JP3976498B2 - Syngas production catalyst and synthesis gas production method - Google Patents

Syngas production catalyst and synthesis gas production method Download PDF

Info

Publication number
JP3976498B2
JP3976498B2 JP2000378247A JP2000378247A JP3976498B2 JP 3976498 B2 JP3976498 B2 JP 3976498B2 JP 2000378247 A JP2000378247 A JP 2000378247A JP 2000378247 A JP2000378247 A JP 2000378247A JP 3976498 B2 JP3976498 B2 JP 3976498B2
Authority
JP
Japan
Prior art keywords
catalyst
synthesis gas
reaction
hydrogen
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000378247A
Other languages
Japanese (ja)
Other versions
JP2002177783A (en
Inventor
俊光 鈴木
清晴 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, National Institute of Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2000378247A priority Critical patent/JP3976498B2/en
Publication of JP2002177783A publication Critical patent/JP2002177783A/en
Application granted granted Critical
Publication of JP3976498B2 publication Critical patent/JP3976498B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はメタン、エタン、プロパンなどの低級飽和炭化水素から合成ガスを製造する方法と、その方法に用いる触媒に関するものである。
水素や一酸化炭素等は化学工業原料であるだけでなく、水素は今後の燃料電池の原料として重要なものである。
【0002】
【従来の技術】
化学工業において重要な原料である合成ガス(一酸化炭素と水素の混合ガス)は、現在天然ガスの主成分であるメタンなどの軽質炭化水素と水蒸気との反応(1)によって製造されており、通常酸化アルミニウム(Al2O3)または酸化マグネシウム(MgO)担体に担持したニッケル触媒を用い、20〜40 atm、800〜1000℃の反応条件で行われている。しかし、大きな吸熱反応で実用プロセスは高温下で操作が行われているので、省エネルギーの観点からより効率的な製法の開発が望まれている。
CH4 + H2O = CO + 3H2 ΔH0298= +206 kJ/mol (1)
【0003】
加えて、この反応は化学量論的にはメタンと水の分圧比は1であるが、この分圧比では触媒上に炭素析出が起こり触媒の失活が起こりやすいので、実際の反応においては炭素析出抑制のために水をメタンに対して1.5倍〜5倍導入している。このため、生成ガスの熱エネルギーの回収を行っても、なおエネルギー消費量は大きく経済性をより一層高める必要がある。
また、この反応に対する触媒開発の課題は活性の促進よりも、炭素析出の抑制である。炭素析出は触媒活性の低下のみならず、反応器の閉塞や触媒の物理構造の破壊までももたらす重要な問題である。
【0004】
そこで、メタンの酸素酸化(部分酸化反応)による合成ガス生成反応(2)が最近、省エネルギープロセスの観点から再検討されるようになった。
CH4 + (1/2)O2 → CO + 2H2 ΔH0298= -36 kJ/mol (2)
【0005】
AshcroftらはLn2Ru2O7(Ln = ランタノイド)を触媒に用いて777℃でCH4とO2より高収率、高選択性でCOとH2が得られることを報告している(A.T. Achcroft, A.K. Cheetham, J.S. Food, M.L.H. Green, C.P. Grey, A.J. Murrel, P.D.F. Vermon, Nature, 344 (1990) 319.)。
【0006】
LunsfordらはNi/Al2O3触媒を用いてCH4の部分酸化反応を行い、750℃以上で95%以上の選択率でCOとH2を得ることができることを報告している(D. Dissanayake, M.P. Rosynek, K.C.C. Kharas, J.H. Lunsford, J. Catal, 132 (1991) 117.)。
しかし、これらの触媒による酸素酸化においても750℃以上の高温が必要であり、ニッケルを触媒活性種として使用すると水蒸気改質と同様に炭素析出が課題となっている。
【0007】
本発明者らは、これまでにメタンの酸素酸化(部分酸化)反応による合成ガス生成をより低温で効率的に行なうために、新しい触媒の開発を目的としてイリジウムと数種の担体を用いて詳細な検討を行い、イリジウム/酸化チタン触媒を用いたところ、従来知られている触媒に匹敵する合成ガス生成活性を示し、炭素析出も全く認められないことを見出した(K. Nakagawa, T. Suzuki, T. Kobayashi and M. Haruta, Chem. Lett, (1996) 1029)。しかし、この触媒に用いられるイリジウムは高価な稀少貴金属であり実用プロセスとしてはコストの課題がある。
【0008】
【発明が解決しようとする課題】
本発明の目的は、従来のメタンからの合成ガス製造の問題点である、高温での反応および炭素析出を抑制し、触媒活性の安定化および寿命の延長を図るものである。
【0009】
【課題を解決するための手段】
本発明者らは、上記の問題点を解決すべく鋭意検討した結果、ニッケルその他のいくつかの金属触媒の担体として、従来用いられたことのない酸化ダイヤモンドを用いることで、課題を克服させるに至った。
さらに、本発明の触媒を用いると、メタンを原料として水素と一酸化炭素の混合ガスである合成ガスを製造できるだけでなく、エタンやプロパンといった低級飽和炭化水素からも合成ガスを製造することができる。いずれを原料とした場合でも反応生成物に二酸化炭素が含まれるが、二酸化炭素は容易に除去できるので、反応生成物を合成ガスとして取り出すことができる。
【0010】
本発明の合成ガス製造触媒は、酸化ダイヤモンドを担体とし、その表面にニッケル、ロジウム、パラジウム、ルテニウム、イリジウム及びコバルトからなる群から選ばれたいずれかの金属を担持したものである。
【0011】
水素を含有した混合ガスを製造する本発明の1つの局面は、触媒の存在下で550〜700℃の温度範囲で低級飽和炭化水素と酸素から部分酸化反応によって合成ガスを製造する。この部分酸化反応に用いる触媒は、酸化ダイヤモンドを担体とし、その表面にニッケル、ロジウム、パラジウム、ルテニウム及びイリジウムからなる群から選ばれたいずれかの金属を担持したものである。
【0012】
水素を含有した混合ガスを製造する本発明の他の局面は、触媒の存在下で600〜800℃の温度範囲で低級飽和炭化水素と水蒸気から水蒸気改質反応によって合成ガスを製造する。この水蒸気改質反応に用いる触媒は、酸化ダイヤモンドを担体とし、その表面にニッケル、ロジウム、パラジウム、ルテニウム、イリジウム及びロジウムからなる群から選ばれたいずれかの金属を担持したものである。
【0013】
また、水蒸気改質反応で用いる触媒は水素還元処理を施さなくてもよい。もちろん、水素還元処理を施すことを排除するものではない。
本発明の製造方法において、低級飽和炭化水素としてメタンを使用した場合は、得られる合成ガスは化学工業において重要な原料である、水素と一酸化炭素とからなる合成ガスとなる。
表面を酸化したダイヤモンドを触媒担体に用いると、活性金属種と担体の相互作用が弱くなり、担持された活性種の酸化還元が容易に起こる。本発明はこの性質を効果的に利用したものである。
【0014】
【実施例】
ここで用いるダイヤモンドは工業用の研磨用微粒子ダイヤモンドで、市販のものであるが、その表面は製造工程によって一定でなく様々な構造を有しているので、使用前に450℃で1時間、空気酸化して酸化ダイヤモンドを調製しこれを用いる。
酸化ダイヤモンドに担持したニッケル触媒を調製する場合は、硝酸ニッケル0.049〜0.495gを水20mLに溶解させたものに酸化ダイヤモンド(粒径0.5マイクロメーター以下)1.99〜1.90gを加え、攪拌しながら、一昼夜放置した後、過剰の水を蒸発乾固させた。乾燥させた試料を磁性ボートに載せ、電気炉中で10℃/minの昇温速度で空気流通下450℃まで昇温させた後、同温度で3時間保持し、硝酸塩を酸化ニッケルに変換させた。この触媒はニッケル金属を重量として0.5〜5%含んでいる。
【0015】
他の金属触媒も水溶性塩を用いて同様の処理により、酸化ダイヤモンドに担持した触媒を調製した。
このように調製した触媒60〜100mgを精秤し、内径10mm、長さ250mmの石英ガラス製反応管に充填後、縦型電気炉に反応管を設置した。反応管の内部に挿入した熱電対により触媒層の温度を測定すると同時に電気炉の温度を制御した。炭化水素および酸素は質量流量制御弁を通して反応管へ導き、触媒層で反応させた。反応管出口の生成物を捕集し、ガスクロマトグラフにより成分を分析し、あらかじめ、作成した検量線により定量した。
水蒸気との反応では、炭化水素を導入するところは上述のとおりであるが、シリンジポンプに水を入れ反応器上部から一定流量で水を供給し、触媒層上部に充填したアルミナボールにより水を加熱し、水蒸気として触媒層で炭化水素と反応させた。反応生成物は出口に設けた水分離器により、水蒸気を凝縮させた後捕集し、ガスクロマトグラフにより分析した。
【0016】
(実施例1)
メタンの部分酸化による合成ガス生成(反応式2)を、酸化ダイヤモンドにニッケル金属を5wt%含む触媒60mgを上記反応管に充填し、メタン25mL/min、酸素5mL/minの流速で400℃から50℃ずつ高い温度に設定して反応させた。反応開始から2時間経過後、400、450、500、550、600、650、700℃の各温度で30分ずつ一定温度に触媒層を保ち、生成物を分析し、水素、一酸化炭素収量を定量した。
結果を表1の実験番号1〜4に示す。
【0017】
【表1】

Figure 0003976498
【0018】
表1の実験番号2〜4より明らかに、600℃から700℃にかけて水素、一酸化炭素収量は増大し、700℃では水素収量530mmol/hr・g-catalyst、一酸化炭素収量315mmol/hr・g-catalystを得、炭素析出も全く認められなかった。
触媒の安定性を調べるために、反応開始から7時間後のデータを測定した。結果を表1の実験番号5に示す。実験番号4とほぼ等しい値が得られ、見かけ上触媒の色の変化も認められず、炭素析出は見られなかった。
【0019】
(実施例2)
実施例1の実験番号2と同じ条件で、酸化ダイヤモンドに担持するニッケル金属の担持量のみを0.5、1、3、5wt%と変化させて反応温度600℃で反応を行った結果を表2に示す。
【0020】
【表2】
Figure 0003976498
【0021】
実験番号3のニッケル担持量3wt%のとき最も多い水素収量498mmol/hr・g-catalyst、一酸化炭素収量183 mmol/hr・g-catalystを得た。さらに、実験番号1の低担持量のニッケル金属0.5wt%においても、水素収量358mmol/hr・g-catalyst、一酸化炭素収量147mmol/hr・g-catalystの高い収量が得られた。
【0022】
(実施例3)
触媒の担体は酸化ダイヤモンドとして、活性金属種をニッケルからロジウム(Rh)、パラジウム(Pd)、ルテニウム(Ru)、イリジウム(Ir)、鉄(Fe)、白金(Pt)、コバルト(Co)と代えて、金属5wt%を担持した触媒を用いて実施例2と同様にメタンの部分酸化反応による合成ガス生成について検討を行った。
結果を表3に示す。
【0023】
【表3】
Figure 0003976498
【0024】
実施例2のニッケルが最も多い水素、一酸化炭素収量を示したが、続いて、表3の実験番号1、2、3、4のロジウム、パラジウム、ルテニウム、イリジウムの順に水素、一酸化炭素の生成が認められた。
しかし、表3の実験番号5、6、7の鉄、白金、コバルトでは水素の生成は認められなかった。
【0025】
(実施例4)
メタンの水蒸気改質による合成ガス生成(反応式1)を酸化ダイヤモンドにニッケル金属を5wt%含む触媒100mgを上記反応管に充填し、メタン5mL/min、水蒸気供給量15mL/min、アルゴン25mL/minの流速で600℃から100℃ずつ高い温度に設定して反応させた。反応開始から2時間経過後、600、700、800℃の各温度で30分ずつ一定温度に触媒層を保ち生成物を分析し、水素、一酸化炭素収量を測定した。
結果を表4に示す。
【0026】
【表4】
Figure 0003976498
【0027】
実験番号1〜3より明らかに600から800℃にかけて水素、一酸化炭素収量は増大し、800℃では水素収量438mmol/hr・g-catalyst、一酸化炭素収量99.8 mmol/hr・g-catalystを得、炭素析出も認められなかった。
【0028】
(実施例5)
触媒の担体は酸化ダイヤモンドとして、活性金属種をニッケルからロジウム、イリジウム、白金、パラジウム、ルテニウム、コバルトと代えて、金属5wt%を担持した触媒を用いて前処理として水蒸気改質で通常行われる触媒の水素還元を、水素5mL/min、アルゴン30mL/minの流通下で600℃で1時間行なった後、実施例4の実験番号1と同様にメタンの水蒸気改質による合成ガス生成について検討を行なった。
結果を表5に示す。
【0029】
【表5】
Figure 0003976498
【0030】
実験番号1のニッケル(水素還元なし)(実施例4の実験番号1と同じもの)が最も多い水素、一酸化炭素収量を示し、続いて、実験番号3〜8のルテニウム、コバルト、イリジウム、ロジウム、パラジウム、白金の順に水素、一酸化炭素の生成が認められた。
しかし、鉄はほとんど触媒活性を示していない。
実験番号2のニッケルについてみると、水素還元によって水素収量が減少している。このことから、酸化ダイヤモンドを担体に用いると、触媒の前処理行程としての水素還元を必要としないことがわかる。
【0031】
(比較例1)
触媒の担体を酸化ダイヤモンドに代えてニッケル触媒の担体として一般的に用いられている酸化マグネシウム(MgO)、酸化アルミニウム(Al2O3)、酸化チタン(TiO2)、酸化ランタン(La2O3)、活性炭、酸化ケイ素(SiO2)にニッケル金属を5wt%含む触媒を使用して、触媒60mgを上記反応管に充填し、メタン25mL/min、酸素5mL/minの流速で、反応温度600℃で、メタンの部分酸化反応による合成ガス生成について検討を行った。
結果を表6に示す。
【0032】
【表6】
Figure 0003976498
【0033】
実験番号1、2、3の酸化マグネシウム、酸化アルミニウム、酸化チタンにおいてわずかに水素、一酸化炭素の生成が認められたが、実施例1の実験番号2の酸化ダイヤモンドに匹敵する性能を示す担体を得ることは出来なかった。加えて、酸化アルミニウムを用いたときは10時間の反応において著しい炭素析出が起こり反応管が閉塞するに至った。
【0034】
(比較例2)
触媒の担体を酸化ダイヤモンドに代えてニッケル触媒の担体として一般的に用いられている酸化アルミニウム、酸化チタン、酸化マグネシウム、酸化ケイ素、酸化ランタンにニッケル金属を5wt%含む触媒を使用して、触媒100mgを上記反応管に充填し、前処理として水蒸気改質で通常行われる触媒の水素還元を、水素5mL/min、アルゴン30mL/min流通下で600℃で1時間行った後、実施例4、実験番号1と同様の反応条件でメタンの水蒸気改質による合成ガス生成を行った。
結果を表7に示す。
【0035】
【表7】
Figure 0003976498
【0036】
実験番号1、2、3、4、5の酸化アルミニウム、酸化チタン、酸化マグネシウム、酸化ケイ素、酸化ランタンにおいて水素、一酸化炭素の生成が認められたが、炭素析出も認められ、実施例4、実験番号1の酸化ダイヤモンドに匹敵する担体を得ることは出来なかった。
【0037】
【発明の効果】
本発明は、酸化ダイヤモンドの表面にニッケルその他の金属を担持した触媒であり、この触媒を用いることにより低級飽和炭化水素を原料にして合成ガスを製造することができる。
また、本発明の製造方法は、その触媒を用いて合成ガスを製造する方法であり、酸化ダイヤモンドの表面にニッケル、ロジウム、パラジウム、ルテニウム及びイリジウムからなる群から選ばれたいずれかの金属を担持した触媒の存在下で550〜700℃の温度範囲で低級飽和炭化水素と酸素から部分酸化反応によって、又は酸化ダイヤモンドを担体の表面にニッケル、ロジウム、パラジウム、ルテニウム、イリジウム及びロジウムからなる群から選ばれたいずれかの金属を担持した触媒の存在下で600〜800℃の温度範囲で低級飽和炭化水素と水蒸気から水蒸気改質反応によって、水素を含有した混合ガスを製造するようにした。これにより、高温での反応および炭素析出を抑制し、触媒活性の安定化および寿命の延長を図ることができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing synthesis gas from lower saturated hydrocarbons such as methane, ethane, and propane, and a catalyst used in the method.
Hydrogen and carbon monoxide are not only raw materials for chemical industry, but hydrogen is important as a raw material for future fuel cells.
[0002]
[Prior art]
Syngas (mixed gas of carbon monoxide and hydrogen), which is an important raw material in the chemical industry, is produced by the reaction (1) of light hydrocarbons such as methane, which is the main component of natural gas, with water vapor, Usually, a nickel catalyst supported on an aluminum oxide (Al 2 O 3 ) or magnesium oxide (MgO) support is used, and the reaction is carried out under reaction conditions of 20 to 40 atm and 800 to 1000 ° C. However, since a practical process is operated at a high temperature due to a large endothermic reaction, development of a more efficient production method is desired from the viewpoint of energy saving.
CH 4 + H 2 O = CO + 3H 2 ΔH 0 298 = +206 kJ / mol (1)
[0003]
In addition, in this reaction, the partial pressure ratio of methane and water is stoichiometrically 1, but at this partial pressure ratio, carbon deposition occurs on the catalyst and the catalyst is easily deactivated. Water is introduced 1.5 to 5 times with respect to methane to suppress precipitation. For this reason, even if the thermal energy of the product gas is recovered, the energy consumption is still large and it is necessary to further improve the economy.
Also, the problem of catalyst development for this reaction is to suppress carbon deposition rather than to promote activity. Carbon deposition is an important problem that not only lowers catalyst activity but also leads to reactor clogging and destruction of the physical structure of the catalyst.
[0004]
Therefore, the synthesis gas generation reaction (2) by oxygen oxidation (partial oxidation reaction) of methane has recently been reviewed from the viewpoint of energy saving process.
CH 4 + (1/2) O 2 → CO + 2H 2 ΔH 0 298 = -36 kJ / mol (2)
[0005]
Ashcroft et al. Reported that Ln 2 Ru 2 O 7 (Ln = lanthanoid) was used as a catalyst, and that CO and H 2 were obtained at a higher yield and selectivity than CH 4 and O 2 at 777 ° C ( AT Achcroft, AK Cheetham, JS Food, MLH Green, CP Gray, AJ Murrel, PDF Vermon, Nature, 344 (1990) 319.).
[0006]
Lunsford et al. Reported that CO and H 2 can be obtained with a selectivity of 95% or higher at 750 ° C or higher by performing partial oxidation of CH 4 using Ni / Al 2 O 3 catalyst (D. Dissanayake, MP Rosynek, KCC Kharas, JH Lunsford, J. Catal, 132 (1991) 117.).
However, even in the oxygen oxidation by these catalysts, a high temperature of 750 ° C. or higher is required, and when nickel is used as a catalytically active species, carbon deposition is a problem as in steam reforming.
[0007]
The present inventors have previously used iridium and several kinds of carriers for the purpose of developing a new catalyst in order to efficiently produce syngas by oxygen oxidation (partial oxidation) reaction of methane at a lower temperature. In addition, when an iridium / titanium oxide catalyst was used, it was found that the synthesis gas generation activity was comparable to that of a conventionally known catalyst and no carbon deposition was observed (K. Nakagawa, T. Suzuki). , T. Kobayashi and M. Haruta, Chem. Lett, (1996) 1029). However, iridium used in this catalyst is an expensive rare noble metal, and there is a problem of cost as a practical process.
[0008]
[Problems to be solved by the invention]
An object of the present invention is to suppress the reaction at high temperature and the carbon deposition, which are problems of conventional synthesis gas production from methane, to stabilize the catalytic activity and extend the life.
[0009]
[Means for Solving the Problems]
As a result of intensive studies to solve the above-mentioned problems, the present inventors have overcome the problem by using diamond oxide that has never been used as a carrier for nickel and other metal catalysts. It came.
Further, when the catalyst of the present invention is used, not only a synthesis gas that is a mixed gas of hydrogen and carbon monoxide can be produced using methane as a raw material, but also a synthesis gas can be produced from a lower saturated hydrocarbon such as ethane or propane. . In any case, carbon dioxide is contained in the reaction product, but since the carbon dioxide can be easily removed, the reaction product can be taken out as synthesis gas.
[0010]
The synthesis gas production catalyst of the present invention uses diamond oxide as a carrier and carries on its surface any metal selected from the group consisting of nickel, rhodium, palladium, ruthenium, iridium and cobalt.
[0011]
One aspect of the present invention for producing a hydrogen-containing mixed gas is to produce a synthesis gas from a lower saturated hydrocarbon and oxygen by a partial oxidation reaction in the temperature range of 550 to 700 ° C. in the presence of a catalyst. The catalyst used for this partial oxidation reaction is a catalyst in which diamond oxide is used as a carrier and any metal selected from the group consisting of nickel, rhodium, palladium, ruthenium and iridium is supported on the surface thereof.
[0012]
In another aspect of the present invention for producing a mixed gas containing hydrogen, a synthesis gas is produced from a lower saturated hydrocarbon and steam by a steam reforming reaction in the temperature range of 600 to 800 ° C. in the presence of a catalyst. The catalyst used for the steam reforming reaction is a catalyst in which diamond oxide is used as a carrier and the surface thereof carries any metal selected from the group consisting of nickel, rhodium, palladium, ruthenium, iridium and rhodium.
[0013]
Further, the catalyst used in the steam reforming reaction may not be subjected to hydrogen reduction treatment. Of course, it does not exclude performing the hydrogen reduction treatment.
In the production method of the present invention, when methane is used as the lower saturated hydrocarbon, the resulting synthesis gas is a synthesis gas composed of hydrogen and carbon monoxide, which is an important raw material in the chemical industry.
When diamond whose surface is oxidized is used as a catalyst support, the interaction between the active metal species and the support becomes weak, and the supported active species are easily oxidized and reduced. The present invention effectively utilizes this property.
[0014]
【Example】
The diamond used here is an industrial fine grain diamond, which is commercially available, but its surface is not constant depending on the manufacturing process and has various structures. Oxidized diamond is prepared by oxidation and used.
When preparing a nickel catalyst supported on diamond oxide, add 1.99 to 1.90 g of diamond oxide (particle size 0.5 μm or less) to a solution of 0.049 to 0.495 g of nickel nitrate in 20 mL of water, and stir overnight. After standing, excess water was evaporated to dryness. The dried sample is placed on a magnetic boat, heated to 450 ° C under air flow at a heating rate of 10 ° C / min in an electric furnace, and held at that temperature for 3 hours to convert nitrate to nickel oxide. It was. This catalyst contains 0.5 to 5% nickel metal by weight.
[0015]
Other metal catalysts were prepared on diamond oxide by the same treatment using water-soluble salts.
60 to 100 mg of the catalyst thus prepared was precisely weighed and filled into a quartz glass reaction tube having an inner diameter of 10 mm and a length of 250 mm, and then the reaction tube was installed in a vertical electric furnace. The temperature of the catalyst layer was controlled at the same time as the temperature of the catalyst layer was measured by a thermocouple inserted in the reaction tube. Hydrocarbon and oxygen were led to the reaction tube through the mass flow control valve and reacted in the catalyst layer. The product at the outlet of the reaction tube was collected, the components were analyzed by gas chromatography, and quantified in advance using a calibration curve prepared.
In the reaction with water vapor, the hydrocarbon is introduced as described above, but water is supplied to the syringe pump at a constant flow rate from the top of the reactor, and the water is heated by the alumina balls filled at the top of the catalyst layer. And reacted with hydrocarbons in the catalyst layer as water vapor. The reaction product was collected after water vapor was condensed by a water separator provided at the outlet, and analyzed by a gas chromatograph.
[0016]
(Example 1)
Synthetic gas generation (reaction formula 2) by partial oxidation of methane, 60 mg of catalyst containing 5 wt% nickel metal in oxidized diamond is filled in the above reaction tube, and from 400 ° C to 50 ° C at a flow rate of 25 mL / min methane and 5 mL / min oxygen. The reaction was carried out by setting the temperature higher by ℃. After 2 hours from the start of the reaction, keep the catalyst layer at a constant temperature of 400, 450, 500, 550, 600, 650, 700 ° C for 30 minutes, analyze the product, and increase the yield of hydrogen and carbon monoxide. Quantified.
The results are shown in Experiment Nos. 1 to 4 in Table 1.
[0017]
[Table 1]
Figure 0003976498
[0018]
As apparent from the experiment numbers 2 to 4 in Table 1, the hydrogen and carbon monoxide yields increased from 600 ° C to 700 ° C. At 700 ° C, the hydrogen yield was 530 mmol / hr · g-catalyst and the carbon monoxide yield was 315 mmol / hr · g. -catalyst was obtained, and no carbon deposition was observed.
In order to examine the stability of the catalyst, data after 7 hours from the start of the reaction were measured. The results are shown in Experiment No. 5 of Table 1. A value almost equal to the experiment number 4 was obtained, and apparently no change in the color of the catalyst was observed, and no carbon deposition was observed.
[0019]
(Example 2)
Table 2 shows the results of the reaction performed at a reaction temperature of 600 ° C under the same conditions as in Experiment No. 2 of Example 1 except that the supported amount of nickel metal supported on diamond oxide was changed to 0.5, 1, 3, and 5 wt%. Show.
[0020]
[Table 2]
Figure 0003976498
[0021]
In Experiment No. 3, when the nickel loading was 3 wt%, the largest hydrogen yield 498 mmol / hr · g-catalyst and carbon monoxide yield 183 mmol / hr · g-catalyst were obtained. Furthermore, even with the low supported amount of nickel metal of Experiment No. 1 of 0.5 wt%, high yields of hydrogen yield 358 mmol / hr · g-catalyst and carbon monoxide yield 147 mmol / hr · g-catalyst were obtained.
[0022]
(Example 3)
The catalyst support is diamond oxide, and the active metal species is changed from nickel to rhodium (Rh), palladium (Pd), ruthenium (Ru), iridium (Ir), iron (Fe), platinum (Pt), cobalt (Co). Then, synthesis gas generation by partial oxidation reaction of methane was examined in the same manner as in Example 2 using a catalyst supporting 5 wt% of metal.
The results are shown in Table 3.
[0023]
[Table 3]
Figure 0003976498
[0024]
Example 2 showed the highest amount of hydrogen and carbon monoxide in nickel, and subsequently, in the order of rhodium, palladium, ruthenium, and iridium in the experiment numbers 1, 2, 3, and 4 of Table 3, hydrogen and carbon monoxide. Formation was observed.
However, generation of hydrogen was not observed in the irons, platinum, and cobalt of Experiment Nos. 5, 6, and 7 in Table 3.
[0025]
Example 4
Synthesis gas generation by steam reforming of methane (Reaction formula 1) 100 mg of catalyst containing 5 wt% nickel metal in diamond oxide is filled in the above reaction tube, methane 5 mL / min, steam supply rate 15 mL / min, argon 25 mL / min The reaction was carried out at a flow rate of 600 ° C to 100 ° C. After 2 hours from the start of the reaction, the catalyst layer was kept at a constant temperature for 30 minutes at each temperature of 600, 700, and 800 ° C., and the product was analyzed to measure the yield of hydrogen and carbon monoxide.
The results are shown in Table 4.
[0026]
[Table 4]
Figure 0003976498
[0027]
From Experiment Nos. 1 to 3, the yields of hydrogen and carbon monoxide increased clearly from 600 to 800 ° C. At 800 ° C, hydrogen yields of 438 mmol / hr · g-catalyst and carbon monoxide yields of 99.8 mmol / hr · g-catalyst were obtained. Also, no carbon deposition was observed.
[0028]
(Example 5)
The catalyst support is diamond oxide, a catalyst usually used in steam reforming as a pretreatment using a catalyst carrying 5 wt% of metal instead of nickel, rhodium, iridium, platinum, palladium, ruthenium, cobalt as the active metal species. After hydrogen reduction of 1 hour at 600 ° C. under a flow of hydrogen 5 mL / min and argon 30 mL / min for 1 hour, the synthesis gas generation by steam reforming of methane was examined in the same manner as in Experiment No. 1 of Example 4. It was.
The results are shown in Table 5.
[0029]
[Table 5]
Figure 0003976498
[0030]
Experiment No. 1 nickel (no hydrogen reduction) (same as Experiment No. 1 in Example 4) showed the highest hydrogen and carbon monoxide yield, followed by ruthenium, cobalt, iridium, rhodium No. 3-8 Hydrogen and carbon monoxide were observed in the order of palladium, platinum.
However, iron shows little catalytic activity.
As for the nickel of Experiment No. 2, the hydrogen yield is reduced by hydrogen reduction. From this, it can be seen that when diamond oxide is used as the support, hydrogen reduction is not required as a pretreatment step of the catalyst.
[0031]
(Comparative Example 1)
Magnesium oxide (MgO), aluminum oxide (Al 2 O 3 ), titanium oxide (TiO 2 ), lanthanum oxide (La 2 O 3 ) that are commonly used as nickel catalyst carriers instead of diamond oxide as the catalyst support ), A catalyst containing 5 wt% nickel metal in activated carbon, silicon oxide (SiO 2 ), 60 mg of the catalyst is charged into the above reaction tube, and the reaction temperature is 600 ° C. at a flow rate of 25 mL / min methane and 5 mL / min oxygen. Then, the synthesis gas generation by the partial oxidation reaction of methane was examined.
The results are shown in Table 6.
[0032]
[Table 6]
Figure 0003976498
[0033]
A slight amount of hydrogen and carbon monoxide was observed in magnesium oxide, aluminum oxide, and titanium oxide of Experiment Nos. 1, 2, and 3, but a carrier having performance comparable to that of the diamond oxide of Experiment No. 2 in Example 1 was obtained. I couldn't get it. In addition, when aluminum oxide was used, significant carbon deposition occurred in the reaction for 10 hours, and the reaction tube was closed.
[0034]
(Comparative Example 2)
100 mg of catalyst using a catalyst containing 5 wt% of nickel metal in aluminum oxide, titanium oxide, magnesium oxide, silicon oxide, lanthanum oxide, which is generally used as a nickel catalyst carrier instead of diamond oxide as the catalyst carrier Was added to the above reaction tube, and the hydrogen reduction of the catalyst usually performed by steam reforming as a pretreatment was performed at 600 ° C. for 1 hour under a flow of 5 mL / min of hydrogen and 30 mL / min of argon. Synthesis gas was produced by steam reforming of methane under the same reaction conditions as in No. 1.
The results are shown in Table 7.
[0035]
[Table 7]
Figure 0003976498
[0036]
Production of hydrogen and carbon monoxide was observed in the aluminum oxide, titanium oxide, magnesium oxide, silicon oxide, and lanthanum oxide of Experiment Nos. 1, 2, 3, 4, and 5, but carbon deposition was also observed. It was not possible to obtain a carrier comparable to that of Experiment No. 1 diamond oxide.
[0037]
【The invention's effect】
The present invention is a catalyst in which nickel or other metal is supported on the surface of diamond oxide. By using this catalyst, synthesis gas can be produced from lower saturated hydrocarbon as a raw material.
The production method of the present invention is a method of producing a synthesis gas using the catalyst, and carries any metal selected from the group consisting of nickel, rhodium, palladium, ruthenium and iridium on the surface of diamond oxide. Selected from the group consisting of nickel, rhodium, palladium, ruthenium, iridium and rhodium by partial oxidation reaction from lower saturated hydrocarbons and oxygen in the temperature range of 550 to 700 ° C. in the presence of the catalyst, or diamond oxide on the support surface A hydrogen-containing mixed gas was produced from the lower saturated hydrocarbon and steam by a steam reforming reaction in the temperature range of 600 to 800 ° C. in the presence of any of the above-supported metal-supported catalysts. Thereby, reaction at high temperature and carbon deposition can be suppressed, and the catalytic activity can be stabilized and the life can be extended.

Claims (7)

酸化ダイヤモンドを担体とし、その表面にニッケルを担持したことを特徴とする合成ガス製造触媒。A synthesis gas production catalyst characterized in that diamond oxide is used as a carrier and nickel is supported on the surface thereof. 酸化ダイヤモンドを担体とし、その表面にロジウム、パラジウム、ルテニウム及びイリジウムからなる群から選ばれた金属を担持したことを特徴とする合成ガス製造触媒。A synthesis gas production catalyst characterized in that diamond oxide is used as a carrier and a metal selected from the group consisting of rhodium, palladium, ruthenium and iridium is supported on the surface thereof. 酸化ダイヤモンドを担体とし、その表面にコバルトを担持したことを特徴とする合成ガス製造触媒。A synthesis gas production catalyst characterized in that diamond oxide is used as a carrier and cobalt is supported on the surface thereof. 請求項1又は2に記載の触媒を用いて550〜700℃の温度範囲で低級飽和炭化水素と酸素から合成ガスを製造する方法。A process for producing a synthesis gas from a lower saturated hydrocarbon and oxygen in a temperature range of 550 to 700 ° C using the catalyst according to claim 1 or 2. 請求項1,2又は3に記載の触媒を用いて600〜800℃の温度範囲で低級飽和炭化水素と水蒸気から合成ガスを製造する方法。A process for producing a synthesis gas from a lower saturated hydrocarbon and water vapor in a temperature range of 600 to 800 ° C using the catalyst according to claim 1, 2 or 3. 前記触媒は水素還元処理を施さずに使用する請求項5に記載の方法。The method according to claim 5, wherein the catalyst is used without being subjected to a hydrogen reduction treatment. 前記低級飽和炭化水素はメタンであり、前記合成ガスは水素と一酸化炭素との混合ガスである請求項4から6のいずれかに記載の方法。The method according to claim 4, wherein the lower saturated hydrocarbon is methane, and the synthesis gas is a mixed gas of hydrogen and carbon monoxide.
JP2000378247A 2000-12-13 2000-12-13 Syngas production catalyst and synthesis gas production method Expired - Lifetime JP3976498B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000378247A JP3976498B2 (en) 2000-12-13 2000-12-13 Syngas production catalyst and synthesis gas production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000378247A JP3976498B2 (en) 2000-12-13 2000-12-13 Syngas production catalyst and synthesis gas production method

Publications (2)

Publication Number Publication Date
JP2002177783A JP2002177783A (en) 2002-06-25
JP3976498B2 true JP3976498B2 (en) 2007-09-19

Family

ID=18846854

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000378247A Expired - Lifetime JP3976498B2 (en) 2000-12-13 2000-12-13 Syngas production catalyst and synthesis gas production method

Country Status (1)

Country Link
JP (1) JP3976498B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5009109B2 (en) * 2007-09-13 2012-08-22 関西電力株式会社 Hydrocarbon partial oxidation catalyst and method and apparatus for producing hydrogen-containing gas using the same

Also Published As

Publication number Publication date
JP2002177783A (en) 2002-06-25

Similar Documents

Publication Publication Date Title
US7226548B2 (en) Syngas catalysts and their method of use
Srisiriwat et al. Oxidative steam reforming of ethanol over Ni/Al2O3 catalysts promoted by CeO2, ZrO2 and CeO2–ZrO2
RU2409878C2 (en) Method and catalyst for hydrogenating carbon oxides
AU2001269854B2 (en) Supported nickel-magnesium oxide catalysts and processes for the production of syngas
Seshan et al. Carbon dioxide reforming of methane in the presence of nickel and platinum catalysts supported on ZrO2
WO2001028678A1 (en) Nickel-rhodium based catalysts and process for preparing synthesis gas
EP1487740A1 (en) Controlled-pore catalyst structures and process for producing synthesis gas
WO2005097319A1 (en) Supported catalyst for steam methane reforming and autothermal reforming reactions
Ferreira-Aparicio et al. Catalysis in membrane reformers: a high-performance catalytic system for hydrogen production from methane
Gallegos-Suárez et al. Efficient hydrogen production from glycerol by steam reforming with carbon supported ruthenium catalysts
WO2003039740A1 (en) Combustion deposited metal-metal oxide catalysts and process for producing synthesis gas
KR100905638B1 (en) Syngas generation reactor and syngas generation method
US7384986B2 (en) Process for the selective methanation of carbonmonoxide (CO) contained in a hydrogen-rich reformate gas
US7432222B2 (en) High temperature stable non-noble metal catalyst, process for production of syngas using said catalyst
Mosayebi et al. Partial oxidation of butane to syngas using nano-structure Ni/zeolite catalysts
JP4132295B2 (en) Method for producing liquid hydrocarbon oil from lower hydrocarbon gas containing carbon dioxide gas
Li et al. Revealing hydrogen migration effect on ammonia synthesis activity over ceria-supported Ru catalysts
US20080241038A1 (en) Preparation of manganese oxide-ferric oxide-supported nano-gold catalyst and using the same
KR100858924B1 (en) Supported catalyst for producing hydrogen gas by steam reforming reaction of liquefied natural gas, method for preparing the supported catalyst and method for producing hydrogen gas using the supported catalyst
Nakagawa et al. Hydrogen production from methane for fuel cell using oxidized diamond-supported catalysts
US20080193354A1 (en) Preparation of manganese oxide-cerium oxide-supported nano-gold catalyst and the application thereof
JP4185952B2 (en) Carbon monoxide removal catalyst, production method thereof, and carbon monoxide removal apparatus
JP3976498B2 (en) Syngas production catalyst and synthesis gas production method
EP1567254A2 (en) Novel syngas catalysts and their method of use
JP4890057B2 (en) Hydrocarbon partial oxidation catalyst and method and apparatus for producing hydrogen-containing gas using the same

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040210

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041004

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070619

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070619

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150