JP3788419B2 - Water heater - Google Patents

Water heater Download PDF

Info

Publication number
JP3788419B2
JP3788419B2 JP2002323455A JP2002323455A JP3788419B2 JP 3788419 B2 JP3788419 B2 JP 3788419B2 JP 2002323455 A JP2002323455 A JP 2002323455A JP 2002323455 A JP2002323455 A JP 2002323455A JP 3788419 B2 JP3788419 B2 JP 3788419B2
Authority
JP
Japan
Prior art keywords
heating
hot water
storage tank
amount
water storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002323455A
Other languages
Japanese (ja)
Other versions
JP2004156847A (en
Inventor
啓次郎 國本
竹司 渡辺
昌宏 尾浜
吉継 西山
浩二 岡
哲英 倉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2002323455A priority Critical patent/JP3788419B2/en
Publication of JP2004156847A publication Critical patent/JP2004156847A/en
Application granted granted Critical
Publication of JP3788419B2 publication Critical patent/JP3788419B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0403Refrigeration circuit bypassing means for the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/17Control issues by controlling the pressure of the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B6/00Compression machines, plants or systems, with several condenser circuits
    • F25B6/02Compression machines, plants or systems, with several condenser circuits arranged in parallel

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、貯湯式の給湯装置に関するものである。
【0002】
【従来の技術】
従来の給湯装置としては、特許文献1に記載されているような給湯装置が提案されていた。この給湯装置は図4に示すように、大気から熱を汲み上げて貯湯タンク1の水を沸き上げるヒートポンプ回路2を備えた給湯機であり、ヒートポンプ回路2が、冷媒を圧縮する圧縮機3と、冷媒と貯湯タンク1からの水とを熱交換させる給湯側熱交換器4と、冷媒と浴槽5からの浴槽水とを熱交換させる外熱源側熱交換器6と、冷媒と大気とを熱交換させる大気側熱交換器7と、冷媒を減圧する第1および第2減圧器8、9と、冷媒循環路10を切替える冷媒循環路切替器11とを有し、この冷媒循環路切替器11は、貯湯タンク1の水を沸き上げる場合には、冷媒を圧縮機3、給湯側熱交換器4、第2減圧器9、大気側熱交換器7を順次循環するように冷媒循環路10を切替え、また浴槽水から熱を汲み上げる貯湯タンク1を沸き上げる、いわいる風呂廃熱回収運転をする場合には、冷媒を圧縮機3、給湯側熱交換器4、第1減圧器8、外熱源側熱交換器7を順次循環するように冷媒循環路10を切替え、また貯湯タンク1を沸き上げながら浴槽水追焚きする場合や貯湯タンク1を沸き上げながら除霜運転をする場合には、冷媒を圧縮機3、給湯側熱交換器4、外熱源側熱交換器6、第1減圧器8を順次循環するように冷媒循環路を切替えように作用する。このように、貯湯タンクを沸き上げたり、風呂の追焚きや除霜運転ができるように
している。
【0003】
一般にヒートポンプにより貯湯タンクを沸き上げる給湯機は、料金が安くなる深夜電力を利用して1日に使用する温水を貯湯タンクに貯めていた。したがって定められた時間帯で加熱が終了するように加熱量が設定される。
【0004】
しかし、深夜電力時間帯に従来例のように風呂の追焚きや除霜運転を行うと、その間の貯湯タンクへの加熱量が無くなるか、大幅に抑制されるため、深夜電力時間帯での加熱が不足する場合が発生し、貯湯湯量が不足し湯切れが起こったり、料金の高い昼間の電力で貯湯タンクの沸き上げ行うことで電力料金が高くなってしまうなどの問題があった。
【0005】
この加熱量の不足は、風呂追焚きや、除霜運転や、風呂廃熱回収運転への切替え時のロスなどによっても発生する可能性がある。
【0006】
【特許文献1】
特開2001−91096号公報
【0007】
【発明が解決しようとする課題】
本発明は、上記従来の課題を解決するもので、電気代の安い深夜電力時間帯に貯湯タンクの沸き上げをする給湯装置を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明は上記課題を解決するために、本発明の給湯装置は、所定時間内において沸き上げ運転以外の動作が発生した場合に、沸き上げの加熱量を変更するように制御するものである。
【0009】
上記発明によれば、たとえば所定時間内で一時的に貯湯タンクの沸き上げ運転を停止する事態が生じても、この停止期間の不足熱量を補正して沸き上げ運転を再開するので、所定時間で貯湯タンク内の水を所定量沸かすことができる。
【0010】
【発明の実施の形態】
請求項1に記載の発明の給湯装置は、貯湯タンク内の水を任意の加熱量で加熱して沸き上げ運転する加熱手段と、沸き上げ運転中に発生した除霜運転が終了した時点において、その終了した時点から深夜電力時間帯終了時までに貯湯タンク下方の低温度成層を形成する湯水が所定温度となるように加熱手段による加熱量を補正する加熱制御手段とを備えたものである。
【0011】
この発明によれば、深夜電力時間帯等の所定時間内で、貯湯タンクの沸き上げ運転状況に変化が生じて、加熱手段の加熱が停止したり、加熱量が変化しても、加熱量を加熱制御手段により所定時間で貯湯タンクが沸きあがるように補正するので、所定時間に貯湯タンクを沸き上げることができる。
【0012】
また、加熱手段には風呂水を加熱する風呂加熱運転を備え、加熱手段が風呂加熱運転を終了したときに、前記風呂加熱運転に応じて加熱手段の加熱量を増加するものである。
【0013】
この発明によれば、所定時間内で風呂加熱運転をすることにより貯湯タンクの沸き上げが停止したり加熱量が抑制されるなどにより加熱量が不足しても、加熱制御手段により加熱量を補正して貯湯タンクの沸き上げを行うので、所定時間で貯湯タンクを沸き上げることができる。
【0014】
また、加熱手段には空調を行う空調運転を備え、加熱制御手段は、加熱手段が空調運転を終了したときに、前記空調運転に応じて加熱手段の加熱量を増加するものである。
【0015】
この発明によれば、所定時間内で加熱手段により暖房や冷房や乾燥といった空調運転をすることにより、貯湯タンクの沸き上げの加熱量が不足しても、加熱制御手段により加熱量を補正するので、所定時間で貯湯タンクを沸き上げることができる。
【0016】
また、所定時間内に発生した給湯運転が終了した場合に、前記給湯運転に応じて加熱手段の加熱量を増加するものである。
【0017】
この発明によれば、所定時間内での給湯により、貯湯タンクから湯が出湯されるために貯湯タンクの沸き上げの加熱量が不足しても、加熱制御手段により加熱量を補正するので、所定時間で貯湯タンクを沸き上げることができる。
【0018】
また、加熱手段をヒートポンプサイクルより構成し、前記ヒートポンプサイクルの蒸発器に発生する着霜に応じて除霜を行う除霜運転を備え、加熱制御手段は、加熱手段が除霜運転を終了したときに、前記除霜運転に応じて加熱手段の加熱量を増加するものである。
【0019】
この発明によれば、所定時間内で除霜運転により、貯湯タンクの沸き上げの加熱量が不足しても、加熱制御手段により加熱量を補正するので、所定時間で貯湯タンクを沸き上げることができる。
【0020】
また、加熱制御手段は、除霜運転を予測し、前記除霜運転の予測結果に応じて予め加熱手段の加熱量を増加するものである。
【0021】
この発明によれば、加熱制御手段により予め加熱量を補正して沸き上げ運転をするので、所定時間で一定の加熱量で沸き上げることができ、運転効率はよくなる。
【0022】
また、加熱手段を、冷媒の圧力が臨界圧力以上となる超臨界ヒートポンプサイクルであり、前記臨界圧力以上に昇圧された冷媒により貯湯タンク内の水を加熱するように構成している。
【0023】
この発明によれば、貯湯タンクの水と熱交換する冷媒は、臨界圧力以上に加圧されているので、貯湯タンクの水により熱を奪われて温度低下しても凝縮することがない。したがって熱交換器全域で冷媒と水とに温度差を形成しやすくなり、高温の湯が得られ、かつ熱交換効率を高くできる。
【0024】
【実施例】
以下本発明の実施例について、図面を参照しながら説明する。なお、各実施例において、同じ構成、同じ動作をする部分については同一符号を付与し、詳細な説明を省略する。
【0025】
(実施例1)
図1は本発明の第1の実施例における給湯装置の構成図を示す。本実施例は一般家庭用の給湯装置で、主に割安な深夜電力を利用して給湯の湯を貯留するもので、貯湯タンク15と、この貯湯タンク15の水を加熱して沸き上げ運転をするヒートポンプサイクルである加熱手段16と、所定時間である深夜電力時間帯において、貯湯タンク15内の水を所定量すなわち貯湯タンク15に高温の湯を満たす量を沸かす加熱制御手段17とから構成される。
【0026】
加熱手段16は、圧縮機18、放熱器19、減圧手段20、吸熱器21が冷媒流路22
により閉回路に接続されている。この加熱手段16は、例えば炭酸ガス(CO2)を冷媒として使用し、高圧側の冷媒圧力が冷媒の臨界圧以上となる超臨界ヒートポンプサイクルを使用している。そして圧縮機18は、内蔵する電動モータ(図示しない)によって駆動され、吸引した冷媒を臨界圧力を超える圧力まで圧縮して吐出する。また、23は放熱器19の冷媒と熱交換を行う水流路24を備えた熱交換器である。
【0027】
25は貯湯タンク15底部から給水し貯湯タンク15上部に戻す循環ポンプ26有した循環路で、貯湯タンク15内の沸き上げは、この循環路25の水を流す熱交換器23の水流路24に接続して流水を加熱して行う。
【0028】
加熱制御手段17は、予め定めた加熱量で加熱手段16を制御する通常の沸き上げ運転制御と、深夜電力時間帯に沸き上げ運転以外の動作が発生した場合に加熱量を変更して沸き上げ運転する補正沸き上げ運転制御を有する。
【0029】
加熱制御手段17における通常の沸き上げ運転制御は、水流路24の出口近傍に設け、流水の加熱温度を検出する加熱センサ28の検出値を入力して、循環ポンプ26と、圧縮機18と、減圧手段20を制御し、所定温度(例えば85℃)の湯が水流路24の出口から出湯するようにしている。これによって、貯湯タンク15内の上方が高温に、下方が低温に分かれ温度成層27が形成され、沸き上げ運転にしたがって温度成層27は貯湯タンク15の下方に移動し、最終は貯湯タンク15内が全て高温になる。この貯湯タンク15全体の沸き上げは深夜電力時間帯(例えば23時から翌朝の7まで)で沸きあがるように加熱量を予め定めている。そしてこの深夜電力時間帯以外の時間帯では貯湯タンク15の残湯を検知する残湯センサ29の検出値に応じて適宜沸き上げ運転が入るようになっている。
【0030】
加熱量は、冬場においても深夜電力時間帯(8時間)で貯湯タンク15内が全て所定温度に沸きあがるように次式により加熱量を設定する。
【0031】
Q=V×(Ts−Tw)/(8×860×η)
ただし、Q:加熱量(kW)
V:タンク容量(L)
Ts:沸き上げ温度(℃)
Tw:貯湯タンク内初期温度(℃)
η:加熱効率
例えば貯湯タンク15が370L、貯湯タンク15内の水が5℃、沸き上げ温度が85℃、加熱効率1.0とすると加熱量Qは4.3kWとなり、余裕をみて4.5kWで加熱量を設定する。そして、この加熱量は年間を通じて一定に定めることで、確実に沸き上げができる。
【0032】
加熱制御手段17の補正沸き上げ運転制御は、深夜電力時間帯に貯湯タンク15に給湯運転が発生した場合に、この給湯運転に応じて加熱手段16の加熱量Qを増加させ、沸き上げ運転を行う。
【0033】
給湯運転は、貯湯タンク15底部に接続される給水管30から水道水が供給され、貯湯タンク15上部に設けた出湯管31からから出湯される。32は混合弁で、出湯管31からの湯と水道水を混合して適温の湯を給湯管33に出湯する。加熱制御手段17は、給湯運転を給湯管33に設けられた流量センサ34によって検知し、給湯運転の終了時点で補正する加熱量Qcを次式により求める。
【0034】
Qc=(V−Vz)×(Ts−Tw)/(Tiz×860×η)
ただし、Vz:残湯量(L)
Tiz:深夜電力時間帯の残り時間(h)
ここで、残湯量Vzは残湯センサ29により検出される貯湯タンクの温度成層27の上方の高温の湯量のことである。ここで、QcがQよりも大きければ加熱量はQcに変更して沸き上げ運転を行い、QcがQより小さければ加熱量はQのまま運転する。
【0035】
たとえば、給湯運転により多量の湯が貯湯タンク15から出湯されると、温度成層27は貯湯タンク15上方に移動し、残湯量Vzが減少する。この結果Qcが大きくなると、この算定以降の貯湯タンク15の沸き上げ運転は、加熱量をQcに変更して行う。したがって、残り時間Tizで、所定の沸き上げ温度Tsに貯湯タンク15全体を沸かすことができる。
【0036】
加熱制御手段17の補正沸き上げ運転制御は、深夜電力時間帯に加熱手段16に除霜運転が発生した場合にも、この除霜運転に応じて加熱手段16の加熱量Qを増加させ、沸き上げ運転を行う。
【0037】
除霜運転は、冷媒流路22の放熱器19と減圧手段20とをバイパスするバイパス路34と、このバイパス路35に設けた開閉弁36を備え、冬期に沸き上げ運転を行って吸熱器21に霜が付着する場合に、開閉弁36を開き、圧縮機18と吸熱器20の間で冷媒循環を行い、圧縮機18の運転発熱により霜を溶かす除霜運転を行う。そして加熱制御手段17は、給湯運転時と同様に除霜運転の終了時点で補正する加熱量Qcを求め、残り時間Tizで貯湯タンク15全体が深夜電力時間帯で沸かせるように加熱量を増加する。
【0038】
なお、除霜運転は外気温度によって除霜運転の有無が予測できるので、深夜電力時間帯による沸き上げ運転開始時点の外気温度により除霜運転による不足熱量を想定して、最初から加熱量を増加させて運転してもよい。この方法によれば、沸き上げ運転時の加熱量を一定にできるので、加熱効率がよい。
【0039】
(実施例2)
図2は、本発明の第2の実施例の給湯装置の構成図である。なお、実施例1の給湯装置と同一構造のものは同一符号を付与し、説明を省略する。
【0040】
図において、実施例1の構成と異なるところは、加熱手段16には浴槽40風呂水41を加熱する風呂加熱運転を備え、加熱制御手段17は加熱手段16が風呂加熱運転を行う場合に、風呂加熱運転に応じて加熱手段16の加熱量を増加するようにした点にある。
【0041】
具体的には風呂水41を加熱する風呂熱交換器42を備え、この風呂熱交換器42には風呂用放熱器43と風呂水を流す風呂用水流路44を備え、風呂用放熱器43の冷媒と風呂用水流路44の風呂水とを熱交換させる。浴槽40には、風呂水41を風呂用水流路43に循環する風呂循環回路45が接続され、風呂循環路45には循環用の風呂ポンプ46が備えられている。一方、風呂用放熱器42は放熱機19と並列に冷媒流路22に配置し、この両者を冷媒分岐弁47により切りかえるように構成している。
【0042】
そして風呂加熱運転を行う場合は、冷媒分岐弁47を切替えて冷媒が風呂用放熱器44に流れるようにする。そして、循環ポンプ26を停止し、風呂ポンプ46を駆動することにより、風呂用熱交換器42で風呂用水流路43が加熱されて風呂水41の温度が上昇する。
【0043】
加熱制御手段17は、深夜電力時間帯に風呂加熱運転が行われた場合は、風呂加熱運転終了時点で実施例1と同様に補正する加熱量Qcを求め、残り時間Tizで貯湯タンク1
5全体が深夜電力時間帯で沸かせるように加熱量を増加する。
【0044】
以上のように、実施例2の構成および作用にいよれば、深夜電力時間帯の沸き上げ運転中に、風呂加熱運転が割り込んできても、この風呂加熱運転の時間分だけ残り時間Tizが短くなり、それに応じて補正する加熱量Qcは大きくなる。その結果深夜電力時間帯で貯湯タンク15内の水を沸き上げ設定温度に沸かすことができるように補正される。
【0045】
(実施例3)
図3は、本発明の第3の実施例の給湯装置の構成図である。なお、実施例1および実施例2の給湯装置と同一構造のものは同一符号を付与し、説明を省略する。
【0046】
図において、実施例1および実施例2の構成と異なるところは、加熱手段16に空調用の室内機50を接続し、暖房、浴室乾燥、冷房、除湿等の空調運転を備え、加熱制御手段17は加熱手段16が空調運転を行う場合に、この空調運転に応じて加熱手段16の加熱量を増加するようにした点にある。
【0047】
室内機50は、室内熱交換器51と送風機52を備え、この室内熱交換器51は冷媒と送風による室内空気とを熱交換させる。そしてこの室内熱交換器51は放熱機19と並列に冷媒流路22に配置し、この両者を冷媒分岐弁47により切りかえるように構成している。また、圧縮機18の入口と出口には冷媒の流れ方向を切りかえる切替え弁53が設けられ、暖房運転(実線)、冷房運転(点線)を切替える。
【0048】
そして空調運転を行う場合は、冷媒分岐弁47を切替えて冷媒が室内熱交換器51に流れるようにする。そして、循環ポンプ26を停止し、送風機52を駆動することにより、室内熱交換器51で室内空気が加熱または冷却されて空調される。
【0049】
加熱制御手段17は、深夜電力時間帯に空調運転が行われた場合は、空調運転終了時点で実施例1と同様に補正する加熱量Qcを求め、残り時間Tizで貯湯タンク15全体が深夜電力時間帯で沸かせるように加熱量を増加する。
【0050】
したがって深夜電力時間帯の沸き上げ運転中に、空調運転が割り込んできても、この風呂加熱運転の時間分だけ残り時間Tizが短くなり、それに応じて補正する加熱量Qcは大きくなる。その結果深夜電力時間帯で貯湯タンク15内の水を沸き上げ設定温度に沸かすことができるように補正される。
【0051】
ただし、加熱量Qcは能力に限界があるので、Qcが上限を超えた場合は上限の加熱量で沸き上げ運転を行い、不足分は深夜電力以外の時間帯で沸き上げることになる。
【0052】
なお、実施例では加熱手段に超臨界ヒートポンプサイクルを用いたが、もちろん通常のヒートポンプサイクルでも良いし、一般のヒータでも同様の効果が得られる。
【0053】
【発明の効果】
以上のように、本発明によれば、電気代の安い深夜電力時間帯に貯湯タンクの沸き上げをする給湯装置を提供することができる。
【図面の簡単な説明】
【図1】 本発明の実施例1における給湯装置の構成図
【図2】 同実施例2における給湯装置の構成図
【図3】 同実施例3における給湯装置の構成図
【図4】 従来の給湯装置の構成図
【符号の説明】
15 貯湯タンク
16 加熱手段(ヒートポンプサイクル)
17 加熱制御手段
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a hot water storage type hot water supply apparatus.
[0002]
[Prior art]
As a conventional hot water supply apparatus, a hot water supply apparatus as described in Patent Document 1 has been proposed. As shown in FIG. 4, this hot water supply device is a hot water supply device including a heat pump circuit 2 that pumps heat from the atmosphere and boils water in the hot water storage tank 1, and the heat pump circuit 2 includes a compressor 3 that compresses a refrigerant, Heat exchange between the hot water supply side heat exchanger 4 for exchanging heat between the refrigerant and the water from the hot water storage tank 1, the external heat source side heat exchanger 6 for exchanging heat between the refrigerant and the bath water from the bathtub 5, and the refrigerant and the atmosphere. An atmosphere-side heat exchanger 7 to be performed, first and second decompressors 8 and 9 for decompressing the refrigerant, and a refrigerant circuit switching unit 11 for switching the refrigerant circuit 10. The refrigerant circuit switching unit 11 includes: When the water in the hot water storage tank 1 is boiled, the refrigerant circulation path 10 is switched so that the refrigerant circulates through the compressor 3, the hot water supply side heat exchanger 4, the second decompressor 9, and the atmosphere side heat exchanger 7 in order. Boil the hot water storage tank 1 that draws heat from the bathtub water, When the waste heat recovery operation is performed, the refrigerant circulation path 10 is circulated so that the refrigerant is circulated through the compressor 3, the hot water supply side heat exchanger 4, the first decompressor 8, and the external heat source side heat exchanger 7 in order. When switching or reheating the hot water tank 1 while boiling the hot water tank 1 or when performing the defrosting operation while boiling the hot water tank 1, the refrigerant is the compressor 3, the hot water supply side heat exchanger 4 and the external heat source side heat. The refrigerant circulation path is switched so as to sequentially circulate through the exchanger 6 and the first decompressor 8. In this way, the hot water storage tank can be boiled, baths can be recharged, and defrosting can be performed.
[0003]
In general, a water heater that heats a hot water storage tank using a heat pump stores hot water used in a hot water storage tank in a hot water tank using midnight power, which is cheaper. Accordingly, the heating amount is set so that the heating is completed in a predetermined time zone.
[0004]
However, if the bath is recharged or defrosted as in the conventional example during the midnight power hours, the amount of heating to the hot water storage tank during that time will be lost or greatly suppressed, so heating in the midnight power hours In some cases, the amount of hot water is insufficient, the hot water runs out, the hot water runs out, or the hot water tank is heated by the expensive electric power in the daytime.
[0005]
This shortage of heating amount may also occur due to loss at the time of switching to bath reheating, defrosting operation, or bath waste heat recovery operation.
[0006]
[Patent Document 1]
Japanese Patent Laid-Open No. 2001-91096
[Problems to be solved by the invention]
This invention solves the said conventional subject, and it aims at providing the hot-water supply apparatus which raises a hot water storage tank in the midnight electric power time zone with a cheap electricity bill.
[0008]
[Means for Solving the Problems]
In order to solve the above problems, the hot water supply apparatus of the present invention controls the heating amount of boiling to be changed when an operation other than the boiling operation occurs within a predetermined time.
[0009]
According to the above-described invention, for example, even if a situation occurs where the boiling operation of the hot water storage tank is temporarily stopped within a predetermined time, the heating operation is resumed by correcting the insufficient heat amount during the stop period. A predetermined amount of water in the hot water storage tank can be boiled.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
In the hot water supply apparatus of the invention according to claim 1, when the heating means for heating and heating the water in the hot water storage tank with an arbitrary heating amount and the defrosting operation generated during the boiling operation are completed, And a heating control means for correcting the heating amount by the heating means so that the hot water forming the low temperature stratification below the hot water storage tank reaches a predetermined temperature from the end of the time to the end of the midnight power time zone .
[0011]
According to the present invention, even if the heating operation of the hot water storage tank changes within a predetermined time such as a midnight power time period and the heating means stops or the heating amount changes, the heating amount is reduced. Since the heating control unit corrects the hot water storage tank to boil for a predetermined time, the hot water storage tank can be boiled for a predetermined time.
[0012]
The heating means is provided with a bath heating operation for heating bath water, and when the heating means finishes the bath heating operation, the heating amount of the heating means is increased in accordance with the bath heating operation.
[0013]
According to the present invention, even if the heating amount is insufficient by stopping the boiling of the hot water storage tank or suppressing the heating amount by performing the bath heating operation within a predetermined time, the heating amount is corrected by the heating control means. Since the hot water storage tank is boiled, the hot water storage tank can be boiled in a predetermined time.
[0014]
The heating means includes an air conditioning operation for performing air conditioning, and the heating control means increases the heating amount of the heating means according to the air conditioning operation when the heating means finishes the air conditioning operation.
[0015]
According to the present invention, the heating control means corrects the heating amount by the heating control means even if the heating amount of the hot water storage tank is insufficient by performing the air conditioning operation such as heating, cooling or drying by the heating means within a predetermined time. The hot water storage tank can be boiled in a predetermined time.
[0016]
Moreover, when the hot water supply operation generated within a predetermined time is finished, the heating amount of the heating means is increased according to the hot water supply operation.
[0017]
According to this invention, even if the heating amount of boiling water of the hot water storage tank is insufficient because hot water is discharged from the hot water storage tank by hot water supply within a predetermined time, the heating amount is corrected by the heating control means. The hot water tank can be boiled in time.
[0018]
Further, the heating means comprises a heat pump cycle, and includes a defrosting operation for performing defrosting according to frost generated in the evaporator of the heat pump cycle, and the heating control means is configured such that the heating means finishes the defrosting operation. In addition, the heating amount of the heating means is increased in accordance with the defrosting operation.
[0019]
According to the present invention, even if the heating amount of the hot water storage tank is insufficient due to the defrosting operation within the predetermined time, the heating control means corrects the heating amount, so that the hot water storage tank can be heated up for the predetermined time. it can.
[0020]
The heating control means predicts the defrosting operation and increases the heating amount of the heating means in advance according to the prediction result of the defrosting operation.
[0021]
According to the present invention, since the heating control unit corrects the heating amount in advance and performs the boiling operation, it can be heated at a constant heating amount for a predetermined time, and the operation efficiency is improved.
[0022]
Further, the heating means is a supercritical heat pump cycle in which the pressure of the refrigerant becomes equal to or higher than the critical pressure, and the water in the hot water storage tank is heated by the refrigerant whose pressure is increased to the critical pressure or higher.
[0023]
According to this invention, the refrigerant that exchanges heat with the water in the hot water storage tank is pressurized to a critical pressure or higher, so that it does not condense even if the temperature is lowered due to the heat deprived from the water in the hot water storage tank. Therefore, it becomes easy to form a temperature difference between the refrigerant and water in the entire heat exchanger, high-temperature hot water can be obtained, and heat exchange efficiency can be increased.
[0024]
【Example】
Embodiments of the present invention will be described below with reference to the drawings. In addition, in each Example, the same code | symbol is provided about the part which has the same structure and the same operation | movement, and detailed description is abbreviate | omitted.
[0025]
Example 1
FIG. 1 shows a block diagram of a hot water supply apparatus in a first embodiment of the present invention. The present embodiment is a hot water supply device for general households, which mainly stores hot water for hot water using cheap midnight power. The hot water storage tank 15 and the water in the hot water storage tank 15 are heated to perform boiling operation. Heating means 16 that is a heat pump cycle, and heating control means 17 that boil a predetermined amount of water in the hot water storage tank 15, that is, an amount that fills the hot water storage tank 15 with hot water in a midnight power time period that is a predetermined time. The
[0026]
The heating unit 16 includes a compressor 18, a radiator 19, a decompression unit 20, and a heat absorber 21.
Is connected to a closed circuit. This heating means 16 uses, for example, carbon dioxide (CO2) as a refrigerant, and uses a supercritical heat pump cycle in which the refrigerant pressure on the high pressure side is equal to or higher than the critical pressure of the refrigerant. The compressor 18 is driven by a built-in electric motor (not shown), and compresses and sucks the sucked refrigerant to a pressure exceeding the critical pressure. Reference numeral 23 denotes a heat exchanger provided with a water flow path 24 for exchanging heat with the refrigerant of the radiator 19.
[0027]
Reference numeral 25 denotes a circulation path having a circulation pump 26 for supplying water from the bottom of the hot water storage tank 15 and returning it to the upper part of the hot water storage tank 15, and boiling in the hot water storage tank 15 is conducted to the water flow path 24 of the heat exchanger 23 through which the water in the circulation path 25 flows. Connect and heat the running water.
[0028]
The heating control means 17 changes the heating amount when a normal heating operation control for controlling the heating means 16 with a predetermined heating amount and an operation other than the heating operation occurs in the late-night power hours, and raises the heating amount. It has correction boiling operation control to operate.
[0029]
Normal boiling operation control in the heating control means 17 is provided in the vicinity of the outlet of the water flow path 24, and the detection value of the heating sensor 28 that detects the heating temperature of the flowing water is input, and the circulation pump 26, the compressor 18, The decompression means 20 is controlled so that hot water of a predetermined temperature (for example, 85 ° C.) is discharged from the outlet of the water flow path 24. As a result, the temperature inside the hot water storage tank 15 is divided into a high temperature and the lower part is divided into a low temperature, and the temperature stratification 27 is formed. The temperature stratification 27 moves below the hot water storage tank 15 according to the heating operation. Everything gets hot. The heating amount of the hot water storage tank 15 as a whole is set in advance so as to boil in the late-night power hours (for example, from 23:00 to 7 in the next morning). In a time zone other than this late-night power time zone, the boiling operation is appropriately started according to the detection value of the remaining hot water sensor 29 that detects the remaining hot water in the hot water storage tank 15.
[0030]
The heating amount is set according to the following equation so that the entire hot water storage tank 15 is heated to a predetermined temperature in the late-night power period (8 hours) even in winter.
[0031]
Q = V × (Ts−Tw) / (8 × 860 × η)
However, Q: Heating amount (kW)
V: Tank capacity (L)
Ts: Boiling temperature (° C)
Tw: Initial temperature in hot water tank (° C)
η: Heating efficiency For example, if the hot water storage tank 15 is 370 L, the water in the hot water storage tank 15 is 5 ° C., the boiling temperature is 85 ° C., and the heating efficiency is 1.0, the heating amount Q is 4.3 kW, and 4.5 kW with a margin Set the heating amount with. And it can boil reliably by setting this heating amount constant throughout the year.
[0032]
When the hot water supply operation occurs in the hot water storage tank 15 during the midnight power hours, the correction heating operation control of the heating control means 17 increases the heating amount Q of the heating means 16 according to the hot water supply operation, and performs the boiling operation. Do.
[0033]
In the hot water supply operation, tap water is supplied from a water supply pipe 30 connected to the bottom of the hot water storage tank 15 and discharged from a hot water discharge pipe 31 provided on the upper part of the hot water storage tank 15. A mixing valve 32 mixes hot water and tap water from the hot water discharge pipe 31 and discharges hot water at an appropriate temperature to the hot water supply pipe 33. The heating control means 17 detects the hot water supply operation by a flow rate sensor 34 provided in the hot water supply pipe 33, and obtains the heating amount Qc to be corrected at the end of the hot water supply operation by the following equation.
[0034]
Qc = (V−Vz) × (Ts−Tw) / (Tiz × 860 × η)
Vz: amount of remaining hot water (L)
Tiz: Remaining time of midnight power hours (h)
Here, the remaining hot water amount Vz is the amount of hot water above the temperature stratification 27 of the hot water storage tank detected by the remaining hot water sensor 29. Here, if Qc is larger than Q, the heating amount is changed to Qc, and the boiling operation is performed. If Qc is smaller than Q, the heating amount is operated with Q.
[0035]
For example, when a large amount of hot water is discharged from the hot water storage tank 15 by the hot water supply operation, the temperature stratification 27 moves above the hot water storage tank 15 and the remaining hot water amount Vz decreases. When Qc increases as a result, the boiling operation of the hot water storage tank 15 after this calculation is performed with the heating amount changed to Qc. Therefore, the entire hot water storage tank 15 can be boiled at the predetermined boiling temperature Ts with the remaining time Tiz.
[0036]
The correction heating operation control of the heating control means 17 increases the heating amount Q of the heating means 16 according to the defrosting operation even when the defrosting operation occurs in the heating means 16 during the midnight power time period, Raise the drive.
[0037]
The defrosting operation includes a bypass passage 34 that bypasses the radiator 19 and the decompression means 20 in the refrigerant passage 22 and an open / close valve 36 provided in the bypass passage 35, and performs a heating operation in winter to perform the heat absorber 21. When frost adheres, the on-off valve 36 is opened, the refrigerant is circulated between the compressor 18 and the heat absorber 20, and a defrosting operation is performed in which the frost is melted by operating heat generated by the compressor 18. And the heating control means 17 calculates | requires the heating amount Qc correct | amended at the time of completion | finish of a defrost operation similarly to the time of hot-water supply operation, and increases heating amount so that the whole hot water storage tank 15 may be boiled in the midnight electric power time zone by remaining time Tiz. To do.
[0038]
In addition, since the defrosting operation can predict the presence or absence of the defrosting operation according to the outside air temperature, the amount of heating is increased from the beginning assuming the shortage of heat due to the defrosting operation based on the outside air temperature at the start of the boiling operation in the midnight power hours. You may drive. According to this method, since the heating amount during the boiling operation can be made constant, the heating efficiency is good.
[0039]
(Example 2)
FIG. 2 is a configuration diagram of a hot water supply apparatus according to a second embodiment of the present invention. In addition, the thing of the same structure as the hot water supply apparatus of Example 1 gives the same code | symbol, and abbreviate | omits description.
[0040]
In the figure, the difference from the configuration of the first embodiment is that the heating means 16 is provided with a bath heating operation for heating the bath water 40 and the heating control means 17 is used when the heating means 16 performs the bath heating operation. The heating amount of the heating means 16 is increased in accordance with the heating operation.
[0041]
Specifically, a bath heat exchanger 42 for heating the bath water 41 is provided. The bath heat exchanger 42 includes a bath radiator 43 and a bath water channel 44 through which bath water flows. Heat exchange is performed between the refrigerant and the bath water in the bath water channel 44. The bath 40 is connected to a bath circulation circuit 45 that circulates the bath water 41 to the bath water flow path 43, and the bath circulation path 45 is provided with a circulation bath pump 46. On the other hand, the bath radiator 42 is arranged in the refrigerant flow path 22 in parallel with the radiator 19, and is configured to be switched by a refrigerant branch valve 47.
[0042]
When the bath heating operation is performed, the refrigerant branch valve 47 is switched so that the refrigerant flows into the bath radiator 44. Then, by stopping the circulation pump 26 and driving the bath pump 46, the bath water flow path 43 is heated by the bath heat exchanger 42 and the temperature of the bath water 41 rises.
[0043]
When the bath heating operation is performed during the midnight power hours, the heating control means 17 obtains the heating amount Qc to be corrected in the same manner as in the first embodiment at the end of the bath heating operation, and uses the remaining time Tiz to store the hot water tank 1.
Increase the amount of heating so that the whole 5 is boiled in the late-night power hours.
[0044]
As described above, according to the configuration and operation of the second embodiment, even if the bath heating operation is interrupted during the heating operation in the late-night power hours, the remaining time Tiz is shortened by the time of the bath heating operation. Accordingly, the heating amount Qc to be corrected increases accordingly. As a result, correction is performed so that the water in the hot water storage tank 15 can be boiled and set to the set temperature in the late-night power hours.
[0045]
Example 3
FIG. 3 is a configuration diagram of a hot water supply apparatus according to a third embodiment of the present invention. In addition, the thing of the same structure as the hot-water supply apparatus of Example 1 and Example 2 gives the same code | symbol, and abbreviate | omits description.
[0046]
In the figure, the difference from the configurations of the first and second embodiments is that an air conditioning indoor unit 50 is connected to the heating means 16, and air conditioning operations such as heating, bathroom drying, cooling, and dehumidification are provided, and the heating control means 17. In the case where the heating unit 16 performs the air conditioning operation, the heating amount of the heating unit 16 is increased in accordance with the air conditioning operation.
[0047]
The indoor unit 50 includes an indoor heat exchanger 51 and a blower 52, and the indoor heat exchanger 51 exchanges heat between the refrigerant and indoor air by blowing. The indoor heat exchanger 51 is arranged in the refrigerant flow path 22 in parallel with the radiator 19 and is configured to be switched by the refrigerant branch valve 47. A switching valve 53 for switching the refrigerant flow direction is provided at the inlet and outlet of the compressor 18 to switch between heating operation (solid line) and cooling operation (dotted line).
[0048]
When performing the air conditioning operation, the refrigerant branch valve 47 is switched so that the refrigerant flows into the indoor heat exchanger 51. Then, by stopping the circulation pump 26 and driving the blower 52, the indoor air is heated or cooled by the indoor heat exchanger 51 to be air-conditioned.
[0049]
When the air-conditioning operation is performed during the midnight power hours, the heating control means 17 obtains the heating amount Qc to be corrected in the same manner as in the first embodiment at the end of the air-conditioning operation, and the entire hot water storage tank 15 is midnight power at the remaining time Tiz. Increase the amount of heat to boil in time.
[0050]
Therefore, even if the air-conditioning operation can be interrupted during the heating operation during the midnight power hours, the remaining time Tiz is shortened by the time of the bath heating operation, and the heating amount Qc to be corrected is increased accordingly. As a result, correction is performed so that the water in the hot water storage tank 15 can be boiled and set to the set temperature in the late-night power hours.
[0051]
However, since the heating amount Qc has a limit in capacity, when Qc exceeds the upper limit, the heating operation is performed with the upper heating amount, and the shortage is heated in a time zone other than midnight power.
[0052]
In the embodiment, a supercritical heat pump cycle is used as the heating means, but a normal heat pump cycle may be used as a matter of course, and a similar effect can be obtained with a general heater.
[0053]
【The invention's effect】
As described above, according to the present invention, it is possible to provide a hot water supply apparatus that heats a hot water storage tank during a late-night electricity time zone with a low electricity bill.
[Brief description of the drawings]
1 is a configuration diagram of a hot water supply apparatus in Embodiment 1 of the present invention. FIG. 2 is a configuration diagram of a hot water supply apparatus in Embodiment 2. FIG. 3 is a configuration diagram of a hot water supply apparatus in Embodiment 3. FIG. Configuration of hot water supply equipment [Explanation of symbols]
15 Hot water storage tank 16 Heating means (heat pump cycle)
17 Heating control means

Claims (1)

貯湯タンク内の水を深夜電力時間帯任意の加熱量で加熱して沸き上げ運転する加熱手段と、前記加熱手段による加熱量を変更する加熱制御手段とを備え、前記加熱制御手段は、前記深夜電力時間帯に行われる沸き上げ運転の開始時にあらかじめ設定された加熱量となるように前記加熱手段を制御するとともに、前記加熱制御手段は、前記沸き上げ運転の途中に除霜運転が発生した場合、前記除霜運転が終了した時点において、前記除霜運転が終了した時点から前記深夜電力時間帯終了時までに前記貯湯タンク下方の低温度成層を形成する湯水が所定温度となるように前記加熱手段による加熱量を補正する給湯装置。Comprising heating means for heating operation is heated by any heating amount of water in the hot water storage tank at midnight power time zone, and a heating control means for changing the amount of heating by the heating means, said heating control means, said While controlling the heating means so that the heating amount set in advance at the start of the boiling operation performed in the midnight power time zone, the heating control means , the defrosting operation occurred during the boiling operation In this case, at the time when the defrosting operation is finished, the hot water forming the low temperature stratification below the hot water storage tank is at a predetermined temperature from the time when the defrosting operation is finished to the end of the midnight power period. A hot water supply device for correcting the amount of heating by the heating means.
JP2002323455A 2002-11-07 2002-11-07 Water heater Expired - Fee Related JP3788419B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002323455A JP3788419B2 (en) 2002-11-07 2002-11-07 Water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002323455A JP3788419B2 (en) 2002-11-07 2002-11-07 Water heater

Publications (2)

Publication Number Publication Date
JP2004156847A JP2004156847A (en) 2004-06-03
JP3788419B2 true JP3788419B2 (en) 2006-06-21

Family

ID=32803316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002323455A Expired - Fee Related JP3788419B2 (en) 2002-11-07 2002-11-07 Water heater

Country Status (1)

Country Link
JP (1) JP3788419B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230156028A (en) * 2021-02-07 2023-11-13 옥토퍼스 에너지 히팅 리미티드 Method and system for predictively preparing water supply systems

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101065624A (en) * 2004-09-30 2007-10-31 开利公司 Refrigeration system and method with controllable heat recovery
CN101124438B (en) 2005-02-18 2010-08-04 卡里尔公司 CO2-refrigeration device with heat reclaim
JP5026191B2 (en) * 2007-08-17 2012-09-12 株式会社コロナ Heat pump water heater
JP2010014293A (en) * 2008-07-01 2010-01-21 Denso Corp Hot water supply device
JP5203980B2 (en) * 2009-01-07 2013-06-05 株式会社コロナ Hot water storage hot water heater
JP2010216684A (en) * 2009-03-13 2010-09-30 Toshiba Carrier Corp Hot water supply system
JP2010243111A (en) * 2009-04-08 2010-10-28 Mitsubishi Electric Corp Heat pump type water heater
JP5313087B2 (en) * 2009-09-09 2013-10-09 株式会社コロナ Hot water storage hot water heater
JP5899484B2 (en) * 2012-03-21 2016-04-06 パナソニックIpマネジメント株式会社 Heat pump heating system control method and heating system
JP5938744B2 (en) * 2012-04-25 2016-06-22 パナソニックIpマネジメント株式会社 Heat pump heating system control method and heating system
JP5946791B2 (en) * 2013-04-01 2016-07-06 リンナイ株式会社 Hot water storage water heater
JP7251499B2 (en) * 2020-03-05 2023-04-04 三菱電機株式会社 heat pump water heater
CN111664606B (en) * 2020-06-09 2022-11-15 青岛海尔新能源电器有限公司 Heat pump system and heat pump water heater
JP7554366B2 (en) * 2021-02-07 2024-09-19 オクトパス エナジー ヒーティング リミテッド Low temperature water supply mode in water supply system
WO2022168046A1 (en) * 2021-02-07 2022-08-11 Octopus Energy Group Limited Methods and systems and apparatus to support reduced energy and water usage
AU2022217900B2 (en) * 2021-02-07 2024-07-18 Octopus Energy Heating Limited Modulating energy usage based on a current tariff in a water provision system
AU2022216535B2 (en) * 2021-02-07 2024-07-11 Octopus Energy Heating Limited Methods and systems for modulating energy usage
GB2612741B (en) * 2021-02-07 2023-11-01 Octopus Energy Heating Ltd Methods and systems and apparatus to support reduced energy and water usage

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230156028A (en) * 2021-02-07 2023-11-13 옥토퍼스 에너지 히팅 리미티드 Method and system for predictively preparing water supply systems
KR102717631B1 (en) * 2021-02-07 2024-10-17 옥토퍼스 에너지 히팅 리미티드 Method and system for predictively preparing a water supply system

Also Published As

Publication number Publication date
JP2004156847A (en) 2004-06-03

Similar Documents

Publication Publication Date Title
JP3788419B2 (en) Water heater
EP2381178B1 (en) Heat pump type heating apparatus
US7856835B2 (en) Hot water supply apparatus
CN103348200B (en) Air conditioning and hot-water supplying system
JP3918807B2 (en) Hot water storage type electric water heater
EP2381192B1 (en) Heat pump type speed heating apparatus
WO2016059837A1 (en) Heat pump heating apparatus
JP2008096044A (en) Hot water reservoir type hot-water supply device
KR101151006B1 (en) Heat pump system using ground heat source
JP4029957B2 (en) Heat pump water heater
JP3855695B2 (en) Heat pump water heater
JP2004317093A (en) Heat pump hot water supply and heating apparatus
JP3843963B2 (en) Heat pump water heater
JP3800497B2 (en) Water heater
JP5097054B2 (en) Heat pump water heater
JP2006250497A (en) Hot water supply system
JP2010054145A (en) Heat pump water heater
JP4236542B2 (en) Heat pump water heater
JP4251785B2 (en) Heat pump water heater
JP3719161B2 (en) Heat pump water heater
JPH03125856A (en) Heat pump hot water feeder
JP2002340440A (en) Heat pump hot-water supplier
JP7507378B2 (en) Heat pump hot water supply system
JP2006003077A (en) Heat pump type hot water supply apparatus
JP2004218965A (en) Heat pump water heater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040818

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050617

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050927

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060320

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100407

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110407

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120407

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130407

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130407

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140407

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees