【0001】
【発明の属する技術分野】
本発明は医薬、農薬等の中間体として有用なフェニルアルコキシ安息香酸誘導体の改良された製造方法に関する。
【0002】
【従来の技術】
本発明の上記フェニルアルコキシ安息香酸誘導体は、例えば特開平3−95144号公報、特開平7−25819号公報に記載された公知の化合物である。
【0003】
【発明が解決しようとする課題】
前者の方法では高価な溶媒やナトリウムメトキシドのような反応性の高い試薬を用い、しかも精製方法も複雑であるという問題点があった。
後者の方法はフェニルアルキルハライド誘導体とヒドロキシ安息香酸エステル誘導体を、塩基性物質の存在下、反応させ、反応混合物にアルカリ水溶液を加えて加水分解する方法であり、反応の際の溶媒としては非プロトン性極性溶媒等の反応に不活性な溶媒を用い、またアルカリ水溶液との反応終了後は水を加えて抽出し、得られた水層を有機溶媒で洗浄した後に酸を加えて中和するが、この酸析の際に発泡が激しく起こるので、反応器の容積を十分に利用することができないという欠点があった。
本発明の課題は抽出操作が不要で、酸析の際に発泡が起こらず、有機溶媒で洗浄しなくても目的物を高純度かつ高収率で得ることのできる工業的に有利な且つ経済的にも有利なフェニルアルコキシ安息香酸誘導体の製造方法を提供することにある。
【0004】
【課題を解決するための手段】
本発明は一般式(1)で表されるフェニルアルキルハライド誘導体に一般式(2)で表されるヒドロキシ安息香酸エステル誘導体を、炭酸アルカリ又は炭酸水素アルカリの存在下、イソプロピルアルコール溶媒中、反応させ、反応終了後イソプロピルアルコールを除去して得られた水相と有機層を分液して水相を除き、有機層に水及びアルカリを加えて加水分解を行って一般式(3)で表される安息香酸誘導体を得ることを特徴とする安息香酸誘導体の製造方法に係る。
【0005】
【化4】
(式中、Aは炭素数2〜5のアルキレン基、Xはハロゲンを示す。)
【0006】
【化5】
(式中、Rは炭素数1〜6のアルキル基を示す。)
【0007】
【化6】
(式中、Aは上記に同じ。)
【0008】
【発明の実施の形態】
本発明の出発原料の一般式(1)のフェニルアルキルハライド誘導体において、Aで示される炭素数2〜5のアルキレン基としては、例えばエチレン、プロピレン、ブチレン、ペンチレン基を挙げることができる。Xで示されるハロゲンとしては、例えば塩素、臭素、ヨウ素等を挙げることができる。
一般式(1)の化合物の例として、例えば1−ブロモ−4−フェニルエタン、1−ブロモ−4−フェニルプロパン、1−ブロモ−4−フェニルブタン、1−ブロモ−4−フェニルペンタン、これらのブロモ基が塩素基、ヨウ素基に置換したもの等を挙げることができる。
一般式(1)のフェニルアルキルハライド誘導体は特開平3−95144号、特開平7−25819号に記載された公知の化合物であり、入手容易な化合物である。
【0009】
本発明のもう一方の出発原料の一般式(2)のヒドロキシ安息香酸エステル誘導体において、Rで示される炭素数1〜6のアルキルとしてはメチル、エチル、プロピル、ブチル、ペンチル、ヘキシル基を挙げることができる。
一般式(2)の化合物の例として、例えばo,mまたはp−ヒドロキシ安息香酸メチル、o,mまたはp−ヒドロキシ安息香酸エチル、o,mまたはp−ヒドロキシ安息香酸プロピル、o,mまたはp−ヒドロキシ安息香酸ブチル、o,mまたはp−ヒドロキシ安息香酸ペンチル、o,mまたはp−ヒドロキシ安息香酸ヘキシルを挙げることができる。一般式(2)のヒドロキシ安息香酸エステル誘導体も特開平3−95144号、特開平7−25819号に記載された公知の化合物であり、入手容易な化合物である。
【0010】
次に式(1)のフェニルアルキルハライド誘導体と式(2)のヒドロキシ安息香酸エステル誘導体を、炭酸アルカリ又は炭酸水素アルカリの存在下、イソプロピルアルコール溶媒中、反応させ、反応終了後イソプロピルアルコールを除去して得られた水相と有機層を分液して水相を除き、有機層に水及びアルカリを加えて加水分解を行うことにより一般式(3)で表されるフェニルアルコキシ安息香酸誘導体を得ることができる。
炭酸アルカリとしては、例えば炭酸ナトリウム、炭酸カリウム等、炭酸水素アルカリとしては、例えば炭酸水素ナトリウム、炭酸水素カリウム等を挙げることができる。これらの中、特に炭酸カリウムが好ましい。炭酸アルカリ又は炭酸水素アルカリの使用量は通常化合物(1)の1モルに対して1〜5モル程度、好ましくは2〜3モル程度とするのが良い。
【0011】
溶媒としてはイソプロパノールを使用する。イソプロパノール以外の、例えばメタノールを使用すると得られるフェニルアルコキシ安息香酸誘導体の純度が低く、このような低い純度のものを用いると、次工程の化合物の合格品が得られず、ひいては最終製品の合格品が得られず、実用上使用できない。
反応は常圧、加圧又は減圧下に、通常10℃〜還流温度、好ましくは60℃〜還流温度の範囲で、約1〜30時間、好ましくは6〜23時間行うのが好ましい。反応終了後イソプロピルアルコールを除去して得られた水相と有機層を分液して水相を除き、有機層に水及びアルカリを加えて加水分解を行う。このようにアルキル化反応の終了後に、溶媒のイソプロパノールを除去することにより、次の工程のアルカリ化合物の使用量を少なくすることができる。またこの本発明の方法では抽出操作が不要で、酸析の際に発泡が起こらず、有機溶媒で洗浄しなくても目的物を高純度かつ高収率で得ることができる。
【0012】
アルカリ化合物としては例えば水酸化ナトリウム、水酸化カリウム等の無機塩基、ナトリウムメトキシド、ナトリウムエトキシド等の有機塩基を挙げることができる。アルカリ化合物の使用量は通常化合物(1)の1モルに対して1〜5モル程度、好ましくは2〜3モル程度とするのが良い。加水分解反応は通常10〜80℃、好ましくは20〜60℃の温度で、約1〜30時間、好ましくは6〜23時間行うのが好ましい。
加水分解終了後は、酸を加えて液性を弱酸性にして目的の一般式(3)で表されるフェニルアルコキシ安息香酸誘導体の結晶を得る。酸としては、塩酸、硫酸等を挙げることができる。
【0013】
本発明では上記で得られた一般式(3)のフェニルアルコキシ安息香酸誘導体は通常の単離、精製方法により分離することができ、例えば濾過、抽出、濃縮、冷却晶析、貧溶解度溶媒添加による結晶化、クロマトグラフィー等を挙げることができる。
【0014】
【実施例】
以下に参考例、実施例及び比較例を挙げて説明する。
実施例1
1Lのフラスコに、イソプロパノール450ml、p−ヒドロキシ安息香酸メチル79.5g、1−ブロモ−4−フェニルブタン105.0g及び無水炭酸カリウム100.0gを加えて、還流下、20時間反応させる。高速液体クロマトグラフィーにて、反応終点を確認後、水300mlを加え、反応混合液を加熱し、イソプロパノールを回収する。回収後、反応混合物は水層と有機層の2層に分液するので、下層の水層を除く。この有機層に、水500ml、水酸化ナトリウム40.8gを加え、100℃で1時間反応させる。反応終了後、室温まで冷却し、濃塩酸116mlを加え、液性を弱酸性pH4にし、析出した結晶を濾取して、4−(4−フェニルブトキシ)安息香酸128.2g、融点129.2〜130.6℃(収率96.4%)を得た。
【0015】
比較例1
1Lのフラスコに、メタノール450ml、p−ヒドロキシ安息香酸メチル79.5g、1−ブロモ−4−フェニルブタン105.0g及び無水炭酸カリウム100.0gを加えて、還流下、20時間反応させる。高速液体クロマトグラフィーにて、反応終点を確認後、水300mlを加え、反応混合液を加熱し、メタノールを回収する。回収後、反応混合物は水層と有機層の2層に分液するので、下層の水層を除く。この有機層に、水450ml、水酸化ナトリウム40.8gを加え、100℃で1時間反応させる。反応終了後、室温まで冷却し、濃塩酸120mlを加え、液性を弱酸性pH4にし、析出した結晶を濾取して、4−(4−フェニルブトキシ)安息香酸121.2g、融点123.4〜127.7℃(収率91.0%)を得た。融点が実施例1のものより低いことから純度が低いことが判る。
【0016】
比較例2
1Lのフラスコに、イソプロパノール450ml、p−ヒドロキシ安息香酸メチル79.5g、1−ブロモ−4−フェニルブタン105.0g及び無水炭酸カリウム100.0gを加えて、還流下、20時間反応させる。高速液体クロマトグラフィーにて、反応終点を確認後、水240ml、水酸化ナトリウム58.5gを加え、還流下、1時間反応させる。反応終了後、室温まで冷却し、濃塩酸180mlを加え、液性を弱酸性pH4にした。この酸析時、発泡が激しいため、3Lのフラスコに反応液を移動した。析出した結晶を濾取して、4−(4−フェニルブトキシ)安息香酸125.1g、融点128.5〜130.0℃(収率95.2%)を得た。
【0017】
参考例1
実施例1で得られた4−(4−フェニルブトキシ)安息香酸を出発原料として、以下、例えば特開平3−95144号公報の参考例11〜16に準じて8−[4−(4−フェニルブトキシ)ベンゾイル]アミノ−2−(5−テトラゾリル)−4−オキソ−4H−1−ベンゾピラン(プランルカスト、抗喘息薬)を合成することができる。
【0018】
【発明の効果】
本発明の方法によれば、抽出操作が不要で、酸析の際に発泡が起こらず、有機溶媒で洗浄しなくても目的物を高純度かつ高収率で得ることのできる工業的に有利な且つ経済的にも有利なフェニルアルコキシ安息香酸誘導体の製造方法を提供することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an improved process for producing phenylalkoxybenzoic acid derivatives useful as intermediates for pharmaceuticals, agricultural chemicals and the like.
[0002]
[Prior art]
The phenylalkoxybenzoic acid derivatives of the present invention are known compounds described in, for example, JP-A-3-95144 and JP-A-7-25819.
[0003]
[Problems to be solved by the invention]
The former method has a problem in that an expensive solvent and a highly reactive reagent such as sodium methoxide are used, and the purification method is complicated.
The latter method is a method in which a phenylalkyl halide derivative and a hydroxybenzoic acid ester derivative are reacted in the presence of a basic substance and hydrolyzed by adding an alkaline aqueous solution to the reaction mixture. An inert solvent such as a polar solvent is used, and after completion of the reaction with the alkaline aqueous solution, water is added for extraction, and the resulting aqueous layer is washed with an organic solvent and then neutralized with an acid. However, since foaming occurs vigorously during this acid precipitation, there is a drawback that the volume of the reactor cannot be fully utilized.
An object of the present invention is an industrially advantageous and economical method that does not require extraction operation, does not cause foaming during acid precipitation, and can obtain the target product in high purity and high yield without washing with an organic solvent. It is another object of the present invention to provide a method for producing a phenylalkoxybenzoic acid derivative that is advantageous.
[0004]
[Means for Solving the Problems]
In the present invention, the phenylbenzoic acid ester derivative represented by the general formula (2) is reacted with the phenylalkyl halide derivative represented by the general formula (1) in an isopropyl alcohol solvent in the presence of an alkali carbonate or an alkali hydrogen carbonate. After completion of the reaction, the aqueous phase obtained by removing isopropyl alcohol and the organic layer are separated, the aqueous phase is removed, water and alkali are added to the organic layer, and hydrolysis is performed. The present invention relates to a method for producing a benzoic acid derivative characterized in that a benzoic acid derivative is obtained.
[0005]
[Formula 4]
(In the formula, A represents an alkylene group having 2 to 5 carbon atoms, and X represents halogen.)
[0006]
[Chemical formula 5]
(In the formula, R represents an alkyl group having 1 to 6 carbon atoms.)
[0007]
[Chemical 6]
(In the formula, A is the same as above.)
[0008]
DETAILED DESCRIPTION OF THE INVENTION
In the phenylalkyl halide derivative of the general formula (1) as a starting material of the present invention, examples of the alkylene group having 2 to 5 carbon atoms represented by A include ethylene, propylene, butylene, and pentylene groups. Examples of the halogen represented by X include chlorine, bromine and iodine.
Examples of the compound of the general formula (1) include 1-bromo-4-phenylethane, 1-bromo-4-phenylpropane, 1-bromo-4-phenylbutane, 1-bromo-4-phenylpentane, Examples include those in which a bromo group is substituted with a chlorine group or an iodine group.
The phenylalkyl halide derivatives of the general formula (1) are known compounds described in JP-A-3-95144 and JP-A-7-25819, and are readily available.
[0009]
In the hydroxybenzoic acid ester derivative of the general formula (2) as another starting material of the present invention, examples of the alkyl having 1 to 6 carbon atoms represented by R include methyl, ethyl, propyl, butyl, pentyl and hexyl groups. Can do.
Examples of compounds of general formula (2) include, for example, methyl o, m or p-hydroxybenzoate, o, m or ethyl p-hydroxybenzoate, o, m or propyl p-hydroxybenzoate, o, m or p Mention may be made of butyl hydroxybenzoate, pentyl o, m or p-hydroxybenzoate, hexyl o, m or p-hydroxybenzoate. The hydroxybenzoic acid ester derivatives of the general formula (2) are also known compounds described in JP-A-3-95144 and JP-A-7-25819, and are readily available compounds.
[0010]
Next, the phenylalkyl halide derivative of the formula (1) and the hydroxybenzoic acid ester derivative of the formula (2) are reacted in an isopropyl alcohol solvent in the presence of an alkali carbonate or an alkali hydrogen carbonate, and after completion of the reaction, the isopropyl alcohol is removed. The aqueous phase and organic layer thus obtained are separated, the aqueous phase is removed, and water and alkali are added to the organic layer for hydrolysis to obtain a phenylalkoxybenzoic acid derivative represented by the general formula (3). be able to.
Examples of the alkali carbonate include sodium carbonate and potassium carbonate. Examples of the alkali hydrogen carbonate include sodium hydrogen carbonate and potassium hydrogen carbonate. Of these, potassium carbonate is particularly preferred. The amount of alkali carbonate or alkali hydrogen carbonate used is usually about 1 to 5 mol, preferably about 2 to 3 mol, relative to 1 mol of compound (1).
[0011]
Isopropanol is used as the solvent. The purity of a phenylalkoxybenzoic acid derivative other than isopropanol, for example, obtained by using methanol is low, and if such a low purity is used, a pass product of the compound in the next step cannot be obtained, and thus a pass product of the final product. Cannot be obtained and cannot be used practically.
The reaction is preferably carried out under normal pressure, increased pressure or reduced pressure, usually in the range of 10 ° C. to reflux temperature, preferably 60 ° C. to reflux temperature for about 1 to 30 hours, preferably 6 to 23 hours. After completion of the reaction, the aqueous phase obtained by removing isopropyl alcohol and the organic layer are separated to remove the aqueous phase, and water and alkali are added to the organic layer for hydrolysis. Thus, after the completion of the alkylation reaction, the amount of the alkali compound used in the next step can be reduced by removing the solvent isopropanol. Further, in the method of the present invention, no extraction operation is required, foaming does not occur during acid precipitation, and the target product can be obtained with high purity and high yield without washing with an organic solvent.
[0012]
Examples of the alkali compound include inorganic bases such as sodium hydroxide and potassium hydroxide, and organic bases such as sodium methoxide and sodium ethoxide. The amount of the alkali compound used is usually about 1 to 5 mol, preferably about 2 to 3 mol, per 1 mol of the compound (1). The hydrolysis reaction is usually carried out at a temperature of 10 to 80 ° C., preferably 20 to 60 ° C., for about 1 to 30 hours, preferably 6 to 23 hours.
After completion of the hydrolysis, an acid is added to make the liquid weakly acidic to obtain a target phenylalkoxybenzoic acid derivative crystal represented by the general formula (3). Examples of the acid include hydrochloric acid and sulfuric acid.
[0013]
In the present invention, the phenylalkoxybenzoic acid derivative of the general formula (3) obtained above can be separated by ordinary isolation and purification methods, such as filtration, extraction, concentration, cooling crystallization, and addition of poor solubility solvent. Examples thereof include crystallization and chromatography.
[0014]
【Example】
A description will be given below with reference examples, examples and comparative examples.
Example 1
To a 1 L flask, 450 ml of isopropanol, 79.5 g of methyl p-hydroxybenzoate, 105.0 g of 1-bromo-4-phenylbutane and 100.0 g of anhydrous potassium carbonate are added and reacted for 20 hours under reflux. After confirming the end point of the reaction by high performance liquid chromatography, 300 ml of water is added, the reaction mixture is heated, and isopropanol is recovered. After the recovery, the reaction mixture is separated into two layers, an aqueous layer and an organic layer, and the lower aqueous layer is removed. To this organic layer, 500 ml of water and 40.8 g of sodium hydroxide are added and reacted at 100 ° C. for 1 hour. After completion of the reaction, the reaction mixture was cooled to room temperature, 116 ml of concentrated hydrochloric acid was added to make the liquid weakly acidic pH 4 and the precipitated crystals were collected by filtration to give 128.2 g of 4- (4-phenylbutoxy) benzoic acid, melting point 129.2. ˜130.6 ° C. (96.4% yield) was obtained.
[0015]
Comparative Example 1
To a 1 L flask, 450 ml of methanol, 79.5 g of methyl p-hydroxybenzoate, 105.0 g of 1-bromo-4-phenylbutane and 100.0 g of anhydrous potassium carbonate are added and reacted for 20 hours under reflux. After confirming the end point of the reaction by high performance liquid chromatography, 300 ml of water is added, the reaction mixture is heated, and methanol is recovered. After the recovery, the reaction mixture is separated into two layers, an aqueous layer and an organic layer, and the lower aqueous layer is removed. To this organic layer, 450 ml of water and 40.8 g of sodium hydroxide are added and reacted at 100 ° C. for 1 hour. After completion of the reaction, the reaction mixture was cooled to room temperature, 120 ml of concentrated hydrochloric acid was added to make the liquid weakly acidic pH 4 and the precipitated crystals were collected by filtration to give 121.2 g of 4- (4-phenylbutoxy) benzoic acid, melting point 123.4. ˜127.7 ° C. (yield 91.0%) was obtained. Since the melting point is lower than that of Example 1, it can be seen that the purity is low.
[0016]
Comparative Example 2
To a 1 L flask, 450 ml of isopropanol, 79.5 g of methyl p-hydroxybenzoate, 105.0 g of 1-bromo-4-phenylbutane and 100.0 g of anhydrous potassium carbonate are added and reacted for 20 hours under reflux. After confirming the end point of the reaction by high performance liquid chromatography, 240 ml of water and 58.5 g of sodium hydroxide are added and reacted under reflux for 1 hour. After completion of the reaction, the reaction mixture was cooled to room temperature and 180 ml of concentrated hydrochloric acid was added to make the solution weakly acidic pH4. At the time of acid precipitation, since the foaming was intense, the reaction solution was transferred to a 3 L flask. The precipitated crystals were collected by filtration to obtain 125.1 g of 4- (4-phenylbutoxy) benzoic acid, melting point 128.5-130.0 ° C. (yield 95.2%).
[0017]
Reference example 1
Using 4- (4-phenylbutoxy) benzoic acid obtained in Example 1 as a starting material, 8- [4- (4-phenyl) will be described below in accordance with, for example, Reference Examples 11 to 16 of JP-A-3-95144. (Butoxy) benzoyl] amino-2- (5-tetrazolyl) -4-oxo-4H-1-benzopyran (pranlukast, anti-asthma drug) can be synthesized.
[0018]
【The invention's effect】
According to the method of the present invention, an extraction operation is unnecessary, foaming does not occur during acid precipitation, and the object can be obtained in high purity and high yield without washing with an organic solvent. It is possible to provide a method for producing a phenylalkoxybenzoic acid derivative which is also economically advantageous.