JP3760688B2 - Method for manufacturing silicon carbide semiconductor device - Google Patents

Method for manufacturing silicon carbide semiconductor device Download PDF

Info

Publication number
JP3760688B2
JP3760688B2 JP24017299A JP24017299A JP3760688B2 JP 3760688 B2 JP3760688 B2 JP 3760688B2 JP 24017299 A JP24017299 A JP 24017299A JP 24017299 A JP24017299 A JP 24017299A JP 3760688 B2 JP3760688 B2 JP 3760688B2
Authority
JP
Japan
Prior art keywords
silicon carbide
sic
annealing
film
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP24017299A
Other languages
Japanese (ja)
Other versions
JP2001068428A (en
Inventor
崇 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP24017299A priority Critical patent/JP3760688B2/en
Publication of JP2001068428A publication Critical patent/JP2001068428A/en
Application granted granted Critical
Publication of JP3760688B2 publication Critical patent/JP3760688B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/0445Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising crystalline silicon carbide
    • H01L21/0455Making n or p doped regions or layers, e.g. using diffusion
    • H01L21/046Making n or p doped regions or layers, e.g. using diffusion using ion implantation

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physical Vapour Deposition (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は炭化けい素(以下SiCと記す)を材料とする半導体素子の製造方法に関する。
【0002】
【従来の技術】
近年、けい素(以下Siと記す)に代わる半導体材料の一つとしてSiCが注目されている。SiCは、バンドギャップが4H−SiCで3.25eVと、Siのそれ(1.12eV)に比べて3倍近く大きいため、動作上限温度を高くできる。また、絶縁破壊電界強度が4H−SiCで3.0MV/cm と、Siのそれ(0.25MV/cm)に比べて約1桁大きいため、絶縁破壊電界強度の3乗の逆数で効いてくるオン抵抗が低減され、定常状態での電力損失を低減できる。更に、熱伝導度も4H−SiCで4.9W/cmK とSiのそれ(1.5W/cmK )に比べて3倍以上高いので、熱冷却効果が高く冷却装置を小型化できるという利点も生まれる。飽和ドリフト速度が2×107cm/sと大きいため、高速動作にも優れている。
【0003】
このようなことからSiCは、電力用半導体素子(以下パワーデバイスと呼ぶ)や高周波デバイス、高温動作デバイスなどへの応用が期待されている。現在、MOSFET、pnダイオード、ショットキーダイオード等が試作され、絶縁耐圧とオン抵抗(=通電時の順方向電圧/順方向電流)に関してはSiの特性を越えるデバイスが続出している。
【0004】
これらの素子作成には、選択された領域において導電型やキャリア濃度を制御する技術が必要である。その方法には、熱拡散法とイオン注入法がある。SiC中においては不純物の拡散係数が非常に小さいため、Si半導体子で広く用いられている熱拡散法はSiCには適用が難しい。そのため、SiCでは通常イオン注入法が用いられている。
【0005】
注入されるイオン種としては、n型に対しては窒素(以下Nと記す)リン(以下Pと記す)が用いられ、p型に対してはアルミニウム(以下Alと記す)またはほう素(以下Bと記す)が多く用いられる。
【0006】
図3(a)〜(e)はイオン注入とそれに引き続くプロセスの工程を説明する工程順の断面図である。
【0007】
下地層1上にエピタキシャル層2を成長したエピタキシャルウェハを有機溶剤や酸等で前処理した後、酸化膜3を形成する〔図3(a)〕。
【0008】
フォトレジスト4を塗布し、酸化膜3をパターニングする〔同図(b)〕。
【0009】
Bイオン5を注入する〔同図(c)〕。イオン注入用のマスクとしてはフォトレジストでも良い。しかし、イオン注入による結晶ダメージを最小限に抑えるため時として数100℃〜1000℃の雰囲気中においてイオン注入が行われる。その場合は、当然その温度に耐える材料のマスクでなければならない。
【0010】
注入後高温アニールする前に、フォトレジストや酸化膜などを全て除去し、SiC表面が露出した状態にする〔同図(d)〕。これは、その後の高温アニール時にSiC上に熱酸化膜などが堆積されているとSiCとの反応が起こり、エッチングが起こることを防ぐためである。特に、イオン注入された領域には結晶ダメージがあり、各原子間の結合力が弱いため他の領域よりエッチングされやすいので注意が必要である。
【0011】
その後、注入された不純物を電気的に活性化するための高温アニールをおこなう〔同図(e)〕。不純物を完全に活性化するためには、Nでは1300℃、Alでは1500℃、Bでは1700℃の高温が必要である。このようにAlはイオン注入後のアニール温度をBより100〜200℃程度低くできるが、Bより原子量が大きいためイオン注入時のダメージは大きい。
【0012】
また、高温アニール時には、イオン注入したSiCのサンプルは多結晶SiC容器中に入れられる。これは、高温における表面近傍の原子の昇華を防止して表面荒れを防ぐためである。
【0013】
この後、例えば絶縁ゲート構造のMOS素子の場合には、熱酸化膜を形成する。また、ショットキーダイオードの場合は、ショットキー電極を形成する。
【0014】
【発明が解決しようとする課題】
Bのような比較的原子量の小さい原子の場合、イオン注入後の1700℃アニール時にB原子が外方・内方拡散するという問題が発生する。特にイオン注入深さが浅いと、外方拡散により表面からB原子が真空中に抜け出してしまう。
【0015】
また、アニール温度を高くすること、イオン注入ドーズ量を大きくすること、原子量の大きなイオン注入種を注入することのいずれにおいても、ステップバンチングによる表面荒れが激しくなるという問題がある。
【0016】
ステップバンチングとは次のような現象のことである。例えば4H−SiCの(0001)面から[11-20 ]方向に8度程度傾けた(この角度をオフ角度という)下地基板上に成長したエピタキシャル層で、各原子層が横方向に成長していくため、各原子層の端にある成長ステップが、ある条件下において統合されて、表面の凹凸が激しくなる現象である。
【0017】
一方、熱拡散法はイオン注入に比べて工程が少なくて済み、深い接合を容易に形成することができる。しかしながら、先に述べたようにSiC中における不純物の拡散係数は非常に小さい。従って、熱拡散法により接合を形成するためには2000℃近くの高温にする必要があり、そのような高温に耐え、かつパターニングなどの加工が容易な適当なマスク材料が見当たらないため、これまで拡散法は殆ど実施されなかった。
【0018】
このような問題に鑑み本発明の目的は、アニール後のSiC表面を清浄かつ平滑に保ち、良好な特性のデバイスを作製する方法を提供することにある。
【0019】
【課題を解決するための手段】
上記の課題を解決するため本発明は、炭化けい素結晶板の表面層に不純物のドーピングとその後のアニールにより逆導電型領域を形成する炭化けい素半導体素子の製造方法において、マスクを用いた選択的なドーピングをおこない、マスクを除去した後、表面にダイヤモンドライクカーボン膜(以下DLC膜と記す)または有機膜の保護膜を堆積してアニールをおこない、アニール後その保護膜を除去するものとする。
【0020】
ーピング方法はイオン注入法またはガス拡散法のいずれでも良い。
【0021】
アニールの高温加熱時にDLC膜や有機膜中のH原子、O原子が脱離し、グラファイト化したC薄膜となる。グラファイトの融点は3550℃であり、熱拡散に必要な温度の2000℃に十分耐え得る。従って、注入されたBの表面からの蒸発を抑制してBの濃度勾配を減少させ、その結果として外方拡散を防止できる。また、表面のSi、C原子がC層の原子と結合しているためにSiCウェハーの最表面の原子の表面拡散を抑制して表面荒れが低減される。
【0022】
保護膜の除去方法としては、酸素プラズマにより除去するものとする。
【0023】
このC膜は02 プラズマによりC0、C02 などとなって除去される。
【0024】
【0025】
【0026】
【0027】
【0028】
【0029】
【発明の実施の形態】
以下実施例に基づき、本発明の実施の形態を説明する。
【0030】
[実施例1]
図1(a)〜(f)は本発明第一の製造方法を説明する工程順の断面図である。
【0031】
ウェハとしては、(0001)Si面から8°オフした面のn型4H−SiCの下地層1上にエピタキシャル層2を成長したエピタキシャルウェハを用いた。下地層1のキャリア濃度は1×1018/cm3であり、エピタキシャル層2のキャリア濃度は1×1016/cm 3 、厚さ10μm である。
【0032】
このウェハー上にまず、1100℃、5時間のパイロジェニック酸化により厚さ30nmの酸化膜3を形成する〔図1(a)〕。
【0033】
ついで、スピンコータにより厚さ約5μmのフォトレジスト4を塗布する。100℃のベーキングによりフォトレジスト4と熱酸化膜3との密着性を高めた後、フォトリソグラフィによりフォトレジスト4をパターニングし、その後バッファードフッ酸により熱酸化膜3の露出部分をエッチングする〔同図(b)〕。
【0034】
その後、室温でBイオン5の注入をおこなう〔同図(c)〕。加速電圧は30、60、100kV、総ドーズ量は5×1013cm-2である。
【0035】
イオン注入後、フォトレジスト4は、基板温度100℃においてO2 プラズマアッシングにより除去する。また、熱酸化膜3をバッファードフッ酸によりすべて除去する。その後、メタン(CH4 )を用いたECR−CVD法により、厚さ約100nmのDLC膜6を成膜する〔同図(d)〕。DLC膜成膜時にSiCウェハからの剥離を防ぐために、内部応力を小さくする必要があり、そのためにはECR−CVD法において成膜中に基板への負バイアスはかけない方がよい。
【0036】
その後、Ar雰囲気中で1700℃、30分間のアニールをおこない、注入されたB原子を活性化する。これにより深さ約0.5μm、濃度1×1018cm-3の不純物領域7が形成される〔同図(e)〕。この時、SiCサンプルは多結晶SiC容器中に入れられる。
【0037】
アニール後、DLC膜6を約4分間のO2 プラズマアッシングにより除去する〔同図(f)〕。アッシングの条件はパワー300W 、O2 ガス圧50Pa、基板温度100℃である。
【0038】
上記のプロセスを実施した表面のAFM(Atomic Force Microscope:原子間力顕微鏡)観察をおこなったところ、表面粗さRaは約0.3nmであった。この値は、保護膜を被着しないでアニールした場合の表面粗さ3nmに比べ、表面荒さが1/10に低減されたことになる。
【0039】
また、同様の条件のイオン注入およびアニールにより、従来のプロセスではBのピーク濃度が50%減少していたのに対し、本発明によるプロセスにおいては20%のピーク濃度の減少に抑えることができた。
【0040】
すなわち、本発明の方法では、全面にDLC膜を被着するだけで、表面荒さの低減、濃度の保持に大きな効果が得られたことがわかる。
【0041】
なお、DLC膜をスパッタ法により成膜してもよいし、また、DLC膜の代わりにフォトレジストを用いてもよい。
参考例
図2(a)〜(d)は参考例の製造方法を説明する工程順の断面図である。
【0042】
実施例1と同様に、下地層1上にエピタキシャル層2を成長した4H−SiCウェハ使用した。
【0043】
エピタキシャル層2上にスピンコータにより厚さ約5μmのフォトレジスト4を塗布した後、そのフォトレジスト4のパターニングをおこなって選択的ドーピングを行う部分を露出させる〔図2(a)〕。
【0044】
次いで、選択的ドーピングをおこなうための加熱過程で、フォトレジスト4は炭化しグラファイト膜8となるが、熱拡散時のマスクとして十分適用できる〔同図(b)〕。
【0045】
2000℃、1時間のドーピングおよび拡散をおこない、不純物領域7を形成する〔同図(c)〕。ドーピングガス9としては、例えばBの場合にはジボラン〔B2 6 〕が使用できる。キャリアガスはArである。この時の拡散深さは、5μm となる。表面不純物濃度は1×1019cm-3であった。
【0046】
20分間のO2 プラズマアッシングにより、グラファイト膜9を除去する〔同図(d)〕。
【0047】
この場合も表面粗さは0.5nm以下であった。
【0048】
この方法では、マスク材料が有機膜であれば良いが、フォトレジストであればパターニングのための加工が容易であるという利点がある。
【0049】
なお、ドーピングガス9としては、Alの場合にはトリメチルアルミニウム〔Al(CH3 3 〕が使用でき、同じアニールで拡散深さは約1μmとなる。
【0050】
【発明の効果】
以上説明したように本発明によれば、マスクを用いた選択的なドーピングをおこない、マスクを除去した後、表面にダイヤモンドライクカーボン膜または有機膜等の保護膜を堆積してアニールをおこない、アニール後その保護膜を酸素プラズマ等により除去することにより、SiC表面を清浄かつ平滑に保ち、良好な特性のSiC半導体デバイスを作製することができる。
【0051】
【0052】
従って本発明は、炭化けい素半導体素子の普及、発展に大きな貢献をなすものである。
【図面の簡単な説明】
【図1】 (a)〜(f)は本発明第一の製造方法による半導体素子の製造工程順の断面図
【図2】 (a)〜(d)は参考例の製造方法による半導体素子の製造工程順の断面図
【図3】 (a)〜(e)は従来の製造方法による半導体素子の製造工程順の断面図
【符号の説明】
1 …下地層
2 …エピタキシャル層
3 …熱酸化膜
4 …フォトレジスト
5 …Bイオン
6 …DLC膜
7 …不純物領域
8 …グラファイト膜
9 …ドーピングガス
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a semiconductor element made of silicon carbide (hereinafter referred to as SiC).
[0002]
[Prior art]
In recent years, SiC has attracted attention as one of semiconductor materials that can replace silicon (hereinafter referred to as Si). Since SiC has a band gap of 3.25 eV in 4H-SiC, which is nearly three times larger than that of Si (1.12 eV), the upper limit temperature of operation can be increased. Also, the dielectric breakdown electric field strength is 3.0 MV / cm for 4H-SiC, which is about an order of magnitude larger than that of Si (0.25 MV / cm), so it works with the inverse of the cube of the dielectric breakdown electric field strength. On-resistance is reduced, and power loss in a steady state can be reduced. Furthermore, the thermal conductivity is 4H-SiC, which is 4.9 W / cmK, which is more than 3 times higher than that of Si (1.5 W / cmK). . Since the saturation drift speed is as high as 2 × 10 7 cm / s, it is excellent in high-speed operation.
[0003]
For these reasons, SiC is expected to be applied to power semiconductor elements (hereinafter referred to as power devices), high-frequency devices, high-temperature operation devices, and the like. Currently, MOSFETs, pn diodes, Schottky diodes, and the like have been prototyped, and devices that exceed the characteristics of Si in terms of withstand voltage and on-resistance (= forward voltage / forward current when energized) are appearing one after another.
[0004]
The production of these elements requires a technique for controlling the conductivity type and carrier concentration in a selected region. The method includes a thermal diffusion method and an ion implantation method. Since the diffusion coefficient of impurities is very small in SiC, the thermal diffusion method widely used in Si semiconductor elements is difficult to apply to SiC. Therefore, an ion implantation method is usually used for SiC.
[0005]
As ion species to be implanted, nitrogen (hereinafter referred to as N) phosphorus (hereinafter referred to as P) is used for n-type, and aluminum (hereinafter referred to as Al) or boron (hereinafter referred to as P) for p-type. B)) is often used.
[0006]
FIGS. 3A to 3E are cross-sectional views in order of steps for explaining the steps of ion implantation and the subsequent process.
[0007]
After the epitaxial wafer having the epitaxial layer 2 grown on the underlayer 1 is pretreated with an organic solvent, acid, or the like, an oxide film 3 is formed [FIG. 3A].
[0008]
A photoresist 4 is applied and the oxide film 3 is patterned [FIG.
[0009]
B ions 5 are implanted [(c) in the figure]. A photoresist may be used as a mask for ion implantation. However, ion implantation is sometimes performed in an atmosphere of several hundred to 1000 ° C. in order to minimize crystal damage due to ion implantation. In that case, of course, the mask must be made of a material that can withstand that temperature.
[0010]
Before the high-temperature annealing after implantation, all of the photoresist, oxide film, etc. are removed so that the SiC surface is exposed [(d)]. This is to prevent a reaction with SiC and etching from occurring if a thermal oxide film or the like is deposited on the SiC during the subsequent high-temperature annealing. In particular, care must be taken because the ion-implanted region has crystal damage and the bonding force between the atoms is weak, so that the region is more easily etched than the other regions.
[0011]
Thereafter, high-temperature annealing for electrically activating the implanted impurities is performed [FIG. In order to completely activate the impurities, high temperatures of 1300 ° C. for N, 1500 ° C. for Al, and 1700 ° C. for B are required. Thus, although Al can lower the annealing temperature after ion implantation by about 100 to 200 ° C. than B, since the atomic weight is larger than B, the damage during ion implantation is large.
[0012]
At the time of high-temperature annealing, the SiC sample into which ions are implanted is placed in a polycrystalline SiC container. This is to prevent surface roughness by preventing sublimation of atoms near the surface at high temperatures.
[0013]
Thereafter, for example, in the case of a MOS element having an insulated gate structure, a thermal oxide film is formed. In the case of a Schottky diode, a Schottky electrode is formed.
[0014]
[Problems to be solved by the invention]
In the case of an atom having a relatively small atomic weight such as B, there arises a problem that B atoms diffuse outward and inward during annealing at 1700 ° C. after ion implantation. In particular, when the ion implantation depth is shallow, B atoms escape from the surface into the vacuum due to outward diffusion.
[0015]
Further, there is a problem that surface roughness due to step bunching becomes severe in any of raising the annealing temperature, increasing the ion implantation dose, and implanting an ion implantation species having a large atomic weight.
[0016]
Step bunching is the following phenomenon. For example, in an epitaxial layer grown on a base substrate tilted by about 8 degrees in the [11-20] direction from the (0001) plane of 4H—SiC (this angle is called an off angle), each atomic layer grows laterally. Therefore, the growth step at the end of each atomic layer is integrated under a certain condition, and the surface unevenness becomes intense.
[0017]
On the other hand, the thermal diffusion method requires fewer steps than ion implantation and can easily form a deep junction. However, as described above, the diffusion coefficient of impurities in SiC is very small. Therefore, in order to form a bond by the thermal diffusion method, it is necessary to raise the temperature to near 2000 ° C., and no suitable mask material that can withstand such a high temperature and that can be easily processed such as patterning has not been found. Few diffusion methods were performed.
[0018]
In view of such problems, an object of the present invention is to provide a method for producing a device having good characteristics by keeping the SiC surface after annealing clean and smooth.
[0019]
[Means for Solving the Problems]
In order to solve the above-described problems, the present invention provides a method for manufacturing a silicon carbide semiconductor element in which a reverse conductivity type region is formed by doping impurities and then annealing on a surface layer of a silicon carbide crystal plate. After performing a basic doping and removing the mask, a diamond-like carbon film (hereinafter referred to as DLC film) or an organic film protective film is deposited on the surface and annealed, and after the annealing, the protective film is removed. .
[0020]
Doping methods may be either ion implantation or gas diffusion.
[0021]
At the time of high-temperature annealing, H atoms and O atoms in the DLC film and the organic film are desorbed to form a graphitized C thin film. The melting point of graphite is 3550 ° C., and it can sufficiently withstand the temperature of 2000 ° C. necessary for thermal diffusion. Therefore, evaporation from the surface of the injected B is suppressed to reduce the B concentration gradient, and as a result, outward diffusion can be prevented. Further, since surface Si and C atoms are bonded to atoms in the C layer, surface diffusion of the outermost surface atoms of the SiC wafer is suppressed and surface roughness is reduced.
[0022]
The protective film is removed by oxygen plasma.
[0023]
The C film is removed by a like C0, C0 2 by 0 2 plasma.
[0024]
[0025]
[0026]
[0027]
[0028]
[0029]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described based on examples.
[0030]
[Example 1]
1A to 1F are cross-sectional views in order of steps for explaining the first manufacturing method of the present invention.
[0031]
As the wafer, an epitaxial wafer was used in which an epitaxial layer 2 was grown on an n-type 4H—SiC underlayer 1 having a surface off by 8 ° from the (0001) Si surface. The carrier concentration of the underlayer 1 is 1 × 10 18 / cm 3 , the carrier concentration of the epitaxial layer 2 is 1 × 10 16 / cm 3 , and the thickness is 10 μm.
[0032]
First, an oxide film 3 having a thickness of 30 nm is formed on the wafer by pyrogenic oxidation at 1100 ° C. for 5 hours [FIG. 1A].
[0033]
Next, a photoresist 4 having a thickness of about 5 μm is applied by a spin coater. After the adhesion between the photoresist 4 and the thermal oxide film 3 is improved by baking at 100 ° C., the photoresist 4 is patterned by photolithography, and then the exposed portion of the thermal oxide film 3 is etched by buffered hydrofluoric acid. FIG. (B)].
[0034]
Thereafter, B ions 5 are implanted at room temperature [FIG. The acceleration voltage is 30, 60, 100 kV, and the total dose is 5 × 10 13 cm −2 .
[0035]
After the ion implantation, the photoresist 4 is removed by O 2 plasma ashing at a substrate temperature of 100 ° C. Further, the thermal oxide film 3 is completely removed with buffered hydrofluoric acid. Thereafter, a DLC film 6 having a thickness of about 100 nm is formed by an ECR-CVD method using methane (CH 4 ) [(d)]. In order to prevent peeling from the SiC wafer when forming the DLC film, it is necessary to reduce the internal stress. For this purpose, it is better not to apply a negative bias to the substrate during film formation in the ECR-CVD method.
[0036]
Thereafter, annealing is performed at 1700 ° C. for 30 minutes in an Ar atmosphere to activate the implanted B atoms. As a result, an impurity region 7 having a depth of about 0.5 μm and a concentration of 1 × 10 18 cm −3 is formed [FIG. At this time, the SiC sample is placed in a polycrystalline SiC container.
[0037]
After the annealing, the DLC film 6 is removed by O 2 plasma ashing for about 4 minutes [(f) in the figure]. The ashing conditions are a power of 300 W, an O 2 gas pressure of 50 Pa, and a substrate temperature of 100 ° C.
[0038]
When AFM (Atomic Force Microscope) observation of the surface which implemented said process was performed, surface roughness Ra was about 0.3 nm. This value means that the surface roughness is reduced to 1/10 compared to the surface roughness of 3 nm when annealing is performed without depositing the protective film.
[0039]
In addition, by the ion implantation and annealing under the same conditions, the peak concentration of B was reduced by 50% in the conventional process, whereas in the process according to the present invention, the reduction of the peak concentration by 20% could be suppressed. .
[0040]
That is, in the method of the present invention, it can be seen that a great effect was obtained in reducing the surface roughness and maintaining the concentration only by depositing the DLC film on the entire surface.
[0041]
Note that a DLC film may be formed by a sputtering method, or a photoresist may be used instead of the DLC film.
[ Reference example ]
2A to 2D are cross-sectional views in the order of steps for explaining the manufacturing method of the reference example .
[0042]
As in Example 1, a 4H—SiC wafer in which an epitaxial layer 2 was grown on an underlayer 1 was used.
[0043]
After applying a photoresist 4 having a thickness of about 5 μm on the epitaxial layer 2 by a spin coater, the photoresist 4 is patterned to expose a portion to be selectively doped [FIG. 2A].
[0044]
Next, in the heating process for performing selective doping, the photoresist 4 is carbonized and becomes a graphite film 8, which can be sufficiently applied as a mask during thermal diffusion [FIG.
[0045]
Impurity region 7 is formed by doping and diffusing for 1 hour at 2000 ° C. [FIG. For example, in the case of B, diborane [B 2 H 6 ] can be used as the doping gas 9. The carrier gas is Ar. The diffusion depth at this time is 5 μm. The surface impurity concentration was 1 × 10 19 cm −3 .
[0046]
The graphite film 9 is removed by O 2 plasma ashing for 20 minutes [(d) in the figure].
[0047]
Also in this case, the surface roughness was 0.5 nm or less.
[0048]
In this method, the mask material may be an organic film, but if it is a photoresist, there is an advantage that processing for patterning is easy.
[0049]
As the doping gas 9, trimethylaluminum [Al (CH 3 ) 3 ] can be used in the case of Al, and the diffusion depth becomes about 1 μm by the same annealing.
[0050]
【The invention's effect】
As described above, according to the present invention, selective doping using a mask is performed, and after removing the mask, a protective film such as a diamond-like carbon film or an organic film is deposited on the surface and annealing is performed. Thereafter, by removing the protective film with oxygen plasma or the like, the SiC surface can be kept clean and smooth, and a SiC semiconductor device having good characteristics can be manufactured.
[0051]
[0052]
Therefore, the present invention greatly contributes to the spread and development of silicon carbide semiconductor elements.
[Brief description of the drawings]
FIGS. 1A to 1F are cross-sectional views in the order of manufacturing steps of a semiconductor device according to the first manufacturing method of the present invention. FIGS. 2A to 2D are cross-sectional views of a semiconductor device manufactured by a manufacturing method of a reference example . Cross-sectional views in the order of the manufacturing process [FIG. 3] (a) to (e) are cross-sectional views in the order of the manufacturing process of the semiconductor device according to the conventional manufacturing method.
1… Underlayer
2… Epitaxial layer
3… Thermal oxide film
4… Photoresist
5… B ion
6 DLC film
7… Impurity region
8… graphite film
9… doping gas

Claims (3)

炭化けい素結晶板の表面層に不純物のドーピングとその後のアニールにより不純物領域を形成する炭化けい素半導体素子の製造方法において、マスクを用いた選択的なドーピングをおこない、マスクを除去した後、表面にダイヤモンドライクカーボン膜または有機膜の保護膜を堆積してアニールをおこない、アニール後その保護膜を除去することを特徴とする炭化けい素半導体素子の製造方法。In a method for manufacturing a silicon carbide semiconductor element in which an impurity region is formed by doping impurities and then annealing in a surface layer of a silicon carbide crystal plate, selective doping using a mask is performed, and the surface is removed after removing the mask. A method for producing a silicon carbide semiconductor device, comprising depositing a diamond-like carbon film or a protective film of an organic film on the substrate, annealing, and removing the protective film after annealing. ドーピング方法がイオン注入法またはガス拡散法であることを特徴とする請求項に記載の炭化けい素半導体素子の製造方法。2. The method for manufacturing a silicon carbide semiconductor device according to claim 1 , wherein the doping method is an ion implantation method or a gas diffusion method. 保護膜を酸素プラズマにより除去することを特徴とする請求項またはに記載の炭化けい素半導体素子の製造方法。Method for manufacturing a silicon carbide semiconductor device according to claim 1 or 2, characterized in that the protective film is removed by oxygen plasma.
JP24017299A 1999-08-26 1999-08-26 Method for manufacturing silicon carbide semiconductor device Expired - Lifetime JP3760688B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24017299A JP3760688B2 (en) 1999-08-26 1999-08-26 Method for manufacturing silicon carbide semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24017299A JP3760688B2 (en) 1999-08-26 1999-08-26 Method for manufacturing silicon carbide semiconductor device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2005129773A Division JP4449814B2 (en) 2005-04-27 2005-04-27 Method for manufacturing silicon carbide semiconductor device

Publications (2)

Publication Number Publication Date
JP2001068428A JP2001068428A (en) 2001-03-16
JP3760688B2 true JP3760688B2 (en) 2006-03-29

Family

ID=17055557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24017299A Expired - Lifetime JP3760688B2 (en) 1999-08-26 1999-08-26 Method for manufacturing silicon carbide semiconductor device

Country Status (1)

Country Link
JP (1) JP3760688B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008036744A1 (en) 2007-08-10 2009-04-02 Mitsubishi Electric Corporation A method of manufacturing a silicon carbide semiconductor device
US7718519B2 (en) 2007-03-29 2010-05-18 Panasonic Corporation Method for manufacturing silicon carbide semiconductor element
US8999768B2 (en) 2011-03-14 2015-04-07 Fuji Electric Co., Ltd. Semiconductor device manufacturing method

Families Citing this family (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4961633B2 (en) * 2001-04-18 2012-06-27 株式会社デンソー Method for manufacturing silicon carbide semiconductor device
KR100727438B1 (en) * 2001-06-28 2007-06-13 주식회사 하이닉스반도체 A forming method of metal line using diamond light carbon organic dielectric layer
JP4848607B2 (en) * 2001-09-11 2011-12-28 株式会社デンソー Method for manufacturing silicon carbide semiconductor device
KR100446954B1 (en) * 2001-09-22 2004-09-01 한국전기연구원 Fabrication method of silicon carbide semiconducting devices
US7473929B2 (en) * 2003-07-02 2009-01-06 Panasonic Corporation Semiconductor device and method for fabricating the same
JP2005197464A (en) 2004-01-07 2005-07-21 Rohm Co Ltd Method for manufacturing semiconductor device
WO2005076327A1 (en) 2004-02-06 2005-08-18 Matsushita Electric Industrial Co., Ltd. Silicon carbide semiconductor device and process for producing the same
JP4666200B2 (en) * 2004-06-09 2011-04-06 パナソニック株式会社 Method for manufacturing SiC semiconductor device
JP2007234942A (en) * 2006-03-02 2007-09-13 Nissan Motor Co Ltd Method of manufacturing semiconductor device
JP4961805B2 (en) * 2006-04-03 2012-06-27 株式会社デンソー Method for manufacturing silicon carbide semiconductor device
WO2007139146A1 (en) * 2006-05-31 2007-12-06 Panasonic Corporation Semiconductor device and method for manufacturing the same
WO2008020911A2 (en) 2006-08-17 2008-02-21 Cree, Inc. High power insulated gate bipolar transistors
JP2008112834A (en) 2006-10-30 2008-05-15 Sumitomo Electric Ind Ltd Manufacturing method of silicon carbide semiconductor device
JP2008118043A (en) * 2006-11-07 2008-05-22 Sumitomo Electric Ind Ltd Method for manufacturing semiconductor device, and apparatus for manufacturing semiconductor
JP5037165B2 (en) * 2007-02-22 2012-09-26 三菱電機株式会社 Manufacturing method of semiconductor device
US20100025695A1 (en) * 2007-04-20 2010-02-04 Canon Anelva Corporation Annealing method for semiconductor device with silicon carbide substrate and semiconductor device
JP2008283143A (en) * 2007-05-14 2008-11-20 Ulvac Japan Ltd Treatment equipment, and transistor manufacturing method
JP4600438B2 (en) * 2007-06-21 2010-12-15 株式会社デンソー Method for manufacturing silicon carbide semiconductor device
US8039204B2 (en) * 2007-07-25 2011-10-18 Mitsubishi Electric Corporation Manufacturing method of silicon carbide semiconductor apparatus
JP5090968B2 (en) * 2008-03-05 2012-12-05 三菱電機株式会社 Method for manufacturing silicon carbide semiconductor device
JP5092868B2 (en) * 2008-04-18 2012-12-05 三菱電機株式会社 Method for manufacturing silicon carbide semiconductor device
JP4480775B2 (en) 2008-04-23 2010-06-16 トヨタ自動車株式会社 Manufacturing method of semiconductor device
JP2010135552A (en) * 2008-12-04 2010-06-17 Mitsubishi Electric Corp Method of manufacturing silicon carbide semiconductor device
JP5518326B2 (en) 2008-12-26 2014-06-11 昭和電工株式会社 Method for manufacturing silicon carbide semiconductor device
JP5438992B2 (en) * 2009-02-20 2014-03-12 昭和電工株式会社 Method for manufacturing silicon carbide semiconductor device
JP5354009B2 (en) * 2009-04-16 2013-11-27 三菱電機株式会社 Method for manufacturing silicon carbide Schottky diode
KR20120007305A (en) 2010-07-14 2012-01-20 삼성모바일디스플레이주식회사 Organic light emitting device and method for manufacturing the same
JP2012169316A (en) 2011-02-10 2012-09-06 Think Laboratory Co Ltd Base material with etching mask and manufacturing method thereof
JP5659882B2 (en) * 2011-03-09 2015-01-28 住友電気工業株式会社 Manufacturing method of semiconductor device
JP5799458B2 (en) * 2011-03-29 2015-10-28 学校法人関西学院 Manufacturing method of semiconductor device
JP5759293B2 (en) 2011-07-20 2015-08-05 住友電気工業株式会社 Manufacturing method of semiconductor device
JP6108588B2 (en) * 2012-04-27 2017-04-05 国立研究開発法人産業技術総合研究所 Method for manufacturing silicon carbide semiconductor element
JP2014090045A (en) * 2012-10-30 2014-05-15 Sanken Electric Co Ltd Method for activating ion introduction layer, and method for manufacturing semiconductor device
JP2014135422A (en) * 2013-01-11 2014-07-24 Toyota Motor Corp Semiconductor device manufacturing method
JP2015065318A (en) 2013-09-25 2015-04-09 住友電気工業株式会社 Method for manufacturing silicon carbide semiconductor device
JP2015065289A (en) 2013-09-25 2015-04-09 住友電気工業株式会社 Silicon carbide semiconductor device manufacturing method
JP2015065316A (en) 2013-09-25 2015-04-09 住友電気工業株式会社 Method for manufacturing silicon carbide semiconductor device
JP5738376B2 (en) * 2013-10-02 2015-06-24 三菱電機株式会社 Method for manufacturing silicon carbide Schottky barrier diode
JPWO2015064256A1 (en) * 2013-10-28 2017-03-09 富士電機株式会社 Silicon carbide semiconductor device and manufacturing method thereof
JP2016127177A (en) * 2015-01-06 2016-07-11 住友電気工業株式会社 Silicon carbide substrate, silicon carbide semiconductor device and silicon carbide substrate manufacturing method
JP2015159309A (en) * 2015-04-07 2015-09-03 ルネサスエレクトロニクス株式会社 Power JFET
JP6199354B2 (en) * 2015-09-10 2017-09-20 株式会社日立製作所 Manufacturing method of semiconductor device
JP6597215B2 (en) * 2015-11-16 2019-10-30 富士電機株式会社 Manufacturing method of semiconductor device
JP6614083B2 (en) * 2016-09-26 2019-12-04 豊田合成株式会社 Method of manufacturing nitride semiconductor device
JP7314758B2 (en) 2019-10-11 2023-07-26 株式会社デンソー Silicon carbide semiconductor device and manufacturing method thereof
CN111463113B (en) * 2020-05-25 2023-04-11 哈尔滨晶创科技有限公司 Processing method for protecting silicon carbide surface in semi-insulating SiC ion doping annealing process
CN115274442A (en) * 2021-04-29 2022-11-01 比亚迪股份有限公司 SiC MOSFET (Metal-oxide-semiconductor field Effect transistor), preparation method thereof and semiconductor device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7718519B2 (en) 2007-03-29 2010-05-18 Panasonic Corporation Method for manufacturing silicon carbide semiconductor element
DE102008036744A1 (en) 2007-08-10 2009-04-02 Mitsubishi Electric Corporation A method of manufacturing a silicon carbide semiconductor device
US7820534B2 (en) 2007-08-10 2010-10-26 Mitsubishi Electric Corporation Method of manufacturing silicon carbide semiconductor device
US8999768B2 (en) 2011-03-14 2015-04-07 Fuji Electric Co., Ltd. Semiconductor device manufacturing method
US9905684B2 (en) 2011-03-14 2018-02-27 Fuji Electric Co., Ltd. Semiconductor device having schottky junction between substrate and drain electrode

Also Published As

Publication number Publication date
JP2001068428A (en) 2001-03-16

Similar Documents

Publication Publication Date Title
JP3760688B2 (en) Method for manufacturing silicon carbide semiconductor device
JP4843854B2 (en) MOS device
US8138504B2 (en) Silicon carbide semiconductor device and method of manufacturing the same
JP4100652B2 (en) SiC Schottky diode
JP2007115875A (en) Silicon carbide semiconductor device and manufacturing method thereof
JP4666200B2 (en) Method for manufacturing SiC semiconductor device
EP2551891B1 (en) Semiconductor device and method for producing same
JP2013187302A (en) SiC SEMICONDUCTOR DEVICE AND MANUFACTURING METHOD THEREFOR
JP3848700B2 (en) Silicon carbide semiconductor device
JP2005039257A (en) Semiconductor device and method for manufacturing the same
US11576259B2 (en) Carrier, laminate and method of manufacturing semiconductor devices
CN101536162B (en) Method for manufacturing silicon carbide semiconductor device
JP4449814B2 (en) Method for manufacturing silicon carbide semiconductor device
JP3733792B2 (en) Method for manufacturing silicon carbide semiconductor element
JP3230650B2 (en) Silicon carbide semiconductor substrate, method of manufacturing the same, and silicon carbide semiconductor device using the substrate
JP3956487B2 (en) Method for manufacturing silicon carbide semiconductor device
JP3214868B2 (en) Method for manufacturing heterojunction bipolar transistor
JP3972450B2 (en) Method for manufacturing silicon carbide semiconductor device
JP3944970B2 (en) Method for manufacturing silicon carbide semiconductor device
JP4100070B2 (en) Manufacturing method of semiconductor device
JP4042336B2 (en) Silicon carbide semiconductor element
JPH10125905A (en) Semiconductor substrate, and method for correcting warping of semiconductor substrate
EP1908118B1 (en) Method for producing a semiconductor device
TW201201284A (en) Method for manufacturing silicon carbide substrate, method for manufacturing semiconductor device, silicon carbide substrate and semiconductor device
JPH0770695B2 (en) Method for manufacturing silicon carbide semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060102

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3760688

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090120

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090120

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100120

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100120

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100120

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110120

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110120

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120120

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120120

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120120

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130120

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130120

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140120

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term