | symbol shown in FIG.
[0083]
FIG. 6 is a cross-sectional view of a semiconductor module in which a plurality of semiconductor devices 70 in the state shown in FIG. 2 are stacked in a stack structure. Solder balls are provided in advance on the terminal portion 15 of the first wiring body 3 of the semiconductor device 70 in the state shown in FIG. 2 by a printing method or a plating method. The wiring body 19 does not need to be provided with a material such as solder, and a material having good wettability with solder, for example, gold is applied to about 0.1 μm. For example, when the tape wiring substrate 14 is used as the wiring body 19 as shown in FIG. 3, the material structure is general from the manufacturing process, and there is no problem at all.
[0084]
Next, when the terminal portion of the semiconductor device 70 is positioned by the jig 21 and overlapped with the second and third on the first semiconductor device, the second wiring of the first semiconductor device 70 is obtained. When the terminal portion 15 of the first wiring substrate 3 of the second semiconductor device 70 comes into contact with the terminal portion 16 of the substrate 19 and is heated and melted by a solder reflow apparatus in a nitrogen atmosphere, each terminal portion is electrically connected as shown in FIG. Thus, a stacked semiconductor device that is electrically connected to the substrate is completed.
[0085]
FIG. 7 is a diagram in which the semiconductor devices 80 in the state shown in FIG. 4 are stacked in multiple stages and passed through a reflow furnace to connect the terminals. For this reason, although not shown in FIG. 7, in the following description, it demonstrates using the code | symbol shown in FIG.
[0086]
FIG. 7 shows a structure in which the semiconductor devices 80 in the state shown in FIG. In this embodiment, a positioning jig is used as in the embodiment shown in FIG. In the case of the present embodiment, only the point that the terminal portion 15 is formed in the peripheral portion of the semiconductor device 80 is different from the embodiment shown in FIG. 6 and is more than the stacked semiconductor device shown in FIG. Although the thickness is reduced by the absence of the second wiring substrate 19, the planar area may be increased when the number of pins is the same.
[0087]
Next, a method for efficiently manufacturing a stacked semiconductor device having a stack structure as shown in FIGS. 6 and 7 will be described with reference to a cross-sectional view of FIG. 8 and a plan view of FIG.
[0088]
First, the semiconductor device having the structure shown in FIG. 2 is manufactured through the steps of FIGS. At this time, the semiconductor device 26 is a semi-finished product without performing the cutting step of cutting the semiconductor element into individual pieces from the substrate.
[0089]
Next, semi-finished semiconductor devices 26 are stacked in multiple stages, the terminal portions provided on the front and back surfaces of the substrate are aligned, and the joining member attached to the connection portion is passed through a reflow furnace to be melt-connected. To do. The stacked substrate in this state is completed by separating the semiconductor elements from each other with a dicing device.
[0090]
In the above description, the fusion connection by the reflow method is used as an example of the connection method between the semiconductor devices. However, for example, by forming a gold bump on the terminal portion, a gold-gold pressure bonding method, a pressure welding method, etc. It is also possible to use this method.
[0091]
In addition, after the semiconductor devices are stacked, the connection portion is sealed by injecting and curing a resin between the semiconductor devices, or by supplying a sheet-like or liquid adhesive in advance between the semiconductor devices. Thus, a more reliable stacked semiconductor device can be obtained.
[0092]
【The invention's effect】
Since the present invention is configured as described above, it exhibits curing as described below.
[0093]
Since ultra-thin wiring bodies are arranged on both sides of the semiconductor element, and the semiconductor elements are sandwiched and both wiring bodies are connected to each other by conductor pillars standing parallel to the semiconductor element, the thickness is 100 μm with a minimum area. The following semiconductor devices can be realized.
[0094]
In the case where the second wiring body is not used, a semiconductor device having a slightly larger area but a thickness of 60 μm or less can be realized.
[0095]
In a stacked semiconductor device in which single semiconductor devices are stacked and connected in multiple stages, a very thin highly integrated semiconductor device can be easily obtained.
[0096]
When the first wiring body is formed by the embedded wiring and the second wiring body is formed by the tape carrier wiring body, the process is simplified and a semiconductor device having a minimum area can be obtained.
[0097]
Simplifying the manufacturing process because plating work is not performed in the middle of the process when forming the conductor pillars connecting the first wiring body and the second wiring body before connecting the semiconductor elements. To do.
[0098]
When both the first wiring body and the second wiring body are formed of embedded wiring bodies, an extremely thin semiconductor device can be easily manufactured.
[0099]
When semi-finished semiconductor devices that are not separated are stacked in multiple layers and the terminal portions are bonded and bonded together to cut a predetermined region, a stacked semiconductor device can be produced efficiently.
[0100]
By using multilayer wiring for the first and second wiring bodies, the terminal portion can be freely arranged around and on the semiconductor element, and the area of the semiconductor device can be further reduced.
[Brief description of the drawings]
FIG. 1 is a plan view of a semiconductor device according to the present invention.
FIG. 2 is a cross-sectional view taken along the line AA ′ in FIG.
FIGS. 3A to 3H are views for explaining a manufacturing process of the semiconductor device shown in FIG. 1;
FIG. 4 is a cross-sectional view of a second embodiment of the present invention.
FIGS. 5A to 5C show a procedure of a manufacturing method for forming a second wiring body with an embedded wiring body.
FIG. 6 is a cross-sectional view of a stacked semiconductor device in which a plurality of semiconductor devices are stacked in a stack structure.
FIG. 7 is a cross-sectional view of a stacked semiconductor device in which a plurality of semiconductor devices are stacked in a stack structure.
FIG. 8 is a cross-sectional view of a substrate in which a plurality of substrates on which a plurality of semiconductor elements are mounted are further stacked.
FIG. 9 is a plan view of a substrate in which a plurality of substrates on which a plurality of semiconductor elements are mounted are further stacked.
FIGS. 10A to 10G are diagrams for explaining a method of forming a terminal portion using stud bumps.
FIG. 11 is a diagram for explaining another example in which resin sealing is performed after conductor columns are formed.
[Explanation of symbols]
1 Substrate
2 Ni plating
3 First wiring body
4 Semiconductor elements
5 electrodes
6 Resin
7 Underfill
8 Laser light
9 Through hole
10 Conductor pillar
11 Copper metal
12 Protrusion
13 Back side of semiconductor element
14 Tape wiring board
15,16 Terminal section
19 Second wiring body
21 Positioning jig
22 Second metal substrate
25 Wiring body
26 Semi-finished semiconductor devices

Claims (15)

半導体素子および該半導体素子と接続する端子部を備えた半導体装置において、
前記半導体素子と接続する第1の配線体と第2の配線体が、前記半導体素子の両面を覆うように挟み込む形態で対向配置され、
前記第1および第2の配線体のうちの少なくとも第1の配線体は基板上に形成した配線体に半導体素子を接続し、前記配線体を被覆し、前記半導体素子の周囲を充填する樹脂を形成した後、前記基板を除去して得られる埋め込み配線体であり、
前記端子部が前記半導体装置の表面と裏面に備えられていることを特徴とする半導体装置。
In a semiconductor device including a semiconductor element and a terminal portion connected to the semiconductor element,
The first wiring body and the second wiring body connected to the semiconductor element are arranged opposite to each other so as to sandwich both surfaces of the semiconductor element,
At least a first wiring body of the first and second wiring bodies is made of resin that connects a semiconductor element to a wiring body formed on a substrate, covers the wiring body, and fills the periphery of the semiconductor element. After forming , it is an embedded wiring body obtained by removing the substrate ,
The semiconductor device, wherein the terminal portion is provided on a front surface and a back surface of the semiconductor device.
請求項1記載の半導体装置において、
前記埋め込み配線体が多層配線により形成されていることを特徴とする半導体装置。
The semiconductor device according to claim 1,
A semiconductor device, wherein the embedded wiring body is formed of a multilayer wiring.
基板上に複数の半導体素子が接続される第1の配線体を形成する工程と、
前記複数の半導体素子を前記第1の配線体に接続または接着する工程と、
前記基板に接続された複数の半導体素子間に絶縁性樹脂を充填し、硬化させる工程と、
前記充填した樹脂と半導体素子を所定の厚さに研削する工程と、
前記研削した樹脂にスルーホールを形成する工程と、
前記スルーホール内を金属粒子で充填し、先端部に接続部材を被着する工程と、
第2の配線体を前記半導体素子を覆い、かつ前記第1の配線体とで挟み込むように形成する工程と、
前記第1の配線体の端子部に前記第2の配線体の端子部を接続する工程と、
前記基板を除去する工程と、を有することを特徴とする半導体装置の製造方法。
Forming a first wiring body to which a plurality of semiconductor elements are connected on a substrate;
Connecting or bonding the plurality of semiconductor elements to the first wiring body;
Filling and curing an insulating resin between a plurality of semiconductor elements connected to the substrate; and
Grinding the filled resin and semiconductor element to a predetermined thickness;
Forming a through hole in the ground resin;
Filling the through hole with metal particles and attaching a connecting member to the tip; and
Forming a second wiring body so as to cover the semiconductor element and be sandwiched between the first wiring body;
Connecting the terminal portion of the second wiring body to the terminal portion of the first wiring body;
And a step of removing the substrate.
基板上に複数の半導体素子が接続される第1の配線体を形成する工程と、
前記第1の配線体の、前記半導体素子の周囲に導体柱からなる端子部を形成する工程と、
前記複数の半導体素子を前記第1の配線体に接続または接着する工程と、
前記基板に接続された複数の半導体素子間に樹脂を充填し、硬化させる工程と、
前記半導体素子間に充填された樹脂と半導体素子を所定の厚さに研削する工程と、
第2の配線体を前記半導体素子を覆い、かつ前記第1の配線体とで挟み込むように形成する工程と、
前記第1の配線体の端子部に前記第2の配線体の端子部を接続する工程と、
前記基板を除去する工程とを有することを特徴とする半導体装置の製造方法。
Forming a first wiring body to which a plurality of semiconductor elements are connected on a substrate;
Forming a terminal portion made of a conductive pillar around the semiconductor element of the first wiring body;
Connecting or bonding the plurality of semiconductor elements to the first wiring body;
Filling a resin between a plurality of semiconductor elements connected to the substrate, and curing the resin;
Grinding the resin filled between the semiconductor elements and the semiconductor element to a predetermined thickness;
Forming a second wiring body so as to cover the semiconductor element and be sandwiched between the first wiring body;
Connecting the terminal portion of the second wiring body to the terminal portion of the first wiring body;
And a step of removing the substrate.
請求項3記載の半導体装置の製造方法において、
前記第2の配線体は基板に複数形成されたものであることを特徴とする半導体装置の製造方法。
In the manufacturing method of the semiconductor device according to claim 3,
A method of manufacturing a semiconductor device, wherein a plurality of the second wiring bodies are formed on a substrate.
基板上に複数の半導体素子が接続される第1の配線体を形成する工程と、
前記複数の半導体素子を前記配線体に接続または接着する工程と、
前記基板に接続された複数の半導体素子間に樹脂を充填し、硬化させる工程と、
前記充填した樹脂と半導体素子を所定の厚さに研削する工程と、
前記研削した樹脂にスルーホールを形成する工程と、
前記スルーホール内を金属粒子で充填し、先端部に接続部材を被着する工程と、
第2の配線体を前記半導体素子を覆い、かつ前記第1の配線体とで挟み込むように形成する工程と、
前記第1の配線体の端子部に前記第2の配線体の端子部を接続する工程と、
前記各工程を経て得られた半導体素子搭載基板を多段に積層して接着し、端子部を電気的に接続する工程と、
を含むことを特徴とする半導体装置の製造方法。
Forming a first wiring body to which a plurality of semiconductor elements are connected on a substrate;
Connecting or bonding the plurality of semiconductor elements to the wiring body;
Filling a resin between a plurality of semiconductor elements connected to the substrate, and curing the resin;
Grinding the filled resin and semiconductor element to a predetermined thickness;
Forming a through hole in the ground resin;
Filling the through hole with metal particles and attaching a connecting member to the tip; and
Forming a second wiring body so as to cover the semiconductor element and be sandwiched between the first wiring body;
Connecting the terminal portion of the second wiring body to the terminal portion of the first wiring body;
A step of laminating and bonding the semiconductor element mounting substrate obtained through each of the steps in multiple stages, and electrically connecting the terminal portions;
A method for manufacturing a semiconductor device, comprising:
前記第2の配線体は、基板上に形成された配線パターンを形成した後に該基板を除去することにより得られる埋め込み配線体であることを特徴とする請求項1記載の半導体装置。  2. The semiconductor device according to claim 1, wherein the second wiring body is a buried wiring body obtained by forming a wiring pattern formed on the substrate and then removing the substrate. 前記第2の配線体がテープ配線基板であることを特徴とする請求項1記載の半導体装置。  The semiconductor device according to claim 1, wherein the second wiring body is a tape wiring substrate. 前記第2の配線体は、ビルドアップ法により形成されていることを特徴とする請求項1記載の半導体装置。  The semiconductor device according to claim 1, wherein the second wiring body is formed by a build-up method. 前記第2の配線体が多層配線により形成されていることを特徴とする請求項1記載の半導体装置。  The semiconductor device according to claim 1, wherein the second wiring body is formed of a multilayer wiring. 前記配線体に接続された複数の各半導体素子間を行方向と列方向に切断する工程を含むことを特徴とする請求項3ないし6のいずれかに記載の半導体装置の製造方法。7. The method of manufacturing a semiconductor device according to claim 3 , further comprising a step of cutting a plurality of semiconductor elements connected to the wiring body in a row direction and a column direction. 請求項1または2記載の半導体装置を複数個積層し、相対する端子部で接続したことを特徴とする積層型半導体装置。 3. A stacked semiconductor device comprising a plurality of the semiconductor devices according to claim 1 stacked together and connected at opposing terminal portions. 請求項12記載の積層型半導体装置において、
前記半導体装置間を接続する端子部が半導体素子間に配設されていることを特徴とする積層型半導体装置。
The stacked semiconductor device according to claim 12, wherein
A laminated semiconductor device, wherein a terminal portion for connecting the semiconductor devices is disposed between semiconductor elements.
半導体素子および該半導体素子と接続する端子部を備えた半導体装置において、
前記半導体素子は、基板上に配線パターンおよび感光性樹脂を形成した後に該基板を除去することにより得られる埋め込み配線体と接続され、
前記端子部が前記半導体装置の表面と裏面に備えられ、
前記埋め込み配線体に複数形成された端子部のうち少なくとも一つが、平面視で、半導体素子内側に配置されていることを特徴とする半導体装置。
In a semiconductor device including a semiconductor element and a terminal portion connected to the semiconductor element,
The semiconductor element is connected to a buried wiring body obtained by removing the substrate after forming a wiring pattern and a photosensitive resin on the substrate,
The terminal portions are provided on the front and back surfaces of the semiconductor device;
At least one of the plurality of terminal portions formed in the embedded wiring body is disposed inside the semiconductor element in a plan view.
基板上に配線パターンおよび感光性樹脂を形成した後に該基板を除去することにより得られる埋め込み配線体と、
該配線体上に配置される樹脂により封止された半導体素子と、を備える半導体装置であって、
前記埋め込み配線体に複数形成された端子部を備え、
前記埋め込み配線体は前記半導体素子と接続され、該埋め込み配線体に形成された端子部は配線体を介して前記半導体素子と接続されており、
前記半導体素子の周囲となる位置の前記樹脂に埋設され、前記配線体と接続され、反配線体側の面の樹脂から露出する導体柱とを有し、
前記埋め込み配線体に複数形成された端子部のうち少なくとも一つが、平面視で、半導体素子内側に配置されていることを特徴とする半導体装置。
An embedded wiring body obtained by forming the wiring pattern and the photosensitive resin on the substrate and then removing the substrate;
A semiconductor device sealed with a resin disposed on the wiring body,
A plurality of terminal portions formed in the embedded wiring body;
The embedded wiring body is connected to the semiconductor element, and a terminal portion formed in the embedded wiring body is connected to the semiconductor element via the wiring body;
Embedded in the resin at a position around the semiconductor element, connected to the wiring body, and having a conductor column exposed from the resin on the surface opposite to the wiring body,
At least one of the plurality of terminal portions formed in the embedded wiring body is disposed inside the semiconductor element in a plan view.
JP2002086422A 2001-03-26 2002-03-26 Semiconductor device and manufacturing method of semiconductor device Expired - Fee Related JP4240899B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002086422A JP4240899B2 (en) 2001-03-26 2002-03-26 Semiconductor device and manufacturing method of semiconductor device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001-86833 2001-03-26
JP2001086833 2001-03-26
JP2002086422A JP4240899B2 (en) 2001-03-26 2002-03-26 Semiconductor device and manufacturing method of semiconductor device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007307513A Division JP2008118152A (en) 2001-03-26 2007-11-28 Semiconductor device and multilayer semiconductor device

Publications (2)

Publication Number Publication Date
JP2002359323A JP2002359323A (en) 2002-12-13
JP4240899B2 true JP4240899B2 (en) 2009-03-18

Family

ID=26612006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002086422A Expired - Fee Related JP4240899B2 (en) 2001-03-26 2002-03-26 Semiconductor device and manufacturing method of semiconductor device

Country Status (1)

Country Link
JP (1) JP4240899B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4271590B2 (en) * 2004-01-20 2009-06-03 新光電気工業株式会社 Semiconductor device and manufacturing method thereof
JP4204989B2 (en) 2004-01-30 2009-01-07 新光電気工業株式会社 Semiconductor device and manufacturing method thereof
WO2006082750A1 (en) * 2005-02-02 2006-08-10 Nec Corporation Packaging structure for electronic component and method for manufacturing electronic component package provided with such structure
JP4635202B2 (en) * 2005-07-20 2011-02-23 国立大学法人九州工業大学 Method for manufacturing double-sided electrode package
JP5215587B2 (en) * 2007-04-27 2013-06-19 ラピスセミコンダクタ株式会社 Semiconductor device
KR100914977B1 (en) * 2007-06-18 2009-09-02 주식회사 하이닉스반도체 Method for fabricating stack package
KR100909322B1 (en) * 2007-07-02 2009-07-24 주식회사 네패스 Ultra-thin semiconductor package and manufacturing method thereof
KR100885924B1 (en) * 2007-08-10 2009-02-26 삼성전자주식회사 A semiconductor package having a buried conductive post in sealing resin and manufacturing method thereof
JPWO2009028596A1 (en) * 2007-08-30 2010-12-02 日本電気株式会社 Passive element embedded substrate, manufacturing method, and semiconductor device
US8390117B2 (en) 2007-12-11 2013-03-05 Panasonic Corporation Semiconductor device and method of manufacturing the same
JP4489821B2 (en) * 2008-07-02 2010-06-23 新光電気工業株式会社 Semiconductor device and manufacturing method thereof
JP2011009514A (en) * 2009-06-26 2011-01-13 Renesas Electronics Corp Method for manufacturing semiconductor device
JP2011014728A (en) * 2009-07-02 2011-01-20 Casio Computer Co Ltd Semiconductor device and method of manufacturing semiconductor device
CN102473653B (en) 2010-02-01 2016-05-04 丰田自动车株式会社 The manufacture method of semiconductor device and semiconductor device
DE102014219794B4 (en) * 2014-09-30 2020-06-18 Osram Opto Semiconductors Gmbh Electrical component and method for producing an electrical component

Also Published As

Publication number Publication date
JP2002359323A (en) 2002-12-13

Similar Documents

Publication Publication Date Title
US6593648B2 (en) Semiconductor device and method of making the same, circuit board and electronic equipment
KR100924510B1 (en) Semiconductor device, its manufacturing method, and electronic apparatus
KR100865426B1 (en) Semiconductor device and its manufacturing method
US6515357B2 (en) Semiconductor package and semiconductor package fabrication method
US7947602B2 (en) Conductive pattern formation method
JP4240899B2 (en) Semiconductor device and manufacturing method of semiconductor device
WO2001026147A1 (en) Semiconductor device, method of manufacture thereof, circuit board, and electronic device
JPWO2007043639A1 (en) Printed wiring board and method for manufacturing printed wiring board
US20060118940A1 (en) Semiconductor device and method of fabricating the same
US6846699B2 (en) Semiconductor device and method of manufacture thereof, circuit board, and electronic instrument
JP2000138313A (en) Semiconductor device and its manufacture
KR20010031020A (en) Chip scale ball grid array for integrated circuit package
KR20020033522A (en) Thin film attachment to laminate using a dendritic interconnection
KR100315138B1 (en) Semiconductor device and its manufacturing method and film carrier tape and its manufacturing method
JP2001060758A (en) Method and device for sticking adhesive material, wiring board, semiconductor device, manufacture of the semiconductor device, circuit board, and electronic equipment
US7053492B2 (en) Circuit device and method of manufacturing the same
US20110100549A1 (en) Method for manufacturing component-embedded module
JP2000286299A (en) Method for connecting semiconductor device
JP2008118152A (en) Semiconductor device and multilayer semiconductor device
JP2001127242A (en) Semiconductor chip, multichip package, semiconductor device, and electronic equipment, and manufacturing method thereof
JP2002158307A (en) Semiconductor device and its manufacturing method
JP2004342802A (en) Printed board with bump electrode and manufacturing method thereof
WO2018030262A1 (en) Method for manufacturing module component
JP2003229513A (en) Substrate incorporating element and method of manufacturing the same
JP4285140B2 (en) Manufacturing method of semiconductor device

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Effective date: 20041206

Free format text: JAPANESE INTERMEDIATE CODE: A7423

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20041206

A621 Written request for application examination

Effective date: 20050210

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050729

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060913

A521 Written amendment

Effective date: 20061109

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Effective date: 20071003

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081203

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081222

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20120109

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20120109

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20140109

LAPS Cancellation because of no payment of annual fees