JP4189053B2 - High speed electrolytic descaling method for stainless steel - Google Patents
High speed electrolytic descaling method for stainless steel Download PDFInfo
- Publication number
- JP4189053B2 JP4189053B2 JP09638498A JP9638498A JP4189053B2 JP 4189053 B2 JP4189053 B2 JP 4189053B2 JP 09638498 A JP09638498 A JP 09638498A JP 9638498 A JP9638498 A JP 9638498A JP 4189053 B2 JP4189053 B2 JP 4189053B2
- Authority
- JP
- Japan
- Prior art keywords
- current
- stainless steel
- descaling
- electrolysis
- electrolytic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、熱処理後表面に酸化スケールが付着したステンレス鋼帯の電解による脱スケール方法および表面仕上げ方法に関する。
【0002】
【従来の技術】
ステンレス鋼板の、熱間圧延あるいは冷間圧延に引続き行われる熱処理後の脱スケール方法には、大きく分けて浸漬法、電解法があるが、短時間に酸洗をおこなうためには、電解法が適している。
【0003】
ステンレス鋼の電解脱スケール方法に関しては、特開平2−47299号公報にステンレス鋼の冷延焼鈍鋼帯を硝酸濃度と硝酸に溶存する塩素濃度が特定範囲を満足し、かつ該硝酸液中にZn,Snなどの特定金属の1種または2種以上を5g/l以上となるように添加した溶液を用い、電解槽でステンレス鋼を少なくとも1度陽陰両極性とし、電解槽出側での最終極性を陰極として電解処理を行うことを特徴とするステンレス鋼の脱スケール方法が開示されている。
【0004】
また、特開平2−47300号公報には、ステンレス鋼の冷延焼鈍鋼帯を硫酸濃度900〜1250g/lでかつZn,Snなどの特定金属の1種または2種以上を10g/l以上となるように添加した溶液を用い、電解槽でステンレス鋼を少なくとも1度陽陰両極性とし、電解槽出側での最終極性を陰極として電解処理を行うことを特徴とするステンレス鋼の脱スケール方法が開示されている。これらの発明における陽陰の連続電解時間は、実施例をみても少なくとも1秒以上としている。
【0005】
また、特公昭63−45480号公報には、電解酸洗法の極性は、普通は鋼板を陽極に配して行うが、鋼種目的によってはまず、陰極酸洗を短時間行い、引き続き陽極酸洗を配す等その選択は自由である交番電解酸洗法が開示されている。
【0006】
電流パターンを変化させて電解研磨を行う技術については、特公昭63−45480号公報に被研磨金属および不溶性対極をそれぞれ電解研磨液中に浸漬し、被処理金属と対極との間に正及び負の電圧を交互に印加するとともに、その周波数、および正負の反転比率を変化させることにより金属の表面研磨をおこなうことを特徴とする電流反転電解による電解研磨方法が開示されている。しかし、これは、表面処理を行う前工程として鏡面光沢を得るため素材を電気化学的に溶解する方法であり、表面のスケール層の溶解、脱離を目的とする脱スケールとは全く異なる技術である。
【0007】
また、他に特開平8−337898号公報には、整流波形を所定のスイッチングタイムで極性反転させるとともにその反転部分に所定時間幅を持たせて整流波形にパルスを形成することにより電解研磨用波形を生成し、その電解研磨用波形を、被処理金属を一方の電極とし電解質溶液を媒体として形成した通電回路に通電し、その通電によって被処理金属の電解研磨を行うことを特徴とする金属表面の電解研磨方法が開示されている。この発明においては、パルスによる瞬間的な逆極性がスケール除去に有効であり、そのパルスの条件としては、プラス側のパルス幅に対するマイナス側のパルス幅の割合(極性反転割合)が10〜40%、パルス数が200〜1500ヘルツであることを特徴としている。
【0008】
【発明が解決しようとする課題】
ステンレス鋼板製造の脱スケール工程において、前述のような従来の電解脱スケール方法では、約5秒以上の電解時間が必要とされている。この脱スケール所要時間によって製造ラインスピ−ドが大きく制約される。例えば現状60m/minのラインスピ−ドにおいて30%電解時間が短縮されれば、約1.7倍(100m/min)のラインスピ−ドが可能となる。
本発明は、これら従来の電解脱スケール方法よりもさらに短時間で脱スケールおよび表面粗度調整をおこなう具体的な方法を提供することを目的とする。
【0009】
また、電解方法には直接通電方式と間接通電方式があるが、ステンレス鋼板の連続電解脱スケール設備については、電力ロスを抑制し省スペ−スを実現しながら電解処理の最適設備を選択する必要がある。
そこで本発明の方法を具現化する最適な設備配列についても提供することを目的とする。
【0010】
【課題を解決するための手段】
上記目的を達成するために本発明は、以下の構成を要旨とする。
(1)ステンレス鋼帯の脱スケールおよび表面粗度調整を行う方法として、ピーク値を脱スケール可能な電流密度以上としたパルス反転電流を用いて電解し、その電流印加パターンを、正電流の時間比率を80%以上、かつ1周期における正電流継続時間を、印加してから電気分解による気泡発生に要する時間以上に設定し、かつ前記電解工程を2段階に分けて、その第1段階を間接通電方式とし水平電極の酸洗槽を用い、第2段階を直接通電方式とし垂直電極の酸洗槽を用いることを特徴とするステンレス鋼の高速電解脱スケール方法。
(2)パルス反転電流の電流印加パターンで、正電流の時間比率を90%以上99%以下とすることを特徴とする前記(1)記載のステンレス鋼の高速電解脱スケール方法。
(3)垂直電極の酸洗槽の槽底および槽側壁にローラーを設置し、鋼板を前記ローラーのエッジのみで支持することを特徴とする前記(1)又は(2)記載のステンレス鋼の高速電解脱スケール方法。
【0011】
【発明の実施の形態】
以下に本発明を詳細に説明する。
本発明者らは、電解酸洗法によりステンレス鋼帯の脱スケールおよび表面粗度調整を行う方法におけるパルス反転電流の効果について、さまざまな調査を行った。その結果、電流印加パターンにおける正電流の時間比率を従来よりも高くしたときに、酸洗時間の短縮が図れることを知見したものである。
【0012】
図1に、電流密度40A/dm2 m2 の間接通電方式で、パルス反転電流の1周期を0.1sec としたときの、正電流時間比率と脱スケール完了時間との関係を示す。正電流時間比率が80%以上の場合に、脱スケール完了時間が定電流電解の場合(正電流時間比率100%)よりも短くなっており、90〜99%で特に短縮されている。
【0013】
この結果から、本発明における正電流時間比率を80%以上、さらに好ましい範囲として90〜99%と規定した。このように正電流時間比率を規定することで酸洗時間が短縮されるのは、以下の理由によると考えられる。電解酸洗によるスケ−ルおよび鋼板の溶解は正電流のときに主として発生する。しかしながらその溶解は一般には鋼板の表面に均一に発生せず、不規則に分布する。そして通電中は発生部位の移動は少ないため、均一な溶解を行うには、適当な間隔で電流を反転してやる必要がある、しかしながら負電流の間は溶解量が少ないため、その時間は短い方が望ましいのである。
【0014】
また図2に、正電流比率を95%固定とした時の、1周期の正電流時間と脱スケール完了時間との関係を示す。正電流時間がおよそ0.008秒以上で気泡が発生するようになり、かつこの条件において、脱スケール完了時間が大きく短縮されている。
【0015】
この結果から本発明の請求範囲として、パルス電流の最大電流密度を脱スケール可能な値とし、かつ1周期における正電流継続時間を、印加してから電気分解による気泡発生に要する時間以上に設定することを要件とした。気泡発生に必要な電流密度および時間は酸洗液の組成などにより異なるが、おおよそ1mA/dm2 m2 m以上および0.001秒以上である。
【0016】
電解方法には直接通電方式と間接通電方式がある。直接通電方式は、系外からコンダクタロ−ルを経由して鋼板へ直接入電する方式であり、間接通電方式は、電解液中に浸漬した一対の正負電極の正極側から電解液を介して鋼板へ入電し、鋼板中を導電した電流を再び電解液を介して負極側から出電する方式である。
【0017】
直接通電方式における問題点は、通電面積が大面積となるので電気抵抗が大きくなり、大電圧を要することである。パターンを変えて電流を印可する場合、間接電解では、通板中の極間距離の変動によって、電極面上の位置により電流密度が変動する要因が加わるため、高周波の正負電流においては、直接通電より正負反転の効果が小さくなる。低周波数の場合は、極間距離が十分小さければ、直接通電でも間接通電でも、正負反転の効果はほぼ同等である。
【0018】
この正負反転の効果が変わらなくなる周波数の境界は、階段状の波形を用いて調査した結果1Hzであることが分かった。周波数がこれより小さくなると全電解時間に対し、反転回数が減少し正負反転効果が小さくなるので、下限を0.1Hzとした。0.1Hzから1Hzの間では間接電解の場合、定電流電解で、電極配置を変えることで、正負極の切換えが可能である。しかも、間接電解では、鋼板に直接電流が流れ込まないので低電圧で電解可能である。直接通電では、周波数が100Hzを超えると脱スケール時間短縮の効果が小さくなったので、上限を100Hzとした。
【0019】
以上より、脱スケールに必要な電気量を少なくし、電源におけるト−タル電気出力を最小化し、電解槽の大きさをできるだけ小さくし、しかも処理速度=通板速度を増大させる方法としては、前工程にて間接電解により大部分のスケールを溶解し、後工程にて直接電解高周波反転電流により、残スケールを溶解する方法が最適であることが判明した。
【0020】
また、水平電極酸洗槽(横型)と垂直電極酸洗槽(縦型)には以下の特徴がある。横型では表面品質において表面脱スケールむらが発生する。これは電解反応で大量に発生するH2 、O2 ガスが鋼板−電極間に滞留してひきおこされるものと考えられている。また横型においては通板速度に応じて槽を長くする必要があり、広い設備スペ−スが必要となる。
【0021】
縦型では、電解反応で大量に発生するH2 、O2 ガスが抜けやすいので、ガス滞留に起因する脱スケールむらの発生は抑制される。また、上下方向に通板されるので、設備スペ−スも小さくて済む。しかし、縦型においては、シンクロ−ルと鋼帯の隙間への、スケール溶解物から生成されるスラッジ等異物巻き込みにより、鋼帯表面疵発生の懸念がある。従って、シンクロ−ルをスラッジ滞留層にかかる程深く設置できないため鋼帯の浸漬長さが短くなり、電解時間を確保するためには、複数個の電解槽を通板せざるを得なくなる。従って縦型(一槽)では、短時間の電解脱スケールにしか適用できない。
【0022】
そこで上記電流パターンと電解槽の組合せとして、前工程の間接電解により鋼帯表面の大部分のスケールを溶解せしめるには横型を用い、後工程の直接電解高周波正負電流により、残スケールを溶解せしめるには縦型を用いる組合せが最適であるとの結論に達した。さらに、縦型電解槽においては、スケール溶解物から生成されるスラッジ等異物巻き込みによる表面疵発生防止のために、新たに、槽中で鋼帯を90゜回転して鋼板上にスラッジが滞留しない構造、および槽中で、従来のシンクロ−ルを撤廃し、エッジで鋼帯をガイドすることにより異物巻き込みによる表面疵発生を防止した構造を考案した。
【0023】
図3及び図4は本発明の実施例であって、水平電極電(横型)解槽Aと垂直電極(縦型)電解槽Bを連結した電解スケール装置の例を示している。図において1は入側ロール、2は電極、3は直流電源、4はガイドロール、5はコンダクタホイール(ロール)6は反転電流電源、7はエッジガイド、8はガイドロールである。
【0024】
図3は、槽中で鋼帯を90゜回転して鋼板上にスラッジが滞留しない構造賭しており、垂直電解槽Bに導入された鋼帯sは、ガイドロ−ル4によって、進行方向を回転軸として、右または左回りに90゜まで回転しながら進行する。90゜回転したところで、回転式コンダクタホイ−ル5が鋼帯のエッジに接触し、鋼帯に平行に配置された対極との間で、鋼帯は電解脱スケールされる。従来のようなコンダクタロールが鋼帯表面に直接接触するものでないこと、およびスラッジ、ガスが鋼帯上に滞留しないことにより、表面疵発生が防止される。
【0025】
図4には、槽中で、鋼帯sの上下進行方向を変えるための従来のシンクロ−ルを撤廃し、槽中にエッジガイド7を設けエッジで鋼帯の進行方向をガイドする構造を示す。この方法により従来法で見られるようなシンクロ−ルと鋼帯間の異物巻き込みによる表面疵発生が防止される。
【0026】
【実施例】
(実施例1)
430系、410系のステンレス鋼板(板厚1.0mm)を連続焼鈍ラインで焼鈍した後、表1に示すように、酸洗条件として1サイクル中の陽極/陰極時間を変えて、脱スケールを行った。表1に示すように本発明の条件で電解処理すれば、いずれも従来法より短時間で脱スケールできることが明らかである。
【0027】
【表1】
【0028】
(実施例2)
304系、316系のステンレス鋼板(板厚1.0mm)を連続焼鈍ラインで焼鈍した後、表2に示すように、酸洗条件として1サイクル中の陽極/陰極時間を変えて、脱スケールおよび表面粗度調整を行った。表2に示すように本発明の条件で電解処理すれば、いずれも従来法より短時間で脱スケールできることが明らかである。
【0029】
【表2】
【0030】
(実施例3)
17%Cr−1.2%Moを含むステンレス鋼板(板厚1.0mm)を連続焼鈍ラインで焼鈍した後、表3に示すように、2段階の電解酸洗設備の各段階の条件を変更して、脱スケールを行った。表3に示すように、従来法であるNo.4と比べ、本発明の条件であるNo.2、3ではより短時間で脱スケールでき、さらに本発明例である第2段階で直接通電法を用いたNo.1の場合、さらに酸洗時間が短縮されている。
【0031】
【表3】
【0032】
【発明の効果】
以上に説明したように、本発明はステンレス鋼板の脱スケール時間を一定電流密度で電解する場合に比べ30〜40%短縮でき、ラインスピ−ドを大幅に上昇させることを可能とするものであり、その工業的価値は極めて高いものである。
【図面の簡単な説明】
【図1】ステンレス鋼板の脱スケール完了時間の正電流時間比率依存性を示す図。
【図2】ステンレス鋼板の脱スケール完了時間の正電流時間依存性を示す図。
【図3】本発明の、水平電極電解槽と垂直電極電解槽を連結した電解脱スケール装置の一例を示す概要図。
【図4】本発明の、水平電極電解槽と垂直電極電解槽を連結した電解脱スケール装置の別の例を示す概要図。
【符号の説明】
1:入側ロール
2:電極(対極)板
3:直流電源
4:ガイドロール
5:コンダクタホイール
6:反転電流電源
7:エッジガイド
8:ガイドロール[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a descaling method and surface finishing method by electrolysis of a stainless steel strip having oxidized scale adhered to the surface after heat treatment.
[0002]
[Prior art]
There are two main methods of descaling after the heat treatment of stainless steel sheets following hot rolling or cold rolling: immersion method and electrolytic method. To perform pickling in a short time, electrolytic method is used. Is suitable.
[0003]
Regarding the electrolytic descaling method of stainless steel, Japanese Patent Laid-Open No. 2-47299 discloses that a cold rolled annealed steel strip of stainless steel satisfies a specific range of nitric acid concentration and chlorine concentration dissolved in nitric acid, and the nitric acid solution contains Zn. Using a solution in which one or more of specific metals such as Sn and Sn are added so as to be 5 g / l or more, stainless steel is made at least once positive and negative in the electrolytic cell, and the final at the electrolytic cell outlet side A method for descaling stainless steel, characterized in that the electrolytic treatment is performed with the polarity as the cathode, is disclosed.
[0004]
JP-A-2-47300 discloses that a cold-rolled annealed steel strip of stainless steel has a sulfuric acid concentration of 900 to 1250 g / l, and one or more of specific metals such as Zn and Sn are 10 g / l or more. A method for descaling stainless steel, characterized by using the solution added so that the stainless steel is made positive and negative at least once in an electrolytic cell and the final polarity on the outlet side of the electrolytic cell is used as a cathode. Is disclosed. In these inventions, the positive and negative continuous electrolysis time is at least 1 second in the examples.
[0005]
In Japanese Examined Patent Publication No. 63-45480, the polarity of electrolytic pickling is usually performed by placing a steel plate on the anode. However, depending on the steel type, first, cathodic pickling is performed for a short time, followed by anodic pickling. An alternating electrolytic pickling method is disclosed in which the selection is free.
[0006]
Regarding the technique of performing electropolishing by changing the current pattern, Japanese Patent Publication No. Sho 63-45480 immerses the metal to be polished and the insoluble counter electrode in the electrolytic polishing liquid, respectively, and positive and negative between the metal to be processed and the counter electrode. An electrolytic polishing method using current reversal electrolysis is disclosed, in which metal surface polishing is performed by alternately applying the above voltage and changing the frequency and the positive / negative inversion ratio. However, this is a method of electrochemically dissolving the material in order to obtain a specular gloss as a pre-process for surface treatment, and is a completely different technique from descaling for the purpose of dissolving and detaching the scale layer on the surface. is there.
[0007]
In addition, JP-A-8-337898 discloses a waveform for electropolishing by inverting the polarity of a rectified waveform at a predetermined switching time and forming a pulse in the rectified waveform with a predetermined time width at the inverted portion. The metal surface is characterized in that the electropolishing waveform is energized through an energization circuit formed by using the metal to be treated as one electrode and the electrolyte solution as a medium, and the electropolishing of the metal to be treated is performed by the energization. An electropolishing method is disclosed. In the present invention, instantaneous reverse polarity by a pulse is effective for scale removal, and the pulse condition is that the ratio of the negative pulse width to the positive pulse width (polarity inversion ratio) is 10 to 40%. The number of pulses is 200 to 1500 hertz.
[0008]
[Problems to be solved by the invention]
In the descaling process for producing stainless steel sheets, the conventional electrolytic descaling method as described above requires an electrolysis time of about 5 seconds or more. The production line speed is greatly restricted by the time required for descaling. For example, if 30% electrolysis time is shortened at a current line speed of 60 m / min, a line speed of about 1.7 times (100 m / min) becomes possible.
It is an object of the present invention to provide a specific method for performing descaling and surface roughness adjustment in a shorter time than these conventional electrolytic descaling methods.
[0009]
Electrolysis methods include direct energization and indirect energization, but for continuous electrolytic descaling equipment for stainless steel plates, it is necessary to select the optimal equipment for electrolysis while suppressing power loss and saving space. There is.
Then, it aims at providing the optimal equipment arrangement which embodies the method of the present invention.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, the present invention has the following structure.
(1) As a method for descaling and adjusting the surface roughness of a stainless steel strip, electrolysis is performed using a pulse reversal current with a peak value equal to or higher than the current density that can be descaled, and the current application pattern is changed to a positive current time. The ratio is set to 80% or more, and the positive current duration in one cycle is set to be longer than the time required to generate bubbles by electrolysis after application , and the electrolysis process is divided into two stages, and the first stage is indirectly A high-speed electrolytic descaling method for stainless steel, characterized in that the energization method is a horizontal electrode pickling tank, the second stage is a direct energization method and a vertical electrode pickling tank is used .
(2) The high-speed electrolytic descaling method for stainless steel according to (1) above, wherein the time ratio of the positive current is 90% or more and 99% or less in a current application pattern of pulse reversal current.
(3) A high speed stainless steel as set forth in (1) or (2) , wherein rollers are installed on the bottom and side walls of the pickling bath of the vertical electrode, and the steel plate is supported only by the edges of the rollers. Electrolytic descaling method .
[0011]
DETAILED DESCRIPTION OF THE INVENTION
The present invention is described in detail below.
The present inventors conducted various investigations on the effect of pulse reversal current in a method of descaling a stainless steel strip and adjusting the surface roughness by electrolytic pickling. As a result, it has been found that the pickling time can be shortened when the time ratio of the positive current in the current application pattern is made higher than before.
[0012]
FIG. 1 shows the relationship between the positive current time ratio and the descaling completion time when one cycle of the pulse reversal current is 0.1 sec in the indirect energization method with a current density of 40 A / dm 2 m 2 . When the positive current time ratio is 80% or more, the descaling completion time is shorter than in the case of constant current electrolysis (positive
[0013]
From this result, the positive current time ratio in the present invention was defined as 80% or more, and more preferably 90 to 99%. The reason why the pickling time is shortened by defining the positive current time ratio in this way is considered to be as follows. The dissolution of the scale and the steel sheet by electrolytic pickling mainly occurs at a positive current. However, the dissolution generally does not occur uniformly on the surface of the steel sheet and is irregularly distributed. In addition, since there is little movement of the generation site during energization, it is necessary to reverse the current at an appropriate interval in order to perform uniform dissolution. However, since the amount of dissolution is small during the negative current, the shorter the time is. It is desirable.
[0014]
FIG. 2 shows the relationship between one cycle of positive current time and descaling completion time when the positive current ratio is fixed at 95%. Bubbles are generated when the positive current time is about 0.008 seconds or more, and under this condition, the descaling completion time is greatly shortened.
[0015]
From this result, as claimed in the present invention, the maximum current density of the pulse current is set to a value that allows descaling, and the positive current duration in one cycle is set to be longer than the time required to generate bubbles by electrolysis after application. It was a requirement. The current density and time required for generating bubbles vary depending on the composition of the pickling solution, but are approximately 1 mA / dm 2 m 2 m or more and 0.001 second or more.
[0016]
The electrolysis method includes a direct energization method and an indirect energization method. The direct energization method is a method in which power is directly applied to the steel sheet from outside the system via a conductor roll, and the indirect energization method is from the positive electrode side of a pair of positive and negative electrodes immersed in the electrolyte solution to the steel plate via the electrolyte solution. This is a system in which a current is applied and the current conducted through the steel sheet is discharged again from the negative electrode side through the electrolytic solution.
[0017]
The problem with the direct energization method is that since the energization area becomes large, the electric resistance increases and a large voltage is required. When applying a current by changing the pattern, indirect electrolysis adds a factor that causes the current density to vary depending on the position on the electrode surface due to fluctuations in the distance between the electrodes in the plate, so direct conduction is required for high-frequency positive and negative currents. The effect of reversing positive and negative becomes smaller. In the case of a low frequency, if the distance between the electrodes is sufficiently small, the effect of the positive / negative reversal is almost the same in both direct energization and indirect energization.
[0018]
The frequency boundary at which the positive / negative inversion effect does not change was found to be 1 Hz as a result of investigation using a stepped waveform. If the frequency is smaller than this, the number of inversions is reduced with respect to the total electrolysis time, and the positive / negative inversion effect is reduced. In the case of indirect electrolysis between 0.1 Hz and 1 Hz, the positive and negative electrodes can be switched by changing the electrode arrangement by constant current electrolysis. Moreover, in indirect electrolysis, since current does not flow directly into the steel plate, electrolysis can be performed at a low voltage. In direct energization, the effect of shortening the descaling time is reduced when the frequency exceeds 100 Hz, so the upper limit was set to 100 Hz.
[0019]
From the above, as a method of reducing the amount of electricity required for descaling, minimizing the total electrical output at the power source, minimizing the size of the electrolytic cell, and increasing the processing speed = plate passing speed, It has been found that a method of dissolving most of the scale by indirect electrolysis in the process and dissolving the remaining scale by direct electrolysis high-frequency reversal current in the subsequent process has been found to be optimal.
[0020]
The horizontal electrode pickling tank (horizontal type) and the vertical electrode pickling tank (vertical type) have the following characteristics. In the horizontal type, uneven surface descaling occurs in the surface quality. It is considered that this is caused by the H 2 and O 2 gases generated in large quantities by the electrolytic reaction staying between the steel plates and the electrodes. Further, in the horizontal type, it is necessary to lengthen the tank according to the plate passing speed, and a wide equipment space is required.
[0021]
In the vertical type, H 2 and O 2 gases that are generated in large quantities by the electrolytic reaction are easily released, so that the occurrence of uneven descaling due to gas retention is suppressed. Further, since the sheet is passed in the vertical direction, the equipment space can be reduced. However, in the vertical type, there is a concern that the steel strip surface flaws may occur due to the inclusion of foreign matter such as sludge generated from the scale melt in the gap between the synchro and the steel strip. Accordingly, since the synchro cannot be installed as deep as the sludge staying layer, the immersion length of the steel strip is shortened, and a plurality of electrolytic cells must be passed through in order to ensure electrolysis time. Therefore, the vertical type (one tank) can be applied only to short-time electrolytic descaling.
[0022]
Therefore, as a combination of the current pattern and the electrolytic cell, a horizontal type is used to dissolve most of the scale on the steel strip surface by indirect electrolysis in the previous process, and the remaining scale is dissolved by direct electrolysis high-frequency positive and negative current in the subsequent process. It was concluded that the combination using vertical type is optimal. Furthermore, in the vertical electrolytic cell, in order to prevent the occurrence of surface flaws due to the inclusion of foreign matter such as sludge generated from the scale melt, the steel strip is newly rotated 90 ° in the bath so that sludge does not stay on the steel plate. The structure and the structure which prevented the generation | occurrence | production of the surface flaw by entrapment of a foreign material by eliminating the conventional synchro in a tank and guiding a steel strip with an edge were devised.
[0023]
3 and 4 show an embodiment of the present invention, and shows an example of an electrolytic scale device in which a horizontal electrode (horizontal) thawing tank A and a vertical electrode (vertical) electrolytic tank B are connected. In the figure, 1 is an entrance roll, 2 is an electrode, 3 is a DC power supply, 4 is a guide roll, 5 is a conductor wheel (roll) 6 is a reversal current power supply, 7 is an edge guide, and 8 is a guide roll.
[0024]
FIG. 3 shows a structure in which the steel strip is rotated 90 ° in the tank to prevent sludge from staying on the steel plate. The steel strip s introduced into the vertical electrolytic tank B is rotated in the traveling direction by the
[0025]
FIG. 4 shows a structure in which a conventional sync for changing the vertical traveling direction of the steel strip s in the tank is eliminated, and an edge guide 7 is provided in the tank to guide the traveling direction of the steel strip at the edge. . By this method, generation of surface flaws due to the inclusion of foreign matter between the synchro and the steel strip as seen in the conventional method is prevented.
[0026]
【Example】
(Example 1)
After annealing 430 series and 410 series stainless steel sheets (thickness 1.0 mm) in a continuous annealing line, as shown in Table 1, the anode / cathode time in one cycle was changed as pickling conditions, and descaling was performed. went. As shown in Table 1, it is clear that any electrolytic treatment under the conditions of the present invention can be descaled in a shorter time than the conventional method.
[0027]
[Table 1]
[0028]
(Example 2)
After annealing 304 series and 316 series stainless steel sheets (thickness 1.0 mm) in a continuous annealing line, as shown in Table 2, the anode / cathode time in one cycle was changed as pickling conditions, and descaling and Surface roughness adjustment was performed. As shown in Table 2, it is clear that any electrolytic treatment under the conditions of the present invention can be descaled in a shorter time than the conventional method.
[0029]
[Table 2]
[0030]
(Example 3)
After annealing a stainless steel plate (thickness 1.0mm) containing 17% Cr-1.2% Mo with a continuous annealing line, the conditions of each stage of the two-stage electrolytic pickling equipment were changed as shown in Table 3 Then, descaling was performed. As shown in Table 3, No. 4 and No. 4 which is the condition of the present invention. No. 2 and No. 3 can be descaled in a shorter time, and No. 1 using the direct energization method in the second stage as an example of the present invention. In the case of 1, the pickling time is further shortened.
[0031]
[Table 3]
[0032]
【The invention's effect】
As described above, the present invention can shorten the descaling time of the stainless steel plate by 30 to 40% compared to the case of electrolysis at a constant current density, and can greatly increase the line speed. Its industrial value is extremely high.
[Brief description of the drawings]
FIG. 1 is a graph showing the positive current time ratio dependence of the descaling completion time of a stainless steel plate.
FIG. 2 is a diagram showing the positive current time dependence of the descaling completion time of a stainless steel plate.
FIG. 3 is a schematic view showing an example of an electrolytic descaling apparatus in which a horizontal electrode electrolytic cell and a vertical electrode electrolytic cell are connected according to the present invention.
FIG. 4 is a schematic view showing another example of an electrolytic descaling apparatus in which a horizontal electrode electrolytic cell and a vertical electrode electrolytic cell are connected according to the present invention.
[Explanation of symbols]
1: Incoming roll 2: Electrode (counter electrode) plate 3: DC power supply 4: Guide roll 5: Conductor wheel 6: Reverse current power supply 7: Edge guide 8: Guide roll
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP09638498A JP4189053B2 (en) | 1998-04-08 | 1998-04-08 | High speed electrolytic descaling method for stainless steel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP09638498A JP4189053B2 (en) | 1998-04-08 | 1998-04-08 | High speed electrolytic descaling method for stainless steel |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH11293499A JPH11293499A (en) | 1999-10-26 |
JP4189053B2 true JP4189053B2 (en) | 2008-12-03 |
Family
ID=14163477
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP09638498A Expired - Fee Related JP4189053B2 (en) | 1998-04-08 | 1998-04-08 | High speed electrolytic descaling method for stainless steel |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4189053B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103343381B (en) * | 2013-07-08 | 2016-04-20 | 湖北交投四优钢科技有限公司 | A kind of high-frequency impulse low-temperature quick derusting device and method |
-
1998
- 1998-04-08 JP JP09638498A patent/JP4189053B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH11293499A (en) | 1999-10-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR0173975B1 (en) | Method of descaling stainless steel and apparatus for the same | |
EP0644276B1 (en) | Method and apparatus for descaling a hot-rolled steel strip | |
US6533917B1 (en) | Method for producing aluminum support for lithographic printing plate | |
JPH0827600A (en) | Descaling method and device for stainless steel strip | |
US2197653A (en) | Method of electrically pickling and cleaning stainless steel and other metals | |
JP4189053B2 (en) | High speed electrolytic descaling method for stainless steel | |
JP2781945B2 (en) | Continuous electrolytic polishing method and continuous electrolytic polishing apparatus | |
JP3792335B2 (en) | Finishing electrolytic pickling method in descaling of stainless steel strip | |
JPH0754111A (en) | Production of substrate for planographic printing plate | |
US4711707A (en) | Method for removal of scale from hot rolled steel | |
CA2573988A1 (en) | Method and device for pickling metals | |
JP4177476B2 (en) | Method and apparatus for continuous cleaning of steel strip | |
JP2517353B2 (en) | Descaling method for stainless steel strip | |
JP2000204499A (en) | Electrolytical descaling of stainless steel strip | |
JP3004390B2 (en) | High-speed descaling and surface modification method and apparatus for hot-rolled alloy steel strip | |
JP3873335B2 (en) | Electrolytic descaling method for steel strip | |
JP2577618B2 (en) | Method and apparatus for descaling alloy steel strip | |
JPH06220699A (en) | Device for electrolytically pickling steel material | |
JPH1161500A (en) | Descaling of stainless steel strip and heat resistant steel strip | |
JP2868589B2 (en) | Neutral salt electrolytic treatment method for stainless steel strip | |
JP2585444B2 (en) | Method and apparatus for descaling stainless steel strip | |
JPH0324299A (en) | Method for pickling band stainless steel | |
JP2640565B2 (en) | Continuous production equipment for stainless steel sheets | |
JP2868574B2 (en) | Electrolytic pickling of stainless steel strip | |
JPS63161194A (en) | Method for electrolytically descaling cold rolled stainless steel strip |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20041217 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060831 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080205 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080407 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080909 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080912 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110919 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120919 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120919 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130919 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130919 Year of fee payment: 5 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130919 Year of fee payment: 5 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130919 Year of fee payment: 5 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |