JP3888145B2 - Manufacturing method of fuel cell electrode - Google Patents

Manufacturing method of fuel cell electrode Download PDF

Info

Publication number
JP3888145B2
JP3888145B2 JP2001362229A JP2001362229A JP3888145B2 JP 3888145 B2 JP3888145 B2 JP 3888145B2 JP 2001362229 A JP2001362229 A JP 2001362229A JP 2001362229 A JP2001362229 A JP 2001362229A JP 3888145 B2 JP3888145 B2 JP 3888145B2
Authority
JP
Japan
Prior art keywords
electrode
electrode material
fuel cell
film
separator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001362229A
Other languages
Japanese (ja)
Other versions
JP2003163010A (en
Inventor
敬史 加治
政志 村手
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2001362229A priority Critical patent/JP3888145B2/en
Publication of JP2003163010A publication Critical patent/JP2003163010A/en
Application granted granted Critical
Publication of JP3888145B2 publication Critical patent/JP3888145B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、種類の異なる触媒層を複数層塗り重ねた、固体高分子電解質型燃料電池電極の製造方法に関する。
【0002】
【従来の技術】
固体高分子電解質型燃料電池は、イオン交換膜からなる電解質膜とこの電解質膜の一面に配置されたアノードおよび電解質膜の他面に配置されたカソードとからなる膜−電極アッセンブリ(MEA:Membrane-Electrode Assembly )と、アノード、カソードに燃料ガス(水素)および酸化ガス(酸素、通常は空気)を供給するための流体流路を形成するセパレータとを複数重ねてセル積層体とし、セル積層体のセル積層方向両端に、ターミナル(電極板)、インシュレータ、エンドプレートを配置し、セル積層体をセル積層方向に締め付け、セル積層体の外側でセル積層方向に延びる締結部材(たとえば、テンションプレート)にて固定したスタックからなる。アノード、カソードは触媒層を有する。触媒層とセパレータとの間には拡散層が設けられる。
固体高分子電解質型燃料電池では、アノード側では、水素を水素イオンと電子にする反応が行われ、水素イオンは電解質膜中をカソード側に移動し、カソード側では酸素と水素イオンおよび電子(隣りのMEAのアノードで生成した電子がセパレータを通してくる、またはセル積層体の一端のセルのアノードで生成した電子が外部回路を通してくる)から水を生成する反応が行われる。
アノード側:H2 →2H+ +2e-
カソード側:2H+ +2e- +(1/2)O2 →H2
電解質膜には、通常、厚さが10〜100μm程度のものが用いられる。
触媒層は、それぞれ1〜10μm程度の厚さで、電解質膜の両面に、あるいは拡散層(カーボンペーパ、カーボンクロスからなる)の片面に、塗布・形成される。
電解質膜に電極(アノード、カソード)材料を塗布する方法としては、従来、印刷、ローラーコート、スプレー等により直接塗布する湿式塗布方法と、予めポリテトラフルオロエチレンシート等に塗布した触媒層を熱転写(ホットプレス)で電解質膜に付着させシートを除去する方法がある。また、特殊な塗布方法として、特開平3−295168号公報は、燃料電池の電極材料を電解質膜全面に静電気により付着させる方法を開示している。
【0003】
【発明が解決しようとする課題】
特開平3−295168号公報の方法は、乾式塗布のため、従来の湿式塗布における溶剤の電解質膜の攻撃、膨潤・収縮による電極のクラック発生などの問題は除去できるが、なお、つぎの問題があった。
すなわち、所定形状パターンの電極中において電極構成成分の組成や濃度を三次元的に(電極厚さ方向および電極厚さ方向と直交する面内方向の少なくとも一方向に)変えた電極を作ることはできない。
本発明の目的は、任意の所定形状の電極中の、電極構成成分の組成、濃度を三次元的に(電極厚さ方向、それと直交面内方向の少なくとも一方向に)変化させた燃料電池電極の製造方法を提供することにある。
【0004】
【課題を解決するための手段】
上記目的を達成する本発明はつぎの通りである。
(1) 感光体ドラムを帯電させ光を照射して照射部分を光の強さに応じて除電し帯電部位に電極材料を帯電の強さに応じて静電気で付着させこれを膜に転写することを複数回実行し、各回で電極材料の種類を異ならしめ、各回で塗布層厚を制御して、電極構造を三次元的に変化させる燃料電池電極の製造方法であって、電極材料の塗布パターンと塗布濃度を電極面内方向に変化させ、セパレータのガス流路に対応する部分ではセパレータリブで押される部分よりも触媒成分を高濃度とし、セパレータのガス流路の流部に対応する部分ではセパレータのガス流路の流部に対応する部分よりも触媒成分を高濃度とする燃料電池電極の製造方法。
(2) 電極材料はカーボン粒子、該カーボン粒子に担持される触媒貴金属と、該カーボン粒子および該触媒貴金属が膜へ転写される前に該カーボン粒子および該触媒貴金属に混合される電解質バインダーを成分として含んでおり、これら成分の種類、混合比率、混合のさせ方、各成分の粒子サイズの何れか少なくとも一つを異ならせることにより、電極材料の種類が異ならされる(1)記載の燃料電池電極の製造方法。
【0005】
上記(1)、(2)の燃料電池電極の製造方法では、各回で電極材料の種類を異ならしめ、各回で塗布層厚を制御するので、電極の構造(組成・密度、膜厚等)を、三次元的に(電極厚さ方向およびそれと直交する面内方向に)任意に制御することができる。
本方法をカラー複写(カラーコピー)に対応させると、各回の電極材料の種類がカラー複写の色に対応し、各回の塗布層厚がその回で塗布される色の濃さに対応する。
電極材料の種類は、成分の混合比率、混合のさせ方、各成分の粒子サイズの何れか少なくとも一つを異ならせることにより変えることができる。
本方法は、静電気による電極材料の感光体ドラム表面への付着とその転写であるため、乾式法であり、従来の湿式塗布における溶剤の電解質膜の攻撃、膨潤・収縮による電極のクラック発生はない。
【0006】
【発明の実施の形態】
以下に、本発明の燃料電池電極の製造方法を図1〜図8を参照して、説明する。
本発明の燃料電池電極の製造方法によって製造された電極を有する燃料電池は、固体高分子電解質型燃料電池10である。本発明の燃料電池10は、たとえば燃料電池自動車に搭載される。ただし、自動車以外に用いられてもよい。
【0007】
固体高分子電解質型燃料電池10は、図1、図2に示すように、イオン交換膜からなる電解質膜11とこの電解質膜11の一面に配置されたアノード14および電解質膜11の他面に配置されたカソード17とからなる膜−電極アッセンブリ(MEA:Membrane-Electrode Assembly )と、アノード、カソードに燃料ガス(水素)および酸化ガス(酸素、通常は空気)を供給するための燃料ガス流路27、酸化ガス流路28を形成するセパレータ18とを複数重ねてセル19の積層体とし、セル積層体のセル積層方向両端に、ターミナル20(電極板)、インシュレータ21、エンドプレート22を配置し、セル積層体をセル積層方向に締め付け、セル積層体の外側でセル積層方向に延びる締結部材(テンションプレート24)、ボルト25にて固定したスタック23からなる。アノード14、カソード17は触媒層12、15を有する。触媒層12、15とセパレータ18との間には拡散層13、16が設けられる。セパレータ18には、セルを冷却するための冷媒(通常、冷却水)が流れる冷媒流路26も形成されている。
【0008】
触媒層12、15からなる電極14、18は、電解質膜11の両面に塗布形成されるか、あるいは拡散層13、16の片面に塗布形成される。電極形成材料は、カーボン粉末に触媒貴金属(たとえば、Pt)を担持させたものである。カーボン粉末および触媒貴金属の電極形成材料は、導電性を有するが、非磁性である。そして、非磁性である点において、コピー機のトナーと異なる。電極形成材料はバインダー(電解質)粉末を混合されているものを用いてもよい。電解質膜は非磁性、非導電性である。
【0009】
本発明の燃料電池電極の製造方法を実施する装置は、図3、図4に示すように、膜送り方向に複数の電極材料転写部が順に設置されている。
各電極材料転写部は、感光体ドラム30と、感光体ドラム30表面を静電気で帯電させる帯電ローラー31と、感光体ドラム30に投光し感光体ドラム表面のうち所定パターン(この所定パターン部位に電極層が形成される)以外の部分を除電する投光装置32(レーザ光が投光された部位が除電される)と、電極材料粉末12P、15Pを収容している容器33から感光体ドラム30表面に電極材料粉末12P、15Pを供給する材料供給ローラー34と、感光体ドラム30との間に電解質11または拡散層13、16からなる膜を通し該膜11(または13、16であるが、以下では、膜11とする)を上記感光体ドラム30に圧接するもう一つのドラム30Aまたはローラー30Bと、感光体ドラム30位置より膜11の送り方向下流に設けられた定着ローラー35と、からなる。
【0010】
感光体ドラム30、帯電ローラー31、材料供給ローラー34、感光体ドラム30に圧接するもう一つのドラム30Aまたはローラー30Bを備えた電極材料転写部と、定着ローラー31を備えた定着部とは、不活性ガス雰囲気36中に配設されている。不活性ガスは、たとえば窒素である。不活性ガス雰囲気36中に配設するのは、加熱雰囲気(たとえば、定着ローラー35を加熱する場合は50〜150℃に加熱する)で塗布が行われるので、カーボン粉末の発火のおそれを皆無にして、万全の安全性を期するためである。
【0011】
本発明の燃料電池電極の製造方法を実施する装置は、電極材料粉末12P、15Pがバインダー(バインダーは電解質からなる)をまぶせられたりバインダー粒子を混合されていない場合には、定着ローラー35より膜11の送り方向下流に設けられたバインダー供給装置37およびその下流に設けられた乾燥部40とをさらに有していてもよい。バインダー供給装置37はバインダー塗布部を構成する。電極材料粉末12P、15Pがバインダーをまぶせられたりバインダー粒子を混合されている場合は、バインダー供給装置37および乾燥部40を設けなくてもよい。乾燥部40は常温〜150℃までの温度を有し、バインダーを乾燥させる。
【0012】
本発明の燃料電池電極の製造方法は、電極材料粉末12P、15Pを静電気にて感光体ドラム30上に保持させる工程と、感光体ドラム30上の電極材料粉末を、転写を行って(感光体ドラム30からいったん中間媒体膜に転写し該中間媒体膜から目標の膜に転写する場合を含む)目標の膜(以下、膜が電解質膜11である場合を例にとるが拡散層膜13、16でもよい)に転写する工程と、転写された所定パターンの電極材料粉末12P、15Pを膜11に定着させる工程と、を有している。
【0013】
上記電極材料粉末を静電気にて感光体ドラム30上に保持させる工程においては、帯電ローラ31を感光体ドラム30に接触させて感光体ドラム30表面を静電気で帯電させ、感光体ドラム30表面に或るパターンをもってレーザ光をあてて光の強さに応じて除電し、感光体ドラム30に電極材料粉末12P、15Pを供給して感光体ドラム30表面の所定パターン(除電部位のパターンと反対パターン)の帯電部位に帯電の強さに応じて電極材料粉末12P、15Pを静電気にて保持させる。コピー機の場合は磁力で粉末をドラム上に保持させるが、本発明では静電気で感光体ドラム30上に電極材料粉末12P、15Pを保持させる。ついで、静電保持させた電極材料粉末12P、15Pを膜11に転写する。
この転写を複数の電極材料転写部位で1回ずつ行うことにより、全ての電極材料転写部位を通過した時には、複数回の塗布が行われた電極が形成される。
【0014】
図5は所定パターンの一例を示す。図5では、触媒層の面内構成を、ガス流路27、28に対応する部分(「黒」と表示した部分)と、セパレータリブに対応する部分(「赤」と表示した部分)とで変えたものを示している。ガス流路27、28に対応する部分は拡散層13、16がセパレータリブで押圧されていないためガスが十分に流れてきて発電反応を生じ得るので触媒成分が多いことが望ましいが、セパレータリブで押圧される部分はガスの流通が不十分なため触媒成分を少なくして高価な触媒成分を少量にすることが望ましい。レーザ光をあてるパターンと光の強弱を変える(リブ対応部はレーザ光量を強くしガス流路対応部はレーザ光量を零にするかまたは弱くする)ことによって、この条件を容易に満足させることができ、最適出力とコストダウンとを両立させることができる。
【0015】
膜11に転写された所定パターンの電極材料粉末12P、15Pを膜11に定着させる工程においては、定着が所定の圧力と所定の熱をもって行われる。圧力は4MPa以上で、コピー機の場合の圧力の約10倍であり、温度は50〜150℃が望ましい。150℃以上では膜11が温度でダメージを受け、50℃以下では加熱の効果が少ないからである。80〜120℃程度が好ましい。
【0016】
転写された所定パターンの、カーボン粒子、触媒貴金属からなる電極材料粉末12P、15Pを膜11に定着ローラー35にて定着させる工程の後に、定着された電極材料粉末上に液状バインダー38を塗布する工程と、塗布した液状バインダーを乾燥させる工程を、設けてもよい。液状バインダー38はローラー39塗布してもよいし、スプレー塗布してもよい。これらの工程を設けるのは、電極材料粉末12P、15Pの膜11への定着をより完全にするためである。
【0017】
ただし、電極材料粉末12P、15Pを静電気にて感光体ドラム30上に所定パターンをもって保持させる工程において、カーボン、触媒貴金属からなる電極材料粉末12P、15Pに予めバインダーをまぶしておいたり、あるいはカーボン、触媒貴金属からなる電極材料粉末12P、15Pに予め粉体バインダーを混合しておく場合は、定着工程でカーボン、触媒貴金属、バインダーからなる電極材料粉末12P、15Pが膜11に十分に定着するので、上記の液状バインダー38塗布工程とその乾燥工程は設けなくてもよい。
【0018】
本発明の方法では、図6〜図8に示すように、電極材料12P、15Pを膜11に転写することを複数回実行して電極14、17を形成する際に、各回で電極材料12P、15Pの種類を異ならしめ、各回で塗布層厚を制御して、電極構造を三次元的に制御する。
燃料電池電極の製造をカラー複写に対応させた場合、各回の電極材料の種類がカラー複写の色に対応し、各回の塗布層厚がその回で塗布される色の濃さに対応する。
【0019】
電極材料12P、15Pはカーボン粒子、該カーボン粒子に担持される触媒貴金属と、該カーボン粒子および該触媒貴金属が膜へ転写される前または転写された後に該カーボン粒子および該触媒貴金属に混合されるバインダーを成分として含んでおり、これら成分の種類、混合比率、混合形態、各成分の粒子サイズの何れか少なくとも一つを異ならせることにより、電極材料の種類が異ならされる。さらに詳しくは、カーボン粒子径・形状を変えるか、カーボン粒子に担持させている貴金属の種類(白金、ルテニウム、または複数種の貴金属の混合したもの、その混合割合を変えたもの、等)を変えるか、カーボンと貴金属と電解質の含有比率を変えるか、電解質の混合のさせ方を変えるか(貴金属担持のカーボン粒子に電解質をまぶしておくか、電解質の粒子を貴金属担持のカーボン粒子と混合させるか、等)等により、電極材料の種類が変えられる。
【0020】
カラー複写の色は、青、赤(マゼンダ)、黄、黒の4色であるが、電極材料の場合は色数は4に限る必要はない。そして、電極材料の種類の数だけの電極材料転写部の電極材料収容装置33を膜送り方向に設置しておき、各種類の電極材料を別々に電極材料収容装置33に入れておき、送られる膜11に各種の電極材料を順次塗布していく。
【0021】
図7、図8は4種(カラー複写で言えば4色)の電極材料を電解質膜11上に塗り重ねていく場合の電極14、17の断面構造の一例を示している。図7の例では、第1触媒層は第1の種類(カラー複写で言えば、たとえば、色が「黒」)の電極材料を電解質膜平面上に面内方向に濃淡を付けて塗布する。第2触媒層は第2の種類(カラー複写で言えば、たとえば、「黄」)の電極材料を第1触媒層平面上に面内方向に厚さを異ならせて(カラー複写で言えば、濃淡を付けて)塗り重ねる。第3触媒層は第3の種類(カラー複写で言えば、たとえば、「赤」)の電極材料を第2触媒層平面上に面内方向に厚さを異ならせて(カラー複写で言えば、濃淡を付けて)塗り重ねる。第4触媒層は第4の種類(カラー複写で言えば、たとえば、「青」)の電極材料を第3触媒層平面上に面内方向に厚さを異ならせて(カラー複写で言えば、濃淡を付けて)濃淡を付けて塗り重ねる。その結果、図8に示す断面構造をもつ電極14、17が形成される。この場合、複数層からなる電極の厚さは、接触圧を均一にする上で、一定であることが望ましい。
【0022】
たとえば、水素濃度、水素入口から水素出口に向かって燃料ガス流路に沿って減少し、酸素濃度も空気入口から空気出口に向かって酸化ガス流路に沿って減少するので、発電をセル面内で均一に行う場合には、水素出口側で水素入口側に比べてアノード14の触媒金属比率を増大させ、空気出口側で空気入口側に比べてカソード17の触媒金属比率を増大させる、といった具合である。
塗布制御は、反応ガスの流路パターン、その流路に沿った反応ガスの設計濃度、温度、湿度、セル面内の設計電流密度、各電極材料収容装置33に入れた各種電極材料の種類、等のデータをコンピュータに入力して投光装置32が投光すべき投光の強度値を演算し、その出力値を投光装置32に送って、塗布面内方向に投光走査していく際の投光の強度を制御する等によって、容易に行うことができる。
【0023】
つぎに、上記の本発明の方法の作用を説明する。
まず、感光体ドラム30表面全面を帯電させ、レーザ光投光の際、電極材料を塗布しない部分にパターン露光してその部分を除電し、静電気を帯電している部分のみに電極材料粉末12P、15Pを付着させ、それを電解質11または拡散層13、16からなる膜に転写するので、露光のパターンと該露光パターンの各部位での強弱のコントロールで任意の形状の電極14、17や、所定形状中の各部位において濃度等を変えた電極14、17を作ることができる。
【0024】
すなわち、パターン露光のため、任意の形状の電極14、17が得られ、かつその形状の中においても、電極濃度(コピーで言えば濃淡)を変えることができる。たとえば、セパレータの溝(ガス流路)に対応する部分は電極材料粉末を高濃度で形成し、セパレータのリブ(ガス流路でない部分)で拡散層を介して圧接される部分は電極材料粉末を低濃度で形成することができ、高価な触媒貴金属の塗布量を低減できる。また、ガスは下流にいく程低濃度になるので、それに合わせて電極材料粉末の塗布濃度を変えることができ、流路に沿って均一な発電とすることにも寄与できる。従来はこのようなセル面内でパターンや濃度を変えることはできないが、本発明ではコピーと同じように変えることが容易にできる。
【0025】
また、静電気による電極材料粉末12P、15Pの感光体ドラム30表面への付着とその転写(膜11への転写)であるため、本発明は乾式法であり、従来の湿式塗布における溶剤の電解質膜の攻撃、膨潤・収縮による電極のクラック発生などの問題が除去される。
【0026】
つぎに、図3、図4のそれぞれの実施例に示す方法を説明する。
図3の実施例では、膜11の両面に電極材料粉末12P、15Pが塗布され触媒層12、15が形成される。
膜11は、上から下に送られる。
電極材料転写工程とその定着工程が膜送り方向に複数回実行される。図示例は複数回(図3の例では2回の場合を示すが2回に限るものではない)実行される場合を示し、第1回目の電極材料転写部、その定着部、第2回目の電極材料転写部、その定着部が、膜送り方向に順に設けられて、塗布、定着が実行される。
また、電極材料粉末収容容器33内の電極材料粉末12P、15Pはバインダーをまぶされておらず、あるいはバインダー粒子が混合されていないので、最終の定着工程の後にバインダー塗布工程とバインダー乾燥工程が設けられている。バインダー塗布はたとえばロールコートによる。
図3の方法では、電極材料粉末収容容器33にはそれぞれ異なる種類の電極材料12P(15p)が入れられており、各電極材料転写部では、各層の塗布パターン形状、濃度、層厚を、変えることができる。これにより、セル面内方向の塗布パターン形状、濃度、組成、および厚さ方向の層厚さ、組成、等を変化させることができ、電極14、17の構造を三次元に変化させることができる。
【0027】
図4の実施例では、膜11(または13、16)の片面に膜送り方向に複数設けた電極材料転写部で、複数回(図示例では回数は2であるが、2に限るものではない)、電極材料粉末12P、15Pが塗布され、全層の塗布後、塗布電極材料は定着部35で膜11(または13、16)に定着され、電極14、17が形成される。
膜11(または13、16)は、水平に送られる。
電極材料粉末収容容器33内の電極材料粉末12P、15Pはバインダーをまぶされておらず、あるいはバインダー粒子が混合されていないので、定着工程の後にバインダー塗布工程とバインダー乾燥工程が設けられている。
図4の方法では、電極材料粉末収容容器33にはそれぞれ異なる種類の電極材料12P(15p)が入れられており、各電極材料転写部では、各層の塗布パターン形状、濃度、層厚を、変えることができる。これにより、セル面内方向の塗布パターン形状、濃度、組成、および厚さ方向の層厚さ、組成、等を変化させることができ、電極14、17の構造を三次元に変化させることができる。
【0028】
【発明の効果】
請求項1、2の燃料電池電極の製造方法によれば、各回で電極材料の種類を異ならしめ、各回で塗布層厚を制御するので、電極の構造(組成・密度、膜厚等)を、三次元的に(電極厚さ方向およびそれと直交する面内方向に)任意に制御することができる。また、本方法は、静電気による電極材料の感光体ドラム表面への付着とその転写であるため、乾式法であり、従来の湿式塗布における溶剤の電解質膜の攻撃、膨潤・収縮による電極のクラック発生はない。
請求項の燃料電池電極の製造方法によれば、電極材料の種類を、成分の混合比率、混合のさせ方、各成分の粒子サイズの何れか少なくとも一つを異ならせることにより変えることができる。
【図面の簡単な説明】
【図1】本発明の燃料電池電極の製造方法で製造された電極をもつ燃料電池の全体正面図である。
【図2】図1のセルの拡大断面図である。
【図3】本発明の一実施例の燃料電池電極の製造方法を実施する装置の側面図である。
【図4】本発明のもう一つの実施例の燃料電池電極の製造方法を実施する装置の側面図である。
【図5】本発明の燃料電池電極の製造方法で製造された燃料電池電極の塗布パターンを示す平面図である。
【図6】本発明の燃料電池電極の製造方法で製造された燃料電池電極の、流路に沿った、ガス圧・濃度の分布を示す平面図である。
【図7】本発明の燃料電池電極の製造方法における各回塗布で塗布面内における濃度(色に対応)の変化を示す各塗布層の平面図である。
【図8】図7の各回の塗布層を複数層に塗り重ねて示した電極の厚さ方向の断面図である。
【符号の説明】
10 (固体高分子電解質型)燃料電池
11 電解質膜
12 触媒層
12P 電極材料粉末(アノード用)
13 拡散層
14 電極(アノード、燃料極)
15 触媒層
15P 電極材料粉末(カソード用)
16 拡散層
17 電極(カソード、空気極)
18 セパレータ
19 セル
20 ターミナル
21 インシュレータ
22 エンドプレート
23 スタック
24 テンションプレート
25 ボルト
30 感光体ドラム
30A 対向ドラム
30B 対向ローラー
31 帯電ローラー
32 投光装置(レーザ光投光手段)
33 電極材料収容装置
34 電極材料粉末供給ローラー
35 定着ローラー
36 不活性ガス雰囲気
37 バインダー塗布ユニット
38 バインダー
39 バインダー塗布ローラー
40 乾燥部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a solid polymer electrolyte fuel cell electrode in which a plurality of different types of catalyst layers are coated.
[0002]
[Prior art]
A solid polymer electrolyte fuel cell is a membrane-electrode assembly (MEA) comprising an electrolyte membrane made of an ion exchange membrane, an anode placed on one surface of the electrolyte membrane, and a cathode placed on the other surface of the electrolyte membrane. Electrode Assembly) and a plurality of separators that form a fluid flow path for supplying fuel gas (hydrogen) and oxidizing gas (oxygen, usually air) to the anode and cathode to form a cell laminate, Terminals (electrode plates), insulators, and end plates are arranged at both ends of the cell stacking direction, the cell stacking body is tightened in the cell stacking direction, and a fastening member (for example, a tension plate) extending in the cell stacking direction outside the cell stacking body It consists of a fixed stack. The anode and cathode have a catalyst layer. A diffusion layer is provided between the catalyst layer and the separator.
In a solid polymer electrolyte fuel cell, a reaction for converting hydrogen into hydrogen ions and electrons is performed on the anode side, the hydrogen ions move through the electrolyte membrane to the cathode side, and oxygen, hydrogen ions and electrons (adjacent to the cathode side). The electrons produced at the anode of the MEA come through the separator, or the electrons produced at the anode of the cell at one end of the cell stack come through an external circuit).
Anode side: H 2 → 2H + + 2e
Cathode side: 2H + + 2e + (1/2) O 2 → H 2 O
As the electrolyte membrane, one having a thickness of about 10 to 100 μm is usually used.
Each of the catalyst layers has a thickness of about 1 to 10 μm and is applied and formed on both sides of the electrolyte membrane or on one side of the diffusion layer (made of carbon paper or carbon cloth).
Conventionally, electrode (anode, cathode) material is applied to the electrolyte membrane by a wet coating method in which printing, roller coating, spraying, or the like is applied directly, and a catalyst layer previously applied to a polytetrafluoroethylene sheet or the like is thermally transferred ( There is a method of removing the sheet by attaching it to the electrolyte membrane by hot pressing. As a special coating method, Japanese Patent Application Laid-Open No. 3-295168 discloses a method of attaching an electrode material of a fuel cell to the entire surface of an electrolyte membrane by static electricity.
[0003]
[Problems to be solved by the invention]
The method disclosed in Japanese Patent Laid-Open No. 3-295168 can eliminate problems such as attack of the electrolyte membrane of the solvent in conventional wet coating, cracking of the electrode due to swelling / shrinkage, etc., but the following problems are present. there were.
In other words, in an electrode having a predetermined shape pattern, it is possible to make an electrode in which the composition and concentration of electrode constituents are changed three-dimensionally (in at least one direction of the electrode thickness direction and the in-plane direction orthogonal to the electrode thickness direction) Can not.
An object of the present invention is to provide a fuel cell electrode in which the composition and concentration of electrode constituents in an electrode having an arbitrary predetermined shape are changed three-dimensionally (in at least one direction of the electrode thickness direction and the in-plane direction orthogonal thereto) It is in providing the manufacturing method of.
[0004]
[Means for Solving the Problems]
The present invention for achieving the above object is as follows.
(1) The photosensitive drum is charged and irradiated with light, and the irradiated portion is neutralized according to the intensity of the light, and the electrode material is attached to the charged portion with static electricity according to the intensity of the charge, and this is transferred to the film. Is a method of manufacturing a fuel cell electrode in which the electrode structure is changed three-dimensionally by varying the type of electrode material each time and controlling the coating layer thickness each time. portion and the coating density was varied in the electrode plane direction, the portion corresponding to the gas passage of the separator and a high concentration of catalyst components than the portion pressed by the separator ribs, corresponding to the lower stream portion of the gas flow channel of the separator in method for manufacturing a fuel cell electrode and a high concentration of catalyst components than the portion corresponding to the upper stream portion of the gas passage of the separator.
(2) The electrode material is composed of carbon particles, a catalyst noble metal supported on the carbon particles, and an electrolyte binder mixed with the carbon particles and the catalyst noble metal before the carbon particles and the catalyst noble metal are transferred to the film. The type of the electrode material is made different by changing at least one of the types of these components, the mixing ratio, the mixing method, and the particle size of each component. Electrode manufacturing method.
[0005]
In the fuel cell electrode manufacturing method of (1) and (2) above, the electrode material type is varied at each time, and the coating layer thickness is controlled at each time, so the electrode structure (composition / density, film thickness, etc.) It can be arbitrarily controlled three-dimensionally (in the electrode thickness direction and the in-plane direction perpendicular thereto).
When this method is applied to color copying (color copying), each type of electrode material corresponds to the color of the color copying, and each coating layer thickness corresponds to the darkness of the color applied at that time.
The type of the electrode material can be changed by changing at least one of the mixing ratio of the components, the mixing method , and the particle size of each component.
This method is a dry method because of the adhesion and transfer of electrode material to the surface of the photosensitive drum due to static electricity, and there is no attack of the electrolyte membrane of the solvent in conventional wet coating, and no cracking of the electrode due to swelling / shrinkage. .
[0006]
DETAILED DESCRIPTION OF THE INVENTION
Below, the manufacturing method of the fuel cell electrode of this invention is demonstrated with reference to FIGS.
A fuel cell having an electrode manufactured by the method for manufacturing a fuel cell electrode of the present invention is a solid polymer electrolyte fuel cell 10. The fuel cell 10 of the present invention is mounted on, for example, a fuel cell vehicle. However, it may be used other than an automobile.
[0007]
As shown in FIGS. 1 and 2, the solid polymer electrolyte fuel cell 10 includes an electrolyte membrane 11 made of an ion exchange membrane, an anode 14 disposed on one surface of the electrolyte membrane 11, and the other surface of the electrolyte membrane 11. A membrane-electrode assembly (MEA) composed of the cathode 17 and a fuel gas flow path 27 for supplying fuel gas (hydrogen) and oxidizing gas (oxygen, usually air) to the anode and cathode A plurality of separators 18 forming the oxidizing gas flow path 28 are stacked to form a stacked body of cells 19, and terminals 20 (electrode plates), insulators 21, and end plates 22 are arranged at both ends of the cell stacked body in the cell stacking direction. The cell stack is clamped in the cell stacking direction, and is fixed by a fastening member (tension plate 24) extending in the cell stacking direction outside the cell stack and the bolt 25. Stack 23. The anode 14 and the cathode 17 have catalyst layers 12 and 15. Diffusion layers 13 and 16 are provided between the catalyst layers 12 and 15 and the separator 18. The separator 18 is also formed with a refrigerant channel 26 through which a refrigerant (usually cooling water) for cooling the cells flows.
[0008]
The electrodes 14 and 18 formed of the catalyst layers 12 and 15 are formed on both sides of the electrolyte membrane 11 or formed on one side of the diffusion layers 13 and 16. The electrode forming material is obtained by supporting a catalytic noble metal (for example, Pt) on carbon powder. The electrode forming material of carbon powder and catalytic noble metal has conductivity but is non-magnetic. It differs from the toner of a copier in that it is non-magnetic. As the electrode forming material, a material mixed with a binder (electrolyte) powder may be used. The electrolyte membrane is nonmagnetic and nonconductive.
[0009]
As shown in FIGS. 3 and 4, the apparatus for carrying out the method for producing a fuel cell electrode of the present invention has a plurality of electrode material transfer portions installed in order in the film feeding direction.
Each electrode material transfer unit projects a photosensitive drum 30, a charging roller 31 for charging the surface of the photosensitive drum 30 with static electricity, and a predetermined pattern (on the predetermined pattern portion) on the surface of the photosensitive drum by projecting on the photosensitive drum 30. A light projecting device 32 for neutralizing a portion other than the electrode layer (where the electrode layer is formed) (the portion where the laser beam is projected is neutralized), and a photosensitive drum from a container 33 containing the electrode material powders 12P and 15P. A film made of the electrolyte 11 or the diffusion layers 13 and 16 is passed between the material supply roller 34 for supplying the electrode material powders 12P and 15P to the surface 30 and the photosensitive drum 30, which is the film 11 (or 13, 16). Hereinafter, the film 11 is referred to as another drum 30A or a roller 30B that is in pressure contact with the photosensitive drum 30, and the downstream side of the film 11 in the feed direction from the position of the photosensitive drum 30. A fixing roller 35 which is provided, consists of.
[0010]
The electrode material transfer unit including the photosensitive drum 30, the charging roller 31, the material supply roller 34, and another drum 30A or roller 30B that is in pressure contact with the photosensitive drum 30, and the fixing unit including the fixing roller 31 are not included. It is disposed in the active gas atmosphere 36. The inert gas is, for example, nitrogen. Arrangement in the inert gas atmosphere 36 is performed in a heated atmosphere (for example, when the fixing roller 35 is heated, it is heated to 50 to 150 ° C.), thereby eliminating the possibility of ignition of the carbon powder. This is to ensure complete safety.
[0011]
When the electrode material powders 12P and 15P are coated with a binder (the binder is made of an electrolyte) or are not mixed with binder particles, the apparatus for carrying out the method for producing a fuel cell electrode of the present invention uses a fixing roller 35. You may further have the binder supply apparatus 37 provided in the feed direction downstream of the film | membrane 11, and the drying part 40 provided in the downstream. The binder supply device 37 constitutes a binder application unit. When the electrode material powders 12P and 15P are covered with a binder or mixed with binder particles, the binder supply device 37 and the drying unit 40 may not be provided. The drying unit 40 has a temperature from room temperature to 150 ° C., and dries the binder.
[0012]
The fuel cell electrode manufacturing method of the present invention includes a step of holding the electrode material powders 12P and 15P on the photosensitive drum 30 by static electricity, and transferring the electrode material powder on the photosensitive drum 30 (photosensitive member). The target film (including a case where the film is the electrolyte film 11 hereinafter) including the case where the film is once transferred from the drum 30 to the intermediate medium film and then transferred from the intermediate medium film to the target film. May be transferred), and the transferred electrode material powders 12P and 15P having a predetermined pattern may be fixed to the film 11.
[0013]
In the step of holding the electrode material powder on the photosensitive drum 30 with static electricity, the charging roller 31 is brought into contact with the photosensitive drum 30 to charge the surface of the photosensitive drum 30 with static electricity, and the surface of the photosensitive drum 30 is A pattern is applied to the surface of the photosensitive drum 30 by supplying a laser beam to the photosensitive drum 30 and supplying the electrode material powders 12P and 15P to the photosensitive drum 30 (a pattern opposite to the pattern of the discharging portion). The electrode material powders 12P and 15P are held by the static electricity at the charged portions according to the strength of charging. In the case of a copying machine, the powder is held on the drum by magnetic force. In the present invention, the electrode material powders 12P and 15P are held on the photosensitive drum 30 by static electricity. Next, the electrostatically held electrode material powders 12P and 15P are transferred to the film 11.
By performing this transfer once at a plurality of electrode material transfer sites, an electrode that has been applied a plurality of times is formed when all of the electrode material transfer sites have passed.
[0014]
FIG. 5 shows an example of the predetermined pattern. In FIG. 5, the in-plane configuration of the catalyst layer includes a portion corresponding to the gas flow paths 27 and 28 (portion indicated by “black”) and a portion corresponding to the separator rib (portion indicated by “red”). It shows what has changed. The portions corresponding to the gas flow paths 27 and 28 are preferably pressed by the separator ribs, so that the gas flows sufficiently to cause a power generation reaction. Since the gas flow is insufficient at the pressed portion, it is desirable to reduce the amount of expensive catalyst components by reducing the amount of catalyst components. This condition can be easily satisfied by changing the pattern to which the laser light is applied and the intensity of the light (the rib-corresponding portion increases the laser light amount and the gas flow passage-corresponding portion makes the laser light amount zero or weaker). It is possible to achieve both optimum output and cost reduction.
[0015]
In the step of fixing the electrode material powders 12P, 15P having a predetermined pattern transferred to the film 11 to the film 11, fixing is performed with a predetermined pressure and a predetermined heat. The pressure is 4 MPa or more, about 10 times the pressure of a copying machine, and the temperature is preferably 50 to 150 ° C. This is because the film 11 is damaged by the temperature when the temperature is 150 ° C. or higher, and the heating effect is small when the temperature is 50 ° C. or lower. About 80-120 degreeC is preferable.
[0016]
A step of applying a liquid binder 38 on the fixed electrode material powder after the step of fixing the transferred electrode material powder 12P, 15P made of carbon particles and catalyst noble metal to the film 11 by the fixing roller 35. And you may provide the process of drying the apply | coated liquid binder. The liquid binder 38 may be applied by a roller 39 or by spray application. The reason why these steps are provided is to make the fixing of the electrode material powders 12P and 15P to the film 11 more complete.
[0017]
However, in the step of holding the electrode material powders 12P and 15P with a predetermined pattern on the photosensitive drum 30 by static electricity, the electrode material powders 12P and 15P made of carbon and a catalyst noble metal are preliminarily coated with a binder, or carbon, When a powder binder is mixed in advance with the electrode material powders 12P and 15P made of catalyst noble metal, the electrode material powders 12P and 15P made of carbon, catalyst noble metal and binder are sufficiently fixed to the film 11 in the fixing step. The liquid binder 38 coating step and the drying step may not be provided.
[0018]
In the method of the present invention, as shown in FIGS. 6 to 8, when the electrodes 14 and 17 are formed by performing the transfer of the electrode materials 12P and 15P to the film 11 a plurality of times to form the electrodes 14P, The type of 15P is varied and the coating layer thickness is controlled each time to control the electrode structure three-dimensionally.
When the production of the fuel cell electrode is adapted to color copying, the type of electrode material at each time corresponds to the color of color copying, and the thickness of the coating layer at each time corresponds to the darkness of the color applied at that time.
[0019]
The electrode materials 12P and 15P are mixed with the carbon particles and the catalytic noble metal supported on the carbon particles, and before or after the carbon particles and the catalytic noble metal are transferred to the film. A binder is included as a component, and the type of the electrode material is made different by changing at least one of the type, mixing ratio, mixing mode, and particle size of each component. More specifically, change the carbon particle diameter or shape, or change the type of noble metal supported on the carbon particles (platinum, ruthenium, or a mixture of multiple types of noble metals, or a mixture with different mixing ratios, etc.). Or whether to change the content ratio of carbon, noble metal and electrolyte, or to change the way the electrolyte is mixed (whether the noble metal-supported carbon particles are coated with the electrolyte, or the electrolyte particles are mixed with the noble metal-supported carbon particles) , Etc.), the type of the electrode material can be changed.
[0020]
There are four colors for color copying: blue, red (magenta), yellow, and black. However, in the case of an electrode material, the number of colors need not be limited to four. Then, as many electrode material accommodation devices 33 as the number of types of electrode materials are installed in the film feeding direction, and each type of electrode material is separately placed in the electrode material accommodation device 33 and sent. Various electrode materials are sequentially applied to the film 11.
[0021]
FIGS. 7 and 8 show examples of cross-sectional structures of the electrodes 14 and 17 when four types of electrode materials (four colors in color copying) are applied on the electrolyte membrane 11. In the example of FIG. 7, the first catalyst layer is applied with the first type of electrode material (for example, the color is “black” in color copying) on the electrolyte membrane plane with a light and shade in the in-plane direction. The second catalyst layer is made of an electrode material of the second type (for example, “yellow” in color copying) having a different thickness in the in-plane direction on the first catalyst layer plane (in color copying, Apply over and over again. The third catalyst layer is made of a third type of electrode material (for example, “red” in color copying) having a different thickness in the in-plane direction on the second catalyst layer plane (in color copying, Apply over and over again. The fourth catalyst layer has a fourth type of electrode material (for example, “blue” in color copy), with the thickness being varied in the in-plane direction on the third catalyst layer plane (in color copy, Apply shades and shades. As a result, electrodes 14 and 17 having the cross-sectional structure shown in FIG. 8 are formed. In this case, it is desirable that the thickness of the electrode composed of a plurality of layers is constant in order to make the contact pressure uniform.
[0022]
For example, the hydrogen concentration decreases along the fuel gas flow path from the hydrogen inlet to the hydrogen outlet, and the oxygen concentration also decreases along the oxidizing gas flow path from the air inlet to the air outlet. In the case of performing uniformly, the catalyst metal ratio of the anode 14 is increased on the hydrogen outlet side compared to the hydrogen inlet side, and the catalyst metal ratio of the cathode 17 is increased on the air outlet side compared to the air inlet side. It is.
The application control includes a reaction gas flow path pattern, a design concentration of the reaction gas along the flow path, a temperature, a humidity, a design current density in the cell surface, types of various electrode materials put in each electrode material storage device 33, Are input to a computer to calculate the intensity value of the light to be projected by the light projecting device 32, send the output value to the light projecting device 32, and perform light projection scanning in the in-coating surface direction. This can be done easily by controlling the intensity of the light projection.
[0023]
Next, the operation of the above-described method of the present invention will be described.
First, the entire surface of the photosensitive drum 30 is charged, and when laser light is projected, pattern exposure is performed on a portion where the electrode material is not applied to remove the charge, and only the portion charged with static electricity is the electrode material powder 12P. Since 15P is deposited and transferred to a film made of the electrolyte 11 or the diffusion layers 13 and 16, the electrodes 14 and 17 having an arbitrary shape can be controlled by controlling the exposure pattern and the strength of each part of the exposure pattern. Electrodes 14 and 17 with different concentrations and the like can be made at each site in the shape.
[0024]
In other words, the electrodes 14 and 17 having an arbitrary shape are obtained for pattern exposure, and the electrode density (light and shade in terms of copying) can be changed within the shape. For example, the portion corresponding to the groove (gas flow path) of the separator is formed with a high concentration of electrode material powder, and the portion of the separator rib (portion that is not the gas flow path) pressed through the diffusion layer is made of electrode material powder. It can be formed at a low concentration, and the amount of expensive catalyst noble metal applied can be reduced. In addition, since the concentration of the gas becomes lower as it goes downstream, the application concentration of the electrode material powder can be changed in accordance with the concentration, which can contribute to uniform power generation along the flow path. Conventionally, the pattern and density cannot be changed in such a cell plane, but in the present invention, it can be easily changed in the same manner as copying.
[0025]
Further, since the electrode material powders 12P and 15P are electrostatically attached to the surface of the photosensitive drum 30 and transferred (transfer to the film 11), the present invention is a dry method, and the electrolyte membrane of the solvent in the conventional wet coating The problem of electrode cracking due to attack and swelling / shrinkage is eliminated.
[0026]
Next, the method shown in each embodiment of FIGS. 3 and 4 will be described.
In the embodiment of FIG. 3, electrode material powders 12 </ b> P and 15 </ b> P are applied to both surfaces of the film 11 to form catalyst layers 12 and 15.
The membrane 11 is sent from top to bottom.
The electrode material transfer process and the fixing process are executed a plurality of times in the film feed direction. The illustrated example shows a case where the process is executed a plurality of times (in the example of FIG. 3, the case is shown twice, but is not limited to two times). The first electrode material transfer unit, its fixing unit, the second time An electrode material transfer portion and its fixing portion are provided in this order in the film feed direction, and coating and fixing are executed.
In addition, since the electrode material powders 12P and 15P in the electrode material powder container 33 are not coated with a binder or are not mixed with binder particles, a binder coating step and a binder drying step are performed after the final fixing step. Is provided. The binder is applied by, for example, roll coating.
In the method of FIG. 3, different types of electrode materials 12P (15p) are put in the electrode material powder container 33, and the application pattern shape, concentration, and layer thickness of each layer are changed in each electrode material transfer portion. be able to. Thereby, the coating pattern shape in the cell in-plane direction, the concentration, the composition, the layer thickness in the thickness direction, the composition, and the like can be changed, and the structure of the electrodes 14 and 17 can be changed in three dimensions. .
[0027]
In the embodiment of FIG. 4, a plurality of electrode material transfer portions are provided on one side of the film 11 (or 13, 16) in the film feeding direction, and the number of times is two (in the illustrated example, the number is two, but is not limited to two). ), Electrode material powders 12P and 15P are applied, and after application of all layers, the applied electrode material is fixed to the film 11 (or 13, 16) by the fixing unit 35, and the electrodes 14 and 17 are formed.
The membrane 11 (or 13, 16) is sent horizontally.
Since the electrode material powders 12P and 15P in the electrode material powder container 33 are not coated with binder or binder particles are not mixed, a binder coating step and a binder drying step are provided after the fixing step. .
In the method of FIG. 4, different types of electrode materials 12P (15p) are placed in the electrode material powder container 33, and the application pattern shape, concentration, and layer thickness of each layer are changed in each electrode material transfer portion. be able to. Thereby, the coating pattern shape in the cell in-plane direction, the concentration, the composition, the layer thickness in the thickness direction, the composition, and the like can be changed, and the structure of the electrodes 14 and 17 can be changed in three dimensions. .
[0028]
【The invention's effect】
According to the fuel cell electrode manufacturing method of claims 1 and 2 , since the type of the electrode material is varied at each time and the coating layer thickness is controlled at each time, the electrode structure (composition / density, film thickness, etc.) It can be arbitrarily controlled in three dimensions (in the electrode thickness direction and the in-plane direction perpendicular thereto). In addition, this method is a dry method because of the adhesion and transfer of the electrode material to the surface of the photosensitive drum due to static electricity. Attack of the electrolyte membrane of the solvent in conventional wet coating, electrode cracking due to swelling / shrinkage There is no.
According to the fuel cell electrode manufacturing method of claim 2 , the type of the electrode material can be changed by changing at least one of the mixing ratio of the components, the mixing method , and the particle size of each component. .
[Brief description of the drawings]
FIG. 1 is an overall front view of a fuel cell having an electrode manufactured by a method of manufacturing a fuel cell electrode according to the present invention.
FIG. 2 is an enlarged cross-sectional view of the cell of FIG.
FIG. 3 is a side view of an apparatus for carrying out a method of manufacturing a fuel cell electrode according to an embodiment of the present invention.
FIG. 4 is a side view of an apparatus for carrying out a method of manufacturing a fuel cell electrode according to another embodiment of the present invention.
FIG. 5 is a plan view showing a coating pattern of a fuel cell electrode manufactured by the method for manufacturing a fuel cell electrode of the present invention.
FIG. 6 is a plan view showing the distribution of gas pressure and concentration along the flow path of the fuel cell electrode manufactured by the method for manufacturing a fuel cell electrode of the present invention.
FIG. 7 is a plan view of each coating layer showing changes in concentration (corresponding to color) in the coating surface after each coating in the method for producing a fuel cell electrode of the present invention.
8 is a cross-sectional view in the thickness direction of an electrode showing a plurality of coating layers of FIG.
[Explanation of symbols]
10 (solid polymer electrolyte type) fuel cell 11 electrolyte membrane 12 catalyst layer 12P electrode material powder (for anode)
13 Diffusion layer 14 Electrode (Anode, Fuel electrode)
15 Catalyst layer 15P Electrode material powder (for cathode)
16 Diffusion layer 17 Electrode (cathode, air electrode)
18 Separator 19 Cell 20 Terminal 21 Insulator 22 End plate 23 Stack 24 Tension plate 25 Bolt 30 Photosensitive drum 30A Opposing drum 30B Opposing roller 31 Charging roller 32 Projecting device (laser beam projecting means)
33 Electrode material container 34 Electrode material powder supply roller 35 Fixing roller 36 Inert gas atmosphere 37 Binder application unit 38 Binder 39 Binder application roller 40 Drying section

Claims (2)

感光体ドラムを帯電させ光を照射して照射部分を光の強さに応じて除電し帯電部位に電極材料を帯電の強さに応じて静電気で付着させこれを膜に転写することを複数回実行し、各回で電極材料の種類を異ならしめ、各回で塗布層厚を制御して、電極構造を三次元的に変化させる燃料電池電極の製造方法であって、電極材料の塗布パターンと塗布濃度を電極面内方向に変化させ、セパレータのガス流路に対応する部分ではセパレータリブで押される部分よりも触媒成分を高濃度とし、セパレータのガス流路の流部に対応する部分ではセパレータのガス流路の流部に対応する部分よりも触媒成分を高濃度とする燃料電池電極の製造方法。The photosensitive drum is charged and irradiated with light, and the irradiated portion is neutralized according to the intensity of the light, and the electrode material is attached to the charged portion with static electricity according to the intensity of the charge, and this is transferred to the film multiple times. This is a method of manufacturing a fuel cell electrode in which the electrode structure is changed three-dimensionally by controlling the coating layer thickness at each time by varying the type of electrode material each time. is varied in the electrode plane direction, the catalyst components and higher density than the portion to be pressed by the separator ribs at the portion corresponding to the gas passage of the separator, the separator is the portion corresponding to the lower stream portion of the gas flow channel of the separator method for manufacturing a fuel cell electrode and a high concentration of catalyst components than the portion corresponding to the upper stream portion of the gas flow path. 電極材料はカーボン粒子、該カーボン粒子に担持される触媒貴金属と、該カーボン粒子および該触媒貴金属が膜へ転写される前に該カーボン粒子および該触媒貴金属に混合される電解質バインダーを成分として含んでおり、これら成分の種類、混合比率、混合のさせ方、各成分の粒子サイズの何れか少なくとも一つを異ならせることにより、電極材料の種類が異ならされる請求項1記載の燃料電池電極の製造方法。  The electrode material includes carbon particles, a catalyst noble metal supported on the carbon particles, and an electrolyte binder mixed with the carbon particles and the catalyst noble metal before the carbon particles and the catalyst noble metal are transferred to the film. 2. The fuel cell electrode manufacturing method according to claim 1, wherein the type of the electrode material is made different by changing at least one of the type, mixing ratio, mixing method, and particle size of each component. Method.
JP2001362229A 2001-11-28 2001-11-28 Manufacturing method of fuel cell electrode Expired - Fee Related JP3888145B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001362229A JP3888145B2 (en) 2001-11-28 2001-11-28 Manufacturing method of fuel cell electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001362229A JP3888145B2 (en) 2001-11-28 2001-11-28 Manufacturing method of fuel cell electrode

Publications (2)

Publication Number Publication Date
JP2003163010A JP2003163010A (en) 2003-06-06
JP3888145B2 true JP3888145B2 (en) 2007-02-28

Family

ID=19172765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001362229A Expired - Fee Related JP3888145B2 (en) 2001-11-28 2001-11-28 Manufacturing method of fuel cell electrode

Country Status (1)

Country Link
JP (1) JP3888145B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5013669B2 (en) * 2004-12-10 2012-08-29 株式会社リコー Method for manufacturing electrochemical device
JP5422699B2 (en) * 2011-07-28 2014-02-19 パナソニック株式会社 POLYMER ELECTROLYTE FUEL CELL AND MANUFACTURING METHOD THEREOF
CN110797564B (en) * 2019-11-07 2024-05-31 深圳市赢合科技股份有限公司 Forming device and method for electrode film of solid-state battery

Also Published As

Publication number Publication date
JP2003163010A (en) 2003-06-06

Similar Documents

Publication Publication Date Title
CA2403132C (en) Method and apparatus for manufacturing a fuel cell electrode
EP1304753B1 (en) Polyelectrolyte fuel cell
US6015635A (en) Electrode for fuel cell and method of manufacturing electrode for fuel cell
US7029785B2 (en) Polymer electrolyte fuel cells, methods of manufacturing electrodes therefor , and apparatuses for making the same
US7285354B2 (en) Polymer electrolyte fuel cell, fuel cell electrode, method for producing electrode catalyst layer, and method for producing polymer electrolyte fuel cell
US8053035B2 (en) Electrode assembly and method of making same
WO2020179583A1 (en) Cathode catalyst layer for fuel cell and fuel cell
JP4876318B2 (en) Polymer electrolyte fuel cell and manufacturing method thereof
JP2003109606A (en) High molecular electrolyte fuel cell and method of manufacturing the same
JP4253491B2 (en) Method and apparatus for manufacturing fuel cell electrode
JP3888145B2 (en) Manufacturing method of fuel cell electrode
JP3558021B2 (en) MEMBRANE ELECTRODE ASSEMBLY FOR FUEL CELL, PROCESS FOR PRODUCING THE SAME, AND FUEL CELL USING THE SAME
US7060383B2 (en) Fuel cell
JP3827653B2 (en) Method for producing electrode for fuel cell
JP2004185900A (en) Electrode for fuel cell, film/catalyst layer junction, fuel cell, and manufacturing method of them
JP4092965B2 (en) Fuel cell vent layer, method for producing the same, and fuel cell having the vent layer
EP1749321B1 (en) System and method for forming a membrane electrode assembly for fuel cells
JP2004281152A (en) Apparatus and method foe manufacturing electrode
JP2002289203A (en) Polymer electrolyte fuel cell
JP5729357B2 (en) Manufacturing method of gas diffusion layer for fuel cell
JP2004031148A (en) Manufacturing method of solid high polymer fuel cell
JP2006351341A (en) Manufacturing method of membrane/electrode assembly and manufacturing device of membrane/electrode assembly
DE202005010590U1 (en) Formation of catalytic anode and cathode layers on a fuel cell membrane uses a roller printing process

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041008

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060704

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060904

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061010

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061016

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061120

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101208

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101208

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111208

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111208

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121208

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131208

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees