JP3948172B2 - Method for producing compound semiconductor epitaxial wafer - Google Patents
Method for producing compound semiconductor epitaxial wafer Download PDFInfo
- Publication number
- JP3948172B2 JP3948172B2 JP27543099A JP27543099A JP3948172B2 JP 3948172 B2 JP3948172 B2 JP 3948172B2 JP 27543099 A JP27543099 A JP 27543099A JP 27543099 A JP27543099 A JP 27543099A JP 3948172 B2 JP3948172 B2 JP 3948172B2
- Authority
- JP
- Japan
- Prior art keywords
- compound semiconductor
- epitaxial wafer
- substrate
- substrate surface
- cleaning
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Junction Field-Effect Transistors (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、電界効果型トランジスタやヘテロバイポーラトランジスタ用として適した化合物半導体エピタキシャルウェハの製造方法に関するものである。
【0002】
【従来の技術】
化合物半導体ショットキーゲート電界効果トランジスタ(MESFET)用エピタキシャルウェハは、半絶縁性GaAs基板の上に有機金属気相成長(MOVPE)法により作成される。
【0003】
まず、鏡面に仕上げられた半絶縁性GaAs基板に硫酸系エッチングを施し、基板表面の不純物を除去する。この基板上にMOVPE法を用いて、図1に示すように、バッファー層として高抵抗のアンドープGaAsもしくは、アンドープGaAsとアンドープAlGaAsの多層構造のエピタキシャル結晶を、500〜1000nm成長し、次いで能動層としてn型GaAs(キャリア濃度を1〜5×1017cm-3)を100〜500nm成長し、更にオーミックコンタクト層としてn+ 型GaAs(キャリア濃度を1〜3×1018cm-3)を20〜100nm成長する。
【0004】
【発明が解決しようとする課題】
しかしながら、問題点は、従来技術で述べたエピタキシャル結晶成長方法で作成されたエピタキシャルウェハにおいては、半絶縁性基板とエピタキシャル層の界面に低抵抗の導電層が存在することである。
【0005】
このようなエピタキシャルウェハを用いて電界効果トランジスタを作成すると、エピタキシャル層とウェハの界面の導電層を通じてソース電極とドレイン電極にリーク電流が流れ、トランジスタの電気特性を悪化させる。低抵抗層が形成される原因は、基板表面にもともとSiが付着しており、このSiがエピタキシャル結晶成長中に結晶内に取り込まれ、n型キャリアとなってしまうためである。この基板表面のSiを除去するため、エピタキシャル結晶成長前に基板のエッチング、洗浄を行うが、完全にSiを除去することはできない。
【0006】
そこで、本発明の目的は、上記課題を解決し、ソース−ドレイン電極間のリーク電流を低減した電界効果トランジスタを得ることができる化合物半導体エピタキシャルウェハの製造方法を提供することにある。
【0007】
【課題を解決するための手段】
上記目的を達成するため、本発明による化合物半導体エピタキシャルウェハの製造方法は、有機金属気相成長(MOVPE)法を用い、半絶縁性GaAs基板上にIII −V族化合物半導体から成るエピタキシャル層を成長する前に、アルシンとTMAs若しくはTBAsからなる有機砒素原料を同時に導入して基板表面をクリーニングすることを特徴とするものである。
【0008】
通常の基板の硫酸系エッチングと洗浄処理では、完全に基板表面のSiを除去することができないので、半絶縁性基板とエピタキシャル層の界面に低抵抗の導電層が存在することとなる。しかし、本発明により、基板上に化合物半導体のエピタキシャル層を成長させるに先立ち、アルシンとTMAs若しくはTBAsからなる有機砒素原料を同時に導入して基板表面をクリーニングすると、上記洗浄で完全に除去しきれないSiを除去することができる。従って、例えば電界効果型トランジスタの製造に適用した場合、そのソース電極とドレイン電極間のリーク電流をなくし、当該トランジスタの電気特性を向上させることができる。
【0009】
この基板表面のクリーニング温度は、基板表面温度で350℃から900℃の温度範囲であることが好ましい(請求項2)。この基板表面のクリーニング温度が350℃より下の温度ではクリーニング効果が低く、また900℃より上の温度では表面が荒れてしまいFETの特性が劣化してしまうからである。
【0010】
【発明の実施の形態】
以下、本発明を図示の実施形態に基づいて説明する。
【0011】
図1に示すような断面構造の電界効果型トランジスタ用エピタキシャルウェハを製造した。
【0012】
まず半絶縁性GaAs基板1として、[011]方向に2°傾斜した(100)面を有する半絶縁性GaAs鏡面ウェハを用意した。この2°OFF(100)半絶縁性GaAs鏡面ウェハ表面にMOVP法を用いて、図1のFET構造の化合物半導体エピタキシャル層を成長させた。
【0013】
その成長前に、本発明に従い、アルシンと有機砒素原料を同時に導入して、基板表面のクリーニングを行った。有機砒素原料としては、TMAs(トリメチルアルシン)、TBAs(ターシャリーブチルアルシン)をそれぞれ試した。このときの基板表面のクリーニング温度は、基板表面温度で350℃から900℃の温度範囲とした。
【0014】
その後、MOVP法を用い、エピタキシャル成長温度において、先ずアンドープGaAsよりなる高抵抗バッファ層2を膜厚500nmに成長し、その上にSiドープn型GaAs(キャリア濃度1.7×1017cm-3)能動層3を膜厚200nmに成長し、更にSiドープn+ 型GaAs(キャリア濃度3×1018cm-3)オーミックコンタクト層4を膜厚50nmに順次成長し、電界効果型トランジスタ用エピタキシャルウェハを得た。そして、上記クリーニングの有機砒素原料にTMAsを用いたものを実施例1とし、TBAsを用いたものを実施例2とした。
【0015】
比較例として、昇温過程において有機V族原料(トリメチルアルシン)を導入しない従来型のエピタキシャルウェハの試料も作成した。
【0016】
これらの試料のエピタキシャル層の表面に、ソース電極、ゲート電極及びドレイン電極を付け、電界効果型トランジスタ(FET)を作成した。
【0017】
そして、これらのFETのゲート電極に、ピンチオフ電圧を印加したときのソース・ドレイン間のリーク電流を調べ、比較した。結果を表1に示す。
【0018】
【表1】
【0019】
有機砒素原料を導入しクリーニング処理を行ってからエピタキシャル層を成長した実施例におけるFETのリーク電流は、15μAであり、これは従来の方法で作成した比較例のFETにおけるリーク電流200μAに比較して非常に小さく、良好な電気特性が得られた。
【0020】
また、アルシンと有機砒素原料を同時に導入を開始する温度が、350℃以下ではリーク電流に変化が見られないことから、導入時の温度は350℃以上であれば良いことがわかった。また、900℃以上では表面が荒れてしまいFETの特性が劣化してしまった。
【0021】
【発明の効果】
以上説明したように本発明によれば、有機金属気相成長(MOVPE)法を用い、半絶縁性GaAs基板上にIII −V族化合物半導体から成る電界効果型トランジスタ用エピタキシャルウェハを成長する前に、アルシンと有機砒素原料を同時に導入して基板表面をクリーニングするので、通常の基板のエッチングと洗浄処理では完全に除去しきれないSiを除去することができる。従って、本発明の方法で作成した化合物半導体エピタキシャルウェハを用いて電界効果型トランジスタを作成することにより、ソース−ドレイン間のリーク電流を大幅に低減でき、優れた特性の電界効果型トランジスタを高い素子歩留で作成することができる。
【図面の簡単な説明】
【図1】 本発明の製造方法の対象としたFET用エピタキシャルウェハの断面構造を示した図である。
【符号の説明】
1 半絶縁性GaAs基板
2 高抵抗GaAs(バッファ層)
3 n型GaAs(能動層)
4 n+ 型GaAs(オーミックコンタクト層)[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method of manufacturing a compound semiconductor epitaxial wafer suitable for a field effect transistor or a heterobipolar transistor.
[0002]
[Prior art]
An epitaxial wafer for a compound semiconductor Schottky gate field effect transistor (MESFET) is formed on a semi-insulating GaAs substrate by a metal organic chemical vapor deposition (MOVPE) method.
[0003]
First, the semi-insulating GaAs substrate finished to a mirror surface is subjected to sulfuric acid etching to remove impurities on the substrate surface. As shown in FIG. 1, a high resistance undoped GaAs or an epitaxial crystal having a multilayer structure of undoped GaAs and undoped AlGaAs is grown on this substrate by 500 to 1000 nm as shown in FIG. N-type GaAs (carrier concentration 1 to 5 × 10 17 cm −3 ) is grown to 100 to 500 nm, and n + -type GaAs (carrier concentration 1 to 3 × 10 18 cm −3 ) 20 to 20 as an ohmic contact layer. Grows 100 nm.
[0004]
[Problems to be solved by the invention]
However, the problem is that an epitaxial wafer produced by the epitaxial crystal growth method described in the prior art has a low resistance conductive layer at the interface between the semi-insulating substrate and the epitaxial layer.
[0005]
When a field effect transistor is formed using such an epitaxial wafer, a leakage current flows to the source electrode and the drain electrode through the conductive layer at the interface between the epitaxial layer and the wafer, and the electrical characteristics of the transistor are deteriorated. The reason why the low resistance layer is formed is that Si is originally attached to the substrate surface, and this Si is taken into the crystal during the epitaxial crystal growth and becomes an n-type carrier. In order to remove Si on the surface of the substrate, etching and cleaning of the substrate are performed before epitaxial crystal growth, but Si cannot be completely removed.
[0006]
Accordingly, an object of the present invention is to provide a method of manufacturing a compound semiconductor epitaxial wafer that can solve the above-described problems and can obtain a field effect transistor with reduced leakage current between source and drain electrodes.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, a compound semiconductor epitaxial wafer manufacturing method according to the present invention uses an organic metal vapor phase growth (MOVPE) method to grow an epitaxial layer made of a III-V compound semiconductor on a semi-insulating GaAs substrate. Before the cleaning, the organic arsenic raw material composed of arsine and TMAs or TBAs is simultaneously introduced to clean the substrate surface.
[0008]
Since normal substrate sulfuric acid etching and cleaning treatment cannot completely remove Si on the substrate surface, a low-resistance conductive layer exists at the interface between the semi-insulating substrate and the epitaxial layer. However, according to the present invention, prior to growing an epitaxial layer of a compound semiconductor on a substrate, if the organic arsenic material composed of arsine and TMAs or TBAs is simultaneously introduced to clean the surface of the substrate, the cleaning cannot be completely removed. Si can be removed. Therefore, for example, when applied to the manufacture of a field effect transistor, the leakage current between the source electrode and the drain electrode can be eliminated, and the electrical characteristics of the transistor can be improved.
[0009]
The cleaning temperature of the substrate surface is preferably in the temperature range of 350 ° C. to 900 ° C. as the substrate surface temperature. This is because when the substrate surface cleaning temperature is lower than 350 ° C., the cleaning effect is low, and when the temperature is higher than 900 ° C., the surface becomes rough and the characteristics of the FET deteriorate.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described based on the illustrated embodiments.
[0011]
An epitaxial wafer for a field effect transistor having a cross-sectional structure as shown in FIG. 1 was manufactured.
[0012]
First, as the semi-insulating GaAs substrate 1, a semi-insulating GaAs mirror wafer having a (100) plane inclined by 2 ° in the [011] direction was prepared. A compound semiconductor epitaxial layer having the FET structure of FIG. 1 was grown on the surface of the 2 ° OFF (100) semi-insulating GaAs mirror wafer by using the MOVP method.
[0013]
Prior to the growth, according to the present invention, the arsine and the organic arsenic raw material were simultaneously introduced to clean the substrate surface. As organic arsenic raw materials, TMAs (trimethylarsine) and TBAs (tertiary butylarsine ) were tested. The substrate surface cleaning temperature at this time was set to a temperature range of 350 ° C. to 900 ° C. as the substrate surface temperature.
[0014]
Thereafter, using the MOVP method, the high-resistance buffer layer 2 made of undoped GaAs is first grown to a thickness of 500 nm at the epitaxial growth temperature, and then Si-doped n-type GaAs (carrier concentration 1.7 × 10 17 cm −3 ) is formed thereon. The active layer 3 is grown to a thickness of 200 nm, and the Si-doped n + -type GaAs (carrier concentration 3 × 10 18 cm −3 ) ohmic contact layer 4 is sequentially grown to a thickness of 50 nm to produce an epitaxial wafer for a field effect transistor. Obtained. Then, that using a TMAs organic arsenic raw material for the cleaning as Example 1, was that using a TBAs Example 2.
[0015]
As a comparative example, a sample of a conventional epitaxial wafer in which no organic group V raw material (trimethylarsine) was introduced during the temperature rising process was also prepared.
[0016]
To these the surface of the epitaxial layer of the sample, with a source electrode, a gate electrode and a drain electrode to prepare a field effect transistor (FET).
[0017]
The leakage current between the source and the drain when a pinch-off voltage was applied to the gate electrodes of these FETs was examined and compared. The results are shown in Table 1.
[0018]
[Table 1]
[0019]
Leakage current definitive FET organic arsenic raw material after performing the introduced cleaning process in Example grown epitaxial layer is 15.mu. A, which compares the leakage current 200μA in FET of the comparative example was prepared in a conventional manner And very good electrical characteristics were obtained.
[0020]
In addition, when the temperature at which the introduction of the arsine and the organic arsenic raw material is started simultaneously is 350 ° C. or less, no change is observed in the leakage current. Further, at 900 ° C. or higher, the surface becomes rough and the characteristics of the FET deteriorate.
[0021]
【The invention's effect】
As described above, according to the present invention, the metal-organic vapor phase epitaxy (MOVPE) method is used to grow a field effect transistor epitaxial wafer made of a III-V compound semiconductor on a semi-insulating GaAs substrate. Since the arsine and the organic arsenic raw material are simultaneously introduced to clean the substrate surface, Si that cannot be completely removed by normal substrate etching and cleaning processes can be removed. Therefore, by producing a field effect transistor using the compound semiconductor epitaxial wafer produced by the method of the present invention, the leakage current between the source and the drain can be greatly reduced, and a field effect transistor having excellent characteristics can be obtained with a high element. Can be created with yield.
[Brief description of the drawings]
FIG. 1 is a view showing a cross-sectional structure of an FET epitaxial wafer as a target of a manufacturing method of the present invention.
[Explanation of symbols]
1 Semi-insulating GaAs substrate 2 High resistance GaAs (buffer layer)
3 n-type GaAs (active layer)
4 n + type GaAs (ohmic contact layer)
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27543099A JP3948172B2 (en) | 1999-09-29 | 1999-09-29 | Method for producing compound semiconductor epitaxial wafer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27543099A JP3948172B2 (en) | 1999-09-29 | 1999-09-29 | Method for producing compound semiconductor epitaxial wafer |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001102308A JP2001102308A (en) | 2001-04-13 |
JP3948172B2 true JP3948172B2 (en) | 2007-07-25 |
Family
ID=17555418
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP27543099A Expired - Fee Related JP3948172B2 (en) | 1999-09-29 | 1999-09-29 | Method for producing compound semiconductor epitaxial wafer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3948172B2 (en) |
-
1999
- 1999-09-29 JP JP27543099A patent/JP3948172B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2001102308A (en) | 2001-04-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7635877B2 (en) | Nitride semiconductor device and manufacturing method thereof | |
JPH07263663A (en) | Field effect type compound semiconductor device | |
US5272095A (en) | Method of manufacturing heterojunction transistors with self-aligned metal contacts | |
JP4429459B2 (en) | Method for producing high-resistance GaN crystal layer | |
US7352017B2 (en) | Nitride semiconductor device and manufacturing method thereof | |
JP3948172B2 (en) | Method for producing compound semiconductor epitaxial wafer | |
US6429103B1 (en) | MOCVD-grown emode HIGFET buffer | |
JP2000174261A (en) | Compound semiconductor device | |
JP2003045815A (en) | Method for cleaning crystal growth furnace | |
JP3963043B2 (en) | Method of manufacturing epitaxial wafer for field effect transistor | |
JP2003031794A (en) | Compound semiconductor epitaxial wafer | |
JPH09172165A (en) | Field-effect transistor and its fabrication | |
JP3399673B2 (en) | Heterojunction bipolar transistor and method of manufacturing the same | |
JP2518347B2 (en) | Method for manufacturing bipolar transistor | |
JP2917690B2 (en) | Method for manufacturing compound semiconductor device | |
JPH10242167A (en) | Epitaxial wafer for field effect transistor, manufacture thereof and field effect transistor | |
JPH06326118A (en) | Manufacture of compound semiconductor device | |
JP2001102305A (en) | Manufacturing method of compound semiconductor eiptiaxial wafer | |
JP3275482B2 (en) | Method for manufacturing epitaxial wafer for field effect transistor | |
JP2770586B2 (en) | Method for manufacturing heterojunction bipolar transistor | |
JP2728121B2 (en) | Field effect transistor and method of manufacturing the same | |
JP2004193407A (en) | Method for cleaning compound semiconductor wafer | |
JPH045817A (en) | Epitaxial growth layer; its growth method; manufacture of semiconductor device and high-resistance region | |
JPH0969625A (en) | Field-effect transistor | |
JPH0888327A (en) | Manufacture of compound semiconductor device, compound semiconductor field-effect transistor and heterojunction bipolar transistor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20041119 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20051212 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20051220 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060217 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070327 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070409 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |