JP3843963B2 - Heat pump water heater - Google Patents

Heat pump water heater Download PDF

Info

Publication number
JP3843963B2
JP3843963B2 JP2003140124A JP2003140124A JP3843963B2 JP 3843963 B2 JP3843963 B2 JP 3843963B2 JP 2003140124 A JP2003140124 A JP 2003140124A JP 2003140124 A JP2003140124 A JP 2003140124A JP 3843963 B2 JP3843963 B2 JP 3843963B2
Authority
JP
Japan
Prior art keywords
hot water
temperature
loop control
refrigerant
heat pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003140124A
Other languages
Japanese (ja)
Other versions
JP2004340535A (en
Inventor
啓次郎 國本
竹司 渡辺
昌宏 尾浜
吉継 西山
浩二 岡
哲英 倉本
誠一 安木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2003140124A priority Critical patent/JP3843963B2/en
Publication of JP2004340535A publication Critical patent/JP2004340535A/en
Application granted granted Critical
Publication of JP3843963B2 publication Critical patent/JP3843963B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ヒートポンプ給湯装置に関するものである。
【0002】
【従来の技術】
従来のヒートポンプ給湯装置としては、特許文献1に記載されているようなヒートポンプ給湯装置が提案されていた。このヒートポンプ給湯装置は図3に示すように、圧縮機1と放熱器2と減圧手段3と吸熱器4とを含む冷媒循環回路5と、貯湯槽6と放熱器2と流量調整手段7とを有する給湯水回路8と、放熱器2に流入する給湯水回路8の入水温度と放熱器8から流出する冷媒循環回路5の高圧冷媒の出口温度との温度差が目標値になるように減圧手段3を制御する制御手段9を備えていた。また、制御手段9は圧縮機1から吐出される冷媒の吐出温度が規定値以上の場合は、前記の温度差の目標値を大きくするようにしていた。これにより、冷媒の吐出温度を圧縮機1の動作温度域に制御している。
【0003】
しかし、この構成では吐出温度を直接制御できないので、例えば圧縮機1の運転周波数
や吐出温度、外気温度、設定給湯温度、入水温度などが変った場合に吐出温度が変化してしまい、安定した吐出温度とならない。また冷媒の出口温度は放熱器8で熱交換された後の温度であるため安定するのに時間がかかってしまい、適正な吐出温度や温度差を得るのに長い時間を要すなどの問題点があった。
【0004】
【特許文献1】
特開2002−188859号公報
【0005】
【発明が解決しようとする課題】
本発明は、上記従来の課題を解決するもので、圧縮機からの冷媒の吐出温度を目標値に速く安定に制御し、耐久性が高く運転効率が良いヒートポンプ給湯装置を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明は上記課題を解決するために、本発明のヒートポンプ給湯装置は、圧縮機と放熱器と減圧手段と吸熱器とを含む冷媒循環回路と、貯湯槽と前記放熱器と流量調整手段とを有する給湯水回路と、前記圧縮機の冷媒の吐出温度を前記減圧手段を制御することにより調整する吐出温度制御手段とを備え、前記吐出温度制御手段は、前記吐出温度に応じて前記減圧手段を制御する閉ループ制御と、外気温度と前記給湯水回路の放熱器の入口温度と の値に応じて減圧手段を制御する開ループ制御とを備え、前記閉ループ制御と前記開ループ制御を組合わせて制御するとともに、運転起動時は前記開ループ制御のみを行うものである。
【0007】
上記発明によれば、吐出温度を目標値に速く安定に制御できることができる。
【0008】
【発明の実施の形態】
請求項1に記載の発明のヒートポンプ給湯装置は、圧縮機と放熱器と減圧手段と吸熱器とを含む冷媒循環回路と、貯湯槽と前記放熱器と流量調整手段とを有する給湯水回路と、前記圧縮機の冷媒の吐出温度を前記減圧手段を制御することにより調整する吐出温度制御手段とを備え、前記吐出温度制御手段は、前記吐出温度に応じて前記減圧手段を制御する閉ループ制御と、外気温度と前記給湯水回路の放熱器の入口温度との値に応じて減圧手段を制御する開ループ制御とを備え、前記閉ループ制御と前記開ループ制御を組合わせて制御するとともに、運転起動時は前記開ループ制御のみを行うものである。
【0009】
この発明によれば、閉ループ制御により吐出温度を直接制御するので、正確に所定の吐出温度が得られる。また閉ループ制御と開ループ制御を組合わせてことで、圧縮機の運転周波数と外気温度と設定給湯温度と入口温度の変化にも素早く対応できる。
【0010】
また、この発明によれば、運転の始動時や除霜運転から通常運転への切換時などの運転起動時に変動する吐出温度の影響を閉ループ運転を停止し開ループ制御のみで行うことにより、安定した減圧手段制御ができる。
【0011】
請求項2に記載の発明のヒートポンプ給湯装置は、請求項1において、運転起動時から所定時間後に開ループ制御値を固定するようにしたものである。
【0012】
この発明によれば、所定時間までは開ループ制御値するので、機器の温度状態が安定する間は圧縮機の運転周波数と外気温度と設定給湯温度と入口温度などの急変に対応できる。そして所定時間後に開ループ制御値を固定することで閉ループのみの制御とすることで、開ループと閉ループの両制御が干渉することなく正確に所定の温度に制御できる。
【0013】
請求項3に記載の発明のヒートポンプ給湯装置は、冷媒循環回路を、冷媒の圧力が臨界圧力以上となる超臨界ヒートポンプサイクルであり、前記臨界圧力以上に昇圧された冷媒により貯湯槽内の水を加熱するように構成している。
【0014】
この発明によれば、貯湯槽の水と熱交換する冷媒は、臨界圧力以上に加圧されているので、貯湯タンクの水により熱を奪われて温度低下しても凝縮することがない。したがって熱交換全域で冷媒と水とに温度差を形成しやすくなり、高温の湯が得られ、かつ熱交換効率を高くできる。
【0015】
【実施例】
以下本発明の実施例について、図面を参照しながら説明する。
【0016】
(実施例1)
図1は本発明の第1の実施例におけるヒートポンプ給湯装置の構成図を示す。本実施例は一般家庭用のヒートポンプ給湯装置で、主に割安な深夜電力を利用して給湯の湯を貯留するもので、圧縮機10と放熱器11と減圧手段12と吸熱器13とを直列に閉回路に接続した冷媒循環回路14と、貯湯槽15と放熱器11と流量調整手段16とを有する給湯水回路17と、制御手段18とで構成される。この冷媒循環回路14は、例えば炭酸ガス(CO2)を冷媒として使用し、高圧側の冷媒圧力が冷媒の臨界圧以上となる超臨界ヒートポンプサイクルを使用している。そして圧縮機10は、内蔵する電動モータ(図示しない)によって駆動され、吸引した冷媒を臨界圧力を超える圧力まで圧縮して吐出する。また、放熱器11は冷媒循環回路14の冷媒と、給湯水回路17の水との熱交換を行うもので、例えば冷媒が流れる冷媒通路と水が流れる流水通路とが2重管構造に設けられ、且つ冷媒の流れ方向と流水の流れ方向が対向するように構成された対向流式熱交換器である。減圧手段12は、内蔵するステッピングモータ(図示しない)を駆動させることにより流路の開度を可変させて冷媒の減圧量を変更する。吸熱器13はファン(図示しない)によって大気熱を吸熱するように作用する。
【0017】
給湯水回路14は、貯湯槽15内の水を所定量すなわち貯湯槽15に高温の湯を満たすように流量調整手段16を制御する。これは、貯湯槽15底部から給水し貯湯槽15上部に戻す循環構成で、貯湯槽15内の沸き上げは、この給湯水回路14の水を放熱器11で所定温度に加熱して行う。流量調整手段16はDCポンプを用いて電圧制御により流量を可変する。
【0018】
19は出湯温度設定手段で、貯湯槽15の沸き上げ温度となる設定給湯温度を設定するものである。この設定給湯温度は、貯湯霜5での1日の湯の使用量や、水温などによって決定する。20は冷媒の圧縮機10の吐出温度を検出する吐出温度検出手段、21は給湯水回路14の放熱器11への入水温度を検出する入水温度検出手段、22は給湯水回路14の放熱器11からの出湯温度を検出する出湯温度検出手段、23は外気温度を検出する外気温度検出手段である。また、24は貯湯槽15への給水管で、25は貯湯槽15から蛇口26を接続する出湯管である。
【0019】
次に図2に示す制御手段の動作系統図を用いて制御手段18の構成と作用を説明する。27は吐出温度制御手段であり、吐出温度と外気温度と入水温度と設定給湯温度と目標周波数に応じて減圧手段12を制御する。そして、開ループ制御手段28と、目標吐出温度設定手段29と、閉ループ制御手段30と、加算部31より構成し、開ループ制御手段28により減圧手段12の基本開度を設定し、閉ループ制御手段30により吐出温度が目標値になるようにフィードバック制御の制御量を設定し、加算部31で開ループ制御手段28と閉ループ制御手段30の設定値を加算して減圧手段12を制御している。
【0020】
開ループ制御手段28は、外気温度検出手段23と入水温度検出温度21と出湯温度設定手段19の三者の温度の組合わせから最適な減圧手段12の開度を設定する。ここで設定する値は、前記三者の組合わせにおける最適値を予め求めて数値化し、メモリ(図示しない)に記憶させ用いる。この開ループ制御は、運転開始時や除霜運転から通常運転に切替わった場合などの運転再開時に、運転が開始されてから所定時間(例えば5分間)経過後の値で固定するように設定している。これは、外気温度検出手段23や入水温度検出手段21の検出値が停止時や除霜時に周囲温度に影響されて急変する時間帯は、この変化に対応するために開ループ制御を用いて制御し、外気温度や入水温度が本来の値に落ち着く時間になれば開ループ制御の値を固定して、閉ループ制御との干渉を防止するように作用する。なお、開ループ制御における誤差が少なければ閉ループとの干渉なく外乱に対して素早い制御が可能となるため、継続してもよい。
【0021】
目標吐出温度設定手段29は、出湯温度設定手段19の設定給湯温度に所定温度差を加算して設定する。この所定温度差は、外気温度検出手段23と入水温度検出手段19と目標周波数設定手段32のそれぞれの値によって変更する。変更する条件は吐出温度が適正な温度範囲に納まり、異常な吐出圧力や圧縮機のモータ過電流にならないでかつ効率のよい運転となるように設定する。この所定温度差も外気温度と入水温度と周波数の組合わせにおける最適値を予め求めて数値化し、メモリ(図示しない)に記憶させ用いる。
【0022】
閉ループ制御手段30は、吐出温度検出手段20の検出値が目標吐出温度設定手段29の設定する目標値になるようにフィードバック制御する。すなわち目標値に対して検出値が低ければ減圧手段12の開度を絞るように設定し、高ければ開くように設定する。制御方法は公知のP制御やPI制御、PID制御、ファジー制御等を用いてもよい。この閉ループ制御は、運転開始時や除霜運転から通常運転に切替わった場合などの運転再開時に、運転が開始されてから所定時間(例えば吐出温度が所定値に達するまでの時間)は閉ループ制御をしないで開ループ制御のみで運転するようにしている。これは、吐出温度が目標値より大幅に低い場合にフィードバック制御をすると、減圧手段12の開度を絞り過ぎて吐出圧力が異常上昇してしまう場合があり、これを防止する効果がある。
【0023】
目標周波数設定手段32は、外気温度検出手段23と入水温度検出温度21と出湯温度設定手段19の三者の温度の組合わせから最適な圧縮機10の運転周波数を設定する。ここで設定する値は、所要な給湯能力を得るのに必要な前記三者の組合わせにおける最適値を予め求めて数値化し、メモリ(図示しない)に記憶させ用いる。最適値は給湯能力だけではなく運転効率と圧縮機の吐出圧力、吸入圧力、吐出温度、圧縮機のモータ電流などの総合的な運転状態を判断して決定する。
【0024】
出湯温度制御手段33は、入水温度検出手段21と出湯温度検出手段22と出湯温度設定手段19の値に応じて、出湯温度が設定給湯温度になるよう流量調整手段16を制御する。すなわち、出湯温度が低ければ流量調整手段16の流量を低下させ、高ければ流量を増加させるように制御する。具体的には設定給湯温度と出湯温度との温度偏差により公知のPI制御によりフィードバック制御する。加えて設定給湯温度と入水温度との偏差に反比例する係数を乗じて基本制御量としてフィードバック値に加算して流量調整手段16を制御する。すなわち、同一な給湯能力の場合、設定給湯温度と入水温度の偏差が大きいと必要流量は少なくてすみ、逆に偏差が大きいと必要流量は多くなる。この点を加味して基本制御量を設定する。なお、フィードバック制御はPI制御としたが、P制御、PID制御、ファジー制御でもよい。
【0025】
以上実施例1の構成によれば、高圧側の冷媒圧力が冷媒の臨界圧以上となる超臨界ヒートポンプサイクルを使用して、放熱器に冷媒の流れ方向と流水の流れ方向が対向する対向流式熱交換器を採用しているので、高温でかつ効率の良い給湯ができる。
【0026】
また、吐出温度の目標値として外気温度と入水温度と設定給湯温度と目標周波数から最適な値が設定され、吐出温度がこの目標値になるように閉ループ制御手段により減圧手段を制御するので、吐出温度を確実に目標値に制御することができる。さらに、開ループ制御手段によって外気温度や入水温度、設定給湯温度に応じた減圧手段の最適開度が設定される。したがって常に冷媒回路に適正な冷媒が循環するため、異常温度上昇や異常圧力上昇がなく、そのため、耐久性が高く、運転効率も良くすることができる。
【0027】
なお、実施例では加熱手段に超臨界ヒートポンプサイクルを用いたが、もちろん通常のヒートポンプサイクルでも良い。
【0028】
また、その場合の冷媒としてはフロンガス、アンモニア、ハイドロカーボン冷媒(プロパン、ブタンなど)が有用である。
【0029】
【発明の効果】
以上のように、本発明によれば、本発明は圧縮機からの冷媒の吐出温度を目標値に速く安定に制御することができ、耐久性が高く運転効率が良いヒートポンプ給湯装置を提供することができる。
【図面の簡単な説明】
【図1】 本発明の実施例1におけるヒートポンプ給湯装置の構成図
【図2】 同実施例1におけるヒートポンプ給湯装置の制御手段の動作系統図
【図3】 従来のヒートポンプ給湯装置の構成図
【符号の説明】
10 圧縮機
11 放熱器
12 減圧手段
13 吸熱器
14 冷媒循環回路
15 貯湯槽
16 流量調整手段
17 給湯水回路
19 出湯温度設定手段
20 吐出温度検出手段
21 入水温度検出手段
23 外気温度検出手段
27 吐出温度制御手段
28 開ループ制御手段
30 閉ループ制御手段
32 目標周波数設定手段
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a heat pump water heater.
[0002]
[Prior art]
As a conventional heat pump hot water supply apparatus, a heat pump hot water supply apparatus as described in Patent Document 1 has been proposed. As shown in FIG. 3, the heat pump hot water supply apparatus includes a refrigerant circulation circuit 5 including a compressor 1, a radiator 2, a decompression unit 3, and a heat absorber 4, a hot water storage tank 6, a radiator 2, and a flow rate adjustment unit 7. Depressurizing means so that the temperature difference between the hot water supply circuit 8 and the incoming water temperature of the hot water supply circuit 8 flowing into the radiator 2 and the outlet temperature of the high-pressure refrigerant of the refrigerant circulation circuit 5 flowing out of the radiator 8 becomes a target value. The control means 9 which controls 3 was provided. The control means 9 increases the target value of the temperature difference when the discharge temperature of the refrigerant discharged from the compressor 1 is equal to or higher than a specified value. Thereby, the discharge temperature of the refrigerant is controlled within the operating temperature range of the compressor 1.
[0003]
However, since the discharge temperature cannot be directly controlled in this configuration, for example, when the operating frequency, discharge temperature, outside air temperature, set hot water supply temperature, incoming water temperature, etc. of the compressor 1 change, the discharge temperature changes, and stable discharge It does not become temperature. Further, since the outlet temperature of the refrigerant is a temperature after heat exchange with the radiator 8, it takes time to stabilize, and it takes a long time to obtain an appropriate discharge temperature and temperature difference. was there.
[0004]
[Patent Document 1]
Japanese Patent Laid-Open No. 2002-188859
[Problems to be solved by the invention]
An object of the present invention is to solve the above-described conventional problems, and to provide a heat pump hot water supply apparatus that controls the refrigerant discharge temperature from the compressor quickly and stably to a target value, and has high durability and good operating efficiency. To do.
[0006]
[Means for Solving the Problems]
In order to solve the above problems, the present invention provides a heat pump water heater of the present invention comprising a refrigerant circulation circuit including a compressor, a radiator, a decompression unit, and a heat absorber, a hot water tank, the radiator, and a flow rate adjustment unit. A hot water supply circuit having a discharge temperature control means for adjusting the discharge temperature of the refrigerant of the compressor by controlling the pressure reduction means, wherein the discharge temperature control means controls the pressure reduction means according to the discharge temperature. A closed loop control for controlling, and an open loop control for controlling the pressure reducing means according to the values of the outside air temperature and the inlet temperature of the radiator of the hot water supply circuit, and the control is performed by combining the closed loop control and the open loop control. At the same time, only the open loop control is performed at the start of operation .
[0007]
According to the above invention, the discharge temperature can be quickly and stably controlled to the target value.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The heat pump hot water supply apparatus of the invention described in claim 1 includes a refrigerant circulation circuit including a compressor, a radiator, a decompression unit, and a heat absorber, a hot water supply circuit having a hot water storage tank, the radiator, and a flow rate adjustment unit, Discharge temperature control means for adjusting the discharge temperature of the refrigerant of the compressor by controlling the pressure reducing means, the discharge temperature control means is a closed loop control for controlling the pressure reducing means in accordance with the discharge temperature; An open loop control that controls the decompression means according to the value of the outside air temperature and the inlet temperature of the radiator of the hot water supply circuit, and controls the combination of the closed loop control and the open loop control. Performs only the open loop control.
[0009]
According to the present invention, since the discharge temperature is directly controlled by closed loop control, a predetermined discharge temperature can be obtained accurately. Further, by combining the closed loop control and the open loop control, it is possible to quickly cope with changes in the operating frequency of the compressor, the outside air temperature, the set hot water temperature, and the inlet temperature .
[0010]
Further , according to the present invention, the effect of the discharge temperature, which fluctuates at the start of the operation or at the start of the operation such as switching from the defrosting operation to the normal operation, is stopped by stopping the closed loop operation and performing only the open loop control. The decompression means can be controlled.
[0011]
The heat pump hot water supply apparatus according to the second aspect of the present invention is the heat pump hot water supply apparatus according to the first aspect, wherein the open loop control value is fixed after a predetermined time from the start of operation.
[0012]
According to the present invention, since the open loop control value is maintained until a predetermined time, it is possible to cope with sudden changes such as the operating frequency of the compressor, the outside air temperature, the set hot water temperature, and the inlet temperature while the temperature state of the equipment is stabilized. Then, by fixing the open-loop control value after a predetermined time, it is possible to control to the predetermined temperature accurately without interference between both the open-loop control and the closed-loop control.
[0013]
A heat pump hot water supply apparatus according to a third aspect of the present invention is a supercritical heat pump cycle in which the refrigerant pressure is equal to or higher than the critical pressure in the refrigerant circulation circuit, and water in the hot water storage tank is supplied by the refrigerant whose pressure is increased to the critical pressure or higher. It is configured to heat.
[0014]
According to this invention, since the refrigerant that exchanges heat with the water in the hot water tank is pressurized to a critical pressure or higher, it does not condense even if the heat is taken away by the water in the hot water tank and the temperature drops. Therefore, it becomes easy to form a temperature difference between the refrigerant and water over the entire heat exchange, and hot water can be obtained, and the heat exchange efficiency can be increased.
[0015]
【Example】
Embodiments of the present invention will be described below with reference to the drawings.
[0016]
Example 1
FIG. 1 shows a block diagram of a heat pump hot water supply apparatus in a first embodiment of the present invention. The present embodiment is a heat pump hot water supply device for general households, which mainly stores hot water for hot water using cheap midnight power. The compressor 10, the radiator 11, the decompression means 12, and the heat absorber 13 are connected in series. The refrigerant circulation circuit 14 is connected to the closed circuit, the hot water tank 15, the radiator 11, and the flow rate adjusting means 16, and the control means 18. This refrigerant circuit 14 uses, for example, carbon dioxide (CO2) as a refrigerant, and uses a supercritical heat pump cycle in which the refrigerant pressure on the high pressure side is equal to or higher than the critical pressure of the refrigerant. The compressor 10 is driven by a built-in electric motor (not shown), and compresses and sucks the sucked refrigerant to a pressure exceeding the critical pressure. The radiator 11 performs heat exchange between the refrigerant in the refrigerant circulation circuit 14 and the water in the hot water supply circuit 17. For example, a refrigerant passage through which refrigerant flows and a flowing water passage through which water flows are provided in a double pipe structure. And it is a counterflow type heat exchanger comprised so that the flow direction of a refrigerant | coolant and the flow direction of flowing water may oppose. The decompression means 12 changes the decompression amount of the refrigerant by driving a built-in stepping motor (not shown) to vary the opening of the flow path. The heat absorber 13 acts to absorb atmospheric heat by a fan (not shown).
[0017]
The hot water supply circuit 14 controls the flow rate adjusting means 16 so that the hot water in the hot water storage tank 15 is filled with a predetermined amount, that is, hot water in the hot water storage tank 15. This is a circulation configuration in which water is supplied from the bottom of the hot water tank 15 and returned to the upper part of the hot water tank 15, and boiling in the hot water tank 15 is performed by heating the water in the hot water circuit 14 to a predetermined temperature by the radiator 11. The flow rate adjusting means 16 varies the flow rate by voltage control using a DC pump.
[0018]
Reference numeral 19 denotes a hot water temperature setting means for setting a set hot water supply temperature which is the boiling temperature of the hot water storage tank 15. This set hot water supply temperature is determined by the amount of hot water used in the hot water storage frost 5 for one day, the water temperature, and the like. Reference numeral 20 denotes discharge temperature detection means for detecting the discharge temperature of the refrigerant compressor 10, reference numeral 21 denotes incoming water temperature detection means for detecting the incoming water temperature to the radiator 11 of the hot water supply circuit 14, and reference numeral 22 denotes radiator 11 of the hot water supply circuit 14. The hot water temperature detecting means for detecting the hot water temperature from the hot water, 23 is an outdoor air temperature detecting means for detecting the outdoor air temperature. Reference numeral 24 denotes a water supply pipe to the hot water tank 15, and 25 denotes a hot water pipe connecting the faucet 26 from the hot water tank 15.
[0019]
Next, the configuration and operation of the control means 18 will be described using the operation system diagram of the control means shown in FIG. 27 is a discharge temperature control means, which controls the decompression means 12 according to the discharge temperature, the outside air temperature, the incoming water temperature, the set hot water supply temperature, and the target frequency. Then, the open loop control means 28, the target discharge temperature setting means 29, the closed loop control means 30, and the adding unit 31 are configured, and the basic opening degree of the decompression means 12 is set by the open loop control means 28, and the closed loop control means The amount of feedback control is set by 30 so that the discharge temperature becomes a target value, and the setting unit 31 adds the set values of the open loop control means 28 and the closed loop control means 30 to control the decompression means 12.
[0020]
The open loop control means 28 sets the optimum opening of the decompression means 12 from the combination of the three temperatures of the outside air temperature detection means 23, the incoming water temperature detection temperature 21, and the tapping temperature setting means 19. As the value set here, an optimum value in the combination of the three is obtained in advance and digitized, and stored in a memory (not shown) for use. This open loop control is set to be fixed at a value after a predetermined time (for example, 5 minutes) has elapsed since the operation was started when the operation was restarted, such as when the operation was started or when the defrost operation was switched to the normal operation. is doing. This is because the time zone in which the detected values of the outside air temperature detecting means 23 and the incoming water temperature detecting means 21 change suddenly due to the ambient temperature at the time of stopping or defrosting is controlled using open loop control in order to cope with this change. However, when it is time for the outside air temperature or the incoming water temperature to settle to the original value, the value of the open loop control is fixed, and the interference with the closed loop control is prevented. Note that if the error in the open loop control is small, quick control can be performed with respect to the disturbance without interference with the closed loop.
[0021]
The target discharge temperature setting means 29 is set by adding a predetermined temperature difference to the set hot water supply temperature of the tapping temperature setting means 19. This predetermined temperature difference is changed according to the respective values of the outside air temperature detection means 23, the incoming water temperature detection means 19 and the target frequency setting means 32. The conditions to be changed are set so that the discharge temperature is within an appropriate temperature range, an abnormal discharge pressure and a motor overcurrent of the compressor do not occur, and the operation is efficient. For this predetermined temperature difference, an optimum value for the combination of the outside air temperature, the incoming water temperature, and the frequency is obtained in advance and digitized, and stored in a memory (not shown) for use.
[0022]
The closed loop control unit 30 performs feedback control so that the detection value of the discharge temperature detection unit 20 becomes the target value set by the target discharge temperature setting unit 29. That is, when the detected value is lower than the target value, the opening degree of the decompression means 12 is set to be reduced, and when it is higher, the opening is set to be opened. As a control method, known P control, PI control, PID control, fuzzy control, or the like may be used. This closed-loop control is a closed-loop control for a predetermined time (for example, the time until the discharge temperature reaches a predetermined value) after the operation is started, such as when the operation is started or when the operation is switched from the defrosting operation to the normal operation. It is designed to operate only with open loop control. If feedback control is performed when the discharge temperature is significantly lower than the target value, the opening of the decompression means 12 may be excessively narrowed and the discharge pressure may rise abnormally, and this has the effect of preventing this.
[0023]
The target frequency setting means 32 sets the optimum operating frequency of the compressor 10 from the combination of the three temperatures of the outside air temperature detection means 23, the incoming water temperature detection temperature 21 and the hot water temperature setting means 19. As the value set here, an optimum value in the combination of the three necessary for obtaining a required hot water supply capacity is obtained in advance and digitized, and stored in a memory (not shown) for use. The optimum value is determined by judging not only the hot water supply capacity but also the overall operation state such as operation efficiency, compressor discharge pressure, suction pressure, discharge temperature, and compressor motor current.
[0024]
The hot water temperature control means 33 controls the flow rate adjusting means 16 so that the hot water temperature becomes the set hot water supply temperature according to the values of the incoming water temperature detection means 21, the hot water temperature detection means 22, and the hot water temperature setting means 19. That is, control is performed such that the flow rate of the flow rate adjusting means 16 is reduced when the temperature of the hot water is low and the flow rate is increased when the temperature is high. Specifically, feedback control is performed by known PI control based on a temperature deviation between the set hot water supply temperature and the tapping temperature. In addition, the flow rate adjusting means 16 is controlled by multiplying a coefficient inversely proportional to the deviation between the set hot water supply temperature and the incoming water temperature and adding it to the feedback value as a basic control amount. That is, in the case of the same hot water supply capacity, if the deviation between the set hot water supply temperature and the incoming water temperature is large, the required flow rate is small, and conversely, if the deviation is large, the necessary flow rate is large. Considering this point, the basic control amount is set. Although feedback control is PI control, P control, PID control, and fuzzy control may be used.
[0025]
As described above, according to the configuration of the first embodiment, using the supercritical heat pump cycle in which the refrigerant pressure on the high pressure side is equal to or higher than the critical pressure of the refrigerant, the counterflow type in which the refrigerant flow direction and the flowing water flow direction are opposed to the radiator. Since a heat exchanger is used, hot water can be supplied efficiently at high temperatures.
[0026]
In addition, as the target value of the discharge temperature, an optimum value is set from the outside air temperature, the incoming water temperature, the set hot water temperature and the target frequency, and the decompression means is controlled by the closed loop control means so that the discharge temperature becomes this target value. The temperature can be reliably controlled to the target value. Furthermore, the optimum opening degree of the decompression means according to the outside air temperature, the incoming water temperature, and the set hot water supply temperature is set by the open loop control means. Therefore, since an appropriate refrigerant circulates in the refrigerant circuit at all times, there is no abnormal temperature rise or abnormal pressure rise, so that durability is high and operational efficiency can be improved.
[0027]
In the embodiment, a supercritical heat pump cycle is used as the heating means, but a normal heat pump cycle may be used.
[0028]
Further, as the refrigerant in that case, chlorofluorocarbon gas, ammonia, and a hydrocarbon refrigerant (propane, butane, etc.) are useful.
[0029]
【The invention's effect】
As described above, according to the present invention, the present invention provides a heat pump hot water supply apparatus that can quickly and stably control the refrigerant discharge temperature from the compressor to a target value, and has high durability and high operating efficiency. Can do.
[Brief description of the drawings]
1 is a configuration diagram of a heat pump water heater in Embodiment 1 of the present invention. FIG. 2 is an operation system diagram of control means of the heat pump water heater in Embodiment 1. FIG. 3 is a configuration diagram of a conventional heat pump water heater. Explanation of]
DESCRIPTION OF SYMBOLS 10 Compressor 11 Radiator 12 Pressure reducing means 13 Heat absorber 14 Refrigerant circulation circuit 15 Hot water storage tank 16 Flow rate adjusting means 17 Hot water supply circuit 19 Hot water temperature setting means 20 Discharge temperature detection means 21 Incoming water temperature detection means 23 Outside air temperature detection means 27 Discharge temperature Control means 28 Open loop control means 30 Closed loop control means 32 Target frequency setting means

Claims (3)

圧縮機と放熱器と減圧手段と吸熱器とを含む冷媒循環回路と、貯湯槽と前記放熱器と流量調整手段とを有する給湯水回路と、前記圧縮機の冷媒の吐出温度を前記減圧手段を制御することにより調整する吐出温度制御手段とを備え、前記吐出温度制御手段は、前記吐出温度に応じて前記減圧手段を制御する閉ループ制御と、外気温度と前記給湯水回路の放熱器の入口温度との値に応じて減圧手段を制御する開ループ制御とを備え、前記閉ループ制御と前記開ループ制御を組合わせて制御するとともに、運転起動時は前記開ループ制御のみを行うヒートポンプ給湯装置。A refrigerant circulation circuit including a compressor, a radiator, a decompression unit, and a heat absorber; a hot water supply circuit having a hot water storage tank, the radiator, and a flow rate adjustment unit; and a refrigerant discharge temperature of the compressor, the decompression unit Discharge temperature control means for adjusting by controlling, the discharge temperature control means, closed loop control for controlling the pressure reducing means according to the discharge temperature, outside temperature and inlet temperature of the radiator of the hot water supply circuit And an open loop control that controls the decompression means in accordance with the value of the above, and controls the combination of the closed loop control and the open loop control, and performs only the open loop control at the start of operation . 運転起動から所定時間後に開ループ制御値を固定する請求項1に記載のヒートポンプ給湯装置。The heat pump hot water supply device according to claim 1 , wherein the open loop control value is fixed after a predetermined time from the start of operation. 冷媒循環回路は、冷媒の圧力が臨界圧力以上となる超臨界ヒートポンプサイクルであり、前記臨界圧力以上に昇圧された冷媒により貯湯槽内の水を加熱する請求項1または2記載のヒートポンプ給湯装置。The heat pump water heater according to claim 1 or 2 , wherein the refrigerant circulation circuit is a supercritical heat pump cycle in which the pressure of the refrigerant becomes equal to or higher than a critical pressure, and water in the hot water tank is heated by the refrigerant whose pressure is increased to the critical pressure or higher.
JP2003140124A 2003-05-19 2003-05-19 Heat pump water heater Expired - Fee Related JP3843963B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003140124A JP3843963B2 (en) 2003-05-19 2003-05-19 Heat pump water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003140124A JP3843963B2 (en) 2003-05-19 2003-05-19 Heat pump water heater

Publications (2)

Publication Number Publication Date
JP2004340535A JP2004340535A (en) 2004-12-02
JP3843963B2 true JP3843963B2 (en) 2006-11-08

Family

ID=33528928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003140124A Expired - Fee Related JP3843963B2 (en) 2003-05-19 2003-05-19 Heat pump water heater

Country Status (1)

Country Link
JP (1) JP3843963B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006317038A (en) * 2005-05-11 2006-11-24 Matsushita Electric Ind Co Ltd Heat pump type water heater
JP2007327727A (en) * 2006-06-09 2007-12-20 Hitachi Appliances Inc Heat pump water heater
JP5034657B2 (en) * 2007-04-27 2012-09-26 パナソニック株式会社 Heat pump water heater
JP5029124B2 (en) * 2007-04-27 2012-09-19 パナソニック株式会社 Heat pump water heater
JP2009002614A (en) * 2007-06-22 2009-01-08 Denso Corp Heat pump device
JP4930357B2 (en) * 2007-12-17 2012-05-16 三菱電機株式会社 Heat pump water heater
JP2010025493A (en) * 2008-07-23 2010-02-04 Sanden Corp Heat pump type hot water supply device
JP2012515890A (en) * 2009-01-20 2012-07-12 パナソニック株式会社 Refrigeration cycle equipment
JP5776314B2 (en) * 2011-04-28 2015-09-09 株式会社ノーリツ Heat pump water heater
JP6488160B2 (en) * 2015-03-10 2019-03-20 リンナイ株式会社 Heat pump heating device
KR102515801B1 (en) * 2022-09-26 2023-03-30 주식회사 엠티에스 Air heat pump system with dual cycle that produces hot or cold water with a fixed water outlet temperature at an arbitrary incoming temperature due to a variable water flow rate

Also Published As

Publication number Publication date
JP2004340535A (en) 2004-12-02

Similar Documents

Publication Publication Date Title
US7856835B2 (en) Hot water supply apparatus
JP3843963B2 (en) Heat pump water heater
WO2006075592A1 (en) Refrigerating device
EP2244036A1 (en) Refrigeration cycle device
WO2016059837A1 (en) Heat pump heating apparatus
JP3788419B2 (en) Water heater
KR101367474B1 (en) Storage type hot water supply system
JP4337880B2 (en) Heat pump water heater
JP2005134070A (en) Heat pump water heater
JP2004347148A (en) Heat pump hot water supply device
JP2002081768A5 (en)
JP4249591B2 (en) Primary pump type heat source variable flow rate control system and primary pump minimum flow rate securing method
JPH10141831A (en) Circulation apparatus for constant temperature refrigerant fluid
JP3800497B2 (en) Water heater
EP3258185B1 (en) Heat supply system
JP3937715B2 (en) Heat pump water heater
JP3915767B2 (en) Heat pump water heater
JP4016870B2 (en) Heat pump water heater
JP5478403B2 (en) Heat pump water heater
JP2004278961A (en) Refrigerating machine
JP3743375B2 (en) Heat pump water heater
JP2006078146A (en) Heat pump, floor heating device, and air conditioner
JP2015021643A (en) Heat pump device
JP2006266596A (en) Hot water storage type water heater
JP4090179B2 (en) Heat pump water heater

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060509

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060725

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060807

R151 Written notification of patent or utility model registration

Ref document number: 3843963

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090825

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100825

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110825

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110825

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120825

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130825

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130825

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140825

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees