JP3818554B2 - Hydrous silicic acid for reinforcing elastomer and method for producing the same - Google Patents
Hydrous silicic acid for reinforcing elastomer and method for producing the same Download PDFInfo
- Publication number
- JP3818554B2 JP3818554B2 JP34917696A JP34917696A JP3818554B2 JP 3818554 B2 JP3818554 B2 JP 3818554B2 JP 34917696 A JP34917696 A JP 34917696A JP 34917696 A JP34917696 A JP 34917696A JP 3818554 B2 JP3818554 B2 JP 3818554B2
- Authority
- JP
- Japan
- Prior art keywords
- silicic acid
- hydrous silicic
- surface area
- specific surface
- reaction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Silicon Compounds (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、新規な含水ケイ酸及びその製造方法に関する。さらに詳しくは、本発明は、加工性と破壊特性及び耐磨耗性とに優れた新規なエラストマー補強用含水ケイ酸及びその製造方法に関する。本発明の含水ケイ酸は、工業用ゴム製品補強用充填剤として有用である。
【0002】
【従来の技術】
従来、ゴム組成物の補強剤として、無機充填剤が多岐分野にわたり使用されている。中でも含水ケイ酸は比較的高い補強性を有し、更には白色のため着色が自由であり、かつ安価であることから、一般的な高補強性充填剤として多用されてきた。これらの含水ケイ酸はその特性に応じて、各種用途のゴムに使いわけられている。
【0003】
【発明が解決しようとする課題】
含水ケイ酸のゴム補強メカニズムは複雑多岐で、ゴム配合物の特性は含水ケイ酸の粉体物性に大きく左右される。特にBET法比表面積(以下N2 −SA)はゴム配合物の粘度、並びに破壊特性及び耐磨耗性等に大きな影響を及ぼすことは既によく知られている。中で、ゴム配合物の粘度は加工性を左右する大きなファクターである。粘度が低いものほど加工性は良好であることから、低粘度のものが求められている。また、BET比表面積が高い含水ケイ酸は、補強効果が大きいが、粘度も高くなる。逆にBET比表面積が低いと粘度は下がり加工性は容易になるが、補強性が劣る。
加工性と補強性とは共に優れていることが望まれているのであるが、このように相反する物性である。ところが、実用上は、ゴム製品の用途の多様化と高度化とから、加工性と補強性の両者がより改善された含水ケイ酸が望まれている。しかし、現在の技術で製造される含水ケイ酸は、いずれも満足なゴム物性を提供するに至っていない。
【0004】
このように相反する加工性と補強性の両者ともに優れた総合的バランスをもった高補強性充填剤としての含水ケイ酸が求められている。
そこで本発明の目的は、ゴム配合物の粘度を低くして加工性を向上させることができ、かつ、引張強度等の破壊特性と耐摩耗性に優れた補強特性を有するエラストマー補強用含水ケイ酸及びその製造方法を提供することにある。
【0005】
【課題を解決するための手段】
本発明者らは、含水ケイ酸をエラストマー用補強充填剤として使用するにあたり、ゴム配合物の粘度を低くして加工性の向上を図り、同時に補強性能、即ち引張強度、引張応力、反撥弾性及び耐磨耗性等を向上させた含水ケイ酸について鋭意研究を重ね、本発明に至った。
即ち、本発明は、BET法比表面積(N2 −SA)が200〜300m2/gの範囲であり、Hg法比表面積(Hg−SA)が150m2/g以下であり、ジ・ブチル・アミン吸着量/BET法比表面積の比が1.4以下であり、且つ、Hg−SA/N2 ─SAの比が0.6以下である湿式法含水ケイ酸からなることを特徴とするエラストマー補強用含水ケイ酸に関する。
【0006】
さらに本発明は、(1)シリカ濃度が5g/l以下であるアルカリ金属ケイ酸塩水溶液を予め充填した反応容器に、アルカリ金属ケイ酸塩水溶液と鉱酸を並行して添加してケイ酸を生成させる工程であって、前記アルカリ金属ケイ酸塩水溶液と鉱酸との添加を40〜100分間に渡って行い、その間の反応液のpHを7〜10の範囲に維持し、かつ添加終了時の反応液中のシリカ濃度を40g/l以下とする工程、
(2)前記反応液に、前記反応で中和されたアルカリ金属ケイ酸塩と等量以上のアルカリ金属ケイ酸塩を含む水溶液を60分以内で添加する工程であって、添加終了時の反応液中のシリカ濃度を60〜80g/lとする工程、及び
(3)前記反応液に、鉱酸を添加して反応液のpHを5以下にする工程であって、前記添加を30分以内に行う工程からなり、かつ
工程(1)〜(3)を60〜100℃の温度で行うことを特徴とする請求項1の含水ケイ酸の製造方法に関する。
【0007】
【発明の実施の態様】
本発明を更に詳細に説明する。
充填剤のゴム補強のメカニズムは、フィラー特有の反応性及び構造性並びに分散機能によると、一般にいわれている。より具体的には、ゴムの補強性能に関与する大きな因子として、含水ケイ酸の一次粒子径及びアグリゲート径、それに伴うゴム配合物中での分散が大きく関与することが知れている。従って、これら含水ケイ酸の物性をコントロールすることは、所望のゴムの補強性能を得る上で重要である。含水ケイ酸の構造性については、粒子径及び細孔容積等がその指標として用いられている。しかし、分散機能に関しては、未だ確たる指標が見出されていないのが現状である。
【0008】
本発明者らは、これら構造性のみならず、分散機能にも着目して、含水ケイ酸によるゴム補強の研究を重ねた。含水ケイ酸配合物の補強性能は、大きくは含水ケイ酸のBET比表面積に比例し、BET比表面積が高いほど補強性能は高い傾向にある。しかしながら、高比表面積である含水ケイ酸ほどゴム配合物の粘度も高くなる傾向がある。更に、比表面積が高すぎると分散不良を招き、補強性能が逆に低下すると同時に加工性も阻害する。これは、以下のような理由によると考えられる。含水ケイ酸の表面には多数のシラノール(Si−OH)基が存在している。これらのシラノール基は官能基として働き、補強効果をもたらす反面、粒子間の水素結合による自己凝集力が強く働き過ぎるためかエラストマー内部における分散が困難となる。そのため、高比表面積ではあってもその一部分のみがエラストマーに接する結果となり、補強効果を逆に低下させることになると解される。
【0009】
それ故、充填剤としての含水ケイ酸の比表面積の増大(一次粒子の小径化)は、粒子表面のシラノール基の増大につながる。その結果、エラストマー内部での分散不良をもたらし、補強効果の低下を招くと推測される。
このような観点から、本発明者らは、従来の一次粒子径の揃った含水ケイ酸に対して、一次粒子径が大小異なったものが混在し、混在の程度を調整することで含水ケイ酸の比表面積の調整すれば、高比表面積をもった含水ケイ酸粒子であっても、エラストマー内における良好なる分散が得られると同時に、低粘度化が図れ加工性をも容易にすることができると考えた。
本発明者らはかかる観点から研究を重ね、前記の特定した範囲の含水ケイ酸において優れた補強効果がもたらされることを見出し本発明を完成するに至ったのである。
【0010】
本発明の湿式法含水ケイ酸は、BET法比表面積(N2 −SA)が200〜300m2/gの範囲である。BET法比表面積が200m2 /g未満では補強性が劣り、逆に300m2 /gを超えると自己凝集力があまりにも強すぎ分散不良の原因となり補強性の低下及び粘度の上昇を招く。BET法比表面積の範囲は、好ましくは230〜280m2 /gの範囲である。
本発明の含水ケイ酸は、さらに、Hg法比表面積(Hg−SA)が150m2/g以下である。Hg−SAは、含水ケイ酸の凝集粒子及び凝集粒子同志で形成される細孔の大きさより計算される値である。算出法は、細孔を円筒形と仮定してA=2V/rとして表される。但し、A=表面積(m2 /g)、V=全細孔容積(cc/g)、r=平均細孔半径(μm)とした場合である。従って、Hg−SAの値が小さい含水ケイ酸は、細孔容積が小さく、含水ケイ酸の大小の一次粒子が混在していて密充填に近い状態となっていること、あるいは含水ケイ酸のアグリゲート(凝集粒子)が大小混在していて密充填に近い状態となっていると推測される。
Hg−SAが150m2/gを超えると高活性シリカのゴム挙動を示し、補強性は高いが同時にゴム粘度も高くなり好ましくないことから、本発明の含水ケイ酸ではHg−SAを150m2/g以下とする。Hg−SAは、好ましくは、50〜150m2/gの範囲、さらに好ましくは100〜150m2 /gの範囲である。
【0011】
さらに本発明の含水ケイ酸は、ジ・ブチル・アミン吸着量/BET法比表面積の比が1.4以下である。ジ・ブチル・アミン(以下、DBA)吸着量(m・mol/kg-SiO2)(R.Meyer: Kautschuk und Gummi 7(8),180-182WT(1954)) は、酸性点の量を示し、含水ケイ酸の外部表面積に比例すると言われている。外部表面積があまりに大きくなりすぎると、前述したように分散不良や加工性低下等の問題を起こすことになる。一般にBET比表面積が高いものはDBA吸着量も高い傾向にあり、しばしば高活性であるともいわれる。本発明はこのDBAとN2 −SAとのバランス関係を調整してゴム補強性能を改善している。即ち、本発明では、DBA/N2 −SAの比率を1.4以下とすることで、加工性の改善と補強性の向上を両立させている。DBA吸着量/BET法比表面積の比は、好ましくは0.8〜1.4の範囲である。
【0012】
さらに本発明の含水ケイ酸は、Hg−SA/N2 ─SAの比が0.6以下である。Hg−SA/N2 ─SAの比は、好ましくは0.2〜0.6の範囲、より好ましくは0.3〜0.5の範囲である。Hg−SA/N2 −SAの比は、含水ケイ酸の一次粒子の異なるものの混在状態の指標であり、0.6以下と小さくすることで、ゴム配合物の粘度の上昇を抑制すると同時にゴム加硫物性の改善が図れる。但し、Hg−SAを低くしすぎたり、Hg−SA/N2 −SAの比を小さくしすぎるとゴム配合物の粘度が下がり加工性は良くなるが、補強性が劣ることになるので注意を要する。
【0013】
以下、本発明の湿式法含水ケイ酸の製造方法について説明する。
従来、湿式法含水ケイ酸は、一般に、アルカリ金属ケイ酸塩水溶液と鉱酸の反応により沈殿物として得られることは知られており、基本的には、本発明の製造方法もこれに基づいている。本発明の製造方法において、アルカリ金属ケイ酸塩水溶液は特に限定しないが、例えば、ケイ酸ナトリウムを用いることができる。また鉱酸も特に限定しないが、例えば、硫酸が好適である。
【0014】
本発明の製造方法は3つの工程からなる。
第1の工程は、シリカ濃度が5g/l以下であるアルカリ金属ケイ酸塩水溶液を予め充填した反応容器に、アルカリ金属ケイ酸塩水溶液と鉱酸を並行して添加してケイ酸を生成させる工程であって、前記アルカリ金属ケイ酸塩水溶液と鉱酸との添加を40〜100分間に渡って行い、その間の反応液のpHを7〜10の範囲に維持し、かつ添加終了時の反応液中のシリカ濃度を40g/l以下とする工程である。
第1の工程において、初期シリカ濃度が5g/lを超えると、得られる含水ケイ酸のHg−SAが150m2/gを超えるようになるので適当でない。また、第1の工程の終了時のシリカ濃度が40g/lを超えると、同様にHg−SAが150m2/gを超えるようになるので適当でない。アルカリ金属ケイ酸塩水溶液と鉱酸との添加の時間(反応時間)が40分未満ではN2 −SAが低くなる傾向があり、また100分を超えると生産性が悪くなる。また、アルカリ金属ケイ酸塩水溶液と鉱酸の添加の間の反応液のpHを7〜10の範囲に維持するのは、pH7未満の酸性領域では含水ケイ酸合成条件から外れ、ゲル状生成物が発生して反応のコントロールが困難になるからであり、また、pHが10を超えると微小な一次粒子の含有割合が多くなり、N2 −SAが高くなりすぎるためである。
【0015】
第2の工程は、第1の工程で得られる反応液に、前記反応で中和されたアルカリ金属ケイ酸塩と等量以上のアルカリ金属ケイ酸塩を含む水溶液を60分以内で添加する工程であって、添加終了時の反応液中のシリカ濃度を60〜80g/lとする工程である。
第2の工程では、第1の工程で中和されたアルカリ金属ケイ酸塩と等量以上のアルカリ金属ケイ酸塩を含む水溶液を反応液に添加する。この工程でのケイ酸ナトリウムの添加量が多いほど大粒子(一次粒子)の比率は多くなる。ここで、添加終了時の反応液中のシリカ濃度を60〜80g/lとすることで、N2 −SAの調整が容易になる。即ち、本工程においてシリカ濃度が低すぎるとN2 −SAが高くなりすぎ、逆にシリカ濃度が高すぎるとN2 −SAが低くなりすぎ、いずれの場合にも、本発明の目的とする含水ケイ酸が得られにくくなる。また、アルカリ金属ケイ酸塩を含む水溶液を60分以内で添加するのは、添加時間が60分を超えるとN2 −SAが低くなりすぎる傾向があるからである。
【0016】
第3の工程は、第2の工程で得られる反応液に、鉱酸を添加して反応液のpHを5以下にする工程であって、前記添加を30分以内に行う工程である。鉱酸を30分以内に添加して反応液のpHを5以下にするのは、30分以内の短時間でpHを5以下に酸性化することにより小粒子(一次粒子)のものが多く得られ、バランスの良い大小不揃いの粒子が得られるからである。ゆっくりと長時間で酸性化を行うと粒子成長が更に進み大粒子が増し小粒子の割合が減少し、本発明の所望の含水ケイ酸は得られない。酸性化の時間が短いほど小粒子の含有率は多く、比表面積は高くなりゴム補強効果は高まる傾向がある。前述したように小粒子の含有度合いは、Hg−SA/N2 −SAの比で知ることができ、上記条件とすることで、Hg−SA/N2 −SAが0.6以下の含水ケイ酸が得られる。
【0017】
上記第1〜第3の工程は、いずれも60〜100℃の範囲の温度で行う。好ましくは70〜90℃の範囲である。この範囲の温度で反応を行うことで、反応を速やかに進行させることができる。
得られる反応生成物を、従来の湿式法含水ケイ酸と同様な方法で、濾過、水洗、乾燥、必要ならば粉砕を行い、本発明の含水ケイ酸を製造できる。
本発明の製造方法により、従来困難とされていた加工性に優れた高補強性含水ケイ酸を湿式沈殿法により製造することができる。
【0018】
【実施例】
以下、本発明の含水ケイ酸及びその製造方法について実施例によりさらに説明する。
含水ケイ酸の物性測定法及びゴム物性の試験法を以下に示す。
(1)ジ・ブチル・アミン(DBA)吸着量
石油ベンジン溶液中で含水ケイ酸に、一定量の過剰のn−ジブチルアミンを添加吸着させ、残ったアミンを過塩素酸の酢酸溶液で逆滴定して差し引き吸着したアミン量でもってシラノール基量を定量する。単位:m・mol/kg
(2)BET法比表面積(N2 −SA)
AMS−8000(大倉理研社製)で1点法により測定。単位:m2 /g
【0019】
(3)Hg法比表面積(Hg−SA)
ポロシメーター2000型(伊国 Carlo Erba 社製) にて測定。
算定法: A=2V/r
(A=比表面積(m2 /g)、V=細孔容積(cc/g)、r=平均半径(μm))
(4)ムーニー粘度(ML1+4)
ムーニー粘度計(島津製作所 SMV−200型)を用い、125℃、L型ローターにて測定。
【0020】
(5)加硫物特性
一般加硫物特性
JIS K6301の試験法に準じ測定。
磨耗試験はアクロン型磨耗試験機で測定
傾角− 15°、 荷重− 6ポンド
試験回数−2000rpmでの磨耗減容を測定し、比較例2を100として指数で表示。(数値の高い方が耐磨耗性は良)
【0021】
(6)配合及び混練法
A配合
SBR1502(日本合成ゴム社製)100部を8インチロールに巻きつけ、ステアリン酸を1部、加硫助剤として酸化亜鉛を3部、加硫促進剤Dを1.2部、DMを0.8部(大内新興社製)、加硫剤として硫黄を2部、活性剤としてPEG#4000を2部、含水ケイ酸を50部を添加して、練り温度35±5℃にて混練してゴム組成物を得た。これら試料の未加硫物及び加硫物(150℃で10分間加硫)の各種物性試験を行い、結果を表1に示した。
B配合
容量1.7リットルのバンバリーミキサーにてJSR1712を96.3部とBR01を30部30秒間素練り後、ステアリン酸を2部、含水ケイ酸を70部、パラフィンワックスを1部、アロマ油を7部、シランSi69を7部投入し、全練り時間5分後取り出す。取り出し時のコンパウンド温度を140〜150℃にラム圧や回転数で調整する。コンパウンドを室温にて冷却後、コンパウンドに老防810NAを1部、亜鉛華を4部、加硫促進剤CZを1.5部、加硫剤Sを2部添加し、約1分間混練し(取り出し時の温度を110℃以下とする)後8インチロールにてシーティングして未加硫物、加硫物特性を測定した。結果を表2に示した。
【0022】
実施例1
攪拌器を備えた200リットルジャケット付きステンレス容器に、水91リットル及びケイ酸ナトリウム水溶液〔SiO2 150g/l、SiO2 /Na2 O重量比3.3〕0.7リットルを投入し、加熱して温度85℃とした。この時のpHは9.4で、シリカ濃度は1.2g/lであった。
【0023】
上記水溶液に、同様のケイ酸ナトリウム水溶液と硫酸(18. 4 mol/l)とをpHを9.5±0.5に維持しながら同時に添加し、55分で停止した。この時のシリカ濃度は38g/lであった。続いてこの反応で消費されたケイ酸ナトリウムの155%の量のケイ酸ナトリウムを含む上記と同様のケイ酸ナトリウム水溶液を35分間で添加した。この時のシリカ濃度は68g/lであった。引き続いて上記と同様の硫酸の添加を20分間行い、pH3で酸性化を終了して沈殿物を得た。
全工程反応温度は85±1℃を保った。その後得られた反応物をフィルタープレスで濾過、水洗し、得られた湿潤ケーキを箱型乾燥器で乾燥して湿式沈殿法による含水ケイ酸を得た。
【0024】
実施例2
実施例1と同容器、同原料を用い、水86リットル及びケイ酸ナトリウム水溶液0.5リットルを投入し,加熱して90℃とした。この時のpHは9.3で,シリカ濃度は0.8g/lであった。以後実施例1と同様な方法で同時添加を55分間行った。この時のシリカ濃度は40g/lであった。引き続き同時添加で消費されたケイ酸ナトリウムの160%の量のケイ酸ナトリウムを含む上記と同様のケイ酸ナトリウム水溶液を45分間で添加した。この時のシリカ濃度は71g/lであった。その後硫酸で25分間酸添加を行ないpH3で終了して実施例1と同様の方法で含水ケイ酸を得た。反応温度は全工程90±1℃を保った。
【0025】
実施例3
実施例1と同容器、同原料を用い、水102リットル及びケイ酸ナトリウム水溶液0.6リットルを投入し、加熱して80℃とした。この時のpHは9.2で、シリカ濃度は0.9g/lであった。以後実施例1と同様な方法で同時添加を95分間行った。この時のシリカ濃度は34g/lであった。引き続き同時添加で消費されたケイ酸ナトリウムの140%の量のケイ酸ナトリウムを含む上記と同様のケイ酸ナトリウム水溶液を30分間で添加した。この時のシリカ濃度は61g/lであった。その後、硫酸で30分間酸添加を行ないpH3で終了して実施例1と同様の方法で含水ケイ酸を得た。反応温度は全工程80±1℃を保った。
【0026】
実施例4
実施例1と同容器、同原料を用い、水87リットル及びケイ酸ナトリウム水溶液0.4リットルを投入し、加熱して85℃とした。この時のpHは9.2で、シリカ濃度は0.6g/lであった。以後実施例1と同様な方法で同時添加を40分間行った。この時のシリカ濃度は35g/lであった。引き続き同時添加で消費されたケイ酸ナトリウムの220%の量のケイ酸ナトリウムを含む上記と同様のケイ酸ナトリウム水溶液を60分間で添加した。この時のシリカ濃度は72g/lであった。その後、硫酸の添加を21分間行ないpH3で終了して実施例1と同様の方法で含水ケイ酸を得た。反応温度は全工程85±1℃を保った。
【0027】
比較例1
実施例1と同容器、同原料を用い、水104リットル及びケイ酸ナトリウム水溶液0.7リットルを投入し、加熱して85℃とした。この時のpHは9.6で、シリカ濃度は1.0g/lであった。以後実施例1と同様な方法で同時添加を47分間行った。この時のシリカ濃度は37g/lであった。引き続き同時添加で消費されたケイ酸ナトリウムの90%の量のケイ酸ナトリウムを含む上記と同様のケイ酸ナトリウム水溶液を30分間で添加した。この時のシリカ濃度は55g/lであった。その後、硫酸の添加を18分間行ないpH3で終了して実施例1と同様の方法で含水ケイ酸を得た。反応温度は全工程85±1℃を保った。
【0028】
比較例2:Nipsil ER−R(日本シリカ工業社製)
比較例3:Nipsil NS−KR(日本シリカ工業社製)
比較例4:Nipsil HD−R(日本シリカ工業社製)
【0029】
【表1】
【0030】
【表2】
【0031】
表中、TBは引張強度、M300 は300 %引張応力、Ebは伸び、Hsは硬度、TRは引裂強度、Rは反撥弾性、C.Sは圧縮永久歪をそれぞれ示す。
尚、本発明において、破壊特性とは、引張強度、引張応力、伸び及び引裂強度の総称である。
一般にゴム加硫配合物は、DBA吸着量及びBET法比表面積(N2 −SA)が高い含水ケイ酸ほど、高い補強性を示し、逆に加工性、反撥弾性、セット性が低下する。表1及び2の結果から、実施例1〜4のゴム配合物は、いずれも、低い粘度を示すにも係わらず、破壊特性の指標である引張強度、引張応力、伸び及び引裂強度が高く、加工性と補強特性のバランスが取れたものであると言える。それに対して、比較例1、3及び4のゴム配合物は、粘度が極端に高く、加工性が悪い。また、比較例2のゴム配合物は、粘度は低く加工性は良好であるが、破壊特性の指標である引張強度、引張応力、伸び及び引裂強度が低く、補強特性に劣るものである。
【0032】
【発明の効果】
本発明によれば、ゴム配合物の粘度を低くして加工性を向上させることができ、かつ、引張強度等の破壊特性と耐摩耗性に優れた補強特性を有するエラストマー補強用含水ケイ酸とその製造方法を提供することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a novel hydrous silicic acid and a method for producing the same. More specifically, the present invention relates to a novel hydrous silicic acid for reinforcing an elastomer excellent in processability, fracture characteristics and abrasion resistance, and a method for producing the same. The hydrous silicic acid of the present invention is useful as a filler for reinforcing industrial rubber products.
[0002]
[Prior art]
Conventionally, inorganic fillers have been used as a reinforcing agent for rubber compositions in various fields. Among these, hydrous silicic acid has a relatively high reinforcing property, and since it is white and can be colored freely and is inexpensive, it has been frequently used as a general highly reinforcing filler. These hydrous silicic acids are used for various purposes depending on their properties.
[0003]
[Problems to be solved by the invention]
The rubber reinforcement mechanism of hydrous silicic acid is complex and diverse, and the properties of the rubber compound are greatly influenced by the powder properties of the hydrous silicic acid. In particular, it is already well known that the BET specific surface area (hereinafter referred to as N 2 -SA) has a great influence on the viscosity, fracture characteristics, wear resistance, and the like of rubber compounds. Among them, the viscosity of the rubber compound is a large factor that affects the processability. Since the lower the viscosity, the better the workability, a low viscosity is required. In addition, hydrous silicic acid having a high BET specific surface area has a large reinforcing effect but also has a high viscosity. Conversely, when the BET specific surface area is low, the viscosity is lowered and the processability is facilitated, but the reinforcement is inferior.
It is desired that both workability and reinforcement are excellent, but these are contradictory physical properties. However, in practical use, hydrous silicic acid with improved processability and reinforcement is desired due to the diversification and sophistication of rubber product applications. However, none of the hydrous silicic acids produced by the current technology has provided satisfactory rubber properties.
[0004]
Thus, there is a demand for hydrous silicic acid as a highly reinforcing filler having an excellent overall balance of both workability and reinforcing properties which are contradictory.
Accordingly, an object of the present invention is to improve the processability by lowering the viscosity of a rubber compound, and also has hydrous silicic acid for reinforcing an elastomer having a reinforcing property excellent in fracture properties such as tensile strength and abrasion resistance. And a manufacturing method thereof.
[0005]
[Means for Solving the Problems]
When using hydrous silicic acid as a reinforcing filler for elastomers, the present inventors have attempted to improve processability by lowering the viscosity of the rubber compound, and at the same time, reinforcing performance, that is, tensile strength, tensile stress, rebound resilience and As a result of extensive research on hydrous silicic acid with improved wear resistance, etc., the present invention has been achieved.
That is, in the present invention, the BET specific surface area (N 2 -SA) is in the range of 200 to 300 m 2 / g, the Hg specific surface area (Hg-SA) is 150 m 2 / g or less, An elastomer comprising a wet process hydrous silicic acid having an amine adsorption amount / BET specific surface area ratio of 1.4 or less and a Hg-SA / N 2 -SA ratio of 0.6 or less It relates to hydrous silicic acid for reinforcement.
[0006]
Furthermore, the present invention provides (1) a silicic acid by adding an alkali metal silicate aqueous solution and a mineral acid in parallel to a reaction vessel preliminarily filled with an alkali metal silicate aqueous solution having a silica concentration of 5 g / l or less. A step of generating the alkali metal silicate aqueous solution and the mineral acid over 40 to 100 minutes, maintaining the pH of the reaction solution in the range of 7 to 10 during the addition, and at the end of the addition A step of adjusting the silica concentration in the reaction solution of 40 g / l or less,
(2) A step of adding an aqueous solution containing an alkali metal silicate equal to or more than the alkali metal silicate neutralized in the reaction to the reaction solution within 60 minutes, the reaction at the end of the addition A step of adjusting the silica concentration in the solution to 60 to 80 g / l, and (3) a step of adding a mineral acid to the reaction solution to make the pH of the reaction solution 5 or less, and the addition is performed within 30 minutes The method for producing hydrous silicic acid according to claim 1, wherein the steps (1) to (3) are performed at a temperature of 60 to 100 ° C.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
The present invention will be described in further detail.
The rubber reinforcement mechanism of the filler is generally said to be based on the specific reactivity and structure of the filler and the dispersion function. More specifically, it is known that the primary particle diameter and aggregate diameter of hydrous silicic acid and the accompanying dispersion in the rubber compound are greatly involved as major factors related to rubber reinforcing performance. Therefore, controlling the physical properties of these hydrated silicic acids is important in obtaining the desired rubber reinforcement performance. As for the structure of hydrous silicic acid, particle diameter, pore volume, and the like are used as indicators. However, as for the distributed function, there is no clear index yet.
[0008]
The present inventors repeated research on rubber reinforcement with hydrous silicic acid by paying attention not only to these structural properties but also to the dispersion function. The reinforcement performance of the hydrous silicate composition is largely proportional to the BET specific surface area of the hydrous silicate, and the reinforcement performance tends to be higher as the BET specific surface area is higher. However, hydrous silicic acid having a high specific surface area tends to increase the viscosity of the rubber compound. Further, if the specific surface area is too high, poor dispersion is caused, and the reinforcing performance is conversely lowered, and at the same time, the workability is hindered. This is considered due to the following reasons. Many silanol (Si-OH) groups exist on the surface of the hydrous silicic acid. These silanol groups function as functional groups and provide a reinforcing effect, but on the other hand, the self-aggregation force due to hydrogen bonding between particles is too strong, making it difficult to disperse inside the elastomer. Therefore, even if it is a high specific surface area, it will be understood that only a part thereof comes into contact with the elastomer, and the reinforcing effect is reduced.
[0009]
Therefore, an increase in the specific surface area of hydrous silicic acid as a filler (reduction in primary particle size) leads to an increase in silanol groups on the particle surface. As a result, it is presumed that poor dispersion within the elastomer is caused and the reinforcing effect is lowered.
From such a viewpoint, the present inventors have mixed hydrous silicic acid having a uniform primary particle diameter with mixed primary silica particles having different primary particle sizes, and adjusting the degree of mixing to make hydrous silicic acid. By adjusting the specific surface area, even if the hydrous silicate particles have a high specific surface area, good dispersion in the elastomer can be obtained, and at the same time, the viscosity can be reduced and the processability can be facilitated. I thought.
The present inventors have conducted research from such a viewpoint, and have found that an excellent reinforcing effect is brought about in the above-mentioned hydrous silicic acid, and have completed the present invention.
[0010]
The wet method hydrous silicic acid of the present invention has a BET method specific surface area (N 2 -SA) in the range of 200 to 300 m 2 / g. If the BET specific surface area is less than 200 m 2 / g, the reinforcing property is inferior. Conversely, if the BET method specific surface area is more than 300 m 2 / g, the self-cohesive force is too strong, causing poor dispersion and causing a decrease in reinforcing property and an increase in viscosity. The range of the BET specific surface area is preferably in the range of 230 to 280 m 2 / g.
The hydrous silicic acid of the present invention further has an Hg method specific surface area (Hg-SA) of 150 m 2 / g or less. Hg-SA is a value calculated from the size of pores formed by agglomerated particles of hydrous silicic acid and agglomerated particles. The calculation method is expressed as A = 2 V / r assuming that the pores are cylindrical. However, A = surface area (m 2 / g), V = total pore volume (cc / g), and r = average pore radius (μm). Therefore, hydrous silicic acid having a small Hg-SA value has a small pore volume and is mixed with primary particles of hydrous silicic acid in a state close to close packing, or the hydrous silicic acid is agglomerated. It is presumed that the gates (aggregated particles) are mixed in size and are close to close packing.
Hg-SA indicates the rubber behavior of highly active silica exceeds 150m 2 / g, reinforcing property is high but 150m the hg-SA from not preferable be higher rubber viscosity simultaneously, hydrous silicic acid of the present invention 2 / g or less. Hg-SA is preferably in the range of 50 to 150 m 2 / g range, more preferably 100-150 2 / g.
[0011]
Further, the hydrous silicic acid of the present invention has a ratio of dibutyl amine adsorption amount / BET specific surface area of 1.4 or less. Dibutylamine (DBA) adsorption amount (m · mol / kg-SiO 2 ) (R. Meyer: Kautschuk und Gummi 7 (8), 180-182WT (1954)) indicates the amount of acid point It is said to be proportional to the external surface area of hydrous silicic acid. If the external surface area becomes too large, problems such as poor dispersion and poor workability occur as described above. In general, those having a high BET specific surface area tend to have a high DBA adsorption amount and are often said to be highly active. In the present invention, the rubber reinforcing performance is improved by adjusting the balance between DBA and N 2 -SA. That is, in the present invention, by improving the ratio of DBA / N 2 -SA to 1.4 or less, both improvement in workability and improvement in reinforcement are achieved. The ratio of DBA adsorption amount / BET specific surface area is preferably in the range of 0.8 to 1.4.
[0012]
Furthermore, the hydrous silicic acid of the present invention has a ratio of Hg-SA / N 2 -SA of 0.6 or less. The ratio of Hg—SA / N 2 —SA is preferably in the range of 0.2 to 0.6, more preferably in the range of 0.3 to 0.5. The ratio of Hg-SA / N 2 -SA is an indicator of the mixed state of different primary particles of hydrous silicic acid, and by reducing it to 0.6 or less, the increase in the viscosity of the rubber compound is suppressed and the rubber Improves vulcanization properties. However, if Hg-SA is made too low or the ratio of Hg-SA / N 2 -SA is made too small, the viscosity of the rubber compound is lowered and the processability is improved, but the reinforcing property is inferior. Cost.
[0013]
Hereinafter, the manufacturing method of the wet method hydrous silicic acid of this invention is demonstrated.
Conventionally, it has been known that wet-method hydrous silicic acid is generally obtained as a precipitate by the reaction of an aqueous alkali metal silicate solution and a mineral acid. Basically, the production method of the present invention is also based on this. Yes. In the production method of the present invention, the alkali metal silicate aqueous solution is not particularly limited. For example, sodium silicate can be used. The mineral acid is not particularly limited, but for example, sulfuric acid is suitable.
[0014]
The production method of the present invention comprises three steps.
In the first step, an alkali metal silicate aqueous solution and a mineral acid are added in parallel to a reaction vessel preliminarily filled with an alkali metal silicate aqueous solution having a silica concentration of 5 g / l or less to generate silicic acid. A step of adding the alkali metal silicate aqueous solution and the mineral acid over 40 to 100 minutes, maintaining the pH of the reaction solution in the range of 7 to 10 during the addition, and a reaction at the end of the addition In this step, the silica concentration in the liquid is adjusted to 40 g / l or less.
In the first step, if the initial silica concentration exceeds 5 g / l, the resulting hydrous silicic acid Hg-SA exceeds 150 m 2 / g, which is not suitable. Further, if the silica concentration at the end of the first step exceeds 40 g / l, Hg-SA similarly exceeds 150 m 2 / g, which is not appropriate. If the addition time (reaction time) of the alkali metal silicate aqueous solution and the mineral acid is less than 40 minutes, N 2 -SA tends to be low, and if it exceeds 100 minutes, the productivity deteriorates. In addition, the pH of the reaction solution during the addition of the alkali metal silicate aqueous solution and the mineral acid is maintained in the range of 7 to 10 because the acidic region below pH 7 deviates from the hydrous silicate synthesis conditions, and the gel product. This is because it becomes difficult to control the reaction, and when the pH exceeds 10, the content of fine primary particles increases and N 2 -SA becomes too high.
[0015]
The second step is a step of adding an aqueous solution containing an alkali metal silicate equal to or more than the alkali metal silicate neutralized in the reaction to the reaction solution obtained in the first step within 60 minutes. In this step, the silica concentration in the reaction solution at the end of the addition is 60 to 80 g / l.
In the second step, an aqueous solution containing an alkali metal silicate equal to or more than the alkali metal silicate neutralized in the first step is added to the reaction solution. The larger the amount of sodium silicate added in this step, the larger the ratio of large particles (primary particles). Here, the adjustment of N 2 -SA is facilitated by setting the silica concentration in the reaction solution at the end of the addition to 60 to 80 g / l. That is, in this step, if the silica concentration is too low, N 2 -SA becomes too high, and conversely if the silica concentration is too high, N 2 -SA becomes too low. It becomes difficult to obtain silicic acid. The reason why the aqueous solution containing the alkali metal silicate is added within 60 minutes is that N 2 -SA tends to be too low when the addition time exceeds 60 minutes.
[0016]
The third step is a step of adding a mineral acid to the reaction solution obtained in the second step to bring the pH of the reaction solution to 5 or less, and the addition is performed within 30 minutes. Mineral acid is added within 30 minutes to reduce the pH of the reaction solution to 5 or less, and many small particles (primary particles) are obtained by acidifying the pH to 5 or less in a short time within 30 minutes. This is because a well-balanced large and small particle can be obtained. When acidification is carried out slowly for a long time, the particle growth further proceeds, the large particles increase, the proportion of small particles decreases, and the desired hydrous silicic acid of the present invention cannot be obtained. The shorter the acidification time, the larger the content of small particles, the higher the specific surface area, and the rubber reinforcing effect tends to increase. As described above, the content of the small particles can be known from the ratio of Hg-SA / N 2 -SA, and by using the above conditions, the hydrous silica having Hg-SA / N 2 -SA of 0.6 or less. An acid is obtained.
[0017]
The first to third steps are all performed at a temperature in the range of 60 to 100 ° C. Preferably it is the range of 70-90 degreeC. By performing the reaction at a temperature within this range, the reaction can be rapidly advanced.
The obtained reaction product can be filtered, washed with water, dried, and pulverized if necessary in the same manner as the conventional wet method hydrous silicic acid to produce the hydrous silicic acid of the present invention.
By the production method of the present invention, a highly reinforcing hydrous silicic acid excellent in workability, which has been considered difficult in the past, can be produced by a wet precipitation method.
[0018]
【Example】
Hereinafter, the hydrous silicic acid and the production method thereof of the present invention will be further described with reference to examples.
A method for measuring physical properties of hydrous silicic acid and a method for testing rubber properties are shown below.
(1) Dibutylamine (DBA) adsorption amount A fixed amount of excess n-dibutylamine is adsorbed on hydrous silicic acid in petroleum benzine solution, and the remaining amine is back titrated with an acetic acid solution of perchloric acid. The amount of silanol groups is quantified by the amount of amine adsorbed by subtraction. Unit: m · mol / kg
(2) BET specific surface area (N 2 -SA)
Measured by AMS-8000 (manufactured by Okura Riken) by the one-point method. Unit: m 2 / g
[0019]
(3) Hg method specific surface area (Hg-SA)
Measured with a porosimeter type 2000 (manufactured by Carlo Erba, Ikuni).
Calculation method: A = 2V / r
(A = specific surface area (m 2 / g), V = pore volume (cc / g), r = average radius (μm))
(4) Mooney viscosity (ML 1 + 4 )
Using a Mooney viscometer (Shimadzu SMV-200 type), measured with an L-shaped rotor at 125 ° C.
[0020]
(5) Vulcanizate characteristics
General vulcanizate properties Measured according to JIS K6301 test method.
The abrasion test was measured with an Akron-type abrasion tester. Tilt angle-15 °, load-6 pound test count-Wear volume reduction at 2000 rpm was measured, and Comparative Example 2 was set as 100 and displayed as an index. (A higher value indicates better wear resistance)
[0021]
(6) Formulation and kneading method
100 parts of A-blended SBR1502 (manufactured by Nippon Synthetic Rubber Co., Ltd.) is wound on an 8-inch roll, 1 part of stearic acid, 3 parts of zinc oxide as a vulcanization aid, 1.2 parts of vulcanization accelerator D, DM 0.8 parts (made by Ouchi Shinsei Co., Ltd.), 2 parts of sulfur as a vulcanizing agent, 2 parts of PEG # 4000 as an activator, 50 parts of hydrous silicic acid, and kneading temperature 35 ± 5 ° C. A rubber composition was obtained by kneading. Various physical property tests of unvulcanized products and vulcanized products (vulcanized at 150 ° C. for 10 minutes) of these samples were performed, and the results are shown in Table 1.
B blending 96.3 parts of JSR1712 and 30 parts of BR01 for 30 seconds in a 1.7 liter Banbury mixer, then 2 parts of stearic acid, 70 parts of hydrous silicic acid, 1 part of paraffin wax Part, 7 parts of aroma oil and 7 parts of silane Si69 are added and taken out after 5 minutes of total kneading. The compound temperature at the time of taking out is adjusted to 140 to 150 ° C. by the ram pressure or the rotational speed. After cooling the compound at room temperature, 1 part of anti-aging 810NA, 4 parts of zinc white, 1.5 parts of vulcanization accelerator CZ and 2 parts of vulcanizing agent S are added to the compound and kneaded for about 1 minute ( The temperature at the time of taking out was set to 110 ° C. or lower), and then sheeting was performed with an 8-inch roll, and unvulcanized and vulcanized product characteristics were measured. The results are shown in Table 2.
[0022]
Example 1
A 200 liter jacketed stainless steel vessel equipped with a stirrer is charged with 91 liters of water and 0.7 liters of sodium silicate aqueous solution [SiO 2 150 g / l, SiO 2 / Na 2 O weight ratio 3.3] and heated. The temperature was 85 ° C. The pH at this time was 9.4, and the silica concentration was 1.2 g / l.
[0023]
The same aqueous sodium silicate solution and sulfuric acid (18.4 mol / l) were simultaneously added to the above aqueous solution while maintaining the pH at 9.5 ± 0.5, and stopped at 55 minutes. The silica concentration at this time was 38 g / l. Subsequently, an aqueous sodium silicate solution similar to the above containing sodium silicate in an amount of 155% of the sodium silicate consumed in this reaction was added over 35 minutes. The silica concentration at this time was 68 g / l. Subsequently, sulfuric acid was added in the same manner as described above for 20 minutes, and acidification was completed at pH 3 to obtain a precipitate.
The overall process reaction temperature was maintained at 85 ± 1 ° C. Thereafter, the obtained reaction product was filtered with a filter press and washed with water, and the obtained wet cake was dried with a box drier to obtain hydrous silicic acid by a wet precipitation method.
[0024]
Example 2
Using the same container and raw materials as in Example 1, 86 liters of water and 0.5 liter of sodium silicate aqueous solution were added and heated to 90 ° C. The pH at this time was 9.3, and the silica concentration was 0.8 g / l. Thereafter, simultaneous addition was carried out for 55 minutes in the same manner as in Example 1. The silica concentration at this time was 40 g / l. Subsequently, the same sodium silicate aqueous solution as described above containing sodium silicate in an amount of 160% of the sodium silicate consumed by the simultaneous addition was added over 45 minutes. The silica concentration at this time was 71 g / l. Thereafter, acid addition was carried out with sulfuric acid for 25 minutes, and the reaction was terminated at pH 3 to obtain hydrous silicic acid in the same manner as in Example 1. The reaction temperature was maintained at 90 ± 1 ° C. for all steps.
[0025]
Example 3
Using the same container and raw materials as in Example 1, 102 liters of water and 0.6 liter of an aqueous sodium silicate solution were added and heated to 80 ° C. The pH at this time was 9.2, and the silica concentration was 0.9 g / l. Thereafter, simultaneous addition was performed in the same manner as in Example 1 for 95 minutes. The silica concentration at this time was 34 g / l. Subsequently, the same sodium silicate aqueous solution as described above containing sodium silicate in an amount of 140% of the sodium silicate consumed by simultaneous addition was added over 30 minutes. The silica concentration at this time was 61 g / l. Thereafter, acid addition was performed with sulfuric acid for 30 minutes, and the reaction was terminated at pH 3, and hydrous silicic acid was obtained in the same manner as in Example 1. The reaction temperature was maintained at 80 ± 1 ° C. for all steps.
[0026]
Example 4
Using the same container and raw material as in Example 1, 87 liters of water and 0.4 liter of an aqueous sodium silicate solution were added and heated to 85 ° C. The pH at this time was 9.2, and the silica concentration was 0.6 g / l. Thereafter, simultaneous addition was carried out for 40 minutes in the same manner as in Example 1. The silica concentration at this time was 35 g / l. Subsequently, the same sodium silicate aqueous solution as described above containing sodium silicate in an amount of 220% of the sodium silicate consumed by simultaneous addition was added over 60 minutes. The silica concentration at this time was 72 g / l. Thereafter, addition of sulfuric acid was carried out for 21 minutes, and the pH was terminated at 3 to obtain hydrous silicic acid in the same manner as in Example 1. The reaction temperature was maintained at 85 ± 1 ° C. for all steps.
[0027]
Comparative Example 1
Using the same container and raw materials as in Example 1, 104 liters of water and 0.7 liter of sodium silicate aqueous solution were added and heated to 85 ° C. The pH at this time was 9.6, and the silica concentration was 1.0 g / l. Thereafter, simultaneous addition was performed in the same manner as in Example 1 for 47 minutes. The silica concentration at this time was 37 g / l. Subsequently, the same sodium silicate aqueous solution as described above containing sodium silicate in an amount of 90% of the sodium silicate consumed by the simultaneous addition was added over 30 minutes. The silica concentration at this time was 55 g / l. Thereafter, the addition of sulfuric acid was carried out for 18 minutes, and the reaction was terminated at pH 3 to obtain hydrous silicic acid in the same manner as in Example 1. The reaction temperature was maintained at 85 ± 1 ° C. for all steps.
[0028]
Comparative Example 2: Nipsil ER-R (manufactured by Nippon Silica Industry Co., Ltd.)
Comparative Example 3: Nipsil NS-KR (manufactured by Nippon Silica Industry Co., Ltd.)
Comparative Example 4: Nipsil HD-R (Nippon Silica Kogyo)
[0029]
[Table 1]
[0030]
[Table 2]
[0031]
In the table, TB is tensile strength, M 300 is 300% tensile stress, Eb is elongation, Hs is hardness, TR is tear strength, R is repulsive elasticity, C.I. S indicates compression set.
In the present invention, fracture characteristics are a general term for tensile strength, tensile stress, elongation, and tear strength.
In general, a rubber vulcanized compound has a higher reinforcing property as hydrous silicic acid having a higher DBA adsorption amount and a BET specific surface area (N 2 -SA), and conversely, processability, rebound resilience, and setability decrease. From the results of Tables 1 and 2, the rubber blends of Examples 1 to 4 have high tensile strength, tensile stress, elongation, and tear strength, which are indicators of fracture characteristics, despite showing low viscosity. It can be said that the workability and the reinforcing properties are balanced. On the other hand, the rubber compounds of Comparative Examples 1, 3, and 4 have extremely high viscosity and poor processability. The rubber compound of Comparative Example 2 has a low viscosity and good processability, but has low tensile strength, tensile stress, elongation and tear strength, which are indicators of fracture characteristics, and is inferior in reinforcement characteristics.
[0032]
【The invention's effect】
According to the present invention, the hydrous silicic acid for reinforcing an elastomer, which can improve the workability by lowering the viscosity of the rubber compound, and has a reinforcing property excellent in fracture properties such as tensile strength and abrasion resistance, and A manufacturing method thereof can be provided.
Claims (3)
(2)前記反応液に、前記反応で中和されたアルカリ金属ケイ酸塩と等量以上のアルカリ金属ケイ酸塩を含む水溶液を60分以内で添加する工程であって、添加終了時の反応液中のシリカ濃度を60〜80g/lとする工程、及び
(3)前記反応液に、鉱酸を添加して反応液のpHを5以下にする工程であって、前記添加を30分以内に行う工程からなり、かつ
工程(1)〜(3)を60〜100℃の温度で行うことを特徴とする請求項1の含水ケイ酸の製造方法。(1) A step of generating silicic acid by adding an alkali metal silicate aqueous solution and a mineral acid in parallel to a reaction vessel preliminarily filled with an alkali metal silicate aqueous solution having a silica concentration of 5 g / l or less. Then, the alkali metal silicate aqueous solution and the mineral acid are added over 40 to 100 minutes, the pH of the reaction solution is maintained in the range of 7 to 10 during the addition, and the reaction solution in the reaction solution at the end of the addition is added. A step of adjusting the silica concentration to 40 g / l or less,
(2) A step of adding an aqueous solution containing an alkali metal silicate equal to or more than the alkali metal silicate neutralized in the reaction to the reaction solution within 60 minutes, the reaction at the end of the addition A step of adjusting the silica concentration in the solution to 60 to 80 g / l, and (3) a step of adding a mineral acid to the reaction solution to make the pH of the reaction solution 5 or less, the addition being performed within 30 minutes The method for producing hydrous silicic acid according to claim 1, wherein the steps (1) to (3) are performed at a temperature of 60 to 100 ° C.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP34917696A JP3818554B2 (en) | 1996-12-27 | 1996-12-27 | Hydrous silicic acid for reinforcing elastomer and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP34917696A JP3818554B2 (en) | 1996-12-27 | 1996-12-27 | Hydrous silicic acid for reinforcing elastomer and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH10194722A JPH10194722A (en) | 1998-07-28 |
JP3818554B2 true JP3818554B2 (en) | 2006-09-06 |
Family
ID=18401990
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP34917696A Expired - Lifetime JP3818554B2 (en) | 1996-12-27 | 1996-12-27 | Hydrous silicic acid for reinforcing elastomer and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3818554B2 (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11236208A (en) * | 1998-02-25 | 1999-08-31 | Nippon Silica Ind Co Ltd | Hydrous silica for rubber reinforcement |
JP2000302912A (en) * | 1999-04-20 | 2000-10-31 | Nippon Silica Ind Co Ltd | Hydrous silicic acid for rubber reinforcing and filling and rubber composition using the same |
JP2000319513A (en) * | 1999-05-12 | 2000-11-21 | Nippon Silica Ind Co Ltd | Filler for reinforcing silicone rubber |
JP4718895B2 (en) * | 2005-05-23 | 2011-07-06 | 住友ゴム工業株式会社 | Rubber composition for rubber body and composite using the same |
JP2014031179A (en) * | 2012-08-01 | 2014-02-20 | Showa Denko Packaging Co Ltd | Contents adhering prevention lid member |
JP2017061345A (en) * | 2016-12-16 | 2017-03-30 | 昭和電工パッケージング株式会社 | Lid material for preventing adhesion of content |
JP6811751B2 (en) * | 2018-08-10 | 2021-01-13 | 東ソー・シリカ株式会社 | Hydrous silicic acid for rubber reinforcement filling |
JP6811750B2 (en) | 2018-08-10 | 2021-01-13 | 東ソー・シリカ株式会社 | Hydrous silicic acid for rubber reinforcement filling |
JP7473350B2 (en) | 2020-02-05 | 2024-04-23 | 東ソー・シリカ株式会社 | Hydrous silicic acid for rubber reinforcing filler and hydrous silicic acid-containing rubber composition |
-
1996
- 1996-12-27 JP JP34917696A patent/JP3818554B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH10194722A (en) | 1998-07-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4131763B2 (en) | Silica-based rubber composition for making road tires with improved rolling resistance | |
JP5448849B2 (en) | Rubber composition and tire | |
JP6091549B2 (en) | Composite and production method thereof | |
JP4405849B2 (en) | Rubber composition for tire tread and tire using the same | |
JP2007138069A (en) | Rubber composition and pneumatic tire | |
US8153717B2 (en) | Rubber composition | |
KR102405234B1 (en) | Hydrous silicic acid for rubber reinforcement filling | |
JP3818554B2 (en) | Hydrous silicic acid for reinforcing elastomer and method for producing the same | |
EP1674520A1 (en) | Elastomeric composition comprizing functionalized butadienic elastomers and high dispersible aluminium-based silica | |
JPH11236208A (en) | Hydrous silica for rubber reinforcement | |
JPH10194723A (en) | Water-containing silicic acid for rubber reinforcement and its production | |
JP3445080B2 (en) | Rubber composition and pneumatic tire using the rubber composition | |
JPS61215638A (en) | Silica-filled rubber composition | |
KR20210038080A (en) | A reinforcing materials for rubber comprising aluminosilicate particles and rubber composition for tires comprising the same | |
JP3445081B2 (en) | Rubber composition and pneumatic tire using the rubber composition | |
JP3410984B2 (en) | Rubber composition | |
JP2012153787A (en) | Rubber composition for tire, and pneumatic tire | |
JP2000302912A (en) | Hydrous silicic acid for rubber reinforcing and filling and rubber composition using the same | |
JP7473350B2 (en) | Hydrous silicic acid for rubber reinforcing filler and hydrous silicic acid-containing rubber composition | |
JP2012077135A (en) | Rubber composition for base tread and pneumatic tire | |
JP2011084651A (en) | Composite, rubber composition and pneumatic tire | |
JP2024507004A (en) | Silica gel as a toughening agent in rubber compounds | |
JP2024525928A (en) | Rubber composition | |
WO2022173733A1 (en) | Silica gel as reinforcement agent for rubber compounds | |
JP6091918B2 (en) | Silica masterbatch and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060417 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060607 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060609 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090623 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100623 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100623 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110623 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130623 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140623 Year of fee payment: 8 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |