JP4207270B2 - Method for producing alkyl cyanobenzoate - Google Patents

Method for producing alkyl cyanobenzoate Download PDF

Info

Publication number
JP4207270B2
JP4207270B2 JP30296198A JP30296198A JP4207270B2 JP 4207270 B2 JP4207270 B2 JP 4207270B2 JP 30296198 A JP30296198 A JP 30296198A JP 30296198 A JP30296198 A JP 30296198A JP 4207270 B2 JP4207270 B2 JP 4207270B2
Authority
JP
Japan
Prior art keywords
alkyl ester
substituent
benzene ring
phthalonitrile
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30296198A
Other languages
Japanese (ja)
Other versions
JP2000128845A (en
Inventor
隆士 谷
信 斎藤
住男 征矢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP30296198A priority Critical patent/JP4207270B2/en
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to EP04022599A priority patent/EP1514866B1/en
Priority to DE69934034T priority patent/DE69934034T2/en
Priority to EP04022598A priority patent/EP1508567B1/en
Priority to AT04022599T priority patent/ATE345325T1/en
Priority to EP99118800A priority patent/EP0989115A3/en
Priority to DE69934033T priority patent/DE69934033T2/en
Priority to AT04022598T priority patent/ATE345324T1/en
Priority to US09/404,362 priority patent/US6433211B1/en
Publication of JP2000128845A publication Critical patent/JP2000128845A/en
Application granted granted Critical
Publication of JP4207270B2 publication Critical patent/JP4207270B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は置換または無置換シアノ安息香酸アルキルエステル、特に一般式(3)で示されるシアノ安息香酸アルキルエステルの製造方法に関する。シアノ安息香酸アルキルエステルは医薬・農薬その他有機化学品などの合成原料または中間体として有用である。
【0002】
【従来の技術】
シアノ安息香酸アルキルエステルの製造方法としては、(1)特開昭58−113145号公報のクロロベンゾニトリルのようにハロゲンが置換されたベンゾニトリルを触媒を用いて一酸化炭素及びアルコールと反応させる方法、(2)Bull.Chem.Soc.Jpn.,61,6,1985,(1988) とJ.Org.Chem.,51,24,4714,(1986) に報告されているアミノ安息香酸メチルのようにアミノ化された安息香酸アルキルエステルをサンドマイヤー反応によりジアゾニウム塩を経由して製造する方法、(3)特公昭41−18818号公報のニトリルとエステルの不均化反応による方法等の報告があるが、(1)、(2)は原料の入手が困難で工業的に有利ではない、(3)は過酷な条件が必要であること等いずれもシアノ安息香酸アルキルエステルを工業的に有利に製造する方法とはならない。このようにシアノ安息香酸アルキルエステルを製造する工業的に有利な方法はこれまで知られておらず、更なる改善が望まれている。
【0003】
【発明が解決しようとする課題】
本発明の目的は、工業的に有利に入手可能な原料であるフタロニトリルから一般式(3)で示されるシアノ安息香酸アルキルエステルを工業的に有利な方法により高選択的かつ高収率で製造することにあり、特に医薬の合成中間体として有用なm−シアノ安息香酸アルキルエステルまたはp−シアノ安息香酸アルキルエステルを高選択的かつ高収率で製造することにある。
【0004】
【課題を解決するための手段】
本発明者らは、前記の従来の問題点を解決すべく鋭意検討した結果、置換または無置換フタロニトリルと脂肪族アルコールを酸の存在下反応させて1個のニトリル基のみを選択的にアルキルイミノエーテル基に変換し、次いで水と反応させてアルキルイミノエーテル基のみをアルキルエステル基に変換することにより高選択的かつ高収率でシアノ安息香酸アルキルエステルを製造する方法を見出し、本発明を完成するに至った。本発明は以下の(1)〜(5)に示される製造方法に関する。
【0005】
[1]ベンゼン環上に置換基を有してもよいフタロニトリルからベンゼン環上に置換基を有してもよいシアノ安息香酸アルキルエステル(3−シアノ−2,4−ジハロゲノ−5−フルオロ安息香酸を除く。)を製造する方法において、(a)ベンゼン環上に置換基を有してもよいフタロニトリルと脂肪族アルコールを酸の存在下反応させて1個のニトリル基のみをアルキルイミノエーテル基に変換する第1反応工程と、(b)該アルキルイミノエーテル基のみを水と反応させてアルキルエステル基に変換する第2反応工程からなることを特徴とするベンゼン環上に置換基を有してもよいシアノ安息香酸アルキルエステル(3−シアノ−2,4−ジハロゲノ−5−フルオロ安息香酸を除く。)の製造方法。
[2]ベンゼン環上に置換基を有してもよいフタロニトリルが下記一般式(1)
【化3】

Figure 0004207270
(式中、2つのニトリル基は互いにメタ位またはパラ位にあり、Xは塩素原子またはフッ素原子を表わし、nは0〜4の整数を表わす。ただし、nが2以上の場合、Xは同一であっても異なっていてもよい。)で示されるフタロニトリルであり、第1反応工程における脂肪族アルコールが下記一般式(2)
ROH (2)
(式中、Rは炭素数が1〜5のアルキル基を表わす。)で示される脂肪族アルコールであり、ベンゼン環上に置換基を有してもよいシアノ安息香酸アルキルエステルが下記一般式(3)
【化4】
Figure 0004207270
(式中、X、nおよびRは前記と同様の意味を表わし、−COOR基はニトリル基のメタ位またはパラ位にある。)で示されるシアノ安息香酸アルキルエステルである上記[1]に記載のベンゼン環上に置換基を有してもよいシアノ安息香酸アルキルエステル(3−シアノ−2,4−ジハロゲノ−5−フルオロ安息香酸を除く。)の製造方法。
【0006】
[3]一般式(1)で示されるフタロニトリルがイソフタロニトリルまたはテレフタロニトリルであり、一般式(3)で示されるシアノ安息香酸アルキルエステルがm−またはp−シアノ安息香酸アルキルエステルである上記[2]に記載のベンゼン環上に置換基を有してもよいシアノ安息香酸アルキルエステル(3−シアノ−2,4−ジハロゲノ−5−フルオロ安息香酸を除く。)の製造方法。
[4]一般式(2)で示される脂肪族アルコールがメタノールまたはエタノールである上記[2]乃至[3]のいずれかに記載のベンゼン環上に置換基を有してもよいシアノ安息香酸アルキルエステル(3−シアノ−2,4−ジハロゲノ−5−フルオロ安息香酸を除く。)の製造方法。
[5]未反応のベンゼン環上に置換基を有してもよいフタロニトリルを回収し、再び原料として再使用することを特徴とする上記[1]乃至[4]のいずれかに記載のベンゼン環上に置換基を有してもよいシアノ安息香酸アルキルエステル(3−シアノ−2,4−ジハロゲノ−5−フルオロ安息香酸を除く。)の製造方法。
【0007】
すなわち本発明は、置換または無置換フタロニトリルと脂肪族アルコールを混合し、冷却または加熱下に攪拌し、1個のニトリル基のみを選択的にアルキルイミノエーテル基に変換するのに好ましい量の酸を加えて反応させ、次いで反応液に、あるいはアルキルイミノエーテルを分離した後に水を加える2段階反応により置換または無置換シアノ安息香酸アルキルエステルを高選択的かつ高収率で得る方法である。
【0008】
【発明の実施の形態】
以下本発明について説明する。
本発明は置換または無置換フタロニトリル、好適には一般式(1)で示されるフタロニトリルと一般式(2)で示される脂肪族アルコールを1個のニトリル基のみをアルキルイミノエーテル基に変換するのに好ましい量の酸を加えて反応させることにより得られる下記一般式(4)
【化5】
Figure 0004207270
(式中、X、nおよびRは前記と同様の意味を表わし、アルキルイミノエーテル基はニトリル基のメタ位またはパラ位にある。)で示されるアルキルイミノエーテルまたはその塩を含む反応液に、あるいは生成したアルキルイミノエーテルまたはその塩を取り出した後に水を加えて前記一般式(3)で示されるシアノ安息香酸アルキルエステルを製造する方法を提供する。
【0009】
本発明を更に詳細に説明する。
先ず、本発明で用いられるフタロニトリルは、置換または無置換フタロニトリルを使用することができる。無置換フタロニトリルとしては好適にイソフタロニトリルあるいはテレフタロニトリルが例示される。次に置換フタロニトリルとしては、本発明の反応においては不活性な置換基を有するフタロニトリルが使用できるが、例えばハロゲン原子、アルキル基、アリール基、アラルキル基、アルコキシ基、アリールオキシ基、アラルキルオキシ基などが1乃至4置換したフタロニトリルが挙げられる。2以上置換した場合は同一又は相異なる置換基であってもよい。
【0010】
ハロゲン原子で置換されたフタロニトリルについて説明する。テトラクロロイソフタロニトリル、テトラクロロテレフタロニトリルなどの塩素化フタロニトリル化合物はイソフタロニトリルおよびテレフタロニトリルの塩素化反応により製造できる。テトラフルオロイソフタロニトリル、テトラフルオロテレフタロニトリルなどのフッ素化フタロニトリル化合物はテトラクロロイソフタロニトリルなどの塩素化イソフタロニトリル化合物およびテトラクロロテレフタロニトリルなどの塩素化テレフタロニトリル化合物のフッ素化反応で得られる。
【0011】
反応溶媒には該アルキルエステルのアルキル基を有する炭素数が1〜5の脂肪族アルコールが使用される。炭素数が1〜5のアルキル基を有する脂肪族アルコールとしては、例えばメタノール、エタノール、n−プロパノール、n−ブタノール、n−ペンタノール、イソプロパノール、イソブタノール、sec−ブタノール、tert−ブタノール、イソアミルアルコール、活性アミルアルコール、ネオペンチルアルコール等が挙げられ、メタノールまたはエタノールが特に好ましい。
【0012】
第1反応工程は、常圧または場合によっては加圧下で行うことができる。
第1反応工程の反応温度は特に制限はないが、0℃〜200℃の範囲内であることが好ましい。反応温度が低い場合は反応が遅く、また脂肪族アルコールへのフタロニトリルの溶解度が低いので反応時間がかなり長くなり好ましくなく、また反応温度が高い場合は生成したアルキルイミノエーテルが分解して収率が低くなり好ましくなく、加圧下での反応は高温・高圧となるため特殊な反応容器を必要とする。
【0013】
第1反応工程の反応時間は10分〜48時間、好ましくは1〜24時間の範囲内とするのがよい。ただし使用する脂肪族アルコールによって反応時間は適時調整される。反応時間が短い場合はフタロニトリルの転化率が低く、また長い場合は収率の低下、または生産性の面で問題がある。
【0014】
第1反応工程であるニトリル基をアルキルイミノエーテル基に変換する反応に使用される酸としては、塩酸、硫酸、硝酸、リン酸等の鉱酸、ギ酸、酢酸、などの有機酸、塩化第一鉄、塩化第二鉄、塩化第一スズ、塩化アルミ等のルイス酸が挙げられる。好ましくは塩化水素、濃硫酸が用いられる。これらの酸は単独でも2種以上を任意の割合で組み合わせて使用してもよい。
加える酸の量はフタロニトリル1モルに対して0.1モル〜5.0モル、好ましくは0.8モル〜3モルの範囲内とするのがよい。酸の量を少なくすると反応性が悪くなり収率が低下し、また多すぎるとフタロニトリルの2個のニトリル基が共にアルキルイミノエーテル基に変換してしまい、収率が低下し、好ましくない。
【0015】
第2反応工程では第1反応工程で生成したアルキルイミノエーテルまたはその塩の脂肪族アルコール溶液に水を加えるだけでシアノ安息香酸アルキルエステルが合成される。また、第1反応工程で生成したアルキルイミノエーテルまたはその塩を取り出した後で水と反応させてシアノ安息香酸アルキルエステルを合成することもできる。いずれの場合も加える水はアルキルイミノエーテルまたはその塩に対して0.8モル〜20モルの量を混合する。水の添加量が少ない場合はアルキルエステル基に変換される量が少なくなり収率が低くなり、多い場合はシアノ安息香酸アルキルエステルも析出し、未反応のフタロニトリル化合物との分離が困難となる。また、水は反応液に添加しても、水に反応液を投入してもよい。
【0016】
未反応のフタロニトリル化合物は、第1反応工程で生成したアルキルイミノエーテルまたはその塩と比較して脂肪族アルコールに対して溶解度がかなり低いことを利用してろ別回収され、反応に再使用可能である。またシアノ安息香酸アルキルエステルもフタロニトリル化合物と比較して、脂肪族アルコールに対し溶解度が高いので、第1反応工程で生成したアルキルイミノエーテルまたはその塩に水を加え、シアノ安息香酸アルキルエステルとした後フタロニトリル化合物をろ別してもよい。
【0017】
第2反応工程終了後、未反応のフタロニトリル化合物をろ別し、ろ液を冷却あるいは濃縮をして粗シアノ安息香酸アルキルエステルを得ることができる。得られたろ液はアルカリで中和してもよく、中和に使用されるアルカリは水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化ルビジウム等のアルカリ金属水酸化物;炭酸ナトリウム、炭酸カリウム等のアルカリ金属の炭酸塩;リン酸三ナトリウム、ピロリン酸ナトリウム、リン酸三カリウム等のアルカリ金属のリン酸塩;水酸化ベリリウム、水酸化カルシウム、水酸化マグネシウム等のアルカリ土類金属の水酸化物、アンモニア、トリエチルアミン等のアミン類等のいずれでもよく、これらは単独でも2種以上を任意の割合で組み合わせて使用してもよい。
【0018】
さらに第2反応工程終了後、未反応のフタロニトリル化合物をろ別し、ろ液を有機溶媒を使用して抽出し、濃縮を行ってシアノ安息香酸アルキルエステルの結晶を分離することもできる。抽出に使用する有機溶媒としては、例えばトルエン、キシレン等の炭化水素系、ジクロロメタン、クロロホルム等のハロゲン系、ジエチルエーテル等のエーテル系、酢酸エチル等のエステル系等の有機溶媒を使用することができる。また、必要ならば例えば同じ脂肪族アルコール水溶液を用いた再結晶等や減圧蒸留により精製を行う。微量の未反応フタロニトリルは活性炭吸着によっても除去可能である。
【0019】
【実施例】
以下に実施例を用いてさらに詳しく本発明を説明するが、本発明はこれら実施例に限定されるものではない。
(実施例1)
テレフタロニトリル12.8 g、95%硫酸10.3g、エタノール72.5gをガラス製オートクレーブに入れ、130℃で6時間反応させた。冷却後、反応液に水9gを加え、ガスクロマトグラフで分析することにより、p−シアノ安息香酸エチルが収率33%、選択率83%で得られることを確認した。
【0020】
(実施例2)
テレフタロニトリル12.8g、塩化水素ガス2.24L、エタノール72.5gをガラス製オートクレーブに入れ、130℃で6時間反応させた。冷却後、反応液に水9gを加え、ガスクロマトグラフで分析することにより、p−シアノ安息香酸エチルが収率30%、選択率96%で得られることを確認した。
【0021】
(実施例3)
テレフタロニトリル12.8g、塩化水素ガス2.24L、メタノール72.5gをガラス製オートクレーブに入れ、130℃で7時間反応させた。冷却後、反応液に水9gを加え、ガスクロマトグラフで分析することにより、p−シアノ安息香酸メチルが収率40%、選択率91%で得られることを確認した。
【0022】
(実験例4)
イソフタロニトリル12.8g、塩化水素ガス2.24L、メタノール72.5gをガラス製オートクレーブに入れ、130℃で7時間反応させた。冷却後、反応液に水9gを加え、ガスクロマトグラフで分析することにより、m−シアノ安息香酸メチルが収率38%、選択率83%で得られることを確認した。
【0023】
(実施例5)
実施例1の方法と同様に反応させ、水を加える前に析出したテレフタロニトリルをろ別回収してまた反応に使用し、一方ろ液には水を加えてp−シアノ安息香酸エチルを取り出すという操作を2回繰り返した。その結果、原料テレフタロニトリルに対し収率76%でp−シアノ安息香酸エチルを得た(純度96%)。
【0024】
(実施例6)
実施例3の方法と同様に反応させ、冷却後、反応液に水1.8gを加えた後、不溶なテレフタロニトリルはろ過・回収してまた反応に使用するという操作を2回繰り返した、各ろ液をまとめてp−シアノ安息香酸エチルを回収したところ、純度94%のp−シアノ安息香酸エチル12.9gを得た(収率75%−原料テレフタロニトリル基準)。
【0025】
(実施例7)
テトラクロロテレフタロニトリル26.6g、塩化水素ガス2.24L、メタノール145gをガラス製オートクレーブに入れ、140℃で6時間反応させた。冷却後、反応液に水18gを加え、ガスクロマトグラフで分析することにより、2,3,5,6−テトラクロロ−4−シアノ安息香酸メチルが収率28%、選択率75%で得られることを確認した。
【0026】
【発明の効果】
本発明により、入手が容易で比較的安価なフタロニトリル化合物を原料として温和な条件で選択率良くシアノ安息香酸アルキルエステルを合成できる。シアノ安息香酸アルキルエステルは医薬・農薬その他有機化学品などの合成原料または中間体として広く利用することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a substituted or unsubstituted cyanobenzoic acid alkyl ester, particularly a cyanobenzoic acid alkyl ester represented by the general formula (3). Cyanobenzoic acid alkyl esters are useful as synthetic raw materials or intermediates for pharmaceuticals, agricultural chemicals and other organic chemicals.
[0002]
[Prior art]
As a method for producing cyanobenzoic acid alkyl ester, (1) a method in which a benzonitrile substituted with a halogen such as chlorobenzonitrile in JP-A No. 58-113145 is reacted with carbon monoxide and an alcohol using a catalyst. (2) Like methyl aminobenzoate reported in Bull. Chem. Soc. Jpn., 61, 6, 1985, (1988) and J. Org. Chem., 51, 24, 4714, (1986). There are reports on a method for producing an alkylated benzoic acid ester by a Sandmeyer reaction via a diazonium salt, and a method by a disproportionation reaction between a nitrile and an ester described in Japanese Patent Publication No. 41-18818. However, (1) and (2) are not industrially advantageous because it is difficult to obtain raw materials, and (3) is an industrially advantageous production of cyanobenzoic acid alkyl esters, such as harsh conditions required. What is the way to . Thus, an industrially advantageous method for producing an alkyl ester of cyanobenzoic acid has not been known so far, and further improvement is desired.
[0003]
[Problems to be solved by the invention]
An object of the present invention is to produce a cyanobenzoic acid alkyl ester represented by the general formula (3) from phthalonitrile, which is an industrially advantageously available raw material, in a highly selective and high yield by an industrially advantageous method. In particular, it is to produce an alkyl ester of m-cyanobenzoic acid or an alkyl ester of p-cyanobenzoic acid that is particularly useful as a pharmaceutical intermediate in a highly selective and high yield.
[0004]
[Means for Solving the Problems]
As a result of diligent investigations to solve the above-mentioned conventional problems, the present inventors have reacted a substituted or unsubstituted phthalonitrile and an aliphatic alcohol in the presence of an acid to selectively alkylate only one nitrile group. A method for producing a cyanobenzoic acid alkyl ester in a highly selective and high yield by converting it to an imino ether group and then reacting with water to convert only the alkyl imino ether group to an alkyl ester group was found. It came to be completed. The present invention relates to the production methods shown in the following (1) to (5).
[0005]
[1] From phthalonitrile which may have a substituent on the benzene ring to cyanobenzoic acid alkyl ester which may have a substituent on the benzene ring (3-cyano-2,4-dihalogeno-5-fluorobenzoic acid In the method for producing ( excluding an acid) , (a) a phthalonitrile which may have a substituent on a benzene ring and an aliphatic alcohol are reacted in the presence of an acid, so that only one nitrile group is an alkylimino ether. And a second reaction step in which only the alkyliminoether group is reacted with water to convert it to an alkyl ester group, and a substituent is present on the benzene ring. A method for producing an alkyl ester of cyanobenzoic acid (excluding 3-cyano-2,4-dihalogeno-5-fluorobenzoic acid) .
[2] A phthalonitrile which may have a substituent on the benzene ring is represented by the following general formula (1)
[Chemical 3]
Figure 0004207270
(In the formula, two nitrile groups are in the meta position or the para position, X represents a chlorine atom or a fluorine atom, and n represents an integer of 0 to 4. However, when n is 2 or more, X is the same. Or an aliphatic alcohol in the first reaction step represented by the following general formula (2):
ROH (2)
(Wherein R represents an alkyl group having 1 to 5 carbon atoms), and a cyanobenzoic acid alkyl ester which may have a substituent on the benzene ring is represented by the following general formula ( 3)
[Formula 4]
Figure 0004207270
(Wherein, X, n and R represent the same meaning as described above, and the —COOR group is in the meta position or the para position of the nitrile group), described in [1] above, which is a cyanobenzoic acid alkyl ester Of cyanobenzoic acid alkyl ester (excluding 3-cyano-2,4-dihalogeno-5-fluorobenzoic acid) which may have a substituent on the benzene ring.
[0006]
[3] The phthalonitrile represented by the general formula (1) is isophthalonitrile or terephthalonitrile, and the cyanobenzoic acid alkyl ester represented by the general formula (3) is m- or p-cyanobenzoic acid alkyl ester. The manufacturing method of the cyanobenzoic acid alkylester (except 3-cyano-2,4-dihalogeno-5-fluorobenzoic acid) which may have a substituent on the benzene ring as described in said [2] .
[4] The alkyl cyanobenzoate which may have a substituent on the benzene ring according to any one of the above [2] to [3] , wherein the aliphatic alcohol represented by the general formula (2) is methanol or ethanol A method for producing an ester (excluding 3-cyano-2,4-dihalogeno-5-fluorobenzoic acid) .
[5] The benzene according to any one of the above [1] to [4] , wherein phthalonitrile which may have a substituent on the unreacted benzene ring is recovered and reused as a raw material again A method for producing a cyanobenzoic acid alkyl ester (excluding 3-cyano-2,4-dihalogeno-5-fluorobenzoic acid) which may have a substituent on the ring.
[0007]
That is, the present invention mixes a substituted or unsubstituted phthalonitrile and an aliphatic alcohol, stirs under cooling or heating, and converts a single nitrile group selectively into an alkyliminoether group in a preferable amount. In the reaction solution, or after separation of the alkyliminoether, a two-step reaction in which water is added followed by obtaining a substituted or unsubstituted cyanobenzoic acid alkyl ester with high selectivity and high yield.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be described below.
The present invention converts a substituted or unsubstituted phthalonitrile, preferably a phthalonitrile represented by the general formula (1) and an aliphatic alcohol represented by the general formula (2) into only one nitrile group to an alkylimino ether group. The following general formula (4) obtained by adding a preferred amount of acid and reacting
[Chemical formula 5]
Figure 0004207270
(Wherein X, n and R represent the same meaning as described above, and the alkyliminoether group is in the meta position or para position of the nitrile group) Alternatively, there is provided a method for producing a cyanobenzoic acid alkyl ester represented by the general formula (3) by adding water after taking out the produced alkyliminoether or a salt thereof.
[0009]
The present invention will be described in further detail.
First, as the phthalonitrile used in the present invention, substituted or unsubstituted phthalonitrile can be used. The unsubstituted phthalonitrile is preferably exemplified by isophthalonitrile or terephthalonitrile. As the substituted phthalonitrile, phthalonitrile having an inert substituent can be used in the reaction of the present invention. For example, a halogen atom, an alkyl group, an aryl group, an aralkyl group, an alkoxy group, an aryloxy group, an aralkyloxy group can be used. Examples thereof include phthalonitrile substituted with 1 to 4 groups. When two or more are substituted, the same or different substituents may be used.
[0010]
The phthalonitrile substituted with a halogen atom will be described. Chlorinated phthalonitrile compounds such as tetrachloroisophthalonitrile and tetrachloroterephthalonitrile can be produced by chlorination reaction of isophthalonitrile and terephthalonitrile. Fluorinated phthalonitrile compounds such as tetrafluoroisophthalonitrile and tetrafluoroterephthalonitrile are fluorinated reactions of chlorinated isophthalonitrile compounds such as tetrachloroisophthalonitrile and chlorinated terephthalonitrile compounds such as tetrachloroterephthalonitrile. It is obtained by.
[0011]
As the reaction solvent, an aliphatic alcohol having 1 to 5 carbon atoms and having an alkyl group of the alkyl ester is used. Examples of the aliphatic alcohol having an alkyl group having 1 to 5 carbon atoms include methanol, ethanol, n-propanol, n-butanol, n-pentanol, isopropanol, isobutanol, sec-butanol, tert-butanol, and isoamyl alcohol. Active amyl alcohol, neopentyl alcohol and the like, and methanol or ethanol is particularly preferable.
[0012]
The first reaction step can be carried out at normal pressure or optionally under pressure.
The reaction temperature in the first reaction step is not particularly limited, but is preferably in the range of 0 ° C to 200 ° C. When the reaction temperature is low, the reaction is slow, and since the solubility of phthalonitrile in aliphatic alcohol is low, the reaction time is considerably long, which is not preferable. When the reaction temperature is high, the produced alkylimino ether decomposes and yields. The reaction under pressure becomes high temperature and pressure and requires a special reaction vessel.
[0013]
The reaction time of the first reaction step is 10 minutes to 48 hours, preferably 1 to 24 hours. However, the reaction time is adjusted in a timely manner depending on the aliphatic alcohol used. When the reaction time is short, the conversion rate of phthalonitrile is low, and when the reaction time is long, there is a problem in terms of yield reduction or productivity.
[0014]
Examples of the acid used in the reaction for converting the nitrile group to the alkyliminoether group in the first reaction step include mineral acids such as hydrochloric acid, sulfuric acid, nitric acid and phosphoric acid, organic acids such as formic acid and acetic acid, and first chloride. Examples include Lewis acids such as iron, ferric chloride, stannous chloride, and aluminum chloride. Preferably, hydrogen chloride and concentrated sulfuric acid are used. These acids may be used alone or in combination of two or more at any ratio.
The amount of acid to be added is 0.1 to 5.0 mol, preferably 0.8 to 3 mol per mol of phthalonitrile. If the amount of the acid is decreased, the reactivity is deteriorated and the yield is lowered. On the other hand, if the amount is too large, two nitrile groups of phthalonitrile are both converted into alkyliminoether groups, and the yield is lowered.
[0015]
In the second reaction step, a cyanobenzoic acid alkyl ester is synthesized simply by adding water to the aliphatic alcohol solution of the alkylimino ether or salt thereof produced in the first reaction step. Alternatively, the alkyliminoether produced in the first reaction step or a salt thereof can be taken out and reacted with water to synthesize cyanobenzoic acid alkyl ester. In any case, the added water is mixed in an amount of 0.8 mol to 20 mol with respect to the alkylimino ether or a salt thereof. When the amount of water added is small, the amount converted to an alkyl ester group is small and the yield is low, and when it is large, cyanobenzoic acid alkyl ester is also precipitated, making it difficult to separate from the unreacted phthalonitrile compound. . Further, water may be added to the reaction solution or the reaction solution may be added to water.
[0016]
Unreacted phthalonitrile compounds can be recovered by filtration and reused in the reaction, taking advantage of their considerably lower solubility in aliphatic alcohols than the alkylimino ethers or salts thereof produced in the first reaction step. is there. In addition, since cyanobenzoic acid alkyl ester is also more soluble in aliphatic alcohol than phthalonitrile compound, water is added to the alkylimino ether or salt thereof produced in the first reaction step to obtain cyanobenzoic acid alkyl ester. The post phthalonitrile compound may be filtered off.
[0017]
After completion of the second reaction step, the unreacted phthalonitrile compound is filtered off, and the filtrate is cooled or concentrated to obtain a crude cyanobenzoic acid alkyl ester. The obtained filtrate may be neutralized with an alkali, and the alkali used for neutralization is an alkali metal hydroxide such as lithium hydroxide, sodium hydroxide, potassium hydroxide, rubidium hydroxide; sodium carbonate, potassium carbonate Alkali metal carbonates such as trisodium phosphate, sodium pyrophosphate, tripotassium phosphate, etc .; alkaline earth metal hydroxides such as beryllium hydroxide, calcium hydroxide and magnesium hydroxide Products, ammonia, amines such as triethylamine, etc., and these may be used alone or in combination of two or more in any proportion.
[0018]
Further, after completion of the second reaction step, the unreacted phthalonitrile compound is filtered off, the filtrate is extracted using an organic solvent, and concentrated to separate crystals of alkyl cyanobenzoate. As the organic solvent used for extraction, for example, hydrocarbon solvents such as toluene and xylene, halogen solvents such as dichloromethane and chloroform, ether solvents such as diethyl ether, and ester solvents such as ethyl acetate can be used. . If necessary, purification is performed by, for example, recrystallization using the same aliphatic alcohol aqueous solution or vacuum distillation. Trace amounts of unreacted phthalonitrile can also be removed by adsorption with activated carbon.
[0019]
【Example】
Hereinafter, the present invention will be described in more detail using examples, but the present invention is not limited to these examples.
Example 1
12.8 g of terephthalonitrile, 10.3 g of 95% sulfuric acid, and 72.5 g of ethanol were placed in a glass autoclave and reacted at 130 ° C. for 6 hours. After cooling, 9 g of water was added to the reaction solution and analyzed by gas chromatography to confirm that ethyl p-cyanobenzoate was obtained with a yield of 33% and a selectivity of 83%.
[0020]
(Example 2)
12.8 g of terephthalonitrile, 2.24 L of hydrogen chloride gas, and 72.5 g of ethanol were placed in a glass autoclave and reacted at 130 ° C. for 6 hours. After cooling, 9 g of water was added to the reaction solution, and analysis by gas chromatography confirmed that ethyl p-cyanobenzoate was obtained with a yield of 30% and a selectivity of 96%.
[0021]
(Example 3)
12.8 g of terephthalonitrile, 2.24 L of hydrogen chloride gas, and 72.5 g of methanol were placed in a glass autoclave and reacted at 130 ° C. for 7 hours. After cooling, 9 g of water was added to the reaction solution, and analysis by gas chromatography confirmed that methyl p-cyanobenzoate was obtained with a yield of 40% and a selectivity of 91%.
[0022]
(Experimental example 4)
12.8 g of isophthalonitrile, 2.24 L of hydrogen chloride gas, and 72.5 g of methanol were placed in a glass autoclave and reacted at 130 ° C. for 7 hours. After cooling, 9 g of water was added to the reaction solution, and analysis by gas chromatography confirmed that methyl m-cyanobenzoate was obtained with a yield of 38% and a selectivity of 83%.
[0023]
(Example 5)
The reaction was carried out in the same manner as in Example 1, and the terephthalonitrile precipitated before the addition of water was collected by filtration and used for the reaction. On the other hand, water was added to the filtrate to extract ethyl p-cyanobenzoate. This operation was repeated twice. As a result, ethyl p-cyanobenzoate was obtained with a yield of 76% based on the raw material terephthalonitrile (purity 96%).
[0024]
(Example 6)
The reaction was carried out in the same manner as in Example 3, and after cooling, 1.8 g of water was added to the reaction solution, and then the insoluble terephthalonitrile was filtered and recovered and used again for the reaction twice. When each filtrate was collected and ethyl p-cyanobenzoate was recovered, 12.9 g of ethyl p-cyanobenzoate having a purity of 94% was obtained (yield 75%-based on raw terephthalonitrile).
[0025]
(Example 7)
26.6 g of tetrachloroterephthalonitrile, 2.24 L of hydrogen chloride gas, and 145 g of methanol were placed in a glass autoclave and reacted at 140 ° C. for 6 hours. After cooling, 18 g of water is added to the reaction solution and analyzed by gas chromatography to obtain methyl 2,3,5,6-tetrachloro-4-cyanobenzoate at a yield of 28% and a selectivity of 75%. It was confirmed.
[0026]
【The invention's effect】
According to the present invention, a cyanobenzoic acid alkyl ester can be synthesized with good selectivity under mild conditions using a phthalonitrile compound that is easily available and relatively inexpensive. Cyanobenzoic acid alkyl esters can be widely used as synthetic raw materials or intermediates for pharmaceuticals, agricultural chemicals and other organic chemicals.

Claims (5)

ベンゼン環上に置換基を有してもよいフタロニトリルからベンゼン環上に置換基を有してもよいシアノ安息香酸アルキルエステル(3−シアノ−2,4−ジハロゲノ−5−フルオロ安息香酸を除く。)を製造する方法において、(a)ベンゼン環上に置換基を有してもよいフタロニトリルと脂肪族アルコールを酸の存在下反応させて1個のニトリル基のみをアルキルイミノエーテル基に変換する第1反応工程と、(b)該アルキルイミノエーテル基のみを水と反応させてアルキルエステル基に変換する第2反応工程からなることを特徴とするベンゼン環上に置換基を有してもよいシアノ安息香酸アルキルエステル(3−シアノ−2,4−ジハロゲノ−5−フルオロ安息香酸を除く。)の製造方法。Cyanobenzoic acid alkyl ester (excluding 3-cyano-2,4-dihalogeno-5-fluorobenzoic acid ) which may have a substituent on the benzene ring from phthalonitrile which may have a substituent on the benzene ring In the method for producing (a), (a) phthalonitrile which may have a substituent on the benzene ring and an aliphatic alcohol are reacted in the presence of an acid to convert only one nitrile group into an alkyliminoether group. And (b) a second reaction step in which only the alkyliminoether group is reacted with water to convert it to an alkyl ester group. A method for producing a good alkyl cyanobenzoate (excluding 3-cyano-2,4-dihalogeno-5-fluorobenzoic acid) . ベンゼン環上に置換基を有してもよいフタロニトリルが下記一般式(1)
Figure 0004207270
(式中、2つのニトリル基は互いにメタ位またはパラ位にあり、Xは塩素原子またはフッ素原子を表わし、nは0〜4の整数を表わす。ただし、nが2以上の場合、Xは同一であっても異なっていてもよい。)で示されるフタロニトリルであり、第1反応工程における脂肪族アルコールが下記一般式(2)
ROH (2)
(式中、Rは炭素数が1〜5のアルキル基を表わす。)で示される脂肪族アルコールであり、ベンゼン環上に置換基を有してもよいシアノ安息香酸アルキルエステルが下記一般式(3)
Figure 0004207270
(式中、X、nおよびRは前記と同様の意味を表わし、−COOR基はニトリル基のメタ位またはパラ位にある。)で示されるシアノ安息香酸アルキルエステルである請求項1に記載のベンゼン環上に置換基を有してもよいシアノ安息香酸アルキルエステル(3−シアノ−2,4−ジハロゲノ−5−フルオロ安息香酸を除く。)の製造方法。
The phthalonitrile which may have a substituent on the benzene ring is represented by the following general formula (1)
Figure 0004207270
(In the formula, two nitrile groups are in the meta position or the para position, X represents a chlorine atom or a fluorine atom, and n represents an integer of 0 to 4. However, when n is 2 or more, X is the same. Or an aliphatic alcohol in the first reaction step represented by the following general formula (2):
ROH (2)
(Wherein R represents an alkyl group having 1 to 5 carbon atoms), and a cyanobenzoic acid alkyl ester which may have a substituent on the benzene ring is represented by the following general formula ( 3)
Figure 0004207270
The cyanobenzoic acid alkyl ester represented by the formula (wherein X, n and R represent the same meaning as described above, and the -COOR group is in the meta position or para position of the nitrile group). A method for producing a cyanobenzoic acid alkyl ester (excluding 3-cyano-2,4-dihalogeno-5-fluorobenzoic acid) which may have a substituent on the benzene ring.
一般式(1)で示されるフタロニトリルがイソフタロニトリルまたはテレフタロニトリルであり、一般式(3)で示されるシアノ安息香酸アルキルエステルがm−またはp−シアノ安息香酸アルキルエステルである請求項2に記載のベンゼン環上に置換基を有してもよいシアノ安息香酸アルキルエステル(3−シアノ−2,4−ジハロゲノ−5−フルオロ安息香酸を除く。)の製造方法。Phthalonitrile represented by the general formula (1) is isophthalonitrile or terephthalonitrile, claim 2 cyanobenzoic acid alkyl ester represented by the general formula (3) is m- or p- cyanobenzoic acid alkyl ester The manufacturing method of the cyanobenzoic acid alkylester (except 3-cyano-2,4-dihalogeno-5-fluorobenzoic acid) which may have a substituent on the benzene ring of description. 一般式(2)で示される脂肪族アルコールがメタノールまたはエタノールである請求項乃至3のいずれかに記載のベンゼン環上に置換基を有してもよいシアノ安息香酸アルキルエステル(3−シアノ−2,4−ジハロゲノ−5−フルオロ安息香酸を除く。)の製造方法。4. The cyanobenzoic acid alkyl ester (3-cyano- ) optionally having a substituent on the benzene ring according to any one of claims 2 to 3, wherein the aliphatic alcohol represented by the general formula (2) is methanol or ethanol. 2,4-dihalogeno-5-fluorobenzoic acid is excluded.) . 未反応のベンゼン環上に置換基を有してもよいフタロニトリルを回収し、再び原料として再使用することを特徴とする請求項1乃至4のいずれかに記載のベンゼン環上に置換基を有してもよいシアノ安息香酸アルキルエステル(3−シアノ−2,4−ジ ハロゲノ−5−フルオロ安息香酸を除く。)の製造方法。The phthalonitrile optionally having a substituent on the unreacted benzene ring is recovered and reused as a raw material again. The substituent on the benzene ring according to any one of claims 1 to 4, (excluding 3-cyano-2,4-halogeno-5-fluorobenzoic acid.) has also good cyanobenzoic acid alkyl ester production process of.
JP30296198A 1998-09-24 1998-10-23 Method for producing alkyl cyanobenzoate Expired - Fee Related JP4207270B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP30296198A JP4207270B2 (en) 1998-10-23 1998-10-23 Method for producing alkyl cyanobenzoate
DE69934034T DE69934034T2 (en) 1998-09-24 1999-09-23 Process for the preparation of derivatives of cyanobenzoic acid
EP04022598A EP1508567B1 (en) 1998-09-24 1999-09-23 Process for producing cyanobenzoic acid derivatives
AT04022599T ATE345325T1 (en) 1998-09-24 1999-09-23 METHOD FOR PRODUCING CYANOBENZOIC ACID DERIVATIVES
EP04022599A EP1514866B1 (en) 1998-09-24 1999-09-23 Process for producing cyanobenzoic acid derivatives
EP99118800A EP0989115A3 (en) 1998-09-24 1999-09-23 Process for producing cyanobenzoic acid derivatives
DE69934033T DE69934033T2 (en) 1998-09-24 1999-09-23 Process for the preparation of derivatives of cyanobenzoic acid
AT04022598T ATE345324T1 (en) 1998-09-24 1999-09-23 METHOD FOR PRODUCING CYANOBENZOIC ACID DERIVATIVES
US09/404,362 US6433211B1 (en) 1998-09-24 1999-09-24 Process for producing cyanobenzoic acid derivatives

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30296198A JP4207270B2 (en) 1998-10-23 1998-10-23 Method for producing alkyl cyanobenzoate

Publications (2)

Publication Number Publication Date
JP2000128845A JP2000128845A (en) 2000-05-09
JP4207270B2 true JP4207270B2 (en) 2009-01-14

Family

ID=17915245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30296198A Expired - Fee Related JP4207270B2 (en) 1998-09-24 1998-10-23 Method for producing alkyl cyanobenzoate

Country Status (1)

Country Link
JP (1) JP4207270B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110818591A (en) * 2019-11-15 2020-02-21 彩客化学(沧州)有限公司 Preparation method of methyl 3,4,5, 6-tetrachloro-2-cyanobenzoate

Also Published As

Publication number Publication date
JP2000128845A (en) 2000-05-09

Similar Documents

Publication Publication Date Title
EP2462098B1 (en) Process for the preparation of derivatives of 1-(2-halobiphenyl-4-yl)-cyclopropanecarboxylic acid
JPH10279506A (en) Production of bishydroxymethyl compound
JP2011523953A (en) Process for preparing derivatives of 1- (2-halobiphenyl-4-yl) -cyclopropanecarboxylic acid
JP4207270B2 (en) Method for producing alkyl cyanobenzoate
EP0055630B1 (en) Method for the preparation of fluorophthalamic compounds
US6849762B2 (en) Process for preparing a trifluoroethoxy-substituted benzoic acid
US7141693B2 (en) Process for producing β-oxonitrile compound or alkali metal salt thereof
US6307091B1 (en) Trifluoro-substituted benzoic acid, esters thereof and processes for preparing the same
US4374266A (en) Ammonium salts of fluorophthalamic acids and method of preparation
JP4032861B2 (en) Process for producing β-oxonitrile derivative or alkali metal salt thereof
JP4239251B2 (en) Method for producing alkyl cyanobenzoate
JP3907787B2 (en) Method for producing benzoic acid derivative
JPH0478638B2 (en)
JP2000128844A (en) Production of cyanobenzoic acid alkyl ester
JP2000086610A (en) Production of cyanobenzamide
KR100730766B1 (en) New method for preparing biphenylacetic acid
JPS6140222B2 (en)
JPH0841005A (en) Production of 4-fluoroalkoxycynnamonitrile compound
JP3539153B2 (en) Production method of cytosine
JP3155909B2 (en) Method for producing 1,3-dialkyl-2-imidazolidinones
JPH0551584B2 (en)
JP2964160B2 (en) Method for isolating cyclopropanecarboxylic acid and method for producing intermediate thereof
JP3184745B2 (en) Bisurea compound and method for producing the same
JP2000327652A (en) Phthalonitrile derivative and its production
JP2000327629A (en) Phenylacetic acid derivative, benzonitrile derivative and production thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051007

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080729

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080930

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081013

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141031

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees