JP4086008B2 - Secondary battery remaining capacity ratio calculation method and battery pack - Google Patents

Secondary battery remaining capacity ratio calculation method and battery pack Download PDF

Info

Publication number
JP4086008B2
JP4086008B2 JP2004134016A JP2004134016A JP4086008B2 JP 4086008 B2 JP4086008 B2 JP 4086008B2 JP 2004134016 A JP2004134016 A JP 2004134016A JP 2004134016 A JP2004134016 A JP 2004134016A JP 4086008 B2 JP4086008 B2 JP 4086008B2
Authority
JP
Japan
Prior art keywords
remaining capacity
voltage
secondary battery
battery
capacity ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004134016A
Other languages
Japanese (ja)
Other versions
JP2005315730A (en
Inventor
太一 佐々木
正樹 穂刈
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2004134016A priority Critical patent/JP4086008B2/en
Priority to US11/106,866 priority patent/US7382110B2/en
Priority to KR1020050031976A priority patent/KR101166099B1/en
Publication of JP2005315730A publication Critical patent/JP2005315730A/en
Application granted granted Critical
Publication of JP4086008B2 publication Critical patent/JP4086008B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Description

この発明は、二次電池の残容量率算出方法および電池パックに関する。   The present invention relates to a method for calculating a remaining capacity ratio of a secondary battery and a battery pack.

近年、充電池を用いて使用される電気、電子機器が増え、合わせて使用頻度も高くなっている。これらの機器は、ランプや液晶などを用いて電池容量が表されており、おおよその使用可能時間がユーザーにわかるようになっている。   In recent years, the number of electric and electronic devices used using rechargeable batteries has increased, and the frequency of use has also increased. In these devices, the battery capacity is expressed using a lamp, liquid crystal, or the like, so that the user can know the approximate usable time.

二次電池の残容量を検出する方法として、電池電圧を測定することにより二次電池の残容量を検出する電圧法による検出方法と、電圧と電流を測定し、積算することにより、二次電池の残容量を求める積算法による検出方法などが挙げられる。   As a method for detecting the remaining capacity of the secondary battery, a detection method by a voltage method for detecting the remaining capacity of the secondary battery by measuring the battery voltage, and by measuring and integrating the voltage and current, the secondary battery And a detection method using an integration method for obtaining the remaining capacity of the battery.

電圧法による残容量検出は、電池セルの端子電圧を測定し、二次電池の電圧と電池容量(残容量率)の相関性に基づいて残容量を算出するため、例えばリチウムイオン電池の場合は電池電圧が4.2V/セルで満充電、2.4V/セルになると過放電状態であると判別でき、測定が容易にできる。   The remaining capacity detection by the voltage method measures the terminal voltage of the battery cell and calculates the remaining capacity based on the correlation between the voltage of the secondary battery and the battery capacity (remaining capacity ratio). For example, in the case of a lithium ion battery When the battery voltage is fully charged at 4.2 V / cell and becomes 2.4 V / cell, it can be determined that the battery is in an overdischarged state, and measurement can be facilitated.

また、積算法による残容量検出は、電流を測定し、一定時間毎に積算する電流積算と、電圧と電流を測定し、これらを掛け合わせることで電力量を算出し、さらに一定時間毎に電力量を積算する電力積算法がある。いずれも、放電電流量または放電電力量を求め、電池のもつ使用可能な電流量または電力量との割合から二次電池の残容量を求めることができるので、電圧の変動に左右されることなく、安定した残容量検出が可能となる。   In addition, the remaining capacity detection by the integration method measures the current, integrates the current accumulated every fixed time, measures the voltage and current, and multiplies them to calculate the amount of power, and then powers every fixed time. There is a power integration method that integrates quantities. In either case, the amount of discharge current or the amount of discharge power can be obtained, and the remaining capacity of the secondary battery can be obtained from the ratio of the battery's usable current amount or amount of power, so that it is not affected by voltage fluctuations. Stable remaining capacity detection becomes possible.

しかしながら、放電時には、電圧法を用いると二次電池の中間電位で残容量の検出精度が非常に悪くなるという問題がある。これは、例えばリチウムイオン電池の場合、図1に示すように中間電位における電圧がほぼ一定であり、電圧差があまり生じないため、電圧による残容量検出が難しくなるからである。   However, at the time of discharging, there is a problem that the accuracy of detection of the remaining capacity becomes very poor at the intermediate potential of the secondary battery when the voltage method is used. This is because, for example, in the case of a lithium ion battery, the voltage at the intermediate potential is almost constant as shown in FIG.

また、積算法を用いた場合には、放電末期になると精度が悪くなるという問題がある。これは、電圧、電流の測定誤差や熱損失により、積算された電流または電力とともに誤差も蓄積されていき、放電末期には大きな誤差が発生するためであり、これが精度の悪化につながっている。   In addition, when the integration method is used, there is a problem that accuracy is deteriorated at the end of discharge. This is because errors are accumulated together with the accumulated current or power due to voltage and current measurement errors and heat loss, and a large error occurs at the end of discharge, which leads to deterioration of accuracy.

そこで、積算法と電圧法を併用して電池容量を検出する方法が用いられる。電圧法では、二次電池の電流が小さいときは容量算出精度が高く、電流が大きいときには電池内部Imp(インピーダンス)や環境温度による直流Imp変動などにより正確な開放電圧を得ることが出来ず、正確な電池容量を算出することができない。また、積算法では二次電池の電流が大きいときには容量算出精度が高く、電流が小さくなると積算誤差が大きくなり、容量算出精度が悪くなる。   Therefore, a method of detecting the battery capacity using both the integration method and the voltage method is used. In the voltage method, when the current of the secondary battery is small, the capacity calculation accuracy is high. The battery capacity cannot be calculated. In addition, in the integration method, the capacity calculation accuracy is high when the current of the secondary battery is large, and when the current is small, the integration error increases and the capacity calculation accuracy deteriorates.

以下の特許文献1に、電流積算法と電圧法を併用して電池容量の検出を行う方法が記載されている。特許文献1の発明は、あらかじめ設定された電流値より小さいときは電圧法を、大きいときは電流積算法を用いるものである。各方法を切り替えて電池容量を計測することにより、電池容量の算出精度を高めることが可能となる。
国際公開第98/056059号パンフレット
Patent Document 1 below describes a method for detecting battery capacity by using a current integration method and a voltage method in combination. The invention of Patent Document 1 uses a voltage method when the current value is smaller than a preset current value, and uses a current integration method when the current value is larger. By measuring the battery capacity by switching each method, it is possible to improve the calculation accuracy of the battery capacity.
International Publication No. 98/056059 Pamphlet

しかしながら、上述した方法において、積算法と電圧法とを切り替える際に、積算法で計測した電池容量と電圧法で計測した電池容量は必ずしも一致せず、測定値の切り替わりに違和感が生じる場合があった。   However, in the method described above, when switching between the integration method and the voltage method, the battery capacity measured by the integration method and the battery capacity measured by the voltage method do not necessarily match, and there may be a sense of incongruity in switching between measured values. It was.

放電時の残容量検出精度が低い場合、機器に表示された残り使用可能時間や電池容量が急激に減り、予定の時間まで使えないといった問題が起こる。特に、電池パックを用いた業務用機器においては、残容量または残容量率の測定に誤差があった場合には業務に支障をきたすことも考えられ、非常に高い精度での残容量検出が求められる。   When the remaining capacity detection accuracy at the time of discharging is low, there is a problem that the remaining usable time and battery capacity displayed on the device are drastically reduced and the battery cannot be used until the scheduled time. In particular, in business equipment using battery packs, if there is an error in the measurement of the remaining capacity or the remaining capacity rate, it may be possible to hinder the work, and it is necessary to detect the remaining capacity with very high accuracy. It is done.

したがって、この発明の目的は、より高い精度で残容量または残容量率を検出することができる二次電池の残容量率算出方法および電池パックを提供することにある。   Therefore, an object of the present invention is to provide a method for calculating a remaining capacity ratio of a secondary battery and a battery pack that can detect the remaining capacity or the remaining capacity ratio with higher accuracy.

上記課題を解決するために、この発明の第1の態様は、二次電池の残容量率検出方法において、
二次電池の電流値または電力値を一定時間毎に積算することにより電池容量を算出する積算法を用いた二次電池の残容量率検出と、
二次電池の電圧値を測定し、前記電圧値と残容量率の相関性に基づいて残容量率を算出する電圧法を用いた二次電池の残容量検出とを行い、
二次電池の残容量率が30%以上100%以下のときは、積算法による残容量率検出を行い、
二次電池の残容量率が5%以下のときは、電圧法による残容量率検出を行い、
二次電池の残容量率が5%より大きく30%未満のときは、二次電池の残容量率に応じた重みを用いて、積算法で検出した残容量率と電圧法で検出した残容量率とを重み付け加算し、最終的な残容量率検出を行うことを特徴とする二次電池の残容量率検出方法である。
In order to solve the above problems, a first aspect of the present invention provides a method for detecting a remaining capacity ratio of a secondary battery,
Detection of the remaining capacity rate of the secondary battery using an integration method for calculating the battery capacity by integrating the current value or power value of the secondary battery at regular intervals;
Measure the voltage value of the secondary battery, perform the remaining capacity detection of the secondary battery using the voltage method to calculate the remaining capacity rate based on the correlation between the voltage value and the remaining capacity rate,
When the remaining capacity ratio of the secondary battery is 30% or more and 100% or less, the remaining capacity ratio is detected by the integration method,
When the remaining capacity ratio of the secondary battery is 5% or less, the remaining capacity ratio is detected by the voltage method,
When the remaining capacity ratio of the secondary battery is greater than 5% and less than 30% , the remaining capacity ratio detected by the integration method and the remaining capacity detected by the voltage method using a weight according to the remaining capacity ratio of the secondary battery This is a method for detecting a remaining capacity ratio of a secondary battery, characterized in that a final remaining capacity ratio is detected by weighting and adding the ratio.

また、この発明の第2の態様は、二次電池の電池パックにおいて、
電池パックは二次電池の電圧および電流および温度を測定する測定部と、電池容量演算部とを有し、
電池容量演算部は、
二次電池の電流値または電力値を一定時間毎に積算することにより電池容量を算出する積算法を用いて、二次電池の残容量率を検出する検出手段と、
二次電池の電圧値を測定し、電圧値と残容量率の相関性に基づいて残容量率を算出する電圧法を用いて、二次電池の残容量率を検出する検出手段と、
二次電池の電圧法残容量率に応じて、積算法で検出した残容量率と電圧法で検出した残容量率とを重み付け加算し、最終的な残容量率検出を行う手段とを有し、
電池容量演算部は、二次電池の残容量率が30%以上100%以下のときは、積算法による残容量率検出を行い、
二次電池の残容量率が5%以下のときは、電圧法による残容量率検出を行い、
二次電池の残容量率が5%より大きく30%未満のときは、その残容量率に応じた重みを用いて積算法による残容量率と電圧法による残容量率とを重み付け加算することにより残容量率検出を行うことを特徴とする電池パックである。
A second aspect of the present invention provides a battery pack for a secondary battery,
The battery pack has a measurement unit that measures the voltage, current, and temperature of the secondary battery, and a battery capacity calculation unit.
Battery capacity calculator
Detecting means for detecting the remaining capacity rate of the secondary battery using an integration method for calculating the battery capacity by integrating the current value or power value of the secondary battery at regular intervals;
A detection means for measuring the voltage value of the secondary battery and detecting the remaining capacity ratio of the secondary battery using a voltage method for calculating the remaining capacity ratio based on the correlation between the voltage value and the remaining capacity ratio;
According to the voltage method remaining capacity rate of the secondary battery, there is a means for performing weighted addition of the remaining capacity rate detected by the integration method and the remaining capacity rate detected by the voltage method and performing a final remaining capacity rate detection. ,
When the remaining capacity rate of the secondary battery is 30% or more and 100% or less, the battery capacity calculation unit performs the remaining capacity rate detection by the integration method,
When the remaining capacity ratio of the secondary battery is 5% or less, the remaining capacity ratio is detected by the voltage method,
When the remaining capacity ratio of the secondary battery is greater than 5% and less than 30% , the remaining capacity ratio by the integration method and the remaining capacity ratio by the voltage method are weighted and added using a weight according to the remaining capacity ratio. The battery pack is characterized by detecting a remaining capacity rate.

以上説明したように、この発明によれば、電力積算法(または電流積算法)によって得られた電池残容量に誤差が生じても、放電終止付近になるにつれて電圧法による補正が行われるため、精度の高い残容量検出が可能となる。   As described above, according to the present invention, even if an error occurs in the remaining battery capacity obtained by the power integration method (or current integration method), the correction by the voltage method is performed as it approaches the end of discharge. The remaining capacity can be detected with high accuracy.

以下、この発明の一実施形態について図面を参照しながら説明する。   An embodiment of the present invention will be described below with reference to the drawings.

図2は、この発明を適用することが可能なバッテリパックの構成の一例を模式的に示すものである。   FIG. 2 schematically shows an example of the configuration of a battery pack to which the present invention can be applied.

このバッテリパックは、電気機器使用時には+端子1と−端子2が機器の+端子、−端子に接続され、放電が行われる。また、充電時には充電器に装着され、電気機器使用時と同様に+端子1と−端子2がそれぞれ充電器の+端子、−端子に接続され、充電が行われる。   In the battery pack, when an electric device is used, the + terminal 1 and the −terminal 2 are connected to the + terminal and −terminal of the device, and discharging is performed. In addition, the battery is attached to the charger during charging, and the + terminal 1 and the −terminal 2 are connected to the + terminal and −terminal of the charger, respectively, as in the case of using the electric device, and charging is performed.

バッテリパックは主に、電池セル7、マイクロコンピュータ10、測定回路11、保護回路12、スイッチ回路4、通信端子3a,3bで構成されている。   The battery pack mainly includes a battery cell 7, a microcomputer 10, a measurement circuit 11, a protection circuit 12, a switch circuit 4, and communication terminals 3a and 3b.

電池セル7は、リチウムイオン電池等の二次電池で、4個の二次電池を直列に接続したものである。   The battery cell 7 is a secondary battery such as a lithium ion battery, in which four secondary batteries are connected in series.

マイクロコンピュータ10は、測定回路11から入力された電圧値、電流値を使用して電圧値の測定や電流値の積算を行うようになされている。また、参照符号8で示される温度検出素子(例えばサーミスタ)で測定した電池温度を取り込む。さらに、測定値等が参照符号13で示される不揮発性メモリEEPROM(Electrically Erasable and Programmable Read Only Memory)に保存される。さらに、マイクロコンピュータ10は電圧法信頼度の検出も随時行っている。   The microcomputer 10 uses the voltage value and current value input from the measurement circuit 11 to measure the voltage value and integrate the current value. Further, the battery temperature measured by a temperature detecting element (for example, a thermistor) indicated by reference numeral 8 is taken in. Further, the measured values and the like are stored in a nonvolatile memory EEPROM (Electrically Erasable and Programmable Read Only Memory) indicated by reference numeral 13. Further, the microcomputer 10 also performs voltage method reliability detection as needed.

測定回路11は、バッテリパック内の電池セル7の各セルの電圧を測定し、マイクロコンピュータ10に測定値を供給する。また、電流検出抵抗9を使用して電流の大きさおよび向きを測定し、マイクロコンピュータ10に測定値を送るものである。さらに、測定回路11は、電池セル7の電圧を安定化して電源電圧を発生するレギュレータとしての機能も有する。   The measurement circuit 11 measures the voltage of each cell of the battery cell 7 in the battery pack and supplies the measured value to the microcomputer 10. Further, the current detection resistor 9 is used to measure the magnitude and direction of the current, and the measured value is sent to the microcomputer 10. Furthermore, the measurement circuit 11 also has a function as a regulator that stabilizes the voltage of the battery cell 7 and generates a power supply voltage.

保護回路12は、電池セル7のいずれかのセルの電圧が過充電検出電圧になったときや、電池セル7の電圧が過放電検出電圧以下になったとき、スイッチ回路4に制御信号を送ることにより、過充電、過放電を防止する。ここで、リチウムイオン電池の場合、過充電検出電圧が例えば4.2V±0.5Vと定められ、過放電検出電圧が2.4V±0.1Vと定められる。   The protection circuit 12 sends a control signal to the switch circuit 4 when the voltage of any of the battery cells 7 becomes an overcharge detection voltage or when the voltage of the battery cell 7 becomes equal to or lower than the overdischarge detection voltage. This prevents overcharge and overdischarge. Here, in the case of a lithium ion battery, the overcharge detection voltage is determined to be 4.2 V ± 0.5 V, for example, and the overdischarge detection voltage is determined to be 2.4 V ± 0.1 V.

スイッチ回路4は、参照符号5で示される充電制御FET(Field Effect Transistor)と、参照符号6で示される放電制御FETとから構成されている。電池電圧が過充電検出電圧となったときは、充電制御FET5をOFFとし、充電電流が流れないように制御される。なお、充電制御FET5のOFF後は参照符号5aで示される寄生ダイオードを介することによって放電のみが可能となる。   The switch circuit 4 includes a charge control FET (Field Effect Transistor) indicated by reference numeral 5 and a discharge control FET indicated by reference numeral 6. When the battery voltage becomes the overcharge detection voltage, the charging control FET 5 is turned off and the charging current is controlled not to flow. Note that after the charge control FET 5 is turned off, only discharge is possible through a parasitic diode indicated by reference numeral 5a.

また、電池電圧が過放電検出電圧となったときは、放電制御FET6をOFFとし、放電電流が流れないように制御される。なお、放電制御FET6のOFF後は参照符号6aで示される寄生ダイオードを介することによって充電のみが可能となる。   Further, when the battery voltage becomes the overdischarge detection voltage, the discharge control FET 6 is turned off, and the discharge current is controlled not to flow. Note that after the discharge control FET 6 is turned off, only charging is possible through a parasitic diode indicated by reference numeral 6a.

通信端子3a,3bは、電気機器、例えばカムコーダ(Camcorder: Camera and recorderの略)に装着された際、電池残容量の情報を機器に送信するためのものである。この情報を受け取った機器側では、液晶等の表示部に電池容量や、残容量率、残り使用可能時間などを表示する。   The communication terminals 3a and 3b are used for transmitting information on the remaining battery capacity to an apparatus when the terminal is attached to an electric apparatus such as a camcorder (camcorder: camera and recorder). Upon receiving this information, the device side displays the battery capacity, the remaining capacity rate, the remaining usable time, etc. on a display unit such as a liquid crystal display.

この発明では、残容量率(電池容量)の検出は積算法(電流積算または電圧積算)と電圧法を併用して行うが、ある閾値で積算法と電圧法を完全に切り替えるのではなく、常に積算法、電圧法の両方で残容量率の計測を行う。また、残容量率の値により、電圧法で求めた残容量率がどれだけ信頼できるかを定義した電圧法信頼度を算出し、その値に応じて電圧法で求められた残容量率と積算法で求められた残容量率とを重み付け加算して最終的な残容量率を求める。このような電圧法残容量率を使用した重み付け加算により、積算法から電圧法に徐々に移行する。   In this invention, the remaining capacity rate (battery capacity) is detected by using the integration method (current integration or voltage integration) and the voltage method in combination, but instead of completely switching between the integration method and the voltage method at a certain threshold, The remaining capacity rate is measured by both the integration method and the voltage method. Also, the voltage method reliability that defines how reliable the remaining capacity rate obtained by the voltage method is calculated from the value of the remaining capacity rate, and the remaining capacity rate obtained by the voltage method is integrated according to the value. The final remaining capacity ratio is obtained by weighting and adding the remaining capacity ratio obtained by the method. By such weighted addition using the voltage method remaining capacity rate, the integration method gradually shifts to the voltage method.

また、積算法で残容量率を算出する際、除算処理が加わるとデータ中の小数点以下の値が切り捨て等によって丸められ、桁落ちした値(電力値または電流値)を積算していくために、誤差が積算結果に累積される。その結果、積算値の精度が悪くなり、残容量率の検出の精度も悪くなる。   In addition, when calculating the remaining capacity rate with the integration method, if division processing is added, the value after the decimal point in the data is rounded off by truncation etc., and the value (power value or current value) that has been dropped is added up. The error is accumulated in the integration result. As a result, the accuracy of the integrated value deteriorates, and the accuracy of detection of the remaining capacity rate also deteriorates.

誤差の累積を防止するために、有効桁数を増やすことにより桁落ちによる誤差に対応する方法では、逆にマイクロコンピュータのメモリ使用量が増え、処理を圧迫することになる。また、マイクロコンピュータのメモリが足りない場合は有効桁数を増やすことができず、桁落ちしたデータを積算していくことになり、精度の悪化につながる。   In order to prevent the accumulation of errors, the method for dealing with errors caused by dropping digits by increasing the number of effective digits, conversely, increases the memory usage of the microcomputer and puts pressure on the processing. In addition, when the memory of the microcomputer is insufficient, the number of effective digits cannot be increased, and the data with the digits dropped is accumulated, leading to deterioration in accuracy.

そこで、桁落ちの影響を極力少なくするために、一実施形態では以下のような積算方法を用いる。   Therefore, in order to reduce the influence of the digit loss as much as possible, the following integration method is used in one embodiment.

図3に示すように、電流値の測定時に入力端子21とスイッチ22を介して、ゲインが24倍のアンプ23とゲインが125倍のアンプ24とを接続し、各アンプの出力電圧をマイクロコンピュータ10のA/Dコンバータ25に供給してデジタルデータへと変換する。各アンプは電流値によって使い分け、電流が2Aより大きいときは24倍のアンプを、2A以下のときは125倍のアンプを使用する。この構成により、電流値が小さい場合と大きい場合での有効桁数の差を少なくすることが可能である。   As shown in FIG. 3, an amplifier 23 having a gain of 24 and an amplifier 24 having a gain of 125 are connected via an input terminal 21 and a switch 22 when measuring a current value, and the output voltage of each amplifier is connected to a microcomputer. 10 A / D converters 25 for conversion to digital data. Each amplifier is selectively used according to the current value. When the current is larger than 2A, a 24 × amplifier is used. When the current is 2A or less, a 125 × amplifier is used. With this configuration, it is possible to reduce the difference in the effective digits between when the current value is small and when the current value is large.

ただし、24倍アンプ23を通った測定値と125倍アンプ24を通った測定値は桁の重みが違うため、単純に足し合わせることができない。そこで、以下の方法により、桁落ちの影響が少なくなるようにする。   However, the measured value passing through the 24 × amplifier 23 and the measured value passing through the 125 × amplifier 24 have different digit weights, and cannot be simply added together. Therefore, the following method is used to reduce the influence of digit loss.

例えば、電流測定のハードウェア条件を以下のようにする。
A/D基準電圧(AVREF): 3000mV
A/D分解能: 1024(10Bit)
電流検出抵抗(図2の抵抗9): 5mΩ
For example, the hardware conditions for current measurement are as follows.
A / D reference voltage (AVREF): 3000 mV
A / D resolution: 1024 (10 bits)
Current detection resistor (resistor 9 in FIG. 2): 5 mΩ

このとき、電池セル7を流れる電流1AあたりのA/Dコンバータ25に入力される電圧値は、
24倍アンプ23の場合:5mΩ×1A×24=120(mV/A) ・・・(1)
125倍アンプ24の場合:5mΩ×1A×125=625(mV/A)・・・(2)
At this time, the voltage value input to the A / D converter 25 per 1 A of current flowing through the battery cell 7 is
In the case of the 24 × amplifier 23: 5 mΩ × 1 A × 24 = 120 (mV / A) (1)
In the case of 125 times amplifier 24: 5mΩ × 1A × 125 = 625 (mV / A) (2)

また、A/Dコンバータ25の1分解能あたりの電圧感度は、3000mV/1024=2.930(mV)となる。これを24倍アンプ23の使用時における電流感度に換算すると、2.930(mV)/120(mV/A)×1000≒24.41(mA)となる。   Further, the voltage sensitivity per resolution of the A / D converter 25 is 3000 mV / 1024 = 2.930 (mV). When this is converted into current sensitivity when using the 24 × amplifier 23, it becomes 2.930 (mV) / 120 (mV / A) × 1000≈24.41 (mA).

上述した値を元に、積算処理の流れを図4のフローチャートを参照して説明する。   Based on the above-described values, the flow of integration processing will be described with reference to the flowchart of FIG.

まず、ステップS1で積算処理が開始されると、図2中の電流検出抵抗9でA/Dコンバータに入力する電流値を測定し、測定された電流値をマイクロコンピュータ10にA/D入力値として供給する(ステップS2)。次に、ステップS3ではステップS2で計算された入力値を24倍アンプ23と125倍アンプ24のどちらを用いて計測するかを決定する。電流検出抵抗9での電流値が2Aより大きい場合は24倍アンプ23を、2A以下の場合は125倍アンプ24を使用する。   First, when integration processing is started in step S1, the current value input to the A / D converter is measured by the current detection resistor 9 in FIG. 2, and the measured current value is input to the microcomputer 10 as the A / D input value. (Step S2). Next, in step S3, it is determined which of the 24 × amplifier 23 and the 125 × amplifier 24 is used to measure the input value calculated in step S2. When the current value at the current detection resistor 9 is larger than 2A, the 24 × amplifier 23 is used. When the current value is 2A or less, the 125 × amplifier 24 is used.

24倍アンプ23を用いる場合、A/D入力電圧を上述の式(1)から算出する。例えば、放電電流が2.5Aの場合、
A/D入力電圧は、120(mV/A)×2.5A=300(mV)
となる。また、A/D入力電圧をデジタルデータに変換すると、
A/D変換後の入力値(積算値)は、300(mV)/2.930(mV)≒102
となる。24倍アンプ23を使用した場合は、求めた積算値をそのまま積算エリアに加算する。
When the 24-times amplifier 23 is used, the A / D input voltage is calculated from the above equation (1). For example, when the discharge current is 2.5 A,
A / D input voltage is 120 (mV / A) × 2.5A = 300 (mV)
It becomes. When the A / D input voltage is converted into digital data,
The input value (integrated value) after A / D conversion is 300 (mV) /2.930 (mV) ≈102.
It becomes. When the 24-times amplifier 23 is used, the obtained integrated value is added to the integration area as it is.

125倍アンプ24を用いる場合、A/D入力電圧を上述の式(2)から算出する。例えば、放電電流が0.8Aの場合、
A/D入力電圧は、625(mV/A)×0.8A=500(mV)
となる。また、
A/D変換後の入力値(BATT_CURRENT_BIT)は、300(mV)/2.930(mV)≒170
となる。
When the 125 × amplifier 24 is used, the A / D input voltage is calculated from the above equation (2). For example, when the discharge current is 0.8A,
A / D input voltage is 625 (mV / A) × 0.8 A = 500 (mV)
It becomes. Also,
The input value (BATT_CURRENT_BIT) after A / D conversion is 300 (mV) /2.930 (mV) ≈170.
It becomes.

125倍アンプ24を用いた場合は、ステップS5で桁の重みが24倍アンプ23の使用時と同様になるように換算してから積算する(1回目の積算は前回剰余0とする)。A/D変換後の入力値170を24倍アンプ23の使用時に換算すると、170/5.208=32 余り3.344となる。ステップS6で余りの小数点以下を切り捨てすることにより、積算値32、剰余3と求められ、積算エリアには32が加算される。   When the 125-times amplifier 24 is used, the integration is performed after converting the digit weight so as to be the same as that when the 24-times amplifier 23 is used in step S5 (the first accumulation is the previous remainder 0). When the input value 170 after A / D conversion is converted when the 24-times amplifier 23 is used, 170 / 5.208 = 32 is obtained as the remainder 3.344. By rounding off the remainder after the decimal point in step S6, the integrated value 32 and the remainder 3 are obtained, and 32 is added to the integration area.

ここで、放電電流が0.8Aのまま10回積算した場合について説明する。剰余を無視し、剰余加算を行わない場合は 積算値32×10(回)=320であるが、理論的には換算前の入力値170を用いて計算すると、{170×10(回)}/5.208≒326となり、積算値に6のずれが生じる。   Here, the case where the discharge current is accumulated 10 times with 0.8 A will be described. When the remainder is ignored and the remainder addition is not performed, the integrated value is 32 × 10 (times) = 320. However, theoretically, when the calculation is performed using the input value 170 before conversion, {170 × 10 (times)} /5.208≈326, resulting in a deviation of 6 in the integrated value.

そこで、前回除算した時に求めた剰余を次の計算時に加算して積算処理を行う。つまり、2回目に求めた換算前の入力値170に1回目の剰余3を加算し、合計値を換算することで2回目の積算値を決定する。3回目以降は、2回目と同様に換算前の入力値に前回の剰余を加算してから全体を換算する。   Therefore, the remainder obtained by the previous division is added during the next calculation to perform the integration process. That is, the second integrated value is determined by adding the first remainder 3 to the input value 170 before conversion obtained the second time and converting the total value. From the third time on, the whole is converted after adding the previous remainder to the input value before conversion as in the second time.

10回目までの積算処理の状況を図5に示す。剰余を加算する方法で積算処理が行われた結果、この例では積算エリアの値が326となり、誤差が発生しない。したがって、前回計算時の剰余をA/D入力値に加算してから除算することで、桁落ちの影響を極力なくすことが出来る。   The status of the integration process up to the tenth time is shown in FIG. As a result of the integration process performed by the method of adding the remainder, in this example, the value of the integration area is 326, and no error occurs. Therefore, by adding the remainder at the time of the previous calculation to the A / D input value and then dividing, it is possible to minimize the influence of the digit loss.

また、有効桁数を増やす必要がないので、マイクロコンピュータ10にて使用するメモリを最小限にとどめることができる。   Further, since it is not necessary to increase the number of significant digits, the memory used in the microcomputer 10 can be minimized.

この発明では、放電開始時には積算法による残容量率を用い、徐々に電圧法による残容量率に変化させていく。また、放電終止付近では電圧法による残容量検出を行い、放電終止時には確実にカットオフ電圧と残容量率0%が一致するようにするため、完全に電圧法に切り替わるようになされている。   In the present invention, the remaining capacity rate by the integration method is used at the start of discharge, and gradually changed to the remaining capacity rate by the voltage method. In addition, the remaining capacity is detected by the voltage method near the end of the discharge, and the voltage method is completely switched to ensure that the cutoff voltage and the remaining capacity ratio 0% coincide with each other at the end of the discharge.

残容量率検出の際の電圧法と積算法(電流積算または電圧積算)の切り替えは、電圧法信頼度というパラメータを設け、この電圧法信頼度に応じて電圧法により得られた残容量率と積算法により得られた残容量率とを重み付け加算して、最終的な残容量率を求める。このような電圧法残容量率を使用した重み付け加算により、残容量率が急激に変化することなく、安定した検出が行われる。   To switch between the voltage method and the integration method (current integration or voltage integration) when detecting the remaining capacity ratio, a parameter called voltage method reliability is provided, and the remaining capacity ratio obtained by the voltage method according to the voltage method reliability The final remaining capacity ratio is obtained by weighting and adding the remaining capacity ratio obtained by the integration method. By such weighted addition using the voltage method remaining capacity ratio, stable detection is performed without the remaining capacity ratio changing rapidly.

電圧法信頼度は、環境条件や負荷条件によって電圧法での測定値をどの割合で信頼し、検出に用いるかを判定するパラメータである。ここで、積算法の信頼度は{100(%)−電圧法信頼度(%)}となる。電圧法信頼度は、放電電圧による信頼度係数、電圧法残容量率による信頼度係数、温度による信頼度係数をそれぞれ算出し、この3つの係数を組み合わせることで最終的な信頼度を算出する。   The voltage method reliability is a parameter for determining at what ratio the measurement value obtained by the voltage method is to be trusted and used for detection according to environmental conditions and load conditions. Here, the reliability of the integration method is {100 (%) − voltage method reliability (%)}. For the voltage method reliability, a reliability coefficient based on the discharge voltage, a reliability coefficient based on the voltage method remaining capacity ratio, and a reliability coefficient based on temperature are calculated, and the final reliability is calculated by combining these three coefficients.

以下、放電電圧による信頼度係数、電圧法残容量率による信頼度係数、温度による信頼度係数の各係数の求め方と、電圧法信頼度の算出方法について説明する。   Hereinafter, a method for obtaining each coefficient of the reliability coefficient based on the discharge voltage, the reliability coefficient based on the voltage method remaining capacity ratio, the reliability coefficient based on the temperature, and a calculation method of the voltage method reliability will be described.

放電電圧による信頼度係数は、図6に示すように、電圧が低くなるにつれて信頼度係数が増加していくものであり、以下の式によって算出することができる。ここで、以下の式により得られた信頼度係数が1未満となった場合には、信頼度係数は1とする。   As shown in FIG. 6, the reliability coefficient due to the discharge voltage is such that the reliability coefficient increases as the voltage decreases, and can be calculated by the following equation. Here, when the reliability coefficient obtained by the following equation is less than 1, the reliability coefficient is 1.

放電電圧による信頼度係数=−0.002×放電電圧(mV)+33   Reliability coefficient by discharge voltage = −0.002 × discharge voltage (mV) +33

たとえば、放電電圧値が12800mVの場合、放電電圧による信頼度係数=−0.002×12800+33=7と求められる。   For example, when the discharge voltage value is 12800 mV, the reliability coefficient by the discharge voltage = −0.002 × 12800 + 33 = 7.

電圧法残容量率による信頼度係数は、図7に示すように、電圧法残容量率が低くなるにつれて信頼度係数は急激に増加するものであり、以下の式によって算出することができる。ここで、以下の式により得られた信頼度係数が1未満となった場合には、信頼度係数は1とする。なお、例えば電圧法残容量率が20%であった場合、以下の式の電圧法残容量率には、20%を100倍した値2000を代入することとする。   As shown in FIG. 7, the reliability coefficient due to the voltage method remaining capacity ratio increases rapidly as the voltage method remaining capacity ratio decreases, and can be calculated by the following equation. Here, when the reliability coefficient obtained by the following equation is less than 1, the reliability coefficient is 1. For example, when the voltage method remaining capacity ratio is 20%, a value 2000 obtained by multiplying 20% by 100 is substituted for the voltage method remaining capacity ratio in the following equation.

電圧法残容量率による信頼度係数=(10000−電圧法残容量率(%×100))
/(電圧法残容量率(%×100)×1.2)+0.1
Reliability factor by voltage method remaining capacity ratio = (10000−voltage method remaining capacity ratio (% × 100))
/ (Voltage method remaining capacity ratio (% × 100) × 1.2) +0.1

たとえば、電圧法残容量率が20%の場合、電圧法残容量率による信頼度係数=(10000−2000)/(2000×1.2)+0.1=3.43となる。   For example, when the voltage method remaining capacity rate is 20%, the reliability coefficient by the voltage method remaining capacity rate = (10000−2000) / (2000 × 1.2) + 0.1 = 3.43.

また、二次電池の内部抵抗は、温度が低くなるにつれて大きくなるため、温度による変化も考慮に入れる必要がある。例えば、二次電池を装着した電気機器を用いる環境温度は、30℃以上の場合から氷点下まで変動することは十分に考えられる。この場合、内部抵抗は数倍以上になり、この差が残容量率測定精度を悪化させることになるからである。   In addition, since the internal resistance of the secondary battery increases as the temperature decreases, it is necessary to take into account changes due to temperature. For example, it is fully conceivable that the environmental temperature at which an electric device equipped with a secondary battery is used varies from 30 ° C. to below freezing. In this case, the internal resistance becomes several times or more, and this difference deteriorates the remaining capacity ratio measurement accuracy.

温度による信頼度係数は、図8に示すように、温度の上昇に伴って線形的に増加するものであり、以下の式によって算出することが可能である。   As shown in FIG. 8, the reliability coefficient due to temperature increases linearly with increasing temperature, and can be calculated by the following equation.

温度による信頼度係数=0.16×温度(℃)−5.6   Reliability coefficient according to temperature = 0.16 × temperature (° C.) − 5.6

たとえば、温度が15℃の場合、温度による信頼度係数=016×15−5.6=−3.2となる。   For example, when the temperature is 15 ° C., the reliability coefficient according to temperature = 016 × 15−5.6 = −3.2.

以上の3つの信頼度係数を用いて、それぞれの係数を以下の式に代入することにより、で求めた値がどれだけ信頼できるかを定義した電圧法信頼度を算出する。   By using each of the above three reliability coefficients and substituting each coefficient into the following equation, the voltage method reliability defining how reliable the value obtained in the above is calculated.

電圧法信頼度(%)=(放電電圧による信頼度係数+温度による信頼度係数)
×電圧法残容量率による信頼度係数
Voltage method reliability (%) = (Reliability coefficient by discharge voltage + Reliability coefficient by temperature)
× Reliability coefficient by voltage method residual capacity ratio

たとえば、放電電圧による信頼度係数が7、電圧法残容量率温度による信頼度係数が3.43、温度による信頼度係数が−3.2の場合、電圧法信頼度(%)は(7−3.2)×3.43=13.03(%)となる。ここで、(放電電圧による信頼度係数+温度による信頼度係数)が1以下となる場合は、この値を1とする。   For example, when the reliability coefficient by the discharge voltage is 7, the reliability coefficient by the voltage method remaining capacity rate temperature is 3.43, and the reliability coefficient by temperature is -3.2, the voltage method reliability (%) is (7− 3.2) × 3.43 = 13.03 (%). Here, when (reliability coefficient by discharge voltage + reliability coefficient by temperature) is 1 or less, this value is set to 1.

上述の方法によって得られた電圧法残容量率(%)と電圧法信頼度(%)の関係を図9に示す。図9中の各グラフは、温度別に表示されている。電圧法信頼度を算出する式は、電圧法を用いた場合、中間電位での残容量測定精度が悪いことと、電力積算法を用いた場合、放電末期の測定精度が悪いという2点の特性を加味した上で、電圧法信頼度の特性が以下のようになるようになされている。なお、電圧法信頼度は0〜100%の範囲で算出し、信頼度が高いほど電圧法の残容量率を高い割合で使用するものである。   FIG. 9 shows the relationship between the voltage method remaining capacity ratio (%) and the voltage method reliability (%) obtained by the above method. Each graph in FIG. 9 is displayed for each temperature. The formula for calculating the reliability of the voltage method has two characteristics: the accuracy of the remaining capacity at the intermediate potential is poor when the voltage method is used, and the measurement accuracy at the end of discharge is poor when the power integration method is used. In consideration of the above, the characteristics of the voltage method reliability are as follows. The voltage method reliability is calculated in the range of 0 to 100%, and the higher the reliability, the higher the remaining capacity ratio of the voltage method is used.

1.残容量率100〜30%付近までは、電力積算法での残容量率検出結果を使用
2.残容量率30〜5%付近では、電力積算法での残容量と電圧法での残容量率を、電圧法信頼度に基づく割合に応じて足し合わせた値を使用
3.残容量率5%以下では、電圧法での残容量率検出結果を使用
1. 1. The remaining capacity rate detection result in the power integration method is used up to the remaining capacity rate of 100 to 30%. 2. In the vicinity of the remaining capacity ratio of 30 to 5%, a value obtained by adding the remaining capacity by the power integration method and the remaining capacity ratio by the voltage method according to the ratio based on the voltage method reliability is used. When the remaining capacity rate is 5% or less, the remaining capacity rate detection result by the voltage method is used.

この発明では、図10に示すように、放電開始時には積算法、放電末期には電圧法を用い、中間電位の区間では、上述の式から求められた電圧法信頼度に応じて、電圧法残容量率と積算法残容量率とを重み付け加算して、最終的な残容量率(%)を算出する。このような電圧法残容量率を使用した重み付け加算により、積算法から電圧法に徐々に移行する。   In the present invention, as shown in FIG. 10, the integration method is used at the start of discharge, the voltage method is used at the end of discharge, and the residual voltage method is used in the intermediate potential section according to the voltage method reliability obtained from the above formula. The final remaining capacity ratio (%) is calculated by weighting and adding the capacity ratio and the integration method remaining capacity ratio. By such weighted addition using the voltage method remaining capacity rate, the integration method gradually shifts to the voltage method.

以下、図11のフローチャートを参照して、上述したような電圧法信頼度を用いて電池パックの残容量を検出する方法について説明する。   Hereinafter, a method for detecting the remaining capacity of the battery pack using the voltage method reliability as described above will be described with reference to the flowchart of FIG.

残容量算出処理が開始されると、図2の電池セル7では放電電圧を、電流測定抵抗9では放電電流を、サーミスタ8では電池温度を測定し、各測定値をマイクロコンピュータ10に供給する(ステップS11)。   When the remaining capacity calculation process is started, the battery cell 7 in FIG. 2 measures the discharge voltage, the current measurement resistor 9 measures the discharge current, the thermistor 8 measures the battery temperature, and supplies each measured value to the microcomputer 10 ( Step S11).

マイクロコンピュータ10では、供給された電圧値を元に電圧法による残容量検出を行う(ステップS12)。供給された測定電圧に(電流×インピーダンス)にて算出したドロップ電圧を加算することにより無負荷時の測定電圧を算出し、電圧と二次電池の残容量比率との関係を示す特性曲線のデータから二次電池の残容量を求める。電圧と二次電池の残容量比率との関係を表すデータは、事前に試験データから関係を導き出しておき、電圧と容量が対応したデータテーブルを用意し、電圧から対応した容量を算出する。   In the microcomputer 10, the remaining capacity is detected by the voltage method based on the supplied voltage value (step S12). Characteristic curve data showing the relationship between the voltage and the remaining capacity ratio of the secondary battery by calculating the no-load measurement voltage by adding the drop voltage calculated by (current x impedance) to the supplied measurement voltage To determine the remaining capacity of the secondary battery. The data representing the relationship between the voltage and the remaining capacity ratio of the secondary battery is derived in advance from the test data, a data table corresponding to the voltage and the capacity is prepared, and the corresponding capacity is calculated from the voltage.

次に、マイクロコンピュータ10内では、測定した電流、電圧から放電電力を算出する(電力=電流×電圧)。算出した放電電力は一定時間毎に積算処理を行い、放電開始からの積算電力量を求める(ステップS13)。ステップS14では、ステップS13で得られた積算電力量と、事前に試験データから得られた二次電池の放電可能電力に対しての割合から残容量率を算出する。具体的には、以下の式より、残容量率を得る。   Next, in the microcomputer 10, the discharge power is calculated from the measured current and voltage (power = current × voltage). The calculated discharge power is integrated every fixed time, and the integrated power amount from the start of discharge is obtained (step S13). In step S14, the remaining capacity rate is calculated from the integrated power amount obtained in step S13 and the ratio to the dischargeable power of the secondary battery obtained from the test data in advance. Specifically, the remaining capacity rate is obtained from the following equation.

残容量率(%)=積算電力/放電可能電力×100   Remaining capacity ratio (%) = integrated power / dischargeable power × 100

次に、電圧法で算出した残容量率、電力積算法で算出した残容量率のどちらを優先的に使用するかを判定するための電圧法信頼度を算出する(ステップS15)。電圧法信頼度は、放電電圧による信頼度係数、電圧法残容量率による信頼度係数、温度による信頼度係数を用いて算出する。   Next, the voltage method reliability for determining which of the remaining capacity rate calculated by the voltage method and the remaining capacity rate calculated by the power integration method is used preferentially is calculated (step S15). The voltage method reliability is calculated using a reliability coefficient based on a discharge voltage, a reliability coefficient based on a voltage method remaining capacity ratio, and a reliability coefficient based on temperature.

ステップS15で電圧法信頼度が算出されたら、電圧法信頼度(%)を用いて(1−電圧法信頼度(%))を計算し、積算法信頼度(%)を求める。さらに、電圧法残容量率(%)に電圧法信頼度をかけた値と、積算法残容量率(%)に積算法信頼度をかけた値を加算することにより、最終的な残容量率を電圧法信頼度を用いた重み付け加算によって算出する(ステップS16)。   When the voltage method reliability is calculated in step S15, (1-voltage method reliability (%)) is calculated using the voltage method reliability (%) to obtain the integration method reliability (%). Furthermore, the final remaining capacity ratio is obtained by adding the value obtained by multiplying the voltage method remaining capacity ratio (%) by the voltage method reliability and the value obtained by multiplying the accumulation method remaining capacity ratio (%) by the accumulation method reliability. Is calculated by weighted addition using the voltage method reliability (step S16).

たとえば、電圧法残容量率を30%、電力積算法残容量率を40%、電圧法信頼度を20%とした場合、最終的な残容量率は、30×0.20+40×(1−0.20)より38%と求められる。   For example, when the voltage method remaining capacity ratio is 30%, the power integration method remaining capacity ratio is 40%, and the voltage method reliability is 20%, the final remaining capacity ratio is 30 × 0.20 + 40 × (1-0 20), 38%.

このような方法により残容量率を測定し、残容量率が0%となった時点で放電を終了する。   The remaining capacity rate is measured by such a method, and the discharge is terminated when the remaining capacity rate becomes 0%.

この方法を用いることにより、放電終止付近では電圧法を用いるため、高い精度で残容量率を検出することができるとともに、たとえばリチウムイオン電池を用いた場合、電圧法では精度が悪くなる中間電位付近では電力積算法(または電流積算法)による残容量検出ができるため、放電開始から放電終止まで常に高い精度で残容量率検出をすることが可能である。   By using this method, the voltage method is used near the end of discharge, so that the remaining capacity ratio can be detected with high accuracy. For example, when a lithium ion battery is used, the accuracy is poor in the voltage method near the intermediate potential. Since the remaining capacity can be detected by the power integration method (or the current integration method), it is possible to always detect the remaining capacity rate with high accuracy from the start of discharge to the end of discharge.

以上、この発明の一実施形態について具体的に説明したが、この発明は、上述の一実施形態に限定されるものではなく、この発明の技術的思想に基づく各種の変形が可能である。   The embodiment of the present invention has been specifically described above, but the present invention is not limited to the above-described embodiment, and various modifications based on the technical idea of the present invention are possible.

例えば、上述の一実施形態において挙げた数値はあくまでも例に過ぎず、必要に応じてこれと異なる数値を用いてもよい。   For example, the numerical values given in the above-described embodiment are merely examples, and different numerical values may be used as necessary.

また、この発明はリチウムイオン電池の他、Ni−Cd(ニッカド)電池、Ni−MH(ニッケル水素)電池など、種々の電池に適用可能である。   The present invention can be applied to various batteries such as a Ni-Cd (nickel) battery and a Ni-MH (nickel metal hydride) battery in addition to a lithium ion battery.

また、電池パックを構成するマイクロコンピュータが、保護回路の機能を持つようにしてもよい。   Further, the microcomputer constituting the battery pack may have a function of a protection circuit.

また、積算処理を行う際は、電力積算に限らず、電流積算を行い、予め求めた総電流量との割合から残容量率を求めてもよい。   Further, when performing the integration process, not only power integration but also current integration may be performed, and the remaining capacity ratio may be obtained from the ratio with the total current amount obtained in advance.

二次電池を放電した際の電圧と残容量率を示すグラフである。It is a graph which shows the voltage at the time of discharging a secondary battery, and a remaining capacity rate. この発明を適用することができるバッテリパックの構造の一例を示す略線図である。It is a basic diagram which shows an example of the structure of the battery pack which can apply this invention. より精密に電流積算または電力積算を行うために用いる構成の略線図である。It is a basic diagram of the structure used in order to perform current integration or electric power integration more precisely. より精密に電流積算または電力積算を行うための処理の流れを表すフローチャートである。It is a flowchart showing the flow of processing for performing current integration or power integration more precisely. 剰余加算を行う積算法を用いた場合のデータ積算の一例を示す図である。It is a figure which shows an example of the data integration at the time of using the integration method which performs remainder addition. 二次電池の放電電圧と、放電電圧による信頼度係数の関係を示すグラフである。It is a graph which shows the relationship between the discharge voltage of a secondary battery, and the reliability coefficient by discharge voltage. 二次電池の電圧法残容量率と、電圧法残容量率による信頼度係数の関係を示すグラフである。It is a graph which shows the relationship between the voltage method remaining capacity rate of a secondary battery, and the reliability coefficient by a voltage method remaining capacity rate. 二次電池の温度と、温度による信頼度係数の関係を示すグラフである。It is a graph which shows the relationship between the temperature of a secondary battery, and the reliability coefficient by temperature. 二次電池の電圧法残容量率と電圧法信頼度の関係を温度別に示したグラフである。It is the graph which showed the relationship between the voltage method remaining capacity ratio of a secondary battery, and voltage method reliability according to temperature. 放電中の二次電池の電圧と、残容量率と、この発明を適用して求められる電圧法信頼度および残容量の検出方法を示す図である。It is a figure which shows the detection method of the voltage method reliability and residual capacity which are calculated | required by applying the voltage of the secondary battery during discharge, a remaining capacity rate, and applying this invention. 電圧法信頼度を用いて残容量を算出する方法を示すフローチャートである。It is a flowchart which shows the method of calculating remaining capacity using a voltage method reliability.

符号の説明Explanation of symbols

4・・・スイッチ回路
5・・・充電制御FET
6・・・放電制御FET
5a,6a・・・寄生ダイオード
7・・・電池セル
8・・・温度検出素子
9・・・電流検出抵抗
21・・・入力端子
22・・・スイッチ
4 ... Switch circuit 5 ... Charge control FET
6 ... Discharge control FET
5a, 6a ... Parasitic diode 7 ... Battery cell 8 ... Temperature detection element 9 ... Current detection resistor 21 ... Input terminal 22 ... Switch

Claims (4)

二次電池の残容量率検出方法において、
上記二次電池の電流値または電力値を一定時間毎に積算することにより電池容量を算出する積算法を用いた上記二次電池の残容量率検出と、
上記二次電池の電圧値を測定し、前記電圧値と残容量率の相関性に基づいて残容量率を算出する電圧法を用いた上記二次電池の残容量検出とを行い、
上記二次電池の残容量率が30%以上100%以下のときは、積算法による残容量率検出を行い、
上記二次電池の残容量率が5%以下のときは、電圧法による残容量率検出を行い、
上記二次電池の残容量率が5%より大きく30%未満のときは、上記二次電池の残容量率に応じた重みを用いて、積算法で検出した残容量率と電圧法で検出した残容量率とを重み付け加算し、最終的な残容量率検出を行うことを特徴とする二次電池の残容量率検出方法。
In the secondary battery remaining capacity rate detection method,
Detecting the remaining capacity ratio of the secondary battery using an integration method for calculating the battery capacity by integrating the current value or power value of the secondary battery at regular intervals;
Measure the voltage value of the secondary battery, perform the remaining capacity detection of the secondary battery using a voltage method of calculating the remaining capacity rate based on the correlation between the voltage value and the remaining capacity rate,
When the remaining capacity ratio of the secondary battery is 30% or more and 100% or less, the remaining capacity ratio is detected by the integration method,
When the remaining capacity ratio of the secondary battery is 5% or less, the remaining capacity ratio is detected by the voltage method,
When the remaining capacity ratio of the secondary battery is greater than 5% and less than 30% , the remaining capacity ratio detected by the integration method and the voltage method are detected using a weight according to the remaining capacity ratio of the secondary battery. A method for detecting a remaining capacity ratio of a secondary battery, wherein the remaining capacity ratio is weighted and added to perform a final remaining capacity ratio detection.
請求項1に記載の二次電池の残容量率検出方法において、
上記重み付け加算に使用する重みは、上記二次電池の放電電圧から求めた放電電圧による信頼度係数と、上記電圧法から求めた電圧法残容量率による信頼度係数と、上記二次電池の電池温度から求めた温度による信頼度係数を組み合わせた電圧法信頼度から得られることを特徴とする二次電池の残容量率検出方法。
In the secondary battery remaining capacity rate detection method according to claim 1,
The weights used for the weighted addition are the reliability coefficient based on the discharge voltage obtained from the discharge voltage of the secondary battery, the reliability coefficient based on the voltage method remaining capacity ratio obtained from the voltage method, and the battery of the secondary battery. A method for detecting a remaining capacity ratio of a secondary battery, which is obtained from a voltage method reliability combining a reliability coefficient according to a temperature obtained from a temperature.
二次電池の電池パックにおいて、
上記電池パックは二次電池の電圧および電流および温度を測定する測定部と、電池容量演算部とを有し、
上記電池容量演算部は、
上記二次電池の電流値または電力値を一定時間毎に積算することにより電池容量を算出する積算法を用いて、上記二次電池の残容量率を検出する検出手段と、
上記二次電池の電圧値を測定し、前記電圧値と残容量率の相関性に基づいて残容量率を算出する電圧法を用いて、上記二次電池の残容量率を検出する検出手段と、
上記二次電池の電圧法残容量率に応じて、積算法で検出した残容量率と電圧法で検出した残容量率とを重み付け加算し、最終的な残容量率検出を行う手段とを有し、
上記電池容量演算部は、上記二次電池の残容量率が30%以上100%以下のときは、積算法による残容量率検出を行い、
上記二次電池の残容量率が5%以下のときは、電圧法による残容量率検出を行い、
上記二次電池の残容量率が5%より大きく30%未満のときは、その残容量率に応じた重みを用いて積算法による残容量率と電圧法による残容量率とを重み付け加算することにより残容量率検出を行うことを特徴とする電池パック。
In secondary battery packs,
The battery pack includes a measurement unit that measures the voltage, current, and temperature of the secondary battery, and a battery capacity calculation unit.
The battery capacity calculator is
Detecting means for detecting the remaining capacity rate of the secondary battery using an integration method for calculating the battery capacity by integrating the current value or power value of the secondary battery at regular intervals;
Detecting means for measuring the voltage value of the secondary battery and detecting the remaining capacity rate of the secondary battery using a voltage method for calculating the remaining capacity rate based on the correlation between the voltage value and the remaining capacity rate; ,
There is a means for weighted addition of the remaining capacity rate detected by the integration method and the remaining capacity rate detected by the voltage method in accordance with the voltage method remaining capacity rate of the secondary battery, and performing a final remaining capacity rate detection. And
When the remaining capacity ratio of the secondary battery is 30% or more and 100% or less, the battery capacity calculation unit performs remaining capacity ratio detection by an integration method,
When the remaining capacity ratio of the secondary battery is 5% or less, the remaining capacity ratio is detected by the voltage method,
When the remaining capacity ratio of the secondary battery is greater than 5% and less than 30% , the remaining capacity ratio by the integration method and the remaining capacity ratio by the voltage method are weighted and added using a weight according to the remaining capacity ratio. A battery pack characterized by detecting the remaining capacity rate.
請求項に記載の電池パックにおいて、
上記電池容量演算部は、上記重み付け加算に使用する重みを、上記二次電池の放電電圧から求めた放電電圧による信頼度係数と、上記電圧法から求めた電圧法残容量率による信頼度係数と、上記二次電池の電池温度から求めた温度による信頼度係数を組み合わせた電圧法信頼度から得られることを特徴とする電池パック。
The battery pack according to claim 3 ,
The battery capacity calculation unit, the weighting used for the weighted addition, the reliability coefficient by the discharge voltage obtained from the discharge voltage of the secondary battery, the reliability coefficient by the voltage method remaining capacity ratio obtained from the voltage method, A battery pack obtained from a voltage method reliability combining a reliability coefficient according to a temperature obtained from a battery temperature of the secondary battery.
JP2004134016A 2004-04-23 2004-04-28 Secondary battery remaining capacity ratio calculation method and battery pack Expired - Lifetime JP4086008B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2004134016A JP4086008B2 (en) 2004-04-28 2004-04-28 Secondary battery remaining capacity ratio calculation method and battery pack
US11/106,866 US7382110B2 (en) 2004-04-23 2005-04-15 Method of charging secondary battery, method of calculating remaining capacity rate of secondary battery, and battery pack
KR1020050031976A KR101166099B1 (en) 2004-04-23 2005-04-18 Method of charging secondary battery, method of calculating remaining capacity rate of secondary battery, and battery pack

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004134016A JP4086008B2 (en) 2004-04-28 2004-04-28 Secondary battery remaining capacity ratio calculation method and battery pack

Publications (2)

Publication Number Publication Date
JP2005315730A JP2005315730A (en) 2005-11-10
JP4086008B2 true JP4086008B2 (en) 2008-05-14

Family

ID=35443317

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004134016A Expired - Lifetime JP4086008B2 (en) 2004-04-23 2004-04-28 Secondary battery remaining capacity ratio calculation method and battery pack

Country Status (1)

Country Link
JP (1) JP4086008B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7723958B2 (en) * 2006-03-31 2010-05-25 Valence Technology, Inc. Battery charge indication methods, battery charge monitoring devices, rechargeable batteries, and articles of manufacture
JP5004557B2 (en) * 2006-11-09 2012-08-22 三洋電機株式会社 How to detect battery deterioration
JP5329894B2 (en) * 2008-09-30 2013-10-30 株式会社東芝 Battery pack
JP4983818B2 (en) 2009-02-12 2012-07-25 ソニー株式会社 Battery pack and battery capacity calculation method
JP5395556B2 (en) * 2009-07-29 2014-01-22 パナソニック株式会社 Remaining time calculation device and remaining time calculation method
JP2012057998A (en) * 2010-09-07 2012-03-22 Calsonic Kansei Corp Charge rate calculation apparatus for secondary battery and charge rate calculation method
JP5880232B2 (en) * 2012-04-09 2016-03-08 三菱自動車工業株式会社 Remaining amount detection unit
US9689926B2 (en) 2013-01-25 2017-06-27 Hitachi Automotive Systems, Ltd. Battery controlling using charge state calculator and charge state verifier
JP6657967B2 (en) * 2016-01-06 2020-03-04 株式会社Gsユアサ State estimation device and state estimation method
JP6595009B2 (en) * 2016-01-29 2019-10-23 日立オートモティブシステムズ株式会社 Battery state estimation device
EP3511724B1 (en) 2016-09-12 2021-02-24 Alps Alpine Co., Ltd. Remaining battery capacity estimation device, remaining battery capacity estimation method, and program
KR102239365B1 (en) 2017-10-20 2021-04-09 주식회사 엘지화학 Apparatus for estimating state of charge of battery
CN112034357B (en) * 2020-08-04 2023-05-12 中汽研汽车检验中心(天津)有限公司 Over-discharge zero-voltage time prediction method for lithium ion battery
CN113238154B (en) * 2021-03-02 2024-07-30 翱捷科技股份有限公司 Method and system for measuring residual battery capacity based on coulometer

Also Published As

Publication number Publication date
JP2005315730A (en) 2005-11-10

Similar Documents

Publication Publication Date Title
JP4123184B2 (en) Secondary battery remaining capacity calculation method and battery pack
JP4668957B2 (en) Charge control method and electronic device
US7382110B2 (en) Method of charging secondary battery, method of calculating remaining capacity rate of secondary battery, and battery pack
CN101322280B (en) Battery pack, electronic device and method for detecting remaining quantity in battery
CN101425698B (en) Battery pack, method of charging secondary battery and battery charger
US8482254B2 (en) Battery capacity estimation by DCIR
JP4086008B2 (en) Secondary battery remaining capacity ratio calculation method and battery pack
US20120121952A1 (en) Battery status detecting device and battery pack where the battery status detecting device is provided
JP3925507B2 (en) Secondary battery charging method and battery pack
EP1577677A1 (en) Battery apparatus and discharge controlling method of battery apparatus
CN101636872A (en) Quick charging method of lithium based secondary battery and electronic apparatus employing it
JP2012095532A (en) Electronic apparatus
JP2009097954A (en) Battery pack and residual capacity correction method of secondary battery
KR20050008633A (en) Battery pack and battery remaining power calculating method
JP4846755B2 (en) Portable electronic devices
KR20140025652A (en) Battery pack and controlling method of the same
JP2007322398A (en) Battery pack and method for detecting fully-charge capacity
JP2008275524A (en) Battery pack and residual capacity computing method
TWI707151B (en) Methods and apparatus for calculating a route resistance of a battery system
JP2001095159A (en) Secondary battery unit, and method of measuring electric capacity thereof
JP4000240B2 (en) Secondary battery unit and secondary battery remaining amount measuring method
JP2014119394A (en) Battery deterioration method
JP4660367B2 (en) Rechargeable battery remaining capacity detection method
JP2014153130A (en) Charged state determination device, charged state determination method, and power supply system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050914

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080211

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4086008

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120229

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130228

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140228

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term