JP3760688B2 - Method for manufacturing silicon carbide semiconductor device - Google Patents
Method for manufacturing silicon carbide semiconductor device Download PDFInfo
- Publication number
- JP3760688B2 JP3760688B2 JP24017299A JP24017299A JP3760688B2 JP 3760688 B2 JP3760688 B2 JP 3760688B2 JP 24017299 A JP24017299 A JP 24017299A JP 24017299 A JP24017299 A JP 24017299A JP 3760688 B2 JP3760688 B2 JP 3760688B2
- Authority
- JP
- Japan
- Prior art keywords
- silicon carbide
- sic
- annealing
- film
- semiconductor device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229910010271 silicon carbide Inorganic materials 0.000 title claims description 36
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 title claims description 30
- 238000000034 method Methods 0.000 title claims description 19
- 238000004519 manufacturing process Methods 0.000 title claims description 17
- 239000004065 semiconductor Substances 0.000 title claims description 15
- 238000000137 annealing Methods 0.000 claims description 20
- 238000005468 ion implantation Methods 0.000 claims description 17
- 238000009792 diffusion process Methods 0.000 claims description 16
- 239000012535 impurity Substances 0.000 claims description 11
- 230000001681 protective effect Effects 0.000 claims description 9
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 7
- 239000007789 gas Substances 0.000 claims description 6
- 239000000758 substrate Substances 0.000 claims description 5
- 239000013078 crystal Substances 0.000 claims description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 3
- 229910052799 carbon Inorganic materials 0.000 claims description 3
- 238000000151 deposition Methods 0.000 claims description 3
- 229910052760 oxygen Inorganic materials 0.000 claims description 3
- 239000001301 oxygen Substances 0.000 claims description 3
- 239000002344 surface layer Substances 0.000 claims description 2
- 239000010408 film Substances 0.000 description 36
- 229920002120 photoresistant polymer Polymers 0.000 description 13
- 239000010410 layer Substances 0.000 description 10
- 125000004429 atom Chemical group 0.000 description 8
- 230000003746 surface roughness Effects 0.000 description 8
- 150000002500 ions Chemical class 0.000 description 5
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 4
- 238000004380 ashing Methods 0.000 description 4
- 229910002804 graphite Inorganic materials 0.000 description 4
- 239000010439 graphite Substances 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 238000000059 patterning Methods 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- ZOCHARZZJNPSEU-UHFFFAOYSA-N diboron Chemical compound B#B ZOCHARZZJNPSEU-UHFFFAOYSA-N 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 230000001698 pyrogenic effect Effects 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000000859 sublimation Methods 0.000 description 1
- 230000008022 sublimation Effects 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- JLTRXTDYQLMHGR-UHFFFAOYSA-N trimethylaluminium Chemical compound C[Al](C)C JLTRXTDYQLMHGR-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/0445—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising crystalline silicon carbide
- H01L21/0455—Making n or p doped regions or layers, e.g. using diffusion
- H01L21/046—Making n or p doped regions or layers, e.g. using diffusion using ion implantation
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physical Vapour Deposition (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は炭化けい素(以下SiCと記す)を材料とする半導体素子の製造方法に関する。
【0002】
【従来の技術】
近年、けい素(以下Siと記す)に代わる半導体材料の一つとしてSiCが注目されている。SiCは、バンドギャップが4H−SiCで3.25eVと、Siのそれ(1.12eV)に比べて3倍近く大きいため、動作上限温度を高くできる。また、絶縁破壊電界強度が4H−SiCで3.0MV/cm と、Siのそれ(0.25MV/cm)に比べて約1桁大きいため、絶縁破壊電界強度の3乗の逆数で効いてくるオン抵抗が低減され、定常状態での電力損失を低減できる。更に、熱伝導度も4H−SiCで4.9W/cmK とSiのそれ(1.5W/cmK )に比べて3倍以上高いので、熱冷却効果が高く冷却装置を小型化できるという利点も生まれる。飽和ドリフト速度が2×107cm/sと大きいため、高速動作にも優れている。
【0003】
このようなことからSiCは、電力用半導体素子(以下パワーデバイスと呼ぶ)や高周波デバイス、高温動作デバイスなどへの応用が期待されている。現在、MOSFET、pnダイオード、ショットキーダイオード等が試作され、絶縁耐圧とオン抵抗(=通電時の順方向電圧/順方向電流)に関してはSiの特性を越えるデバイスが続出している。
【0004】
これらの素子作成には、選択された領域において導電型やキャリア濃度を制御する技術が必要である。その方法には、熱拡散法とイオン注入法がある。SiC中においては不純物の拡散係数が非常に小さいため、Si半導体子で広く用いられている熱拡散法はSiCには適用が難しい。そのため、SiCでは通常イオン注入法が用いられている。
【0005】
注入されるイオン種としては、n型に対しては窒素(以下Nと記す)リン(以下Pと記す)が用いられ、p型に対してはアルミニウム(以下Alと記す)またはほう素(以下Bと記す)が多く用いられる。
【0006】
図3(a)〜(e)はイオン注入とそれに引き続くプロセスの工程を説明する工程順の断面図である。
【0007】
下地層1上にエピタキシャル層2を成長したエピタキシャルウェハを有機溶剤や酸等で前処理した後、酸化膜3を形成する〔図3(a)〕。
【0008】
フォトレジスト4を塗布し、酸化膜3をパターニングする〔同図(b)〕。
【0009】
Bイオン5を注入する〔同図(c)〕。イオン注入用のマスクとしてはフォトレジストでも良い。しかし、イオン注入による結晶ダメージを最小限に抑えるため時として数100℃〜1000℃の雰囲気中においてイオン注入が行われる。その場合は、当然その温度に耐える材料のマスクでなければならない。
【0010】
注入後高温アニールする前に、フォトレジストや酸化膜などを全て除去し、SiC表面が露出した状態にする〔同図(d)〕。これは、その後の高温アニール時にSiC上に熱酸化膜などが堆積されているとSiCとの反応が起こり、エッチングが起こることを防ぐためである。特に、イオン注入された領域には結晶ダメージがあり、各原子間の結合力が弱いため他の領域よりエッチングされやすいので注意が必要である。
【0011】
その後、注入された不純物を電気的に活性化するための高温アニールをおこなう〔同図(e)〕。不純物を完全に活性化するためには、Nでは1300℃、Alでは1500℃、Bでは1700℃の高温が必要である。このようにAlはイオン注入後のアニール温度をBより100〜200℃程度低くできるが、Bより原子量が大きいためイオン注入時のダメージは大きい。
【0012】
また、高温アニール時には、イオン注入したSiCのサンプルは多結晶SiC容器中に入れられる。これは、高温における表面近傍の原子の昇華を防止して表面荒れを防ぐためである。
【0013】
この後、例えば絶縁ゲート構造のMOS素子の場合には、熱酸化膜を形成する。また、ショットキーダイオードの場合は、ショットキー電極を形成する。
【0014】
【発明が解決しようとする課題】
Bのような比較的原子量の小さい原子の場合、イオン注入後の1700℃アニール時にB原子が外方・内方拡散するという問題が発生する。特にイオン注入深さが浅いと、外方拡散により表面からB原子が真空中に抜け出してしまう。
【0015】
また、アニール温度を高くすること、イオン注入ドーズ量を大きくすること、原子量の大きなイオン注入種を注入することのいずれにおいても、ステップバンチングによる表面荒れが激しくなるという問題がある。
【0016】
ステップバンチングとは次のような現象のことである。例えば4H−SiCの(0001)面から[11-20 ]方向に8度程度傾けた(この角度をオフ角度という)下地基板上に成長したエピタキシャル層で、各原子層が横方向に成長していくため、各原子層の端にある成長ステップが、ある条件下において統合されて、表面の凹凸が激しくなる現象である。
【0017】
一方、熱拡散法はイオン注入に比べて工程が少なくて済み、深い接合を容易に形成することができる。しかしながら、先に述べたようにSiC中における不純物の拡散係数は非常に小さい。従って、熱拡散法により接合を形成するためには2000℃近くの高温にする必要があり、そのような高温に耐え、かつパターニングなどの加工が容易な適当なマスク材料が見当たらないため、これまで拡散法は殆ど実施されなかった。
【0018】
このような問題に鑑み本発明の目的は、アニール後のSiC表面を清浄かつ平滑に保ち、良好な特性のデバイスを作製する方法を提供することにある。
【0019】
【課題を解決するための手段】
上記の課題を解決するため本発明は、炭化けい素結晶板の表面層に不純物のドーピングとその後のアニールにより逆導電型領域を形成する炭化けい素半導体素子の製造方法において、マスクを用いた選択的なドーピングをおこない、マスクを除去した後、表面にダイヤモンドライクカーボン膜(以下DLC膜と記す)または有機膜の保護膜を堆積してアニールをおこない、アニール後その保護膜を除去するものとする。
【0020】
ドーピング方法はイオン注入法またはガス拡散法のいずれでも良い。
【0021】
アニールの高温加熱時にDLC膜や有機膜中のH原子、O原子が脱離し、グラファイト化したC薄膜となる。グラファイトの融点は3550℃であり、熱拡散に必要な温度の2000℃に十分耐え得る。従って、注入されたBの表面からの蒸発を抑制してBの濃度勾配を減少させ、その結果として外方拡散を防止できる。また、表面のSi、C原子がC層の原子と結合しているためにSiCウェハーの最表面の原子の表面拡散を抑制して表面荒れが低減される。
【0022】
保護膜の除去方法としては、酸素プラズマにより除去するものとする。
【0023】
このC膜は02 プラズマによりC0、C02 などとなって除去される。
【0024】
【0025】
【0026】
【0027】
【0028】
【0029】
【発明の実施の形態】
以下実施例に基づき、本発明の実施の形態を説明する。
【0030】
[実施例1]
図1(a)〜(f)は本発明第一の製造方法を説明する工程順の断面図である。
【0031】
ウェハとしては、(0001)Si面から8°オフした面のn型4H−SiCの下地層1上にエピタキシャル層2を成長したエピタキシャルウェハを用いた。下地層1のキャリア濃度は1×1018/cm3であり、エピタキシャル層2のキャリア濃度は1×1016/cm 3 、厚さ10μm である。
【0032】
このウェハー上にまず、1100℃、5時間のパイロジェニック酸化により厚さ30nmの酸化膜3を形成する〔図1(a)〕。
【0033】
ついで、スピンコータにより厚さ約5μmのフォトレジスト4を塗布する。100℃のベーキングによりフォトレジスト4と熱酸化膜3との密着性を高めた後、フォトリソグラフィによりフォトレジスト4をパターニングし、その後バッファードフッ酸により熱酸化膜3の露出部分をエッチングする〔同図(b)〕。
【0034】
その後、室温でBイオン5の注入をおこなう〔同図(c)〕。加速電圧は30、60、100kV、総ドーズ量は5×1013cm-2である。
【0035】
イオン注入後、フォトレジスト4は、基板温度100℃においてO2 プラズマアッシングにより除去する。また、熱酸化膜3をバッファードフッ酸によりすべて除去する。その後、メタン(CH4 )を用いたECR−CVD法により、厚さ約100nmのDLC膜6を成膜する〔同図(d)〕。DLC膜成膜時にSiCウェハからの剥離を防ぐために、内部応力を小さくする必要があり、そのためにはECR−CVD法において成膜中に基板への負バイアスはかけない方がよい。
【0036】
その後、Ar雰囲気中で1700℃、30分間のアニールをおこない、注入されたB原子を活性化する。これにより深さ約0.5μm、濃度1×1018cm-3の不純物領域7が形成される〔同図(e)〕。この時、SiCサンプルは多結晶SiC容器中に入れられる。
【0037】
アニール後、DLC膜6を約4分間のO2 プラズマアッシングにより除去する〔同図(f)〕。アッシングの条件はパワー300W 、O2 ガス圧50Pa、基板温度100℃である。
【0038】
上記のプロセスを実施した表面のAFM(Atomic Force Microscope:原子間力顕微鏡)観察をおこなったところ、表面粗さRaは約0.3nmであった。この値は、保護膜を被着しないでアニールした場合の表面粗さ3nmに比べ、表面荒さが1/10に低減されたことになる。
【0039】
また、同様の条件のイオン注入およびアニールにより、従来のプロセスではBのピーク濃度が50%減少していたのに対し、本発明によるプロセスにおいては20%のピーク濃度の減少に抑えることができた。
【0040】
すなわち、本発明の方法では、全面にDLC膜を被着するだけで、表面荒さの低減、濃度の保持に大きな効果が得られたことがわかる。
【0041】
なお、DLC膜をスパッタ法により成膜してもよいし、また、DLC膜の代わりにフォトレジストを用いてもよい。
[参考例]
図2(a)〜(d)は参考例の製造方法を説明する工程順の断面図である。
【0042】
実施例1と同様に、下地層1上にエピタキシャル層2を成長した4H−SiCウェハ使用した。
【0043】
エピタキシャル層2上にスピンコータにより厚さ約5μmのフォトレジスト4を塗布した後、そのフォトレジスト4のパターニングをおこなって選択的ドーピングを行う部分を露出させる〔図2(a)〕。
【0044】
次いで、選択的ドーピングをおこなうための加熱過程で、フォトレジスト4は炭化しグラファイト膜8となるが、熱拡散時のマスクとして十分適用できる〔同図(b)〕。
【0045】
2000℃、1時間のドーピングおよび拡散をおこない、不純物領域7を形成する〔同図(c)〕。ドーピングガス9としては、例えばBの場合にはジボラン〔B2 H6 〕が使用できる。キャリアガスはArである。この時の拡散深さは、5μm となる。表面不純物濃度は1×1019cm-3であった。
【0046】
20分間のO2 プラズマアッシングにより、グラファイト膜9を除去する〔同図(d)〕。
【0047】
この場合も表面粗さは0.5nm以下であった。
【0048】
この方法では、マスク材料が有機膜であれば良いが、フォトレジストであればパターニングのための加工が容易であるという利点がある。
【0049】
なお、ドーピングガス9としては、Alの場合にはトリメチルアルミニウム〔Al(CH3 )3 〕が使用でき、同じアニールで拡散深さは約1μmとなる。
【0050】
【発明の効果】
以上説明したように本発明によれば、マスクを用いた選択的なドーピングをおこない、マスクを除去した後、表面にダイヤモンドライクカーボン膜または有機膜等の保護膜を堆積してアニールをおこない、アニール後その保護膜を酸素プラズマ等により除去することにより、SiC表面を清浄かつ平滑に保ち、良好な特性のSiC半導体デバイスを作製することができる。
【0051】
【0052】
従って本発明は、炭化けい素半導体素子の普及、発展に大きな貢献をなすものである。
【図面の簡単な説明】
【図1】 (a)〜(f)は本発明第一の製造方法による半導体素子の製造工程順の断面図
【図2】 (a)〜(d)は参考例の製造方法による半導体素子の製造工程順の断面図
【図3】 (a)〜(e)は従来の製造方法による半導体素子の製造工程順の断面図
【符号の説明】
1 …下地層
2 …エピタキシャル層
3 …熱酸化膜
4 …フォトレジスト
5 …Bイオン
6 …DLC膜
7 …不純物領域
8 …グラファイト膜
9 …ドーピングガス[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a semiconductor element made of silicon carbide (hereinafter referred to as SiC).
[0002]
[Prior art]
In recent years, SiC has attracted attention as one of semiconductor materials that can replace silicon (hereinafter referred to as Si). Since SiC has a band gap of 3.25 eV in 4H-SiC, which is nearly three times larger than that of Si (1.12 eV), the upper limit temperature of operation can be increased. Also, the dielectric breakdown electric field strength is 3.0 MV / cm for 4H-SiC, which is about an order of magnitude larger than that of Si (0.25 MV / cm), so it works with the inverse of the cube of the dielectric breakdown electric field strength. On-resistance is reduced, and power loss in a steady state can be reduced. Furthermore, the thermal conductivity is 4H-SiC, which is 4.9 W / cmK, which is more than 3 times higher than that of Si (1.5 W / cmK). . Since the saturation drift speed is as high as 2 × 10 7 cm / s, it is excellent in high-speed operation.
[0003]
For these reasons, SiC is expected to be applied to power semiconductor elements (hereinafter referred to as power devices), high-frequency devices, high-temperature operation devices, and the like. Currently, MOSFETs, pn diodes, Schottky diodes, and the like have been prototyped, and devices that exceed the characteristics of Si in terms of withstand voltage and on-resistance (= forward voltage / forward current when energized) are appearing one after another.
[0004]
The production of these elements requires a technique for controlling the conductivity type and carrier concentration in a selected region. The method includes a thermal diffusion method and an ion implantation method. Since the diffusion coefficient of impurities is very small in SiC, the thermal diffusion method widely used in Si semiconductor elements is difficult to apply to SiC. Therefore, an ion implantation method is usually used for SiC.
[0005]
As ion species to be implanted, nitrogen (hereinafter referred to as N) phosphorus (hereinafter referred to as P) is used for n-type, and aluminum (hereinafter referred to as Al) or boron (hereinafter referred to as P) for p-type. B)) is often used.
[0006]
FIGS. 3A to 3E are cross-sectional views in order of steps for explaining the steps of ion implantation and the subsequent process.
[0007]
After the epitaxial wafer having the
[0008]
A
[0009]
B ions 5 are implanted [(c) in the figure]. A photoresist may be used as a mask for ion implantation. However, ion implantation is sometimes performed in an atmosphere of several hundred to 1000 ° C. in order to minimize crystal damage due to ion implantation. In that case, of course, the mask must be made of a material that can withstand that temperature.
[0010]
Before the high-temperature annealing after implantation, all of the photoresist, oxide film, etc. are removed so that the SiC surface is exposed [(d)]. This is to prevent a reaction with SiC and etching from occurring if a thermal oxide film or the like is deposited on the SiC during the subsequent high-temperature annealing. In particular, care must be taken because the ion-implanted region has crystal damage and the bonding force between the atoms is weak, so that the region is more easily etched than the other regions.
[0011]
Thereafter, high-temperature annealing for electrically activating the implanted impurities is performed [FIG. In order to completely activate the impurities, high temperatures of 1300 ° C. for N, 1500 ° C. for Al, and 1700 ° C. for B are required. Thus, although Al can lower the annealing temperature after ion implantation by about 100 to 200 ° C. than B, since the atomic weight is larger than B, the damage during ion implantation is large.
[0012]
At the time of high-temperature annealing, the SiC sample into which ions are implanted is placed in a polycrystalline SiC container. This is to prevent surface roughness by preventing sublimation of atoms near the surface at high temperatures.
[0013]
Thereafter, for example, in the case of a MOS element having an insulated gate structure, a thermal oxide film is formed. In the case of a Schottky diode, a Schottky electrode is formed.
[0014]
[Problems to be solved by the invention]
In the case of an atom having a relatively small atomic weight such as B, there arises a problem that B atoms diffuse outward and inward during annealing at 1700 ° C. after ion implantation. In particular, when the ion implantation depth is shallow, B atoms escape from the surface into the vacuum due to outward diffusion.
[0015]
Further, there is a problem that surface roughness due to step bunching becomes severe in any of raising the annealing temperature, increasing the ion implantation dose, and implanting an ion implantation species having a large atomic weight.
[0016]
Step bunching is the following phenomenon. For example, in an epitaxial layer grown on a base substrate tilted by about 8 degrees in the [11-20] direction from the (0001) plane of 4H—SiC (this angle is called an off angle), each atomic layer grows laterally. Therefore, the growth step at the end of each atomic layer is integrated under a certain condition, and the surface unevenness becomes intense.
[0017]
On the other hand, the thermal diffusion method requires fewer steps than ion implantation and can easily form a deep junction. However, as described above, the diffusion coefficient of impurities in SiC is very small. Therefore, in order to form a bond by the thermal diffusion method, it is necessary to raise the temperature to near 2000 ° C., and no suitable mask material that can withstand such a high temperature and that can be easily processed such as patterning has not been found. Few diffusion methods were performed.
[0018]
In view of such problems, an object of the present invention is to provide a method for producing a device having good characteristics by keeping the SiC surface after annealing clean and smooth.
[0019]
[Means for Solving the Problems]
In order to solve the above-described problems, the present invention provides a method for manufacturing a silicon carbide semiconductor element in which a reverse conductivity type region is formed by doping impurities and then annealing on a surface layer of a silicon carbide crystal plate. After performing a basic doping and removing the mask, a diamond-like carbon film (hereinafter referred to as DLC film) or an organic film protective film is deposited on the surface and annealed, and after the annealing, the protective film is removed. .
[0020]
Doping methods may be either ion implantation or gas diffusion.
[0021]
At the time of high-temperature annealing, H atoms and O atoms in the DLC film and the organic film are desorbed to form a graphitized C thin film. The melting point of graphite is 3550 ° C., and it can sufficiently withstand the temperature of 2000 ° C. necessary for thermal diffusion. Therefore, evaporation from the surface of the injected B is suppressed to reduce the B concentration gradient, and as a result, outward diffusion can be prevented. Further, since surface Si and C atoms are bonded to atoms in the C layer, surface diffusion of the outermost surface atoms of the SiC wafer is suppressed and surface roughness is reduced.
[0022]
The protective film is removed by oxygen plasma.
[0023]
The C film is removed by a like C0, C0 2 by 0 2 plasma.
[0024]
[0025]
[0026]
[0027]
[0028]
[0029]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described based on examples.
[0030]
[Example 1]
1A to 1F are cross-sectional views in order of steps for explaining the first manufacturing method of the present invention.
[0031]
As the wafer, an epitaxial wafer was used in which an
[0032]
First, an
[0033]
Next, a
[0034]
Thereafter, B ions 5 are implanted at room temperature [FIG. The acceleration voltage is 30, 60, 100 kV, and the total dose is 5 × 10 13 cm −2 .
[0035]
After the ion implantation, the
[0036]
Thereafter, annealing is performed at 1700 ° C. for 30 minutes in an Ar atmosphere to activate the implanted B atoms. As a result, an
[0037]
After the annealing, the
[0038]
When AFM (Atomic Force Microscope) observation of the surface which implemented said process was performed, surface roughness Ra was about 0.3 nm. This value means that the surface roughness is reduced to 1/10 compared to the surface roughness of 3 nm when annealing is performed without depositing the protective film.
[0039]
In addition, by the ion implantation and annealing under the same conditions, the peak concentration of B was reduced by 50% in the conventional process, whereas in the process according to the present invention, the reduction of the peak concentration by 20% could be suppressed. .
[0040]
That is, in the method of the present invention, it can be seen that a great effect was obtained in reducing the surface roughness and maintaining the concentration only by depositing the DLC film on the entire surface.
[0041]
Note that a DLC film may be formed by a sputtering method, or a photoresist may be used instead of the DLC film.
[ Reference example ]
2A to 2D are cross-sectional views in the order of steps for explaining the manufacturing method of the reference example .
[0042]
As in Example 1, a 4H—SiC wafer in which an
[0043]
After applying a
[0044]
Next, in the heating process for performing selective doping, the
[0045]
[0046]
The graphite film 9 is removed by O 2 plasma ashing for 20 minutes [(d) in the figure].
[0047]
Also in this case, the surface roughness was 0.5 nm or less.
[0048]
In this method, the mask material may be an organic film, but if it is a photoresist, there is an advantage that processing for patterning is easy.
[0049]
As the doping gas 9, trimethylaluminum [Al (CH 3 ) 3 ] can be used in the case of Al, and the diffusion depth becomes about 1 μm by the same annealing.
[0050]
【The invention's effect】
As described above, according to the present invention, selective doping using a mask is performed, and after removing the mask, a protective film such as a diamond-like carbon film or an organic film is deposited on the surface and annealing is performed. Thereafter, by removing the protective film with oxygen plasma or the like, the SiC surface can be kept clean and smooth, and a SiC semiconductor device having good characteristics can be manufactured.
[0051]
[0052]
Therefore, the present invention greatly contributes to the spread and development of silicon carbide semiconductor elements.
[Brief description of the drawings]
FIGS. 1A to 1F are cross-sectional views in the order of manufacturing steps of a semiconductor device according to the first manufacturing method of the present invention. FIGS. 2A to 2D are cross-sectional views of a semiconductor device manufactured by a manufacturing method of a reference example . Cross-sectional views in the order of the manufacturing process [FIG. 3] (a) to (e) are cross-sectional views in the order of the manufacturing process of the semiconductor device according to the conventional manufacturing method.
1… Underlayer
2… Epitaxial layer
3… Thermal oxide film
4… Photoresist
5… B ion
6 DLC film
7… Impurity region
8… graphite film
9… doping gas
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24017299A JP3760688B2 (en) | 1999-08-26 | 1999-08-26 | Method for manufacturing silicon carbide semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24017299A JP3760688B2 (en) | 1999-08-26 | 1999-08-26 | Method for manufacturing silicon carbide semiconductor device |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005129773A Division JP4449814B2 (en) | 2005-04-27 | 2005-04-27 | Method for manufacturing silicon carbide semiconductor device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001068428A JP2001068428A (en) | 2001-03-16 |
JP3760688B2 true JP3760688B2 (en) | 2006-03-29 |
Family
ID=17055557
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP24017299A Expired - Lifetime JP3760688B2 (en) | 1999-08-26 | 1999-08-26 | Method for manufacturing silicon carbide semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3760688B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102008036744A1 (en) | 2007-08-10 | 2009-04-02 | Mitsubishi Electric Corporation | A method of manufacturing a silicon carbide semiconductor device |
US7718519B2 (en) | 2007-03-29 | 2010-05-18 | Panasonic Corporation | Method for manufacturing silicon carbide semiconductor element |
US8999768B2 (en) | 2011-03-14 | 2015-04-07 | Fuji Electric Co., Ltd. | Semiconductor device manufacturing method |
Families Citing this family (47)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4961633B2 (en) * | 2001-04-18 | 2012-06-27 | 株式会社デンソー | Method for manufacturing silicon carbide semiconductor device |
KR100727438B1 (en) * | 2001-06-28 | 2007-06-13 | 주식회사 하이닉스반도체 | A forming method of metal line using diamond light carbon organic dielectric layer |
JP4848607B2 (en) * | 2001-09-11 | 2011-12-28 | 株式会社デンソー | Method for manufacturing silicon carbide semiconductor device |
KR100446954B1 (en) * | 2001-09-22 | 2004-09-01 | 한국전기연구원 | Fabrication method of silicon carbide semiconducting devices |
US7473929B2 (en) * | 2003-07-02 | 2009-01-06 | Panasonic Corporation | Semiconductor device and method for fabricating the same |
JP2005197464A (en) | 2004-01-07 | 2005-07-21 | Rohm Co Ltd | Method for manufacturing semiconductor device |
WO2005076327A1 (en) | 2004-02-06 | 2005-08-18 | Matsushita Electric Industrial Co., Ltd. | Silicon carbide semiconductor device and process for producing the same |
JP4666200B2 (en) * | 2004-06-09 | 2011-04-06 | パナソニック株式会社 | Method for manufacturing SiC semiconductor device |
JP2007234942A (en) * | 2006-03-02 | 2007-09-13 | Nissan Motor Co Ltd | Method of manufacturing semiconductor device |
JP4961805B2 (en) * | 2006-04-03 | 2012-06-27 | 株式会社デンソー | Method for manufacturing silicon carbide semiconductor device |
WO2007139146A1 (en) * | 2006-05-31 | 2007-12-06 | Panasonic Corporation | Semiconductor device and method for manufacturing the same |
WO2008020911A2 (en) | 2006-08-17 | 2008-02-21 | Cree, Inc. | High power insulated gate bipolar transistors |
JP2008112834A (en) | 2006-10-30 | 2008-05-15 | Sumitomo Electric Ind Ltd | Manufacturing method of silicon carbide semiconductor device |
JP2008118043A (en) * | 2006-11-07 | 2008-05-22 | Sumitomo Electric Ind Ltd | Method for manufacturing semiconductor device, and apparatus for manufacturing semiconductor |
JP5037165B2 (en) * | 2007-02-22 | 2012-09-26 | 三菱電機株式会社 | Manufacturing method of semiconductor device |
US20100025695A1 (en) * | 2007-04-20 | 2010-02-04 | Canon Anelva Corporation | Annealing method for semiconductor device with silicon carbide substrate and semiconductor device |
JP2008283143A (en) * | 2007-05-14 | 2008-11-20 | Ulvac Japan Ltd | Treatment equipment, and transistor manufacturing method |
JP4600438B2 (en) * | 2007-06-21 | 2010-12-15 | 株式会社デンソー | Method for manufacturing silicon carbide semiconductor device |
US8039204B2 (en) * | 2007-07-25 | 2011-10-18 | Mitsubishi Electric Corporation | Manufacturing method of silicon carbide semiconductor apparatus |
JP5090968B2 (en) * | 2008-03-05 | 2012-12-05 | 三菱電機株式会社 | Method for manufacturing silicon carbide semiconductor device |
JP5092868B2 (en) * | 2008-04-18 | 2012-12-05 | 三菱電機株式会社 | Method for manufacturing silicon carbide semiconductor device |
JP4480775B2 (en) | 2008-04-23 | 2010-06-16 | トヨタ自動車株式会社 | Manufacturing method of semiconductor device |
JP2010135552A (en) * | 2008-12-04 | 2010-06-17 | Mitsubishi Electric Corp | Method of manufacturing silicon carbide semiconductor device |
JP5518326B2 (en) | 2008-12-26 | 2014-06-11 | 昭和電工株式会社 | Method for manufacturing silicon carbide semiconductor device |
JP5438992B2 (en) * | 2009-02-20 | 2014-03-12 | 昭和電工株式会社 | Method for manufacturing silicon carbide semiconductor device |
JP5354009B2 (en) * | 2009-04-16 | 2013-11-27 | 三菱電機株式会社 | Method for manufacturing silicon carbide Schottky diode |
KR20120007305A (en) | 2010-07-14 | 2012-01-20 | 삼성모바일디스플레이주식회사 | Organic light emitting device and method for manufacturing the same |
JP2012169316A (en) | 2011-02-10 | 2012-09-06 | Think Laboratory Co Ltd | Base material with etching mask and manufacturing method thereof |
JP5659882B2 (en) * | 2011-03-09 | 2015-01-28 | 住友電気工業株式会社 | Manufacturing method of semiconductor device |
JP5799458B2 (en) * | 2011-03-29 | 2015-10-28 | 学校法人関西学院 | Manufacturing method of semiconductor device |
JP5759293B2 (en) | 2011-07-20 | 2015-08-05 | 住友電気工業株式会社 | Manufacturing method of semiconductor device |
JP6108588B2 (en) * | 2012-04-27 | 2017-04-05 | 国立研究開発法人産業技術総合研究所 | Method for manufacturing silicon carbide semiconductor element |
JP2014090045A (en) * | 2012-10-30 | 2014-05-15 | Sanken Electric Co Ltd | Method for activating ion introduction layer, and method for manufacturing semiconductor device |
JP2014135422A (en) * | 2013-01-11 | 2014-07-24 | Toyota Motor Corp | Semiconductor device manufacturing method |
JP2015065318A (en) | 2013-09-25 | 2015-04-09 | 住友電気工業株式会社 | Method for manufacturing silicon carbide semiconductor device |
JP2015065289A (en) | 2013-09-25 | 2015-04-09 | 住友電気工業株式会社 | Silicon carbide semiconductor device manufacturing method |
JP2015065316A (en) | 2013-09-25 | 2015-04-09 | 住友電気工業株式会社 | Method for manufacturing silicon carbide semiconductor device |
JP5738376B2 (en) * | 2013-10-02 | 2015-06-24 | 三菱電機株式会社 | Method for manufacturing silicon carbide Schottky barrier diode |
JPWO2015064256A1 (en) * | 2013-10-28 | 2017-03-09 | 富士電機株式会社 | Silicon carbide semiconductor device and manufacturing method thereof |
JP2016127177A (en) * | 2015-01-06 | 2016-07-11 | 住友電気工業株式会社 | Silicon carbide substrate, silicon carbide semiconductor device and silicon carbide substrate manufacturing method |
JP2015159309A (en) * | 2015-04-07 | 2015-09-03 | ルネサスエレクトロニクス株式会社 | Power JFET |
JP6199354B2 (en) * | 2015-09-10 | 2017-09-20 | 株式会社日立製作所 | Manufacturing method of semiconductor device |
JP6597215B2 (en) * | 2015-11-16 | 2019-10-30 | 富士電機株式会社 | Manufacturing method of semiconductor device |
JP6614083B2 (en) * | 2016-09-26 | 2019-12-04 | 豊田合成株式会社 | Method of manufacturing nitride semiconductor device |
JP7314758B2 (en) | 2019-10-11 | 2023-07-26 | 株式会社デンソー | Silicon carbide semiconductor device and manufacturing method thereof |
CN111463113B (en) * | 2020-05-25 | 2023-04-11 | 哈尔滨晶创科技有限公司 | Processing method for protecting silicon carbide surface in semi-insulating SiC ion doping annealing process |
CN115274442A (en) * | 2021-04-29 | 2022-11-01 | 比亚迪股份有限公司 | SiC MOSFET (Metal-oxide-semiconductor field Effect transistor), preparation method thereof and semiconductor device |
-
1999
- 1999-08-26 JP JP24017299A patent/JP3760688B2/en not_active Expired - Lifetime
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7718519B2 (en) | 2007-03-29 | 2010-05-18 | Panasonic Corporation | Method for manufacturing silicon carbide semiconductor element |
DE102008036744A1 (en) | 2007-08-10 | 2009-04-02 | Mitsubishi Electric Corporation | A method of manufacturing a silicon carbide semiconductor device |
US7820534B2 (en) | 2007-08-10 | 2010-10-26 | Mitsubishi Electric Corporation | Method of manufacturing silicon carbide semiconductor device |
US8999768B2 (en) | 2011-03-14 | 2015-04-07 | Fuji Electric Co., Ltd. | Semiconductor device manufacturing method |
US9905684B2 (en) | 2011-03-14 | 2018-02-27 | Fuji Electric Co., Ltd. | Semiconductor device having schottky junction between substrate and drain electrode |
Also Published As
Publication number | Publication date |
---|---|
JP2001068428A (en) | 2001-03-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3760688B2 (en) | Method for manufacturing silicon carbide semiconductor device | |
JP4843854B2 (en) | MOS device | |
US8138504B2 (en) | Silicon carbide semiconductor device and method of manufacturing the same | |
JP4100652B2 (en) | SiC Schottky diode | |
JP2007115875A (en) | Silicon carbide semiconductor device and manufacturing method thereof | |
JP4666200B2 (en) | Method for manufacturing SiC semiconductor device | |
EP2551891B1 (en) | Semiconductor device and method for producing same | |
JP2013187302A (en) | SiC SEMICONDUCTOR DEVICE AND MANUFACTURING METHOD THEREFOR | |
JP3848700B2 (en) | Silicon carbide semiconductor device | |
JP2005039257A (en) | Semiconductor device and method for manufacturing the same | |
US11576259B2 (en) | Carrier, laminate and method of manufacturing semiconductor devices | |
CN101536162B (en) | Method for manufacturing silicon carbide semiconductor device | |
JP4449814B2 (en) | Method for manufacturing silicon carbide semiconductor device | |
JP3733792B2 (en) | Method for manufacturing silicon carbide semiconductor element | |
JP3230650B2 (en) | Silicon carbide semiconductor substrate, method of manufacturing the same, and silicon carbide semiconductor device using the substrate | |
JP3956487B2 (en) | Method for manufacturing silicon carbide semiconductor device | |
JP3214868B2 (en) | Method for manufacturing heterojunction bipolar transistor | |
JP3972450B2 (en) | Method for manufacturing silicon carbide semiconductor device | |
JP3944970B2 (en) | Method for manufacturing silicon carbide semiconductor device | |
JP4100070B2 (en) | Manufacturing method of semiconductor device | |
JP4042336B2 (en) | Silicon carbide semiconductor element | |
JPH10125905A (en) | Semiconductor substrate, and method for correcting warping of semiconductor substrate | |
EP1908118B1 (en) | Method for producing a semiconductor device | |
TW201201284A (en) | Method for manufacturing silicon carbide substrate, method for manufacturing semiconductor device, silicon carbide substrate and semiconductor device | |
JPH0770695B2 (en) | Method for manufacturing silicon carbide semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040217 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050217 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050301 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050427 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20051220 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060102 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 3760688 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090120 Year of fee payment: 3 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090120 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100120 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100120 Year of fee payment: 4 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100120 Year of fee payment: 4 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110120 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110120 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120120 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120120 Year of fee payment: 6 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120120 Year of fee payment: 6 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130120 Year of fee payment: 7 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130120 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140120 Year of fee payment: 8 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |