JP4077143B2 - Chromate drainage treatment method - Google Patents

Chromate drainage treatment method Download PDF

Info

Publication number
JP4077143B2
JP4077143B2 JP2000232518A JP2000232518A JP4077143B2 JP 4077143 B2 JP4077143 B2 JP 4077143B2 JP 2000232518 A JP2000232518 A JP 2000232518A JP 2000232518 A JP2000232518 A JP 2000232518A JP 4077143 B2 JP4077143 B2 JP 4077143B2
Authority
JP
Japan
Prior art keywords
chromate
drainage
component
liquid
dissolved
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000232518A
Other languages
Japanese (ja)
Other versions
JP2002045871A (en
Inventor
弘哲 那須
渉 松谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2000232518A priority Critical patent/JP4077143B2/en
Priority to MYPI20012590 priority patent/MY132572A/en
Priority to EP01118162A priority patent/EP1178014B1/en
Priority to DE60122839T priority patent/DE60122839T2/en
Priority to BRPI0106411-8A priority patent/BR0106411B1/en
Priority to KR10-2001-0045821A priority patent/KR100469872B1/en
Priority to US09/916,532 priority patent/US6846416B2/en
Publication of JP2002045871A publication Critical patent/JP2002045871A/en
Application granted granted Critical
Publication of JP4077143B2 publication Critical patent/JP4077143B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D21/00Processes for servicing or operating cells for electrolytic coating
    • C25D21/16Regeneration of process solutions
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5236Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
    • C02F1/5254Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents using magnesium compounds and phosphoric acid for removing ammonia
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5236Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5236Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
    • C02F1/5245Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents using basic salts, e.g. of aluminium and iron
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/58Treatment of water, waste water, or sewage by removing specified dissolved compounds
    • C02F1/62Heavy metal compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • C02F2101/22Chromium or chromium compounds, e.g. chromates
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/303Complexing agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/06Controlling or monitoring parameters in water treatment pH
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2222/00Aspects relating to chemical surface treatment of metallic material by reaction of the surface with a reactive medium
    • C23C2222/10Use of solutions containing trivalent chromium but free of hexavalent chromium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S210/00Liquid purification or separation
    • Y10S210/902Materials removed
    • Y10S210/911Cumulative poison
    • Y10S210/912Heavy metal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S210/00Liquid purification or separation
    • Y10S210/902Materials removed
    • Y10S210/911Cumulative poison
    • Y10S210/912Heavy metal
    • Y10S210/913Chromium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Removal Of Specific Substances (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Treatment Of Water By Ion Exchange (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、クロメート処理ラインにて発生する排液(本発明において、これをクロメート排液という)の処理方法、特に、そのクロメート排液から溶存Cr成分を除去する方法に関する。
【0002】
【従来の技術】
スパークプラグやグロープラグの主体金具など、鉄系材料で構成される部品においては、その表面に防食用のZnメッキあるいはSnメッキが施されることがあるが、より高い耐食性が要求される場合には、メッキ層の上にさらにクロメート処理が施されることがある。例えば、亜鉛メッキ層は鉄に対しては優れた防食効果を有するが、よく知られている通り、鉄上の亜鉛メッキ層は犠牲腐食により消耗しやすく、また、生じた酸化亜鉛により白く変色して外観も損なわれ易い欠点がある。そこで多く場合、亜鉛メッキ層の表面をさらにクロメート被膜で覆い、メッキ層の腐食を防止することが行われている。
【0003】
従来、クロメート処理としては、いわゆる黄色クロメートが用いられてきた。この黄色クロメートは、防食性能が良好であるため広く使用されてきたが、クロム成分の一部が六価クロムの形で含有されていることが災いして、環境保護に対する関心が地球規模で高まりつつある近年では次第に敬遠されるようになってきている。また、黄色クロメート処理浴は、比較的高濃度の六価クロムを含有するものが使用されるから、排液中の六価クロムを三価クロムに還元するための還元処理が別途必要となり、コストがかかる難点もある。そこで、代替のクロメート処理として、六価クロムを使用しない三価クロム系のクロメート処理が注目され始めている。例えば、ドイツ公開特許公報DE19638176A1号には、三価クロム塩とともに三価クロムに対する錯化剤(有機酸が主体となる)を配合したものを用いることで、一般的なクロメート処理法では困難な緻密で厚膜の三価クロム系クロメート被膜を形成する方法が開示されている。
【0004】
【発明が解決しようとする課題】
クロメート処理ラインでは、例えばクロメート処理後のワークの洗浄排液や、寿命が到来した廃クロメート処理液が、クロメート排液として発生する。このようなクロメート排液は、溶存Cr成分を除去した後廃棄する必要がある。その除去方法としては、Ca(ОH)(水酸化カルシウム)を排液中に投入してCr成分をCr(OH)の形で除去する方法が一般的である。しかしながら、前述のドイツ公開特許公報に開示された三価クロム系クロメート処理液のように、錯化剤等の有機酸成分を多量に含有した処理液の場合、排液中にも当然に有機酸成分が多く含有され、これがCrと強固な結合を形成するために、通常の処理ではCr成分の分離・除去が困難な問題がある。
【0005】
本発明の課題は、有機酸成分を多く含有したクロメート排液でもCr成分の分離・除去を安価にかつ効果的に行なうことができるクロメート排液の処理方法を提供することにある。
【0006】
【課題を解決するための手段及び作用・効果】
上記の課題を解決するために、本発明のクロメート排液の処理方法の第一は、
有機酸成分とZn成分とを含有したクロメート排液に対し、Ca成分及びMg成分の少なくともいずれかを含有するCr沈澱促進剤を添加し、かつクロメート排液のpHを9以上に維持することによりCr成分を沈澱させて、液中の溶存Cr成分濃度を減少させるとともに、
前記クロメート排液にCr沈澱促進剤を投入し、液のpHを9以上の第一値に一旦保持した後、液のpHを第一値から8以上の第二値に降下させてZn成分を沈澱させることを特徴とする。
また、第二は、
有機酸成分を含有したクロメート排液に対し、Ca成分及びMg成分の少なくともいずれかを含有するCr沈澱促進剤を添加し、かつクロメート排液のpHを9以上に維持することによりCr成分を沈澱させて、液中の溶存Cr成分濃度を減少させるとともに、
Cr沈澱促進剤としてCa系無機化合物を使用するとともに、Cr成分を含有した沈澱物(以下、Cr系沈殿物という)を分離した後、Caとの間で沈澱(以下、Ca系沈殿物という)を形成する酸により液を中和して、液中の溶存Ca成分をCa系沈殿物の形で分離することを特徴とする。
さらに、第三は、
有機酸成分を含有したクロメート排液に対し、Ca成分及びMg成分の少なくともいずれかを含有するCr沈澱促進剤を添加し、かつクロメート排液のpHを9以上に維持することによりCr成分を沈澱させて、液中の溶存Cr成分濃度を減少させるとともに、
Cr沈澱促進剤としてMg系無機化合物を使用するとともに、Cr系沈澱物を分離した後、酸により液を中和し、中和後の液中の溶存Mg成分を逆浸透法又はイオン交換法により除去することを特徴とする。
【0007】
クロメート処理の排液にCa(OH)等のCr沈澱促進剤を添加して、溶存Cr成分を、Cr成分を含有する沈澱物(以下、Cr系沈澱物という)の形で除去する際に、排液のpHレベルはCr系沈澱物の生成反応あるいは凝集反応(以下、これらを総称してCr成分の沈澱反応ともいう)に大きな影響を及ぼす。従って、反応を速やかに進行させるためには、pHレベルを適切な値に調整・維持することが重要である。本発明者らの検討によると、黄色クロメート処理などの従来のクロメート排液では、pHが8程度において沈澱促進剤の添加により、Cr成分の沈澱反応を問題なく進行させることができるが、錯化剤等の有機酸成分を多量に含有した排液の場合、沈澱促進剤を相当量添加しても、Cr成分の沈澱反応は思うように進行しないことが判明した。その理由としては、有機酸成分がCrイオンと強固結合して錯体を形成するため、Cr成分の沈澱反応が阻害されていることが考えられる。
【0008】
そこで、さらに鋭意検討を重ねた結果、Cr成分の沈澱反応を進行させる際の排液のpHを、従来よりも高い9以上に維持することにより、有機酸成分を多く含有する排液においても、Cr成分の沈澱反応を速やかに進行させることが可能となり、液中の溶存Cr成分濃度を効果的に減少できることを見出して、本発明を完成するに至ったのである。
【0009】
排液のpHが9未満では、Cr成分の沈澱反応の速度が低下し、本発明の目的を達成できなくなる。また、沈澱物が微細化して凝集しにくくなり、沈殿物の分離・回収が困難になる。他方、pHの上限値に特に制限はないが(理論上は14が最大値である)、pH調整用の添加剤(これは、Cr沈澱促進剤が兼ねる場合もあるし、これとは別の物質がpH調整用の添加剤として使用される場合もある)の配合量が不必要に大きくなり過ぎないように、適宜上限を考慮することが望ましい。例えば、pHを12.5より大きくしても、Cr沈澱促進効果のそれ以上の改善はもはや期待できなくなり、逆に液のpHをそのような高い値に維持するのに必要なpH調整用添加剤の配合量が大幅に増加するので、却って不経済となる場合がある。なお、本明細書において「沈澱物」の概念は、液中にて沈下・堆積した固形物のみでなく、液中に浮遊している懸濁物も含むものとする。
【0010】
また、本明細書において処理対象となるクロメート排液は、例えばクロメート処理後の被処理部材を洗浄した際に生ずる洗浄排液のほか、寿命が到来したクロメート処理液などである。例えば洗浄排液中に溶存するCr含有濃度は、おおむね10〜200ppm程度である。また、寿命が到来したクロメート処理液中のCr含有濃度は、おおむね8000〜12000ppm程度であるが、本発明の適用により、このような排液の溶存Cr含有濃度を、2ppm以下とすることが容易に可能となる。
【0011】
本発明の処理対象となるクロメート排液は、有機酸成分を含有するものであれば特に限定されないが、有機酸を特に多く含有するクロメート処理浴としては、前述のドイツ公開特許公報DE19638176A1号に開示されているものがあり、その排液処理に際して本発明の効果をとりわけ顕著に達成することができる。このクロメート処理液は、一般的なクロメート処理法では困難な緻密で厚膜(例えば、0.2〜0.5μm)の三価クロム系クロメート被膜を形成することを目的としている。クロメート被膜の形成過程は、処理浴中において下地金属(例えば亜鉛)の酸化溶出がまず起こり、その溶出した下地金属成分と、クロメートイオンを含有する溶液とが反応して、三価クロムが水酸基あるいは酸素のブリッジによってポリマー状の錯体を形成して下地金属表面上にゲル状に沈澱・堆積する機構が主体になっているというのが定説である。この場合、クロメート被膜が成長するためには、下地金属の溶出と、溶出した下地金属と浴中のクロメートイオンとの反応・堆積とが並行して進まなければならない。しかしながら、クロメート被膜がある程度堆積すると、浴液との界面を介した不均一反応である下地金属層の溶出反応が妨げられ、被膜の成長は停滞する。
【0012】
上記のドイツ公開特許公報の開示内容によれば、被膜の厚膜化を図るには、下地金属の溶解と、溶解した下地金属成分と三価クロムとの反応による被膜沈澱との速度を大きくしつつ、堆積したクロメート被膜の逆溶解の速度をなるべく小さくすることが重要である。そして、上記の方法では、適当な錯化剤を浴中に添加して三価クロムを錯体化することにより被膜沈澱が促進され、厚膜化が可能になると考えられる。その錯化剤としては、各種キレート剤(ジカルボン酸、トリカルボン酸、オキシ酸、水酸基ジカルボン酸あるいは水酸基トリカルボン酸等:例えば、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、コルク酸、アセレイン酸、セバシン酸、マレイン酸、フタル酸、テレフタル酸、酒石酸、クエン酸、リンゴ酸及びアスコルビン酸から選ばれる1種又は2種以上)を用いることが有効であるが、他の錯化剤を用いてもよく、その使用可能な錯化剤については、上記ドイツ特許公報に記載されている通りである。例えば建浴時において処理液に含有される錯化剤の合計含有量は2〜10質量%程度であり、寿命到来時点でもなお、2〜10質量%程度の錯化剤が含有される。また、クロメート処理品を洗浄することにより生ずる洗浄排液中にも0.01〜0.03質量%程度の錯化剤が含有される。
【0013】
本発明において、Cr沈澱促進剤は、Ca系無機化合物又はMg系無機化合物の少なくともいずれかを使用することが望ましい。Cr沈澱促進剤として有機化合物を使用することも可能ではあるが、有機化合物の種類によっては、Crイオンに対して錯化剤として結合し、却ってCrイオンの溶存状態を安定化させてしまう惧れも否定しきれない。しかしながら、無機化合物を使用すればそのような不具合発生に対する懸念は生じない。また、Ca系無機化合物やMg系無機化合物は総じて安価であり、Cr系沈澱物の生成反応を促進する効果にも優れるので本発明に公的に使用できる。なお、Ca系無機化合物としては、例えばCa(ОH)、CaCl及びCa(NO1種又は2種以上を使用できる。また、可溶性Mg系無機化合物としては、例えばMgCl、Mg(NO及びMgSOの1種又は2種以上を使用できる。
【0014】
Cr沈澱促進剤として例えばCa(ОH)を使用した場合、それ自身が塩基性の強い化合物であるため、排液pHを塩基性領域に調整する作用も同時に達成できる。その結果、排液のpHを調整するための添加剤を別途添加する必要がなくなるか、あるいはその添加量を削減できる利点を生ずる。なお、Ca(ОH)を、主に後述する塩基性pH調整剤として使用することも可能である。
【0015】
一方、Cr沈澱促進剤としては、なるべく水への溶解度の高い物質を使用することが、Cr沈澱反応の速度を高める上で望ましい。特に、CaClあるいはMgClは、水への溶解度が大きく、しかも安価であるので本発明に好適に使用することができる。
【0016】
Cr沈澱促進剤としてCa(ОH)を使用する場合、排液1リットル当たりの投入量を、Ca総量に換算した値にて50〜1000mg程度とするのがよい。排液1リットル当たりの投入量が50mg未満であると、Cr沈澱促進効果に乏しく、1000mgを超える投入は、量に見合った効果の顕著な増加を見込むことができず、無意味な処理コストの増大を招く。同様の理由により、CaClを使用する場合は、排液1リットル当たりの投入量をCa総量に換算した値にて500〜1000mg程度とするのがよく、MgClを使用する場合、排液1リットル当たりの投入量をMg総量に換算した値にて200〜500mg程度とするのがよい。
【0017】
なお、Cr沈澱促進剤として、CaClやMgClのように、塩基性がそれほど強くない化合物を使用する場合は、クロメート排液のpHを9以上とするために、該クロメート排液にCr沈澱促進剤とは別に塩基性pH調整剤を投入することが有効である。塩基性pH調整剤は、水溶性の高い強塩基性化合物を用いることが望ましく、例えばNaОH、KОH、LiОHあるいはCa(OH)から選ばれる1種以上を使用できる。このうち、NaОHは、安価でpH上昇効果も顕著であることから、本発明に好適に使用することができる。ただし、NaОHを過度に投入することは、排液を最終的に放流したりする際にpH調整のための中和剤を多量に要し、無意味なコストアップを招くので好ましくない。また、MgClを使用する場合は、NaОHを過度に投入すると、Cr系沈澱物の再溶解によって、その分離・除去の効率を低下させてしまう惧れもある。従って、このような不具合が生じない範囲にて投入量を定めるのがよい。
【0018】
なお、Cr沈澱促進剤あるいは塩基性pH調整剤は、固体の状態で排液に添加しても、水溶液等の溶液形態で添加してもいずれでもよいが、反応の速度、均一性及び投入量調整の容易性を考慮すれば、溶液形態で添加する方が好都合な場合が多い。なお、Ca(ОH)のように、水への溶解度が比較的小さい化合物を使用する場合は、懸濁液の形で添加してもよい。
【0019】
次に、Cr成分の沈澱により溶存Cr成分濃度を減少させる処理は、排液の温度を20℃以上に保持した状態にて行なうことができる。排液の温度を20℃以上に保持することで、Cr成分の沈澱反応を大幅に促進することができ、以下のような効果を達成することができる。
▲1▼溶存Cr成分濃度を短時間で低下させることができ、ひいては処理能率の大幅な向上を図ることができる。
▲2▼Cr沈澱促進剤の投入量をある程度削減しても、溶存Cr成分濃度を十分に低下させることができるようになる。その結果、Cr沈澱促進剤の使用コストのみならず、スラッジとして生成するCr系沈殿物の量も減少するので、スラッジ処理コストも低減できる。
【0020】
排液温度の上昇によりCr成分の沈澱反応が促進できる理由としては、錯化剤分子のCrイオンに対するキレート結合力が温度上昇により弱まり、Crイオンの錯形成状態が解消して、凝集しやすくなることが考えられる。
【0021】
排液の温度はより望ましくは25℃以上に保持するのがよく、さらに望ましくは30℃以上とするのがよい。そして、60℃程度までは、Cr成分の沈澱反応の効率は排液温度が上昇するほど高くなる。ただし、排液温度を上昇させることによるコスト削減効果と、排液を積極加熱するためのエネルギーコストとがトレードオフの関係にあるため、コスト削減効果が優位となる範囲にて排液温度は適宜設定する必要がある。この場合、工場内廃熱等を利用して処理排液を加熱するようにすれば、コスト削減効果は一層顕著なものとなる。他方、排液温度が85℃以上になると、排液から過剰な蒸発ミストが発生して、その回収等のために余分な設備が必要となるため、該温度よりも低温にて処理を行なうことが望ましい。
【0022】
なお、Cr沈澱促進剤としてCa(OH)を使用する場合、Ca(OH)は前述の通り塩基性pH調整剤としても機能しうるが、排液温度上昇によりその投入量を大幅に削減することが可能になった場合、Ca(OH)の水への溶解度は液温が上昇するほど小さくなることもあって、上記塩基性pH調整剤としての観点から見た投入量が不足し、液pHを9以上とすることが不能となることも考えられる。この場合、例えばNaОH、KОH、LiОH等、Ca(OH)以外の塩基性pH調整剤を補助的に添加して、液pHを9以上に維持することが有効である。
【0023】
【発明の実施の形態】
以下、本発明の実施の形態を、図面を用いて説明する。
図1に、クロメート処理の適用対処となる製品の一例として、スパークプラグを示している。スパークプラグ10は、筒状の主体金具1、先端部が突出するようにその主体金具1内に嵌め込まれた絶縁体2、先端部を突出させた状態で絶縁体2の内側に設けられた中心電極3、及び主体金具1に一端が結合され、他端側が中心電極3の先端と対向するように配置された接地電極4等を備えている。接地電極4と中心電極3の間には火花放電ギャップgが形成されている。絶縁体2は、例えばアルミナあるいは窒化アルミニウム等のセラミック焼結体により構成され、その貫通孔6の一方の端部側に端子金具13が固定され、同じく他方の端部側に中心電極3が固定されている。また、該貫通孔6内において端子金具13と中心電極3との間に抵抗体15が配置されている。この抵抗体15の両端部は、導電性ガラスシール層16,17を介して中心電極3と端子金具13とにそれぞれ電気的に接続されている。主体金具1は、炭素鋼等の金属により円筒状に形成されており、スパークプラグ10のハウジングを構成するとともに、その外周面には、スパークプラグ10を図示しないエンジンブロックに取り付けるためのねじ部7が形成されている。1eは、主体金具1を取り付ける際に、スパナやレンチ等の工具を係合させる六角部である。また、主体金具1のねじ部7の基端部には、ガスケット30がはめ込まれている。このガスケット30は、炭素鋼等の金属板素材を曲げ加工したリング状の部品でる。そして、主体金具1の下地層(例えば炭素鋼)40外面全体には防食のための亜鉛メッキ層41(亜鉛系メッキ層)が形成され、そのさらに外側がクロメート被膜42で覆われている。また、ガスケット30の外面にも、同様に亜鉛メッキ層45とクロメート被膜46とが形成されている。これら亜鉛メッキ層及びクロメート被膜は、いずれも同一の方法によって形成される。
【0024】
亜鉛メッキ層41は、公知の電解亜鉛メッキ法により形成されるものであり、厚さは、例えば3〜10μm程度とされる。一方、クロメート被膜42は、含有されるクロム成分の95重量%以上が三価クロムであり、かつその膜厚が0.2〜0.5μmである。なお、クロム成分は、なるべく多くの部分が三価クロム成分となっているのがよく、望ましくはクロム成分の実質的に全てが三価クロム成分となっているのがよい。
【0025】
図2は、クロメート被膜42(図1)の形成方法の一例を模式的に示している。すなわち、公知の電解亜鉛メッキ法等により所定の膜厚の亜鉛メッキ層を形成した主体金具1を、クロメート処理浴50に浸漬する。これにより、図1に示すように、主体金具1の亜鉛メッキ層41の表面には、クロメート被膜42が形成される。クロメート処理浴50としては、比較的厚膜に形成するために、前述のドイツ公開特許公報に開示されたものが使用され、必要量のクロメートイオンのほか、錯化剤として前述の有機酸が相当量配合されたものである。なお、図2は概念的な工程を表す説明図であり、主体金具1を単にクロメート処理浴50に浸漬するように描いているが、実際は処理能率向上のため、公知のバレル処理法(透液性の容器内に主体金具をバラ積み挿入し、クロメート処理浴50中にて容器を回転させながら行なう処理)等を採用することができる。
【0026】
クロメート処理浴50から取り出された処理済の主体金具1(被処理物)は、洗浄用水への浸漬あるいは洗浄用水の噴霧により洗浄され、さらに乾燥後、次工程に回される。このときに、使用した洗浄用水はクロメート処理液の成分が混入し、溶存するCr成分やZn成分さらには錯化剤等の有機成分を含有したクロメート排液となる。また、クロメート処理に繰り返し供される事により寿命が到来した廃処理液も、適当な濃度(例えば洗浄排液と同程度の濃度)に希釈され、同様にクロメート排液となる。これらクロメート排液は、Cr成分の除去と中和処理とを目的とした排液処理がなされる。以下、これについて詳しく説明する。
【0027】
図3は、排液処理ラインの一例を概念的に示すものである。排液処理ライン100には、クロメート処理浴50や洗浄槽(図示せず)を含むクロメート処理ライン102にて発生した、被処理排液を貯溜するための貯留槽103が設けられている。排液はこの貯留槽103から反応槽104に随時移され、ここで、Cr沈澱促進剤として、適量のCa(OH)あるいはCaClが添加される。さらに、CaClを用いる場合は、塩基性pH調整剤としてNaOHが添加される。液のpHは9〜12.5(望ましくは10〜12.5)に調整・維持される。
【0028】
上記処理により、反応槽104では、溶存Cr成分がCr(OH)等の沈澱物が生成する。この段階では、沈澱物は微粒子の状態であり、多くが液中に浮遊するとともに、沈降速度も緩やかである。なお、クロメート排液に上記のようなCr沈澱促進剤を投入した後、液に撹拌を加えることがCr沈澱反応の促進を図る上で有効である。撹拌時間は、例えば反応促進効果を十分に引き出す観点から0.5時間以上とすることが望ましい。また、撹拌時間の上限に特に制限はないが、効果の顕著性と能率とを考慮して、例えば2時間程度を目安として撹拌時間の上限を定めることができる。
【0029】
次に、クロメート処理液が、上記のように、Znメッキ層に対するクロメート処理に用いられたものである場合には、排液中にはCr以外にZn成分も相当量が含有される(例えば、溶存Zn量にて5〜100ppm程度)。この場合、Zn成分を含有するクロメート排液にCr沈澱促進剤を投入して、液のpHを9以上の第一値に一旦保持することによりCr沈澱反応を促進し、その後、液のpHを第一値から8以上の第二値に降下させてZn成分を沈澱させることが、Zn成分の除去に有効となる場合がある。pHを8未満とすることは、後述のCr系沈澱物の凝集処理を行なう際に、凝集反応効率の低下を招く場合がある。また、降下後のpHが10を超えるとZn沈澱促進の効果に乏しくなる。
【0030】
なお、上記処理により、Zn成分の除去が必ずしも顕著に促進されない場合においても、後述の高分子凝集剤としてアニオン系の凝集剤を使用すれば、その凝集反応を最適化するために、液pHを、Cr沈澱反応時の第一値からそれよりも低い第二値に降下させることが有効となる場合がある。
【0031】
液のpHを低下させるためには、酸性pH調整剤として、例えばHSO、HNO,HCl等の無機酸を使用することができ、特に、環境保護上問題となりやすい排液中の窒素あるいはCl濃度を低減する観点においては、HSOの使用が好ましい。なお、HSOを使用する場合、pHを8未満に下げると、別の問題として、Cr沈澱促進剤として添加したCa成分が、CaSO(硫酸カルシウム(石膏))となって処理途中で大量に沈澱し、スムーズな処理が行なえなくなる場合がある。従って、この観点においても、Zn成分の上記の沈澱促進処理においては、液のpHを8以上とすることが望ましいのである。図3では、Cr沈澱促進剤を投入した後の液をpH調整槽105に導いて、HSO添加により液のpH調整処理を行なっている。
【0032】
Cr沈澱促進剤の投入によりCr成分を含有した沈澱物(以下、Cr系沈澱物)を生成させた排液は、高分子凝集剤を投入することにより、Cr成分を含有した沈澱物を凝集させてその沈下を促進させることができる。使用する高分子凝集剤としては、ポリアクリルアミド等の非イオン系(あるいは弱アニオン系)凝集剤、アミノアルキルアクリレート(あるいはアミノアルキルメタクリレート)の4級塩重合体(あるいは共重合体)、ポリアミノメチルアクリルアミドの塩(あるいは4級塩)及びキトサン(酢酸塩)等のカチオン系凝集剤、アクリルアミド/アクリル酸ナトリウム共重合体、アクリルアミド/アクリル酸ナトリウム/2−アクリロイルアミノ−2−メチルプロパンスルホン酸ナトリウム共重合物、ポリアクリル酸ナトリウム等のアニオン系凝集剤を使用できる。このうち、ポリアクリルアミドは、水への溶解度が高く、かつ凝集能力も高いので本発明に特に好適に使用できる。
【0033】
なお、高分子凝集剤の投入量は、使用する高分子凝集剤の種類によっても異なるが、例えば0.01%程度の希薄凝集剤溶液を使用する場合は、排液1リットル当たりにこれを1〜5ml程度投入するのが適当である。図3では、上記pH調整処理が終了した排液を凝集槽106に導いて凝集剤を投入した後、さらに沈殿槽107にて凝集した沈澱物(Cr系沈澱物あるいはZn系沈澱物)を沈降させて、固液分離を図るようにしている。
【0034】
次に、Cr沈澱促進剤を排液に投入後、高分子凝集剤を投入して沈澱物を沈下させ、さらに固液分離を行なうまでの間に、液を所定時間、例えば30分以上放置することにより、溶存Cr成分あるいは溶存Zn成分の沈澱反応を一層促進することができ、ひいては処理後の液中の、これら溶存成分の含有量をさらに低減することができる。例えば、Cr沈澱促進剤を排液に投入した状態で放置(前述の通り撹拌を加えてもよい)することで、溶存Cr成分濃度を低下させることができる。他方、高分子凝集剤を投入したあと、固液分離を図るまでの間に所定時間液を放置することにより、溶存Cr成分濃度及び溶存Zn成分濃度を低下させることができる。
【0035】
図4は、反応槽104、pH調整槽105、凝集槽106及び沈殿槽107の構成例を示す模式図である。排液は排液供給管路130により反応槽104に注入される。該排液供給管路130上には貯留槽103(図3)からの排液を反応槽104に向けて圧送する送液ポンプ131が設けられている。また、Cr沈澱促進剤L1は薬剤タンク110に貯留され、管路111を経て反応槽104に供給される。その供給量は、管路111上に設けられた電磁バルブ112により、その投入量を容易に調整することができる。
【0036】
反応槽104内には、ここに滞留する被処理排液のpH値を検出するpH検出部120が設けられている。このpH検出部120としては、公知のpHセンサを使用することができる(例えば、アンチモン電極を用いるもの、液体膜型電極を用いるものなど)。そして、上記のpH検出部120により検出されたpH値を参照して、被処理排液のpHが9〜12.5(望ましくは10〜12.5)の範囲のものとなるように、Cr沈澱促進剤L1の投入量を制御する制御部132が設けられている。ただし、これはCr沈澱促進剤L1として、pH調整能力の大きいCa(OH)の懸濁液を使用する場合であって、pH調整能力の小さいCr沈澱促進剤、例えばCaClを用いる場合には、塩基性pH調整剤(例えばNaOH水溶液)の投入量が、同様の機構により制御・調整される形となる。また、Cr沈澱促進剤の投入機構を、塩基性pH調整剤の投入機構とは別に設ける形となる。
【0037】
制御部132は、例えばコンピュータを主体に構成されるものであり、pH検出部120からの検出情報を参照して電磁バルブ112の開閉を制御し、被処理排液のpH値が前記した範囲のものとなるように、Cr沈澱促進剤あるいは塩基性pH調整剤等の薬剤投入量を調整する役割を果たす。その制御形態としては、電磁バルブ112を、例えば全開及び全閉のみ可能な電磁ストップバルブとして構成しておき、その開時間の調整(あるいは開閉時間のデューティ比制御)により薬剤の流量調整をする態様のほか、あるいは電磁バルブ112を電磁比例制御弁で構成し、電磁バルブ112の開き量にて薬剤の流量調整をする態様も採用可能である。
【0038】
次に、反応槽104内には、排液中の沈澱生成反応の促進及び沈澱生成物を被処理排液中に一時的に懸濁させるための撹拌機構140が設けられている。沈澱生成物が懸濁した排液は、排液流出管路114を経て、pH調整槽105に導かれる。これにより、沈澱生成物が反応槽104内に蓄積せず、下流側にてこれを一括回収できるので能率的である。本実施例では、撹拌機構140として、撹拌羽根128をモータ127により回転させるタイプのものを使用しているが、超音波撹拌等を採用してもよい。また、排液流出管路114は、反応槽104内の液面レベル付近か、それよりもやや下側に設けられて、槽内の排液をオーバーフローさせるオーバーフロー管路として構成されている。
【0039】
次に、pH調整槽105に流れ込んだ排液は、pHがpH検出部120により検出され、制御部132が電磁バルブ112の開閉を制御して、排液のpHが例えば8以上の所定値となるように、薬剤タンク110からの酸性pH調整剤L2(例えば硫酸)の排液への投入量が制御される。なお、この実施例では、pH調整槽105内の排液は、反応槽104から流入してきた沈澱生成物とともに撹拌機構140により撹拌し、反応効率を高めるとともに、沈澱生成物を一時的に懸濁させつつ下流工程に導くようにしている。
【0040】
そして、排液は沈澱生成物を懸濁させた状態にて、さらに管路115を経て凝集槽106に流入し、流入量に応じて電磁バルブ112の開閉制御により、薬剤タンク110からの高分子凝集剤L3の排液への投入量が定量調整される。ここでも凝集した沈澱生成物は撹拌機構140により撹拌・懸濁され、管路116を経て沈殿槽107に導かれる。ここで、上澄みとなる処理済み排液KLはオーバーフロー流出管路133から中和槽108(図3)へ流出する一方、沈降した沈澱生成物SLは一定量が蓄積したらバルブ121を操作して槽底部の排出口を開き、底部に溜まった濃縮沈澱物(Cr成分を含有する)のスラリーを図3のフィルタプレス装置109に導く。このフィルタプレス装置109により、沈澱物が脱水・分離され、ケーキとして回収される。なお、ここで分離される液は反応槽104に戻される。
【0041】
Cr成分を含有した沈澱物を分離した後の排液は、中和槽108にて中和された後、放流される。液中に溶存するCa成分を除去したい場合は、Caとの間で難水溶性の塩を形成する酸により液を中和することで、液中の溶存Ca成分を沈澱・分離することができる。この場合の酸は、例えばHSOを使用できる(沈澱生成物はCaSOである)。中和後の処理液は、そのまま放流できる。なお沈澱物をフィルタプレス装置109により脱水・分離して回収してもよい。
【0042】
なお、Cr沈澱促進剤としてMg系無機化合物を使用することもできる。この場合、Cr成分を含有した沈澱物を分離した後、液を酸中和した後、中和後の液中の溶存Mg成分を逆浸透法又はイオン交換法により除去することができる。特に、液中の溶存Mgとの間で沈澱物を形成しない酸(例えばHSO)により液の中和を行なうこのようにすれば、溶存Mg成分を除去後の液をクロメート排液の処理工程内にて循環させることができ、クローズな処理システムを構築することができる。図5は、その場合の処理ラインの一例を示すものである。この処理ライン200においては、Cr沈澱促進剤としてはMgClを用いている(なお、図3と概念的に共通する要素には同一の符号を付与している)。この場合、反応槽104では、pHを9〜12.5に調整するために、NaOHを塩基性pH調整材として使用している。その後の工程は、中和槽108に至るまでは図3とほぼ同様であるが、HSOにより液を中和しても、中和生成物は水溶性のMgSOであって沈澱を生じない。そして、中和後の液は、逆浸透濾過装置(例えば、中空糸型膜モジュールなどの公知の逆浸透膜モジュールを使用するもの)113において、溶存Mg成分(及びその他の電解質成分)が除去される。除去後の液は、例えば再び貯留槽103や反応槽104あるいは中和槽108に戻したり、あるいはクロメート処理ライン102にて洗浄水や、新処理液の建浴に再利用したりすることで、クローズドシステムが実現できる。
【0043】
次に、排液の温度は常温でも十分に溶存Cr成分の除去を進行させることができるが、液温を20℃以上に上昇させると溶存Cr成分の沈澱反応を一層促進することができる。昇温効果は、液温が25℃以上、望ましくは30℃以上でさらに顕著となり、液の過剰な蒸発が生じない程度(例えば85℃程度まで)の範囲にて適宜温度調整を行なうことが望ましい。例えば洗浄排水のもととなる洗浄水の温度は、例えば冬期には10℃以下となり、水温が上昇する夏季においても15℃程度が上限であり、液温を20℃以上に保持するためには積極的に排液を加熱することが望ましいともいえる。
【0044】
図6は、排液を加熱するための種々の機構を模式的に示すものである。(a)に示す例では、貯留槽103(あるいは反応槽104)内に、排液Wを加熱するためのヒータ155を設ける例である。この例では、ヒータ155は加熱電源151による通電により抵抗発熱する電気ヒータを使用する例を示しているが、化石燃料を用いる燃焼式ヒータなど、他の方式のヒータを用いてもよい。また、(b)は、排液Wの供給管路130を外側から加熱するヒータ152を設けた例であり、(c)は排液供給管路130内に排液Wを直接加熱するヒータ153を設けた例である。
【0045】
さらに(d)は、スパークプラグ用の絶縁体の焼成炉や各種熱処理炉など、工場内の廃熱発生源154を、排液の加熱源として用いる例を示したものである。この図では、廃熱発生源154にて冷却用水として使用された温水を、冷却水配管145を介して熱交換器156に導き、該熱交換器156内にて配管130により供給される排液を、上記温水と接触させて加熱するようにしている。なお、排液自体を廃熱発生源154の冷却媒として使用することにより、加熱することも可能である。
【0046】
以上、本発明の実施の形態を、スパークプラグ用の主体金具にクロメート処理を行なう場合を例にとって説明したが、本発明はこれに限られるものではなく、スパークプラグの主体金具以外の部品をクロメート処理することにより発生するクロメート排液の処理にも適用できることはもちろんである。
【0047】
【実施例】
(実施例1)
クロメート処理浴50を、脱イオン水に対し1リットル当り、塩化クロム(III)(CrCl・6HO)を50g、硝酸コバルト(II)(Co(NO)を3g、硝酸ナトリウム(NaNO)を100g、マロン酸31.2gの割合で溶解することにより建浴し、ヒータにより液温60℃に保持するとともに、浴のpHを苛性ソーダ水溶液の添加により2.0に調整した。そして、亜鉛メッキ済み鋼材部品のクロメート処理に繰り返し供することにより寿命が到来した処理液を純水希釈して、溶存Cr量レベルが10質量ppm、50質量ppm及び100質量ppmの3水準のクロメート排液を用意した。
【0048】
各排液に、Cr沈澱促進剤としてCa(OH)の懸濁液を、液のpHが6.8〜12.6の値となるように種々の量にて投入し、さらに30分撹拌した(なお、pHの測定値は30分撹拌後の測定値である)。次いで、液中にHSO(75%水溶液)を投入してpHを8まで低下させ、さらに高分子凝集剤として、ポリアクリルアミド0.01%水溶液を、被処理排液1リットルあたり2mlとなるように添加して撹拌後、約5分放置して沈澱生成物を沈降させた。そして、その上澄み液の全溶存Cr含有量と溶存Zn含有量とを原子吸光光度計によりそれぞれ分析した。結果を表1に示す。
【0049】
【表1】

Figure 0004077143
【0050】
Cr沈澱促進剤投入後の排液のpHが高くなるほど、処理前の排液中の溶存Cr含有量とは無関係に、処理後の上澄み液の溶存Cr含有量が減少していることがわかる。特にpHが9以上、望ましくは10以上にて溶存Cr成分の除去効果、すなわちCr成分の沈澱促進効果がとりわけ顕著である。また、Zn量も、いずれも1質量ppm未満のレベルに低減されていることもわかる。なお、排液中に六価クロムが微量残留することもあるが、排液のpHを高くして全Cr量を減少させるに伴い、残留六価クロム量を低減することが可能になる。
【0051】
(実施例2)
実施例1と同様の方法により、溶存Cr濃度が70質量ppm、溶存Zn濃度が5質量ppmの排液を作製し、さらに、CaCl粉末を、Ca量換算にて500mg/リットル又は1000mg/リットルの水準にて排液中に投入した。また、2%NaOH水溶液を塩基性pH調整材として投入することにより、液のpHを9〜12の種々の値に調整・維持した。そして、その状態で液に0.5〜2hrの各種時間の撹拌を加え、その後は、実施例1と同様に処理するとともに、各撹拌時間毎の、処理後の液中における溶存Cr成分濃度と溶存Zn成分濃度との変化を調べた。以上の結果を表2に示す。
【0052】
【表2】
Figure 0004077143
【0053】
いずれの条件においても、溶存Cr成分濃度及び溶存Zn成分濃度は撹拌時間が長くなるほど減少していることがわかる。また、液pHが高い場合、液pHが低い場合と比較して、上記溶存成分はより速やかに減少していることもわかる。
【0054】
(実施例3)
実施例1と同様の方法により、溶存Cr濃度が60質量ppm、溶存Zn濃度が30質量ppmの排液を用意し、さらに、60%のCaCl水溶液を、Ca量換算にて600mg/リットルの水準にて排液中に投入した。また、2%NaOH水溶液を塩基性pH調整剤として投入することにより、液のpHを11に調整・維持し、その状態で液に5分撹拌を加えた。そして、HSOの投入により液pHを9〜10に調整する処理を行った。そして、高分子凝集剤として、ポリアクリルアミド0.01%水溶液を、被処理排液1リットルあたり2mlとなるように添加して撹拌後、0〜900分の各種時間放置して沈澱生成物を沈降させた。そして、その上澄み液の全溶存Cr含有量と溶存Zn含有量とを実施例1と同様に分析した。図7はその結果を示すものであり、横軸が放置時間、縦軸が全溶存Cr含有量((a))と溶存Zn含有量((b))を表している。放置時間が長くなるほど、全溶存Cr含有量及び溶存Zn含有量はいずれも減少していることがわかる。
【0055】
(実施例4)
実施例3と同様の排液を用意し、さらに、MgCl粉末を、Mg量換算にて200〜500mg/リットルの水準にて排液中に投入した。また、10%NaOH水溶液を塩基性pH調整剤として投入することにより、液のpHを10〜12の各種値に調整・維持し、その状態で液に30〜90分撹拌を加えた。次いで高分子凝集剤として、ポリアクリルアミド0.01%水溶液を、被処理排液1リットルあたり2mlとなるように添加して撹拌後、30分間放置して沈澱生成物を沈降させた。そして、その上澄み液の全溶存Cr含有量及び溶存Mg量を分析した。以上の結果を表3に示す。
【0056】
【表3】
Figure 0004077143
【0057】
MgClを用いても、pHの調整によりCrの除去を効果的に行なうことが可能であることがわかる。また、液pHが高くなるほど溶存Mg量は少なくなることがわかる。ただし、MgClを用いた場合はpHが高くなると全溶存Cr量が増加する傾向が見られ、Crの再溶解が生じていると考えられる。
【0058】
(実施例5)
実施例1と同様の方法にて、溶存Cr量レベルが100質量ppm、溶存Zn量が200質量ppmのクロメート排液を用意した。この排液をヒータにより19℃、25℃、30℃及び40℃のいずれかの温度に加熱保持した。そして、各排液に対し、Cr沈澱促進剤としてCa(OH)粉末を、0.4g/ml、0.6g/mlないし0.9g/mlのいずれかの量にて投入し、5〜30分の各種時間撹拌して、撹拌後の液pHを測定した。次いで、液中にHSO(75%水溶液)を投入してpHを8まで低下させ、さらに高分子凝集剤として、ポリアクリルアミド0.01%水溶液を、被処理排液1リットルあたり2mlとなるように添加して撹拌後、約5分放置して沈澱生成物を沈降させた。そして、その上澄み液の全溶存Cr含有量と溶存Zn含有量とを原子吸光光度計によりそれぞれ分析した。表4は、撹拌時間を30分に固定した場合の各温度における全溶存Cr含有量と溶存Zn含有量との分析結果を示すものである。
【0059】
【表4】
Figure 0004077143
【0060】
この結果によると、排液温度が高くなるほど、Ca(OH)粉末の投入量を少なくしても、全溶存Cr含有量が減少しており、Cr沈澱反応が促進されていることがわかる。
【0061】
また、表5〜表7は、Ca(OH)粉末の投入量を0.9g、0.6g/lないし0.4g/lに固定し、排液温度を25〜40℃の各種温度としたときの、各撹拌時間における全溶存Cr含有量と溶存Zn含有量との分析結果を示すものである。
【0062】
【表5】
Figure 0004077143
【0063】
【表6】
Figure 0004077143
【0064】
【表7】
Figure 0004077143
【0065】
この結果によると、いずれのCa(OH)粉末投入量においても、排液温度が高くなるほど、より短時間で溶存Cr濃度は速やかに規制値である5質量ppm以下の値に到達していることがわかる。特に、排液温度が30℃ないし40℃においては、Ca(OH)粉末投入量を0.4g/lまで減少させても、5分以内の短時間で溶存Cr濃度を5質量ppm以下にできていることがわかる。
【図面の簡単な説明】
【図1】クロメート処理の対象となるスパークプラグの一例を示す縦半断面図。
【図2】クロメート処理工程の説明図。
【図3】クロメート排液の処理ラインの一例を示す説明図。
【図4】図3の反応槽、pH調整槽、凝集槽及び沈澱槽の構成例を示す模式図。
【図5】クロメート排液処理ラインの別の例を示す説明図。
【図6】排液加熱方法の具体例をいくつか例示して示す模式図。
【図7】実施例3の実験結果を示すグラフ
【符号の説明】
41,45 亜鉛メッキ層
42,46 クロメート被膜
100,200 排液処理ライン
102 クロメート処理ライン
103 貯留槽
104 反応槽
105 pH調整槽
106 凝集槽
107 沈澱槽[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for treating drainage generated in a chromate treatment line (in the present invention, this is called chromate drainage), and more particularly, to a method for removing dissolved Cr components from the chromate wastewater.
[0002]
[Prior art]
Parts made of iron-based materials such as spark plugs and glow plug metal fittings may be subjected to anticorrosion Zn plating or Sn plating, but when higher corrosion resistance is required In some cases, the chromate treatment is further performed on the plating layer. For example, the galvanized layer has an excellent anticorrosive effect against iron, but as is well known, the galvanized layer on iron is easily consumed by sacrificial corrosion, and turns white by the generated zinc oxide. In addition, there is a drawback that the appearance is easily damaged. Therefore, in many cases, the surface of the galvanized layer is further covered with a chromate film to prevent corrosion of the plated layer.
[0003]
Conventionally, so-called yellow chromate has been used as the chromate treatment. This yellow chromate has been widely used due to its good anticorrosion performance, but it has been affected by the fact that part of the chromium component is contained in the form of hexavalent chromium, raising the concern for environmental protection on a global scale. In recent years, it has gradually been shunned. In addition, the yellow chromate treatment bath contains a relatively high concentration of hexavalent chromium, so a separate reduction treatment is required to reduce the hexavalent chromium in the effluent to trivalent chromium. There are also disadvantages. Therefore, as an alternative chromate treatment, a trivalent chromium-based chromate treatment that does not use hexavalent chromium has begun to attract attention. For example, German published patent publication DE19638176A1 uses a trivalent chromium salt and a complexing agent for trivalent chromium (which is mainly composed of organic acids). And a method for forming a thick trivalent chromium-based chromate film is disclosed.
[0004]
[Problems to be solved by the invention]
In the chromate treatment line, for example, the waste drainage of the workpiece after the chromate treatment and the waste chromate treatment fluid that has reached the end of its life are generated as chromate waste. Such chromate drainage needs to be discarded after the dissolved Cr component is removed. The removal method is Ca (ОH). 2 (Calcium hydroxide) is put into the drainage and Cr component is Cr (OH) 3 The method of removing in the form of is common. However, in the case of a treatment liquid containing a large amount of an organic acid component such as a complexing agent, such as the trivalent chromium-based chromate treatment liquid disclosed in the aforementioned German published patent publication, the organic acid is naturally also contained in the drainage. Since many components are contained and this forms a strong bond with Cr, there is a problem that it is difficult to separate and remove Cr components by ordinary processing.
[0005]
An object of the present invention is to provide a chromate drainage treatment method capable of separating and removing Cr components at low cost and effectively even with chromate drainage containing a large amount of an organic acid component.
[0006]
[Means for solving the problems and actions / effects]
In order to solve the above problems, the first of the chromate drainage processing method of the present invention,
Organic acid component And Zn component A Cr precipitation accelerator containing at least one of a Ca component and a Mg component is added to the chromate drainage containing, and the chromium component is precipitated by maintaining the pH of the chromate drainage at 9 or more, While reducing the concentration of dissolved Cr component in the liquid,
Said A Cr precipitation accelerator is added to the chromate effluent, and once the pH of the liquid is maintained at a first value of 9 or higher, the pH of the liquid is lowered from the first value to a second value of 8 or higher to precipitate the Zn component. It is characterized by making it.
The second is
The Cr component is precipitated by adding a Cr precipitation accelerator containing at least one of the Ca component and Mg component to the chromate drainage containing the organic acid component and maintaining the pH of the chromate drainage at 9 or more. And reduce the dissolved Cr component concentration in the liquid,
A Ca-based inorganic compound is used as a Cr precipitation accelerator, and a precipitate containing a Cr component (hereinafter referred to as a Cr-based precipitate) is separated and then precipitated with Ca (hereinafter referred to as a Ca-based precipitate). The solution is characterized by neutralizing the solution with an acid that forms, and separating the dissolved Ca component in the solution in the form of a Ca-based precipitate.
Third,
The Cr component is precipitated by adding a Cr precipitation accelerator containing at least one of the Ca component and Mg component to the chromate drainage containing the organic acid component and maintaining the pH of the chromate drainage at 9 or more. And reduce the dissolved Cr component concentration in the liquid,
Using Mg-based inorganic compounds as Cr precipitation accelerators, separating Cr-based precipitates, neutralizing the solution with acid, and dissolving the dissolved Mg component in the neutralized solution by reverse osmosis or ion exchange It is characterized by removing.
[0007]
Ca (OH) in chromate drainage 2 When the dissolved Cr component is removed in the form of a precipitate containing the Cr component (hereinafter referred to as a Cr-based precipitate) by adding a Cr precipitation accelerator such as It has a great influence on the formation reaction or agglomeration reaction (hereinafter collectively referred to as the precipitation reaction of the Cr component). Therefore, it is important to adjust and maintain the pH level at an appropriate value in order to allow the reaction to proceed rapidly. According to the study by the present inventors, in the conventional chromate drainage such as yellow chromate treatment, the precipitation reaction of the Cr component can be progressed without any problem by adding a precipitation accelerator at a pH of about 8, but complexing In the case of drainage containing a large amount of an organic acid component such as an agent, it was found that the precipitation reaction of the Cr component does not proceed as expected even when a considerable amount of a precipitation accelerator is added. The reason may be that the organic acid component is strongly bonded to Cr ions to form a complex, so that the precipitation reaction of the Cr component is inhibited.
[0008]
Therefore, as a result of further diligent examination, by maintaining the pH of the effluent when the precipitation reaction of the Cr component proceeds to 9 or higher, which is higher than before, even in the effluent containing a large amount of the organic acid component, The present inventors have completed the present invention by finding that the precipitation reaction of the Cr component can proceed promptly and the concentration of the dissolved Cr component in the liquid can be effectively reduced.
[0009]
When the pH of the effluent is less than 9, the rate of precipitation reaction of the Cr component decreases, and the object of the present invention cannot be achieved. In addition, the precipitate becomes finer and hardly aggregates, and it becomes difficult to separate and collect the precipitate. On the other hand, there is no particular limitation on the upper limit of pH (theoretically, 14 is the maximum), but an additive for adjusting pH (this may also serve as a Cr precipitation accelerator, and is different from this. It is desirable to consider the upper limit appropriately so that the amount of the substance (which may be used as an additive for adjusting the pH) does not become unnecessarily large. For example, even if the pH is higher than 12.5, further improvement of the Cr precipitation promoting effect can no longer be expected, and conversely, the pH adjustment addition necessary to maintain the pH of the liquid at such a high value Since the compounding quantity of an agent increases significantly, it may become uneconomical on the contrary. In the present specification, the concept of “precipitate” includes not only a solid substance that has settled and accumulated in the liquid but also a suspended substance suspended in the liquid.
[0010]
Further, the chromate drainage to be treated in this specification includes, for example, a chromate treatment liquid that has reached the end of its life, in addition to a cleaning drainage produced when a member to be treated after the chromate treatment is washed. For example, the Cr content concentration dissolved in the washing effluent is about 10 to 200 ppm. In addition, the Cr content in the chromate treatment liquid that has reached the end of its life is about 8000 to 12000 ppm, but by applying the present invention, the dissolved Cr content in such drainage can be easily reduced to 2 ppm or less. It becomes possible.
[0011]
The chromate drainage to be treated in the present invention is not particularly limited as long as it contains an organic acid component, but the chromate treatment bath containing a particularly large amount of organic acid is disclosed in the aforementioned German published patent publication DE19638176A1. The effect of the present invention can be achieved particularly remarkably during the drainage treatment. The purpose of this chromate treatment solution is to form a dense and thick film (for example, 0.2 to 0.5 μm) of a trivalent chromium chromate film that is difficult to obtain by a general chromate treatment method. In the process of forming the chromate film, oxidation elution of the base metal (for example, zinc) first occurs in the treatment bath, the eluted base metal component reacts with the solution containing chromate ions, and trivalent chromium is converted into hydroxyl groups or The theory is that a polymer complex is formed by oxygen bridges and the gel is deposited and deposited on the surface of the underlying metal. In this case, in order for the chromate film to grow, the elution of the base metal and the reaction / deposition of the eluted base metal and chromate ions in the bath must proceed in parallel. However, when the chromate film is deposited to some extent, the elution reaction of the underlying metal layer, which is a heterogeneous reaction through the interface with the bath solution, is hindered, and the film growth is stagnant.
[0012]
According to the disclosure content of the above-mentioned German published patent publication, in order to increase the thickness of the coating, the rate of dissolution of the base metal and coating precipitation due to the reaction between the dissolved base metal component and trivalent chromium is increased. However, it is important to reduce the rate of reverse dissolution of the deposited chromate film as much as possible. And in said method, it is thought that film precipitation is accelerated | stimulated by adding a suitable complexing agent in a bath and complexing trivalent chromium, and thickening becomes possible. Examples of the complexing agent include various chelating agents (dicarboxylic acid, tricarboxylic acid, oxyacid, hydroxyl group dicarboxylic acid or hydroxyl group tricarboxylic acid, such as oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, cork. It is effective to use acid, aceleic acid, sebacic acid, maleic acid, phthalic acid, terephthalic acid, tartaric acid, citric acid, malic acid and ascorbic acid) or other complexing Agents may be used, and usable complexing agents are as described in the German Patent Publication. For example, the total content of the complexing agent contained in the treatment liquid at the time of building bath is about 2 to 10% by mass, and the complexing agent is contained at about 2 to 10% by mass even at the end of the lifetime. Further, a complexing agent of about 0.01 to 0.03% by mass is also contained in the washing drainage generated by washing the chromate-treated product.
[0013]
In the present invention, it is desirable to use at least one of a Ca-based inorganic compound and a Mg-based inorganic compound as the Cr precipitation accelerator. Although it is possible to use an organic compound as a Cr precipitation accelerator, depending on the type of organic compound, it may bind to Cr ions as a complexing agent, and may stabilize the dissolved state of Cr ions. Can not be denied. However, if an inorganic compound is used, there is no concern about the occurrence of such problems. In addition, Ca-based inorganic compounds and Mg-based inorganic compounds are generally inexpensive and excellent in the effect of accelerating the formation reaction of Cr-based precipitates, so that they can be used publicly in the present invention. As the Ca-based inorganic compound, for example, Ca (ОH) 2 , CaCl 2 And Ca (NO 3 ) 2 1 type (s) or 2 or more types can be used. Examples of soluble Mg-based inorganic compounds include MgCl. 2 , Mg (NO 3 ) 2 And MgSO 4 1 type (s) or 2 or more types can be used.
[0014]
For example, Ca (ОH) as a Cr precipitation accelerator 2 Is used, it is a strong basic compound, so that the effect of adjusting the drainage pH to the basic region can be achieved at the same time. As a result, there is no need to separately add an additive for adjusting the pH of the drainage, or an advantage that the amount of addition can be reduced. Ca (ОH) 2 Can be used mainly as a basic pH adjusting agent described later.
[0015]
On the other hand, it is desirable to use a substance having a high solubility in water as the Cr precipitation accelerator in order to increase the rate of the Cr precipitation reaction. In particular, CaCl 2 Or MgCl 2 Can be suitably used in the present invention because of its high solubility in water and low cost.
[0016]
Ca (ОH) as a Cr precipitation accelerator 2 Is used, the input amount per liter of effluent is preferably about 50 to 1000 mg in terms of the total amount of Ca. When the input amount per liter of the effluent is less than 50 mg, the effect of promoting Cr precipitation is poor, and when the input amount exceeds 1000 mg, a significant increase in the effect commensurate with the amount cannot be expected. Incurs an increase. For the same reason, CaCl 2 Is used, the input amount per liter of drainage is preferably about 500 to 1000 mg in terms of the total amount of Ca. MgCl 2 Is preferably about 200 to 500 mg in terms of the total amount of Mg input per liter of drainage.
[0017]
As a Cr precipitation accelerator, CaCl 2 And MgCl 2 In the case of using a compound that is not so strong as in the case of the above, in order to make the chromate drainage pH 9 or more, a basic pH adjuster is added to the chromate drainage separately from the Cr precipitation accelerator. It is effective. As the basic pH adjuster, it is desirable to use a strongly basic compound having high water solubility, such as NaOH, KOH, LiOH or Ca (OH). 2 One or more selected from can be used. Of these, NaOH can be suitably used in the present invention because it is inexpensive and has a remarkable pH increasing effect. However, it is not preferable to add NaOH excessively because a large amount of neutralizing agent for pH adjustment is required when the drainage is finally discharged, resulting in meaningless cost increase. MgCl 2 When NaOH is used excessively, there is a possibility that the efficiency of separation / removal may be reduced by re-dissolution of the Cr-based precipitate. Therefore, it is preferable to determine the input amount within a range where such a problem does not occur.
[0018]
The Cr precipitation accelerator or the basic pH adjuster may be added to the effluent in a solid state or in the form of a solution such as an aqueous solution, but the reaction rate, uniformity, and input amount Considering the ease of adjustment, it is often convenient to add in the form of a solution. Ca (ОH) 2 When a compound having a relatively low solubility in water is used, it may be added in the form of a suspension.
[0019]
Next, the treatment for reducing the concentration of dissolved Cr component by precipitation of the Cr component can be performed in a state where the temperature of the drainage liquid is maintained at 20 ° C. or higher. By maintaining the temperature of the effluent at 20 ° C. or higher, the precipitation reaction of the Cr component can be greatly accelerated, and the following effects can be achieved.
(1) The dissolved Cr component concentration can be reduced in a short time, and as a result, the processing efficiency can be greatly improved.
(2) Even if the amount of the Cr precipitation accelerator is reduced to some extent, the dissolved Cr component concentration can be sufficiently reduced. As a result, not only the use cost of the Cr precipitation accelerator, but also the amount of Cr-based precipitate produced as sludge is reduced, so that the sludge treatment cost can be reduced.
[0020]
The reason why the precipitation reaction of the Cr component can be accelerated by increasing the drainage temperature is that the chelate binding force of the complexing agent molecule to the Cr ions is weakened by the temperature increase, and the complex formation state of the Cr ions is eliminated and the aggregation becomes easy. It is possible.
[0021]
The temperature of the drainage is more preferably maintained at 25 ° C. or higher, and more preferably 30 ° C. or higher. And up to about 60 ° C., the efficiency of the Cr component precipitation reaction increases as the drainage temperature increases. However, since there is a trade-off relationship between the cost reduction effect by increasing the drainage temperature and the energy cost for positively heating the drainage, the drainage temperature is set appropriately within the range where the cost reduction effect is dominant. Must be set. In this case, if the processing waste liquid is heated using waste heat in the factory, the cost reduction effect becomes more remarkable. On the other hand, when the drainage temperature is 85 ° C. or higher, excessive evaporation mist is generated from the drainage, and extra equipment is required for recovery. Is desirable.
[0022]
As a Cr precipitation accelerator, Ca (OH) 2 When using Ca (OH) 2 Can function as a basic pH adjuster as described above, but when the drainage temperature rises, it becomes possible to greatly reduce the input amount, Ca (OH) 2 The solubility in water may become smaller as the liquid temperature rises, and the amount of charge seen from the viewpoint of the basic pH adjuster will be insufficient, making it impossible to make the liquid pH 9 or more. Is also possible. In this case, for example, NaOH, KOH, LiOH, etc., Ca (OH) 2 It is effective to add a basic pH adjuster other than that to maintain the liquid pH at 9 or more.
[0023]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows a spark plug as an example of a product to be applied to chromate treatment. The spark plug 10 includes a cylindrical metal shell 1, an insulator 2 fitted into the metal shell 1 so that the tip portion protrudes, and a center provided inside the insulator 2 with the tip portion protruding. One end is coupled to the electrode 3 and the metal shell 1, and the other end side is provided with a ground electrode 4 disposed so as to face the tip of the center electrode 3. A spark discharge gap g is formed between the ground electrode 4 and the center electrode 3. The insulator 2 is made of, for example, a ceramic sintered body such as alumina or aluminum nitride. The terminal fitting 13 is fixed to one end side of the through hole 6 and the center electrode 3 is fixed to the other end side. Has been. A resistor 15 is disposed between the terminal fitting 13 and the center electrode 3 in the through hole 6. Both ends of the resistor 15 are electrically connected to the center electrode 3 and the terminal fitting 13 through the conductive glass seal layers 16 and 17, respectively. The metal shell 1 is formed in a cylindrical shape from a metal such as carbon steel, and constitutes a housing of the spark plug 10 and has a threaded portion 7 for attaching the spark plug 10 to an engine block (not shown) on the outer peripheral surface thereof. Is formed. 1e is a hexagonal portion that engages a tool such as a spanner or a wrench when the metal shell 1 is attached. Further, a gasket 30 is fitted into the base end portion of the threaded portion 7 of the metal shell 1. The gasket 30 is a ring-shaped component obtained by bending a metal plate material such as carbon steel. A zinc plating layer 41 (zinc-based plating layer) for corrosion protection is formed on the entire outer surface of the base layer (for example, carbon steel) 40 of the metal shell 1, and the outer side thereof is covered with a chromate film 42. Similarly, a galvanized layer 45 and a chromate film 46 are also formed on the outer surface of the gasket 30. These galvanized layer and chromate film are both formed by the same method.
[0024]
The galvanized layer 41 is formed by a known electrolytic galvanizing method, and has a thickness of about 3 to 10 μm, for example. On the other hand, 95% by weight or more of the chromium component contained in the chromate film 42 is trivalent chromium, and the film thickness thereof is 0.2 to 0.5 μm. It should be noted that as much of the chromium component as possible should be a trivalent chromium component, and desirably substantially all of the chromium component should be a trivalent chromium component.
[0025]
FIG. 2 schematically shows an example of a method for forming the chromate film 42 (FIG. 1). That is, the metal shell 1 on which a galvanized layer having a predetermined thickness is formed by a known electrolytic galvanizing method or the like is immersed in the chromate treatment bath 50. Thereby, as shown in FIG. 1, the chromate film 42 is formed on the surface of the galvanized layer 41 of the metal shell 1. As the chromate treatment bath 50, the one disclosed in the above-mentioned German published patent publication is used to form a relatively thick film. In addition to the required amount of chromate ions, the above-mentioned organic acid is used as a complexing agent. The amount is blended. FIG. 2 is an explanatory view showing a conceptual process, and the metal shell 1 is drawn so as to be simply immersed in the chromate treatment bath 50. However, in order to improve the treatment efficiency, a known barrel treatment method (liquid permeation) is actually used. A process in which the metal shells are piled and inserted in a conductive container and the container is rotated in the chromate treatment bath 50) can be employed.
[0026]
The treated metal shell 1 (object to be treated) taken out from the chromate treatment bath 50 is washed by immersion in washing water or sprayed with washing water, and further dried and sent to the next step. At this time, the used washing water is mixed with the components of the chromate treatment liquid, and becomes a chromate drainage containing dissolved Cr components, Zn components, and organic components such as complexing agents. In addition, waste treatment liquid that has reached the end of its life by being repeatedly used for chromate treatment is also diluted to an appropriate concentration (for example, the same concentration as washing waste liquid), and similarly becomes chromate waste liquid. These chromate drains are drained for the purpose of removing Cr components and neutralizing. This will be described in detail below.
[0027]
FIG. 3 conceptually shows an example of the drainage treatment line. The drainage treatment line 100 is provided with a storage tank 103 for storing the wastewater to be treated generated in the chromate treatment line 102 including a chromate treatment bath 50 and a cleaning tank (not shown). The drainage liquid is transferred from the storage tank 103 to the reaction tank 104 as needed, where an appropriate amount of Ca (OH) is used as a Cr precipitation accelerator. 2 Or CaCl 2 Is added. In addition, CaCl 2 When NaOH is used, NaOH is added as a basic pH adjuster. The pH of the liquid is adjusted and maintained at 9 to 12.5 (preferably 10 to 12.5).
[0028]
By the above process, in the reaction tank 104, the dissolved Cr component is Cr (OH). 3 And so on. At this stage, the precipitates are in the form of fine particles, many float in the liquid, and the sedimentation rate is slow. In order to accelerate the Cr precipitation reaction, it is effective to add the aforementioned Cr precipitation accelerator to the chromate effluent and then stir the liquid. The stirring time is desirably 0.5 hours or more from the viewpoint of sufficiently bringing out the reaction promoting effect, for example. Moreover, although there is no restriction | limiting in particular in the upper limit of stirring time, the upper limit of stirring time can be defined about 2 hours, for example in consideration of the remarkableness and efficiency of an effect.
[0029]
Next, when the chromate treatment liquid is used for the chromate treatment on the Zn plating layer as described above, a considerable amount of Zn component is contained in the drainage liquid in addition to Cr (for example, About 5 to 100 ppm in terms of the amount of dissolved Zn). In this case, a Cr precipitation accelerator is added to the chromate effluent containing the Zn component, and the Cr precipitation reaction is promoted by once maintaining the pH of the liquid at a first value of 9 or more. It may be effective to remove the Zn component by lowering the Zn component from the first value to a second value of 8 or more. When the pH is less than 8, there is a case where the aggregation reaction efficiency is lowered when the aggregation treatment of the Cr-based precipitate described later is performed. On the other hand, if the pH after dropping exceeds 10, the effect of promoting Zn precipitation becomes poor.
[0030]
Even if removal of the Zn component is not necessarily promoted significantly by the above treatment, if an anionic flocculant is used as the polymer flocculant described later, the solution pH is adjusted to optimize the agglutination reaction. In some cases, it may be effective to lower the first value during the Cr precipitation reaction to a lower second value.
[0031]
In order to lower the pH of the liquid, as an acidic pH adjuster, for example, H 2 SO 4 , HNO 3 Inorganic acids such as HCl can be used, and in particular, from the viewpoint of reducing the concentration of nitrogen or Cl in the effluent, which is likely to be a problem in environmental protection, H 2 SO 4 Is preferred. H 2 SO 4 When the pH is lowered to less than 8, another problem is that the Ca component added as a Cr precipitation accelerator becomes CaSO. 4 In some cases, it becomes (calcium sulfate (gypsum)) and precipitates in a large amount during the treatment, making it impossible to carry out a smooth treatment. Therefore, also from this viewpoint, it is desirable that the pH of the solution is 8 or more in the above-described precipitation promoting treatment of the Zn component. In FIG. 3, the liquid after introducing the Cr precipitation accelerator is guided to the pH adjustment tank 105, and H 2 SO 4 The pH of the liquid is adjusted by addition.
[0032]
The drainage liquid in which the precipitate containing the Cr component (hereinafter referred to as “Cr-based precipitate”) is produced by the introduction of the Cr precipitation accelerator causes the precipitate containing the Cr component to aggregate by adding the polymer flocculant. The settlement can be promoted. Polymer flocculants used include nonionic (or weak anionic) flocculants such as polyacrylamide, quaternary salt polymers (or copolymers) of aminoalkyl acrylate (or aminoalkyl methacrylate), and polyaminomethylacrylamide. Salt (or quaternary salt) and cationic flocculants such as chitosan (acetate), acrylamide / sodium acrylate copolymer, acrylamide / sodium acrylate / 2-acryloylamino-2-methylpropane sulfonate copolymer And anionic flocculants such as sodium polyacrylate can be used. Of these, polyacrylamide is particularly suitable for use in the present invention because of its high solubility in water and high aggregation ability.
[0033]
The amount of the polymer flocculant to be charged varies depending on the type of the polymer flocculant to be used. For example, when a dilute flocculant solution of about 0.01% is used, this amount is 1 per liter of drainage. It is appropriate to add about 5 ml. In FIG. 3, the drained liquid after the pH adjustment treatment is guided to the agglomeration tank 106 and the aggregating agent is added, and then the aggregate (Cr-based precipitate or Zn-based precipitate) aggregated in the precipitation tank 107 is settled. In order to achieve solid-liquid separation.
[0034]
Next, after the Cr precipitation accelerator is added to the drainage liquid, the liquid is allowed to stand for a predetermined period of time, for example, 30 minutes or longer, before the polymer flocculant is added to settle the precipitate and solid-liquid separation is performed. Thus, the precipitation reaction of the dissolved Cr component or the dissolved Zn component can be further promoted, and as a result, the content of these dissolved components in the liquid after treatment can be further reduced. For example, the concentration of the dissolved Cr component can be reduced by leaving the Cr precipitation accelerator in a state of being added to the effluent (which may be stirred as described above). On the other hand, the dissolved Cr component concentration and the dissolved Zn component concentration can be decreased by allowing the liquid to stand for a predetermined time after the polymer flocculant is added and before solid-liquid separation is attempted.
[0035]
FIG. 4 is a schematic diagram illustrating a configuration example of the reaction tank 104, the pH adjustment tank 105, the aggregation tank 106, and the precipitation tank 107. The drainage is injected into the reaction tank 104 through the drainage supply line 130. A liquid feed pump 131 is provided on the drainage supply line 130 to pump the drainage from the storage tank 103 (FIG. 3) toward the reaction tank 104. Further, the Cr precipitation accelerator L 1 is stored in the chemical tank 110 and supplied to the reaction tank 104 through the pipe 111. The supply amount can be easily adjusted by the electromagnetic valve 112 provided on the pipe line 111.
[0036]
In the reaction tank 104, a pH detection unit 120 for detecting the pH value of the waste liquid to be treated staying therein is provided. As the pH detector 120, a known pH sensor can be used (for example, one using an antimony electrode, one using a liquid film electrode, etc.). Then, referring to the pH value detected by the pH detection unit 120, the treatment waste liquid has a pH in the range of 9 to 12.5 (preferably 10 to 12.5). A control unit 132 for controlling the amount of the precipitation accelerator L1 is provided. However, this is Ca (OH), which has a large pH adjusting ability as Cr precipitation accelerator L1. 2 A Cr precipitation accelerator having a low pH adjusting ability, such as CaCl. 2 Is used, the input amount of the basic pH adjusting agent (for example, NaOH aqueous solution) is controlled and adjusted by the same mechanism. In addition, the Cr precipitation accelerator feeding mechanism is provided separately from the basic pH adjusting agent feeding mechanism.
[0037]
The control unit 132 is configured mainly with a computer, for example, and controls the opening and closing of the electromagnetic valve 112 with reference to detection information from the pH detection unit 120, so that the pH value of the waste liquid to be treated is within the above-described range. In order to be suitable, it plays the role of adjusting the amount of chemicals introduced such as Cr precipitation accelerator or basic pH adjuster. As the control mode, the electromagnetic valve 112 is configured as an electromagnetic stop valve that can only be fully opened and fully closed, for example, and the flow rate of the medicine is adjusted by adjusting the opening time (or duty ratio control of the opening and closing time). In addition to this, it is also possible to adopt a mode in which the electromagnetic valve 112 is configured by an electromagnetic proportional control valve and the flow rate of the medicine is adjusted by the opening amount of the electromagnetic valve 112.
[0038]
Next, in the reaction tank 104, a stirring mechanism 140 is provided for accelerating the precipitation formation reaction in the effluent and temporarily suspending the precipitation product in the wastewater to be treated. The drainage liquid in which the precipitation product is suspended is guided to the pH adjustment tank 105 through the drainage outflow pipe 114. As a result, the precipitated product does not accumulate in the reaction vessel 104 and can be recovered collectively on the downstream side, which is efficient. In this embodiment, a stirring mechanism 140 of the type in which the stirring blade 128 is rotated by a motor 127 is used, but ultrasonic stirring or the like may be employed. Further, the drainage outflow pipe 114 is provided as an overflow pipe that is provided near the liquid level in the reaction tank 104 or slightly below it, and overflows the drainage in the tank.
[0039]
Next, the drainage liquid that has flowed into the pH adjustment tank 105 is detected by the pH detection unit 120, and the control unit 132 controls the opening and closing of the electromagnetic valve 112 so that the pH of the drainage liquid is a predetermined value of, for example, 8 or more. Thus, the amount of acidic pH adjuster L2 (for example, sulfuric acid) supplied from the chemical tank 110 to the drainage is controlled. In this embodiment, the effluent in the pH adjusting tank 105 is stirred by the stirring mechanism 140 together with the precipitated product flowing from the reaction tank 104 to increase the reaction efficiency and temporarily suspend the precipitated product. In this way, it is guided to the downstream process.
[0040]
The drainage liquid flows into the agglomeration tank 106 via the pipe 115 in a state where the precipitated product is suspended, and the polymer from the drug tank 110 is controlled by opening / closing the electromagnetic valve 112 according to the inflow amount. The amount of flocculant L3 charged into the drainage is adjusted quantitatively. Also in this case, the agglomerated precipitation product is stirred and suspended by the stirring mechanism 140 and guided to the precipitation tank 107 through the pipe line 116. Here, the treated waste liquid KL, which becomes the supernatant, flows out from the overflow outflow pipe 133 to the neutralization tank 108 (FIG. 3), while the settled precipitated product SL accumulates a certain amount and operates the valve 121 to operate the tank. The bottom outlet is opened, and the slurry of the concentrated precipitate (containing the Cr component) accumulated at the bottom is led to the filter press device 109 of FIG. By the filter press device 109, the precipitate is dehydrated and separated and collected as a cake. The liquid separated here is returned to the reaction vessel 104.
[0041]
The drainage liquid after separating the precipitate containing the Cr component is neutralized in the neutralization tank 108 and then discharged. When it is desired to remove the Ca component dissolved in the liquid, the dissolved Ca component in the liquid can be precipitated and separated by neutralizing the liquid with an acid that forms a poorly water-soluble salt with Ca. . The acid in this case is, for example, H 2 SO 4 (The precipitated product is CaSO 4 Is). The neutralized treatment liquid can be discharged as it is. The precipitate may be recovered by dehydration and separation by the filter press device 109.
[0042]
An Mg-based inorganic compound can also be used as a Cr precipitation accelerator. In this case, after separating the precipitate containing the Cr component, the solution is acid neutralized, and then the dissolved Mg component in the neutralized solution can be removed by a reverse osmosis method or an ion exchange method. In particular, acids that do not form precipitates with dissolved Mg in the liquid (for example, H 2 SO 4 If the solution is neutralized in this manner, the solution after removing the dissolved Mg component can be circulated in the chromate drainage treatment process, and a closed treatment system can be constructed. FIG. 5 shows an example of the processing line in that case. In this processing line 200, MgCl is used as a Cr precipitation accelerator. 2 (In addition, the same code | symbol is provided to the element which is conceptually common with FIG. 3). In this case, in the reaction tank 104, NaOH is used as a basic pH adjuster in order to adjust the pH to 9 to 12.5. The subsequent steps are almost the same as those in FIG. 2 SO 4 The neutralized product is water soluble MgSO 4 And no precipitation occurs. The neutralized liquid is freed of dissolved Mg components (and other electrolyte components) in a reverse osmosis filtration device (for example, a device using a known reverse osmosis membrane module such as a hollow fiber membrane module) 113. The The liquid after removal is returned to the storage tank 103, the reaction tank 104, or the neutralization tank 108 again, or is reused for washing water or a new treatment liquid in the chromate treatment line 102. A closed system can be realized.
[0043]
Next, the removal of the dissolved Cr component can proceed sufficiently even at a normal temperature of the waste liquid, but the precipitation reaction of the dissolved Cr component can be further promoted by increasing the liquid temperature to 20 ° C. or higher. The temperature increasing effect becomes more prominent when the liquid temperature is 25 ° C. or higher, desirably 30 ° C. or higher, and it is desirable to appropriately adjust the temperature within a range that does not cause excessive evaporation of the liquid (for example, up to about 85 ° C.). . For example, the temperature of the washing water that is the source of the washing drainage is, for example, 10 ° C. or less in winter, and the upper limit is about 15 ° C. even in the summer when the water temperature rises. It can be said that it is desirable to positively heat the drainage.
[0044]
FIG. 6 schematically shows various mechanisms for heating the drainage. In the example shown in (a), a heater 155 for heating the drainage W is provided in the storage tank 103 (or the reaction tank 104). In this example, the heater 155 is an example of using an electric heater that generates heat by energization by the heating power supply 151, but other types of heaters such as a combustion heater using fossil fuel may be used. (B) is an example in which a heater 152 for heating the drainage W supply line 130 is provided from the outside, and (c) is a heater 153 for directly heating the drainage W in the drainage supply line 130. Is an example.
[0045]
Further, (d) shows an example in which the waste heat generation source 154 in the factory, such as a firing furnace for an insulator for a spark plug or various heat treatment furnaces, is used as a heating source for the drainage. In this figure, the hot water used as cooling water in the waste heat generation source 154 is guided to the heat exchanger 156 via the cooling water pipe 145, and the waste liquid supplied by the pipe 130 in the heat exchanger 156. Is heated in contact with the warm water. In addition, it can also heat by using waste liquid itself as a cooling medium of the waste heat generation source 154.
[0046]
As described above, the embodiment of the present invention has been described by taking as an example the case where the chromate treatment is performed on the spark plug metal shell. However, the present invention is not limited to this, and components other than the spark plug metal shell are chromated. Of course, it can be applied to the treatment of chromate drainage generated by the treatment.
[0047]
【Example】
Example 1
Chromate treatment bath 50, chromium (III) chloride (CrCl) per liter of deionized water 3 ・ 6H 2 50 g of O, cobalt nitrate (II) (Co (NO 3 ) 2 3 g of sodium nitrate (NaNO) 3 ) Was dissolved at a ratio of 100 g and malonic acid 31.2 g, the temperature of the bath was kept at 60 ° C. with a heater, and the pH of the bath was adjusted to 2.0 by addition of an aqueous caustic soda solution. Then, the treatment solution which has reached the end of its life by being repeatedly used for chromate treatment of galvanized steel parts is diluted with pure water, and the three levels of chromate emissions with dissolved Cr content levels of 10 mass ppm, 50 mass ppm and 100 mass ppm are obtained. A liquid was prepared.
[0048]
Ca (OH) as a Cr precipitation accelerator in each drainage 2 Was added in various amounts so that the pH of the solution would be a value of 6.8 to 12.6, and further stirred for 30 minutes (note that the measured pH value is measured after stirring for 30 minutes) Value). Next, H in the liquid 2 SO 4 (75% aqueous solution) was added to lower the pH to 8, and as a polymer flocculant, polyacrylamide 0.01% aqueous solution was added to 2 ml per liter of the wastewater to be treated and stirred. The precipitated product was allowed to settle for about 5 minutes. And the total dissolved Cr content and dissolved Zn content of the supernatant liquid were each analyzed with the atomic absorption photometer. The results are shown in Table 1.
[0049]
[Table 1]
Figure 0004077143
[0050]
It can be seen that the higher the pH of the effluent after the introduction of the Cr precipitation accelerator, the lower the dissolved Cr content in the supernatant after treatment, regardless of the dissolved Cr content in the effluent before treatment. In particular, when the pH is 9 or more, desirably 10 or more, the effect of removing the dissolved Cr component, that is, the effect of promoting precipitation of the Cr component is particularly remarkable. It can also be seen that the Zn content is also reduced to a level of less than 1 ppm by mass. Although a small amount of hexavalent chromium may remain in the effluent, the amount of residual hexavalent chrome can be reduced as the pH of the effluent is increased to reduce the total Cr amount.
[0051]
(Example 2)
In the same manner as in Example 1, a drainage solution having a dissolved Cr concentration of 70 mass ppm and a dissolved Zn concentration of 5 mass ppm was prepared. 2 The powder was put into the drainage liquid at a level of 500 mg / liter or 1000 mg / liter in terms of Ca amount. Moreover, the pH of the liquid was adjusted and maintained at various values of 9 to 12 by introducing a 2% NaOH aqueous solution as a basic pH adjuster. And in that state, 0.5 to 2 hours of stirring for various times is added to the liquid, and thereafter, the same treatment as in Example 1 is performed, and the dissolved Cr component concentration in the liquid after the treatment for each stirring time and The change with the dissolved Zn component concentration was examined. The results are shown in Table 2.
[0052]
[Table 2]
Figure 0004077143
[0053]
It can be seen that in any condition, the dissolved Cr component concentration and the dissolved Zn component concentration decrease as the stirring time increases. It can also be seen that when the liquid pH is high, the dissolved components decrease more rapidly than when the liquid pH is low.
[0054]
(Example 3)
By the same method as in Example 1, a drainage solution having a dissolved Cr concentration of 60 mass ppm and a dissolved Zn concentration of 30 mass ppm was prepared, and 60% CaCl was further prepared. 2 The aqueous solution was put into the drainage liquid at a level of 600 mg / liter in terms of Ca amount. Further, by adding a 2% NaOH aqueous solution as a basic pH adjuster, the pH of the solution was adjusted and maintained at 11, and in this state, the solution was stirred for 5 minutes. And H 2 SO 4 The solution pH was adjusted to 9 to 10 by charging. Then, a polyacrylamide 0.01% aqueous solution is added as a polymer flocculant so as to be 2 ml per liter of the waste liquid to be treated, and after stirring, the mixture is allowed to stand for various times for 0 to 900 minutes to precipitate the precipitated product. I let you. Then, the total dissolved Cr content and the dissolved Zn content of the supernatant were analyzed in the same manner as in Example 1. FIG. 7 shows the results. The horizontal axis represents the standing time, and the vertical axis represents the total dissolved Cr content ((a)) and the dissolved Zn content ((b)). It can be seen that as the standing time becomes longer, the total dissolved Cr content and the dissolved Zn content both decrease.
[0055]
Example 4
Prepare a drainage solution similar to that in Example 3, and then use MgCl. 2 The powder was put into the effluent at a level of 200 to 500 mg / liter in terms of Mg amount. Moreover, by adding 10% NaOH aqueous solution as a basic pH adjuster, the pH of the solution was adjusted and maintained at various values of 10 to 12, and the solution was stirred for 30 to 90 minutes in that state. Next, a polyacrylamide 0.01% aqueous solution was added as a polymer flocculant so as to be 2 ml per liter of the waste liquid to be treated, stirred, and allowed to stand for 30 minutes to precipitate the precipitated product. Then, the total dissolved Cr content and the dissolved Mg content of the supernatant were analyzed. The above results are shown in Table 3.
[0056]
[Table 3]
Figure 0004077143
[0057]
MgCl 2 It can be seen that Cr can also be effectively removed by adjusting the pH. Moreover, it turns out that the amount of dissolved Mg decreases as the solution pH increases. However, MgCl 2 When the pH is increased, the total dissolved Cr amount tends to increase as the pH becomes higher, and it is considered that re-dissolution of Cr occurs.
[0058]
(Example 5)
In the same manner as in Example 1, a chromate drainage solution having a dissolved Cr content level of 100 mass ppm and a dissolved Zn content of 200 mass ppm was prepared. This drained liquid was heated and held at a temperature of 19 ° C., 25 ° C., 30 ° C. or 40 ° C. with a heater. And for each drainage, Ca (OH) as a Cr precipitation accelerator 2 The powder was added in an amount of 0.4 g / ml, 0.6 g / ml to 0.9 g / ml, stirred for various times for 5 to 30 minutes, and the liquid pH after stirring was measured. Next, H in the liquid 2 SO 4 (75% aqueous solution) was added to lower the pH to 8, and as a polymer flocculant, polyacrylamide 0.01% aqueous solution was added to 2 ml per liter of the wastewater to be treated and stirred. The precipitated product was allowed to settle for about 5 minutes. And the total dissolved Cr content and dissolved Zn content of the supernatant liquid were each analyzed with the atomic absorption photometer. Table 4 shows the analysis results of the total dissolved Cr content and the dissolved Zn content at each temperature when the stirring time is fixed at 30 minutes.
[0059]
[Table 4]
Figure 0004077143
[0060]
According to this result, the higher the drainage temperature, the more Ca (OH) 2 It can be seen that even if the amount of powder input is reduced, the total dissolved Cr content is reduced, and the Cr precipitation reaction is promoted.
[0061]
Tables 5 to 7 show Ca (OH). 2 The total dissolved Cr content in each stirring time when the amount of powder charged is fixed at 0.9 g, 0.6 g / l to 0.4 g / l, and the drainage temperature is set to various temperatures of 25 to 40 ° C. The analysis result with dissolved Zn content is shown.
[0062]
[Table 5]
Figure 0004077143
[0063]
[Table 6]
Figure 0004077143
[0064]
[Table 7]
Figure 0004077143
[0065]
According to this result, any Ca (OH) 2 It can also be seen that the dissolved Cr concentration quickly reached the regulated value of 5 mass ppm or less in a shorter time as the drainage temperature was higher in the amount of powder input. In particular, when the drainage temperature is 30 ° C to 40 ° C, Ca (OH) 2 It can be seen that even if the amount of powder input is reduced to 0.4 g / l, the dissolved Cr concentration can be reduced to 5 mass ppm or less in a short time within 5 minutes.
[Brief description of the drawings]
FIG. 1 is a longitudinal half sectional view showing an example of a spark plug to be chromated.
FIG. 2 is an explanatory diagram of a chromate treatment process.
FIG. 3 is an explanatory view showing an example of a treatment line for chromate drainage.
4 is a schematic diagram showing a configuration example of the reaction tank, pH adjustment tank, coagulation tank, and precipitation tank of FIG.
FIG. 5 is an explanatory view showing another example of a chromate drainage treatment line.
FIG. 6 is a schematic diagram illustrating some specific examples of the drainage heating method.
7 is a graph showing the experimental results of Example 3. FIG.
[Explanation of symbols]
41, 45 Galvanized layer
42,46 Chromate coating
100,200 Drainage treatment line
102 Chromate treatment line
103 Reservoir
104 reactor
105 pH adjustment tank
106 Coagulation tank
107 Precipitation tank

Claims (16)

有機酸成分とZn成分とを含有したクロメート排液に対し、Ca成分及びMg成分の少なくともいずれかを含有するCr沈澱促進剤を添加し、かつ前記クロメート排液のpHを9以上に維持することによりCr成分を沈澱させて、液中の溶存Cr成分濃度を減少させるとともに、
前記クロメート排液に前記Cr沈澱促進剤を投入し、液のpHを9以上の第一値に一旦保持した後、液のpHを前記第一値から8以上の第二値に降下させてZn成分を沈澱させることを特徴とするクロメート排液の処理方法。
To a chromate drainage containing an organic acid component and a Zn component, a Cr precipitation accelerator containing at least one of a Ca component and an Mg component is added, and the pH of the chromate drainage is maintained at 9 or more. To precipitate the Cr component and reduce the concentration of dissolved Cr component in the liquid,
The Cr precipitation accelerator is added to the chromate effluent, and once the pH of the liquid is maintained at a first value of 9 or more, the pH of the liquid is lowered from the first value to a second value of 8 or more to obtain Zn. A method for treating chromate effluent, comprising precipitating components.
前記Cr沈澱促進剤は、Ca系無機化合物又はMg系無機化合物の少なくともいずれかが使用される請求項1記載のクロメート排液の処理方法。  The chromate drainage treatment method according to claim 1, wherein at least one of a Ca-based inorganic compound and a Mg-based inorganic compound is used as the Cr precipitation accelerator. 有機酸成分を含有したクロメート排液に対し、Ca成分及びMg成分の少なくともいずれかを含有するCr沈澱促進剤を添加し、かつ前記クロメート排液のpHを9以上に維持することによりCr成分を沈澱させて、液中の溶存Cr成分濃度を減少させるとともに、
前記Cr沈澱促進剤としてCa系無機化合物を使用するとともに、Cr成分を含有した沈澱物(以下、Cr系沈殿物という)を分離した後、Caとの間で沈澱(以下、Ca系沈殿物という)を形成する酸により液を中和して、液中の溶存Ca成分を前記Ca系沈殿物の形で分離することを特徴とするクロメート排液の処理方法。
By adding a Cr precipitation accelerator containing at least one of a Ca component and a Mg component to the chromate drainage containing the organic acid component, and maintaining the pH of the chromate drainage to 9 or more, the Cr component is Precipitating and reducing the dissolved Cr component concentration in the liquid,
A Ca-based inorganic compound is used as the Cr precipitation accelerator, and a precipitate containing a Cr component (hereinafter referred to as a Cr-based precipitate) is separated and then precipitated with Ca (hereinafter referred to as a Ca-based precipitate). A method for treating chromate drainage, wherein the solution is neutralized with an acid that forms a solution), and dissolved Ca components in the solution are separated in the form of the Ca precipitate.
有機酸成分を含有したクロメート排液に対し、Ca成分及びMg成分の少なくともいずれかを含有するCr沈澱促進剤を添加し、かつ前記クロメート排液のpHを9以上に維持することによりCr成分を沈澱させて、液中の溶存Cr成分濃度を減少させるとともに、
前記Cr沈澱促進剤としてMg系無機化合物を使用するとともに、Cr系沈澱物を分離した後、酸により液を中和し、中和後の液中の溶存Mg成分を逆浸透法又はイオン交換法により除去することを特徴とするクロメート排液の処理方法。
By adding a Cr precipitation accelerator containing at least one of a Ca component and a Mg component to the chromate drainage containing the organic acid component, and maintaining the pH of the chromate drainage to 9 or more, the Cr component is Precipitating and reducing the dissolved Cr component concentration in the liquid,
Mg-based inorganic compound is used as the Cr precipitation accelerator, and after separating the Cr-based precipitate, the liquid is neutralized with an acid, and the dissolved Mg component in the neutralized liquid is subjected to reverse osmosis or ion exchange. A method for treating chromate drainage, wherein the chromate drainage is removed.
液中の溶存Mgとの間で沈澱物を形成しない酸を用いて液の中和を行なう請求項4記載のクロメート排液の処理方法。  The method for treating chromate effluent according to claim 4, wherein the liquid is neutralized using an acid that does not form a precipitate with dissolved Mg in the liquid. 前記Cr沈澱促進剤としてCa(OH)、CaCl及びMgClの少なくともいずれかを使用する請求項2ないし5のいずれか1項に記載のクロメート排液の処理方法。The method for treating chromate drainage according to any one of claims 2 to 5, wherein at least one of Ca (OH) 2 , CaCl 2 and MgCl 2 is used as the Cr precipitation accelerator. 前記クロメート排液のpHを9以上とするために、該クロメート排液に前記Cr沈澱促進剤とは別に塩基性pH調整剤を投入する請求項2ないし6のいずれか1項に記載のクロメート排液の処理方法。  The chromate waste according to any one of claims 2 to 6, wherein a basic pH adjuster is added to the chromate drainage separately from the Cr precipitation accelerator so that the chromate wastewater has a pH of 9 or more. Liquid processing method. 前記塩基性pH調整剤は、NaОH、KОH及びLiОHから選ばれる1種以上が使用される請求項7記載のクロメート排液の処理方法。  The chromate drainage treatment method according to claim 7, wherein the basic pH adjuster is at least one selected from NaOH, KOH, and LiOH. 処理対象となるクロメート排液は、Cr含有濃度が10〜1000ppmのものである請求項1ないし8のいずれかに記載のクロメート排液の処理方法。  The chromate drainage treatment method according to any one of claims 1 to 8, wherein the chromate drainage to be treated has a Cr content of 10 to 1000 ppm. 前記Cr沈澱促進剤としてCaClが使用され、かつ前記クロメート排液に対し1リットル当たりのCa含有量が500〜1000mgとなるように添加される請求項4ないし9のいずれかに記載のクロメート排液の処理方法。The chromate excretion according to any one of claims 4 to 9, wherein CaCl 2 is used as the Cr precipitation accelerator and is added so that a Ca content per liter is 500 to 1000 mg with respect to the chromate excretion. Liquid processing method. 前記Cr沈澱促進剤としてMgClが使用され、かつ前記クロメート排液に対し1リットル当たりのMg含有量が200〜500mgとなるように添加される請求項4ないし9のいずれかに記載のクロメート排液の処理方法。10. The chromate waste according to claim 4, wherein MgCl 2 is used as the Cr precipitation accelerator and is added so that the Mg content per liter is 200 to 500 mg with respect to the chromate waste. Liquid processing method. 前記クロメート排液にCr沈澱促進剤を投入して液に撹拌を加える請求項1ないし11のいずれかに記載のクロメート排液の処理方法。  The method for treating chromate drainage according to any one of claims 1 to 11, wherein a Cr precipitation accelerator is added to the chromate drainage and the liquid is stirred. 前記撹拌時間を0.5〜2時間とする請求項12記載のクロメート排液の処理方法。The method for treating chromate drainage according to claim 12, wherein the stirring time is 0.5 to 2 hours. Cr成分の沈澱により溶存Cr成分濃度を減少させる処理を、前記排液の温度を20℃以上に保持した状態にて行なう請求項1ないし13のいずれかに記載のクロメート排液の処理方法。  The method for treating chromate drainage according to any one of claims 1 to 13, wherein the treatment for reducing the concentration of dissolved Cr component by precipitation of Cr component is performed in a state where the temperature of the drainage is maintained at 20 ° C or higher. 前記処理を、前記排液の温度を25℃以上に保持した状態にて行なう請求項14記載のクロメート排液の処理方法。  The method for treating chromate drainage according to claim 14, wherein the treatment is performed in a state where the temperature of the drainage is maintained at 25 ° C or higher. クロメート排液に前記Cr沈澱促進剤を投入し、液pHが9以上の状態で0.5時間以上保持後、高分子凝集剤を投入してCr成分を含有した沈澱物を凝集させて沈下を促進する請求項1ないし15のいずれかに記載のクロメート排液の処理方法。  The Cr precipitation accelerator is added to the chromate effluent, and after maintaining the liquid pH at 0.5 or more for 0.5 hours or more, the polymer flocculant is added to agglomerate the precipitate containing the Cr component to reduce the settlement. The method for treating chromate drainage according to any one of claims 1 to 15, which is promoted.
JP2000232518A 2000-07-31 2000-07-31 Chromate drainage treatment method Expired - Fee Related JP4077143B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2000232518A JP4077143B2 (en) 2000-07-31 2000-07-31 Chromate drainage treatment method
MYPI20012590 MY132572A (en) 2000-07-31 2001-05-31 Process for treating chromate waste liquid
DE60122839T DE60122839T2 (en) 2000-07-31 2001-07-26 Process for the treatment of chromate polluted wastewater
BRPI0106411-8A BR0106411B1 (en) 2000-07-31 2001-07-26 process of treatment of the residual liquid of chromatization.
EP01118162A EP1178014B1 (en) 2000-07-31 2001-07-26 Process for treating chromate waste liquid
KR10-2001-0045821A KR100469872B1 (en) 2000-07-31 2001-07-30 Process for Treating Chromate Waste Liquid
US09/916,532 US6846416B2 (en) 2000-07-31 2001-07-30 Process for treating chromate waste liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000232518A JP4077143B2 (en) 2000-07-31 2000-07-31 Chromate drainage treatment method

Publications (2)

Publication Number Publication Date
JP2002045871A JP2002045871A (en) 2002-02-12
JP4077143B2 true JP4077143B2 (en) 2008-04-16

Family

ID=18725192

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000232518A Expired - Fee Related JP4077143B2 (en) 2000-07-31 2000-07-31 Chromate drainage treatment method

Country Status (7)

Country Link
US (1) US6846416B2 (en)
EP (1) EP1178014B1 (en)
JP (1) JP4077143B2 (en)
KR (1) KR100469872B1 (en)
BR (1) BR0106411B1 (en)
DE (1) DE60122839T2 (en)
MY (1) MY132572A (en)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6833124B2 (en) 2002-01-31 2004-12-21 University Of Dayton Recovery process for wastes containing hexavalent chromium
JP4559755B2 (en) * 2003-03-11 2010-10-13 株式会社トクヤマ Wastewater treatment method
JP4232019B2 (en) * 2003-09-16 2009-03-04 三菱瓦斯化学株式会社 Treatment method for fluorine-containing wastewater
JP4515273B2 (en) * 2005-01-27 2010-07-28 株式会社ミクニ Condensation separation purification agent and purification method of polluted waste water
US8552399B2 (en) 2005-10-11 2013-10-08 K2R Co., Ltd. Apparatus for producing photocatalytic reaction water
KR100902018B1 (en) * 2007-08-01 2009-06-15 한국동서발전(주) Method for Treating Industrial Waste Water by Using Neutralizing Chemical Agent
CN101659487B (en) * 2009-01-23 2011-07-27 云南祥云飞龙有色金属股份有限公司 Zero emission method of wastewater in lead-zinc metallurgical refinery
CN101891315B (en) * 2010-07-07 2012-03-21 西安皓海嘉水处理科技有限责任公司 Process for treating nano-zinc oxide production wastewater
CN103484888B (en) * 2012-06-14 2015-11-04 兰州大学 The treatment process of chromium-containing acid waste liquor of sodium and sulfuric acid pickling waste liquid in a kind of stainless steel production
CN103183406B (en) * 2013-03-14 2014-04-16 济南大学 Preparation method of high-concentration PAM-aluminum, zinc iron composite water treatment agent
US9856159B2 (en) 2013-04-12 2018-01-02 Psmg, Llc Polymer blends for flocculation
TWI539032B (en) * 2013-08-01 2016-06-21 Chang Chun Petrochemical Co Electrolytic copper foil, cleaning fluid composition and cleaning copper foil method
US9714342B2 (en) 2013-08-22 2017-07-25 Psmg, Llc Particle suspensions of flocculating polymer powders
US10011717B2 (en) 2013-11-27 2018-07-03 Psmg, Llc Particle suspensions of flocculating polymer powders and powder flocculant polymer blends
JP6700668B2 (en) * 2015-04-01 2020-05-27 キヤノン株式会社 Image forming apparatus, control method of the apparatus, and program
JP6486877B2 (en) * 2016-09-21 2019-03-20 株式会社ダイワエクセル Waste water treatment device and waste water treatment method using the waste water treatment device
JP7399080B2 (en) 2017-05-12 2023-12-15 ケメオン サーフェス テクノロジー, エルエルシー pH stable trivalent chromium coating liquid
CN107697951B (en) * 2017-11-23 2020-01-03 舒城联科环境科技有限公司 Method for preparing basic chromium sulfate by using chromium resin column regeneration liquid
CN110642425B (en) * 2019-10-12 2021-10-08 广州超邦化工有限公司 Treatment method of trivalent chromium passivation wastewater containing hydrofluoric acid and carboxylic acid
CN110642395B (en) * 2019-10-12 2021-10-08 广州超邦化工有限公司 Method for treating fluoride ion-containing sulfate trivalent chromium plating wastewater
CN110902881A (en) * 2019-12-02 2020-03-24 沈阳环境科学研究院 Efficient combined water treatment process for short-distance coagulating sedimentation and filtration
CN111484183A (en) * 2020-05-27 2020-08-04 武汉钢铁有限公司 Zero-discharge chromium-containing wastewater and chromium reduction treatment method in steel industry
CN112159025A (en) * 2020-10-28 2021-01-01 中国科学院生态环境研究中心 Treatment method and application of hexavalent chromium-containing wastewater

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3575853A (en) * 1968-12-24 1971-04-20 Lab Betz Inc Waste water treatment
JPS4892270A (en) * 1972-03-09 1973-11-30
JPS5182958A (en) * 1975-01-17 1976-07-21 Stanley Electric Co Ltd JUKINZOKUSAKUENHAISUIHAIEKI NO SHORIHOHO
JPS5268860A (en) 1975-12-08 1977-06-08 Hitachi Ltd Method for treating waste liquid of nitric secondary cerium ammonium
JPS5348086A (en) 1976-10-14 1978-05-01 Nippon Fuirutaa Kk Method and apparatus for treating waste liquid or washed water of trihydric chromium plating process
JPS53113795A (en) * 1977-03-17 1978-10-04 Tamotsu Morimasa Method of separating metallic ions
NL7802123A (en) * 1978-02-25 1979-08-28 Akzo Nv PROCEDURE FOR REMOVING HEAVY METALS FROM Aqueous SUBSTANCES.
JPS5518229A (en) 1978-07-26 1980-02-08 Noritake Co Ltd Treating heavy metal containing waste liquid and sludge
JPS5550467A (en) 1978-10-06 1980-04-12 Katsukawa Heitaro Treating method for exhaust liquid containing chromium
US4260491A (en) * 1978-11-15 1981-04-07 Amchem Products, Inc. Chrome removal waste treatment process
JPS5776598U (en) * 1980-10-30 1982-05-12
DE3270826D1 (en) * 1982-01-19 1986-06-05 Deconta Ag Process for the decontamination of natural and technical sludges
US4419246A (en) * 1982-09-30 1983-12-06 E. I. Du Pont De Nemours & Co. Removal of heavy metal ions
JPS60166087A (en) * 1984-02-09 1985-08-29 Hitachi Plant Eng & Constr Co Ltd Treatment of waste water containing high-concentration salts, copper and zinc
US5314623A (en) * 1984-04-30 1994-05-24 Kdf Fluid Treatment, Inc. Method for treating fluids
JPS614593A (en) * 1984-06-18 1986-01-10 Hitachi Plant Eng & Constr Co Ltd Treatment of waste water containing borofluoride and chromium
EP0168752B2 (en) * 1984-07-13 1994-12-14 Hitachi, Ltd. Method of treating liquid wastes containing heavy metal chelate compounds
JPS61192386A (en) * 1985-02-22 1986-08-26 Kurita Water Ind Ltd Treatment of waste water containing heavy metal complex
US4705639A (en) * 1985-05-10 1987-11-10 The United States Of America As Represented By The Secretary Of The Air Force Ferrous and sulfide treatment of electroplating wastewater
US4680126A (en) * 1986-02-18 1987-07-14 Frankard James M Separation and recovery of reusable heavy metal hydroxides from metal finishing wastewaters
US4971775A (en) * 1987-06-30 1990-11-20 Dowell Schlumberger Process for removal of nickel from effluent containing EDTA
US4846978A (en) * 1988-11-16 1989-07-11 The Dow Chemical Company Recovery of metals from solutions containing chelants
ES2048224T3 (en) * 1989-03-31 1994-03-16 Walhalla Kalk Entwicklungs Und PROCEDURE FOR THE SEPARATION OF ARSENIC FROM WASTEWATER.
JPH04349990A (en) * 1991-05-28 1992-12-04 Kawasaki Steel Corp Processing of waste liquid containing high concentration of metal ion
US5160631A (en) * 1991-08-05 1992-11-03 Halliburton Company Method for treating chelant solutions to remove metals in solution
BR9305953A (en) * 1992-02-24 1997-10-21 Unichema Chemie Bv Process for treating wastewater
JP3303332B2 (en) * 1992-06-08 2002-07-22 栗田工業株式会社 Treatment method for wastewater containing heavy metals
US5330658A (en) * 1993-03-17 1994-07-19 Westinghouse Electric Corporation Solution decontamination method using precipitation and flocculation techniques
US5753125A (en) * 1995-05-19 1998-05-19 Kreisler; Lawrence Method for recovering and separating metals from waste streams
DE19638176A1 (en) 1996-09-18 1998-04-16 Surtec Produkte Und Systeme Fu Corrosion resistant hexavalent chromium-free chromate coating
US6607651B2 (en) * 1998-09-10 2003-08-19 Cws Parts Company Process and system for treating the discharge stream from an ion exchanger
JP3842907B2 (en) * 1998-10-09 2006-11-08 新日本製鐵株式会社 Treatment of metal-containing wastewater and method for recovering valuable metals
JP4374636B2 (en) * 1999-01-11 2009-12-02 栗田工業株式会社 Treatment method of waste liquid containing heavy metal complex

Also Published As

Publication number Publication date
EP1178014B1 (en) 2006-09-06
BR0106411B1 (en) 2011-10-18
MY132572A (en) 2007-10-31
EP1178014A1 (en) 2002-02-06
KR100469872B1 (en) 2005-02-02
KR20020010865A (en) 2002-02-06
BR0106411A (en) 2002-04-09
DE60122839T2 (en) 2006-12-21
JP2002045871A (en) 2002-02-12
US20020033368A1 (en) 2002-03-21
US6846416B2 (en) 2005-01-25
DE60122839D1 (en) 2006-10-19

Similar Documents

Publication Publication Date Title
JP4077143B2 (en) Chromate drainage treatment method
Ingelsson et al. Electrode passivation, faradaic efficiency, and performance enhancement strategies in electrocoagulation—a review
CN101817575B (en) Electric flocculation method and device for recovering and processing desulfurized wastewater
CN109437446A (en) A kind of zinc nickel alloy electroplating waste water treatment process
CN105236543A (en) Heavy metal precipitant, preparation method thereof and heavy metal wastewater treatment method
JP2006219691A (en) Metal surface treatment method
CN101648758A (en) Electroplating recession water processing and Ni-Cu recovering process
JP2004008860A (en) Treatment method for harmful anion-containing wastewater and agent used therein
CN110818123B (en) Treatment method of trivalent chromium plating waste water
JP5106463B2 (en) Method and apparatus for processing solution containing selenium and fluorine
JP5205089B2 (en) Waste electrolyte treatment method
JP6307276B2 (en) Selenium-containing water treatment apparatus and selenium-containing water treatment method
AU2002352521B2 (en) A method for the removal of metals from an aqueous solution using lime precipitation
US3371034A (en) Process for removal of chromium in industrial waste waters
CN209307105U (en) Acid washing phosphorization waste water treatment system
JPS634478B2 (en)
CN112176346A (en) Regenerant of phosphorus/sulfur mixed acid for chemical polishing, online regeneration method and system adopted by same
CN111039459A (en) Treatment process of nickel-deplating wastewater containing m-sodium nitrobenzenesulfonate
Sun et al. Co-removal of hexavalent chromium during copper precipitation
CN216236433U (en) Nickel plating waste liquid treatment device
JP5877423B2 (en) Method for regenerating nitric acid activation treatment solution on surface of zinc-based plated metal member and regeneration treatment apparatus using the same
JP3173981B2 (en) Waste liquid treatment method
JPH01184096A (en) Treatment equipment of waste liquid containing metal
GB2027055A (en) Manganese coating of steels
CN110759442B (en) Method for treating trivalent chromium passivation wastewater

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070928

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080131

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4077143

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110208

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110208

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110208

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120208

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120208

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130208

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130208

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees