JP3611040B2 - Protective clothing - Google Patents

Protective clothing Download PDF

Info

Publication number
JP3611040B2
JP3611040B2 JP00869794A JP869794A JP3611040B2 JP 3611040 B2 JP3611040 B2 JP 3611040B2 JP 00869794 A JP00869794 A JP 00869794A JP 869794 A JP869794 A JP 869794A JP 3611040 B2 JP3611040 B2 JP 3611040B2
Authority
JP
Japan
Prior art keywords
fabric
strength
protective clothing
weight
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP00869794A
Other languages
Japanese (ja)
Other versions
JPH07218191A (en
Inventor
敦史 森脇
薫 伴
阿比留茂雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP00869794A priority Critical patent/JP3611040B2/en
Publication of JPH07218191A publication Critical patent/JPH07218191A/en
Application granted granted Critical
Publication of JP3611040B2 publication Critical patent/JP3611040B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Professional, Industrial, Or Sporting Protective Garments (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、着用上の最大の関心事である凶器、破片、銃弾等の衝撃による人体への損傷を著しく軽減させる効果を上げつつ軽量化を図ることを主目的とし、さらには適度な可撓性による着心地の良さ、及び保温効果を兼ね備えた超高強力高弾性繊維から構成される防護衣に関する。
【0002】
【従来の技術】
防護衣は最初、金属板、陶器、FRP等を成型し、これらの小片を織物に縫い付ける事により発明は端を発した。その場合の問題点である着心地つまりは可撓性を改善すべく材質は高強力ナイロン糸に移行し、さらに現在に於いては20g/dを越える単繊維強度を有する超高強力高弾性繊維が実用されるに及び、高耐衝撃、軽量の防護衣としてろてきた。この成形法の問題点は成形に要する時間、主としてマトリックス樹脂のめざましい発展をとげてきている。
【0003】
高速で飛来する弾丸、または砲弾破片等を例にとった場合、弾丸等はMV (Mは質量、Vは着速度)に比例して負荷威力を増すので防護衣はこれによる運動エネルギE(E=MV/2)を吸収して停弾に至る強度を保持する必要がある。
【0004】
また、この弾丸等による貫通力は衝突する弾丸等の先端形状、エネルギ密度、硬度等が影響するが、尖頭形の弾丸は着弾面でのエネルギ密度がその平均エネルギ密度より更に高いことから、より高い貫通力を示す。このため、防弾織織布の表面を硬質の鋼、アルミ合金等のハード部材で覆って防弾パットとすることによって、尖頭弾丸の先端部を破壊して平滑にし、更には原口径の面積よりも拡大し、表面積を増大させる事によってエネルギ密度を減じ、貫通力を減少させる方法が高威力で尖頭形状のライフル弾防止用に用いられている。
【0005】
この場合、前記ハード部材としては高硬度の窒化硅素セラミックス板が特に有効とされている。
【0006】
一方、尖頭形でない砲弾破片の場合、または、銃弾が丸くかつ着弾時の弾速が比較的低い拳銃弾の場合等は、例えば芳香族ポリアラミド等の織布を20〜30枚積層しただけの防弾パットが用いられてきている。
【0007】
さらに最近に至ってはその織り構造をも操作し、ひいては織布を構成している糸間の摩擦をコトンロールし、より好適な防護性能を有すると称される防護衣用基布が各種考案されてきている。
【0008】
しかし、いずれにしも顕著な効果があるとはとても言えず、ただ織り構造を操作し糸間の摩擦をコントロールしただけの小改善にすぎないため、試験数値上の値は良くなっても結果的に試験試料後方の突出部が大きくなり、身体への損傷を軽減するという、本来の目的から逆行している発明が少なからず存在しているのも事実である。故に、本質的な防護衣上の問題点である、防護性能を落とさずに軽量化を図るというテーマに関しては依然抜本的な発明はなされていないと言うのが現状となっている。
【0009】
【発明が解決しようとする課題】
以上の様に従来技術の範疇では、芳香族ポリアラミド等の織布をベースにした構成をなしているため、防護効果を向上させようと思えば必然的に積層枚数を多くさせるしか方法はなく、防護効果の向上に伴って重量が重くなり、長時間使用する事が出来ない、実用にそぐわない物になってしまっている現状があった。
【0010】
いくら防護効果のある物であっても、着用されなければ意味が無く、さらには防護衣を実際に使用する場面においては、着用時間の限定が無い場合が多く存在し、防護効果を堅持しつつ軽量化を図ることは本分野における永遠のテーマとなっている。
【0011】
故に、本発明の着眼点もまさにそこにあり、防護効果を堅持しつつ軽量化を図るのはもちろんの事、防護効果そのものも向上させようと言うのが本発明の狙いであることは言うまでもなく、さらには、適度な可撓性による着用感の向上、及び適度な保温効果も同時に付与しようとするのが本発明の目的である。
【0012】
【課題を解決するための手段】
前記目的を達成するため、本発明は以下の構成をなすものである。
1.単繊維強度18g/d以上、引張り弾性率500g/d以上の超高強力高弾性繊維からなる破断伸度が30%以上である布帛A(比率が20wt(%)以上90wt(%)以下)と単繊維強度が18g/d以上、引張り弾性率が500g/d以上の超高強力高弾性繊維からなる破断伸度が30%未満である布帛B(比率が10wt(%)以上80wt(%)以下)からなる防護衣であって、上記布帛Bが防護衣の裏面(身体に直接接する面)に配置される比率が布帛B全体の重量の50wt(%)以上であることを特徴とする防護衣。
2.布帛Aが編物又は不織布であり、布帛Bが織物であることを特徴とする上記第1記載の防護衣。
3.布帛Aの空隙率が75〜98%、布帛Bの空隙率が35〜75%であることを特徴とする上記第1又は2記載の防護衣。
【0013】
さらに具体的に説明すると、本発明に於いて用いられる超高強力高弾性繊維とは単繊維強度18g/d以上、引張り弾性率500g/d以上の超高強力高弾性繊維であれば、特に限定される物ではなく、全芳香族系ポリアミド繊維、高分子量のポリエチレン、ポリパラフェニレンベンヅオキサゾール(PBO)、ポリパラフェニレンベンゾチアゾール(PBT)、ポリプロピレン等のポリオレフィン、ポリアクリロニトリル、ポリ(フッ化)ビニリデン繊維、全芳香族ポリエステル繊維などが用いられるがこれらに限定されるものではない。
【0014】
特に本発明の場合、防護衣という観点からは軽量となることが好ましく、比重が1.0g/cm以下である平均分子量5×10以上の高分子量ポリエチレンであると、価格面、製糸性の面で大変有利である。
【0015】
単繊維強度18g/d未満、引張り弾性率500g/d未満の繊維を使用した場合には、言うまでもなく単位重量あたりの耐弾性能が著しく低下し、防護衣としての性能を堅持するためには重量を重くするしか方法はなく実用的でない。
【0016】
逆に単繊維強度、引張り弾性率は高ければ高い程良く、製糸性とコストとの兼ね合いで現状におけるより好ましい範囲とは、高分子量のポリエチレンの例をとれば、単繊維強度28〜50g/d、引張り弾性率900〜2000g/dの範囲が挙げられる。
【0017】
もちろんこれらの範囲は高分子量のポリエチレンに限って現時点での範囲であり、素材が変われば当然、これらの範囲変化し、さらには製糸技術の発展と共にこれらの範囲もさらに向上していくものである。
【0018】
さらに、単繊維強度18g/d以上、引張り弾性率500g/d以上の超高強力高弾性繊維からなる破断伸度が30%以上である布帛Aの比率が20wt(%)以上90wt(%)未満である事が好ましい。
【0019】
破断伸度が30%以上である布帛とは、編物および不織布の形態が好ましく屈曲部を大きくさせた織物もこの範囲に含まれる。さらに、不織布の取扱い性を良好とする為に単繊維強度18g/d未満、引張り弾性率500g/d未満の合成、天然繊維からなる繊維および布帛で不織布を縫合、把持させた物も必要に応じ使用される。
破断伸度が30%以上必要である理由としては、外部からの衝撃を受止める際、自由度がある為に、繊維切断に消費されるエネルギー以外に、布帛を広く変形させるエネルギーに変換できる効果があるためであり、破断伸度のより好ましい範囲とは、布帛製造工程上、60〜200%の範囲が挙げられる。破断伸度が30%未満である場合には、自由度が少なく、主に繊維切断にエネルギーが消費され、布帛を広く変形させるエネルギーに変換される量が少なく、エネルギー変換効率が悪くなるので好ましくない。
また、この場合の布帛Aの目付けは、布帛Bとの縫合に問題が無ければ特に限定はしないが、取扱い性の面からは100〜500g/mの範囲である事が望ましく、その自由度を空隙率で表せば、75〜98%の範囲、より好ましくは85%〜96%の範囲が挙げられる。
【0020】
さらに破断伸度が30%以上である布帛Aの比率は20wt(%)以上、90wt(%)未満である事が好ましい。
【0021】
布帛Aの比率が20wt(%)未満である場合には、防護衣の構成上、自由度の存在している範囲が少なく、効果が現れにくい傾向となる。
【0022】
また、布帛Aの比率が90wt(%)を越えると、破断伸度が30%未満である布帛の構成している割合が少なく、防護衣の裏地に相当する試料後方の局部的な突出部が大きくなり、身体への損傷も増大する。
【0023】
より好ましい範囲とは使用状況により幾分異なるが、200m/s〜500m/sの高速で飛来する質量1g程度の破片弾をターゲットとした場合、40〜70wt(%)とするのが妥当な範囲である。
【0024】
また、ここで述べる自由度の効果とは、詳細は明らかでないが、空中を高速で飛来してくる破片弾を例にとって考えてみた場合、まず着弾時、破片弾は200m/sを越える速度で防護衣外側に衝突する。この瞬間の衝撃は相当なものがあり、このエネルギーを受け止めるべき防護衣の外側は瞬間的に撓み、屈曲する間もなくよりハードな部材と化し、破片弾の持っていたエネルギーは繊維をただ剪断させる事のみに変換される。
【0025】
破片弾が防護衣に衝突し、防護衣を構成している繊維を外部より次々に切断し内部に侵入してくるに従い、破片弾の速度は急激に減少する。
【0026】
さらに破片弾の持つエネルギーは速度の2乗に比例して減少し、ついには、防護衣を構成する布帛は破片弾の速度に追従して撓み、屈曲および目ずれを起こし停弾に至る。
【0027】
以上が、破片弾が200m/sを越える速度から、わずか数cmの間に速度が0m/sとなる現象のメカニズムである。
【0028】
この様なメカニズムを究明するに際し、鋭意検討を重ねた結果、200m/sを越える高速で衝突、接触された瞬間の繊維は容易に切断に至り、目ずれ、撓みを起こさせるエネルギーにまったく変換されていない事が判明した。
この様にして破断に至った繊維は、もはや破片弾を受け止める繊維群には含まれず、さらに、繊維の拘束が強ければ強い程、容易に破断に至る事実も確認された。
【0029】
これらの現象を解析すると、破片弾の持つエネルギーを減少させる方策には、
▲1▼繊維に剪断力を作用させ、切断に至らしめるエネルギー
▲2▼繊維に撓み、屈曲および目ずれを広範囲に起こさせる事によって消費されるエネルギー
にそれぞれ変換される必要がある。
【0030】
さらに、十分速度が遅く、布帛が破片弾の速度に追従して撓み、屈曲および目ずれを起こす速度になれば前記▲1▼、▲2▼双方のエネルギーに変換され得るが、破片弾の速度が早い場合、エネルギーは前記▲1▼のみに変換され、▲2▼の部分が繊維の強い拘束によって、まるまるロスとなってしまっている。
【0031】
故に、本発明の着眼点はまさにそこにあり、200m/sを越える高速で飛来する破片弾の衝撃を初めから前記▲1▼、▲2▼双方のエネルギーに変換出来る構成を考案すれば、より少ない重量で最大の防護性能を有する防護衣が得られる筈である。
【0032】
すなわち、これがここで言う自由度の効果であると推定される。
【0033】
また、単繊維強度が18g/d以上、引張り弾性率が500g/d以上の超高強力高弾性繊維からなる破断伸度が30%未満である布帛Bの比率が10wt(%)以上80wt(%)未満であることが好ましい。
【0034】
ここで言う破断伸度が30%未満である布帛Bとはすなわち、超高強力高弾性繊維から構成される通常の高密度織布をさし、変形量を極力抑えるため、着用上の動きを阻害しない程度の樹脂含浸およびフィルムラミネート加工も必要に応じ施される。また、特殊な例を挙げれば繊維を経、緯方向に出来るだけ真直ぐになるように直行配列させ、樹脂含浸およびフィルムラミネートさせ形態を保持させたシート、さらにはバイアス方向にも繊維を挿入した多軸織物等も必要に応じ使用される。
破断伸度のより好ましい値とは10%以下であるが、織物の構成上、緯方向の打ち込み本数を多くし布帛密度を向上させている為、ある程度の経糸の屈曲は避けられず、結果的に経方向に関しては10〜20%の破断伸度となってしまっているのが現状である。
また、この場合の布帛Bの目付けは、細繊度で高密度な程変形量が少なくなり好ましい傾向となるが、製造コストが高くなる為、製造コストとの兼ね合いで、120〜500g/mの範囲が望ましい。また、その場合の自由度を空隙率で表せば、35〜75%の範囲が好ましく、より好ましい範囲としては45%〜65%が挙げられる。
なお、空隙率は、
試料の体積;A(cm
試料の重量;w(gf)
試料の比重;ρ(gf/cm)とすると
空隙率=1−(w/ρ・A)×100(%)で表される。
【0035】
また布帛Bの比率は10wt(%)以上であることが望ましい。10wt(%)未満である場合には、破断伸度の小なる布帛Bの比率が小さすぎてしまい防護衣の裏地に相当する試料後部の変形が大きくなり、身体への損傷も増大する。
【0036】
逆に、布帛Bの全体に占める比率は80wt(%)以下であることが好ましい。80wt(%)を越える場合には、前に述べた自由度が小なる傾向となるため際立った防護効果が得られなくなり好ましく無い。
【0037】
さらに、単繊維強度18g/d以上、引張り弾性率500g/d以上の超高強力弾性繊維からなる破断伸度30%未満である布帛Bの配置に関し、防護衣の裏面(身体に直接接する面)に配置される比率が布帛B全体の重量の50wt(%)以上であることを要する
【0038】
これは、前に説明した自由度と相反するものであるが、自由度を高めれば高かめる程、衝撃を受け止める能力は向上する。しかし、防護衣に関しては身体を守ると言う大前提があるため、試料後方の変形をある程度以下に抑える必要が生じる。
【0039】
停弾したが内臓に食い込み大きな負傷を負う、では防護衣の意味が無いため、この点は非常に重要である。故に、破断伸度30%未満である布帛Bの防護衣の裏面(身体に直接接する面)に配置される比率は少なくとも布帛B全体の重量の50wt(%)以上であることが必要となる。
【0040】
すなわち、防護衣全体の重量の少なくとも5%以上は必ず必要であると言う事であり、それを下回る様な場合、身体への局部的な損傷が大きくなり好ましくない。
【0041】
より最適な範囲は、防護衣構成により適宜異なるが、局部的な高衝撃が予想される状況程、この値を大きくする必要がある。
【0042】
尚、ここで用いられる布帛の引張り強さの測定はJIS−L1095(1979)に規定する6・12・1・A法に準ずる。但し、試験片の幅は3cmを採用した。
【0043】
さらに、通常防護衣は、単繊維強度18g/d未満、引張り弾性率500g/d未満の合成及び天然繊維からなる表地、裏地から構成される訳であるが、以上述べた構成は当然その内部に縫合される部位に関するものである。
【0044】
【実施例−1】
重量平均分子量が1.9×10の可撓性高分子鎖を有する超高分子量ポリエチレンを用いて溶融紡糸し、得られたゲルファイバーを多段で高倍率延伸し、引張り強度35g/d、引張り弾性率1000g/d、繊度400dのマルチフィラメントを得た。このマルチフィラメントを用い、経45本/インチ、緯47本/インチからなる目付け175g/m、経破断伸度16%、緯破断伸度6%からなる織物を作製し、布帛Bとした。また、同マルチフィラメントを繊維長が45mmとなるように裁断し、目付け210g/mのシートとなる様に、ウォーターパンチ絡合処理された経緯破断伸度80%のシートを布帛Aとした。
【0045】
そして、表層に布帛Bの試料を1枚配し、裏層に5枚、その中間層に布帛Aを10枚挿入し、全重量3150g/mのシートを作製した。
【0046】
このシートを供試料とし、そこへ重量が1.1g、材質が硬鋼、形状が円柱状の銃弾を340m/s〜520m/sの速度範囲にて貫通、非貫通の割合が半々になる様に計24発発射した。この内、貫通弾の低速側より5点、非貫通弾の高速側より5点のデータを採用し、その平均値(V50)をもって耐弾性能の評価を実施してみた。(但し、採用データの着弾位置は、前着弾位置よりも経緯方向各5cm以上、斜め方向各2cm以上離れることを前提とする)
【0047】
試験の結果、上記供試料のV50は486m/sであり、3150g/mの同目付けの織物と比較してみると、耐弾性能は速度の2乗に比例するため、50%近い耐弾性能の向上が図られているのが解り、また、試料後方の突出も認められず、身体への局部的な高衝撃の緩和された、超軽量化と高い耐弾性能双方の要件を同時に満足する防護衣の得られる事が確認された。(第1表参照)
【0048】
【実施例−2】
実施例−1同様に、超高分子量ポリエチレンからなる単繊維強度35g/d、引張り弾性率1000g/d、繊度400dのマルチフィラメントを使用した経45本/インチ、緯47本/インチの密度の目付け175g/m、経破断伸度16%、緯破断伸度6%の織物を布帛Bとして用い、さらには、単繊維強度24g/d、引張り弾性率1000g/d、繊度1500dの芳香族ポリアミド繊維を同様に45mmの長さに裁断し、目付け210g/mのシートとなる様、ウォーターパンチ絡合処理された経緯破断伸度80%のシートを作製し布帛Aとした。
【0049】
そして、表層に布帛Bの試料を1枚配し、裏層に5枚、その中間層に布帛Aを10枚挿入し、全重量3150g/mのシートを同様に作製した。
【0050】
このシートを供試料とし、貫通、非貫通境界速度であるV50による評価を実施した所、供試料のV50は456m/sであり、3150g/mの同目付けの織物と比較してみると、耐弾性能は速度の2乗に比例するため、30%程度の性能の向上が図られているのが確認された。(第1表参照)
また、実施例−1との差は同重量合わせの評価を行っているため、繊維の性能が同等であったとしても、比重の差(芳香族ポリアミド繊維は超高分子量ポリエチレン繊維のおよそ1.5倍の比重を持つ)が出たものと推定される。
【0051】
【比較例−1】
同様に、引張り強度35g/d、引張り弾性率1000g/d、繊度400dのマルチフィラメントからなる経45本/インチ、緯47本/インチ、目付け175g/m、経破断伸度16%、緯破断伸度6%の織物(布帛B)を用い、これを18枚積層し、実施例同等の目付け(3150g/m)とし、上記同法にてV50を評価した所、V50は400m/sにすぎず、実質的なエネルギーは速度の2乗に比例するため、従来の防護衣同等の高密度織布から構成されたものは、重量を同じとした場合、耐弾性能はやはり2/3程度しか得られていないことが判明した。(第1表参照)
【0052】
【比較例−2】
また、重量平均分子量が1.9×10の可撓性高分子鎖を有する超高分子量ポリエチレンを用いて溶融紡糸し、得られたゲルファイバーを多段で高倍率延伸し、引張り強度35g/d、引張り弾性率1000g/d、繊度400dのマルチフィラメントを得、同マルチフィラメントを繊維長が45mmとなるように裁断し、目付け210g/mのシートとなる様に、ウォーターパンチ絡合処理された経緯破断伸度80%のシート(布帛A)を用い、同シートを15枚積層し、実施例同法にてV50による耐弾性能を評価してみた。
【0053】
結果、V50は510m/sを記録したものの、供試料後方の突出は5cm〜7cmとひどく、身体への局部的な高衝撃が予想される、防護衣としては使用出来ないものとなってしまった。
【0054】
【比較例−3】
更に、重量平均分子量が1.9×10の可撓性高分子鎖を有する超高分子量ポリエチレンを用いて溶融紡糸し、多段で高倍率延伸した引張り強度35g/d、引張り弾性率1000g/d、繊度400dのマルチフィラメントを用い、経45本/インチ、緯47本/インチからなる目付け175g/m、経破断伸度16%、緯破断伸度6%の織物を作製し、布帛Bとした。また、同マルチフィラメントを繊維長が45mmとなるように裁断し、目付け210g/mの均整なシートとなる様、ウォーターパンチ絡合処理を実施した経緯破断伸度80%のシートを布帛Aとした。
そして、表層に布帛Bの試料を5枚、裏層に1枚、その中間層に布帛Aを10枚挿入し、全重量3150g/mを作製し、実施例同法にてV50による耐弾性能を評価してみた。
結果、V50は492m/sを記録したものの、供試料後方の突出は2cm〜3cm程度あり、比較例−2同様に身体への局部的な高衝撃の予想されるものとなってしまった。(第1表参照)
【0055】
【表1】

Figure 0003611040
【0056】
但し、試料後部の変形の評価に関し
◎:良好(5mm以内)
×:不良(5cm以上)の基準をもって評価した。
【0057】
【発明の効果】
以上のように、本発明より構成される防護衣は、破片弾の速度に応じ最も効率良くエネルギーを受け止める布帛構成をなしているため、従来の高強度高弾性繊維より構成される高密度織布からなる防護衣と比較し、顕著な効果があり、防護性能を維持すれば超軽量化が可能となり、また同重量にすれば高い防護性能の向上が図られるという、防護衣最大の関心事である防護性能の向上、軽量化を同時に満足しうるものである。
更に、身体に直接接している部分の変形を抑える工夫により身体が受ける局部的な衝撃を広範囲に分散し最小限にすることが出来、また、防護衣中に存在する空隙が適度な可撓性を生み、着心地の良さ、適度な保温性を実現し、重量の重さ、着心地の悪さから着用が見あわされ、身体に大きな損傷を負う事も今後少なくなっていくものと予想される。[0001]
[Industrial application fields]
The main object of the present invention is to reduce the weight while increasing the effect of significantly reducing damage to the human body due to the impact of weapons, debris, bullets, etc., which is the biggest concern in wearing, and also with moderate flexibility. It is related with the protective clothing comprised from the super-high-strength highly elastic fiber which has the good comfort by the property, and the heat retention effect.
[0002]
[Prior art]
The protective clothing was first formed by molding metal plates, ceramics, FRP, etc., and sewing these small pieces on the fabric. In order to improve comfort, that is, flexibility, which is a problem in that case, the material is changed to a high-strength nylon thread, and at present, an ultra-high-strength high-elasticity fiber having a single fiber strength exceeding 20 g / d. Has been put into practical use, and has become a high-impact, lightweight protective clothing. The problem of this molding method has been the remarkable development of matrix resin, mainly the time required for molding.
[0003]
In the case of bullets flying at high speed or bullet fragments, bullets increase load power in proportion to MV 2 (M is mass, V is landing speed). it is necessary to maintain the strength leading to stop the bullet absorbs E = the MV 2/2).
[0004]
In addition, the penetrating force of this bullet etc. is affected by the tip shape, energy density, hardness etc. of the impacting bullet etc., but the pointed bullet has a higher energy density on the landing surface than its average energy density, Shows higher penetration. For this reason, by covering the surface of the bulletproof woven fabric with a hard member such as hard steel or aluminum alloy to make a bulletproof pad, the tip of the pointed bullet is destroyed and smoothed, and further, from the area of the original aperture The method of reducing the energy density by increasing the surface area and increasing the surface area and reducing the penetrating force is used for the prevention of rifle bullets with a high-powered shape.
[0005]
In this case, a high-hardness silicon nitride ceramic plate is particularly effective as the hard member.
[0006]
On the other hand, in the case of a bullet fragment that is not pointed or a bullet that is round and has a relatively low bullet velocity when landed, for example, 20-30 woven fabrics such as aromatic polyaramid are simply laminated. Bulletproof pads have been used.
[0007]
In recent years, various types of protective clothing base fabrics have been devised that operate the weaving structure, and consequently, the friction between the yarns that make up the woven fabric. It is coming.
[0008]
However, it cannot be said that there is a remarkable effect in any case, and it is only a small improvement by controlling the friction between yarns by manipulating the weaving structure. In addition, it is also true that there are many inventions that go backward from the original purpose of reducing the damage to the body by increasing the protrusion behind the test sample. Therefore, the current situation is that no drastic invention has been made on the theme of reducing the weight without degrading the protective performance, which is an essential problem in protective clothing.
[0009]
[Problems to be solved by the invention]
As described above, in the category of the prior art, because it has a configuration based on a woven fabric such as aromatic polyaramid, there is no other way but to inevitably increase the number of layers if you want to improve the protective effect, With the improvement of the protective effect, the weight has increased, and there has been a situation where the product cannot be used for a long time and has become unsuitable for practical use.
[0010]
No matter how much the protective effect is, it is meaningless if it is not worn, and there are many cases where there is no limitation on the wearing time in situations where protective clothing is actually used, while maintaining the protective effect. Reducing weight has become an eternal theme in this field.
[0011]
Therefore, the focus of the present invention is exactly there, and it goes without saying that the aim of the present invention is to improve the protective effect itself as well as to reduce the weight while maintaining the protective effect. Furthermore, it is an object of the present invention to simultaneously improve the feeling of wearing due to appropriate flexibility and to provide an appropriate heat retaining effect.
[0012]
[Means for Solving the Problems]
In order to achieve the above object, the present invention has the following configuration.
1. Fabric A having a single fiber strength of 18 g / d or more and a tensile strength of 500 g / d or more and having a tensile elongation of 500 g / d or more and having a breaking elongation of 30% or more (ratio is 20 wt (%) or more and 90 wt (%) or less) Fabric B having a single fiber strength of 18 g / d or higher and a tensile strength of 500 g / d or higher and an ultra high strength and high elastic fiber having a breaking elongation of less than 30% (ratio is 10 wt (%) or more and 80 wt (%) or less ), And the ratio of the fabric B placed on the back surface (the surface directly contacting the body) of the protective clothing is 50 wt.% Or more of the total weight of the fabric B. .
2. The protective garment as described in the first item, wherein the fabric A is a knitted fabric or a non-woven fabric, and the fabric B is a woven fabric.
3. 3. The protective clothing according to the first or second aspect, wherein the fabric A has a porosity of 75 to 98% and the fabric B has a porosity of 35 to 75%.
[0013]
More specifically, the ultra high strength and high elasticity fiber used in the present invention is particularly limited as long as it is a super high strength and high elasticity fiber having a single fiber strength of 18 g / d or more and a tensile elastic modulus of 500 g / d or more. Polyolefins such as wholly aromatic polyamide fibers, high molecular weight polyethylene, polyparaphenylene benzoxazole (PBO), polyparaphenylene benzothiazole (PBT), polypropylene, polyacrylonitrile, poly (fluorinated) Vinylidene fibers, wholly aromatic polyester fibers, and the like are used, but are not limited thereto.
[0014]
In particular, in the case of the present invention, it is preferable that the weight is reduced from the viewpoint of protective clothing, and when it is a high molecular weight polyethylene having a specific gravity of 1.0 g / cm 3 or less and an average molecular weight of 5 × 10 5 or more, the cost and the spinning property This is very advantageous.
[0015]
When fibers having a single fiber strength of less than 18 g / d and a tensile modulus of less than 500 g / d are used, it goes without saying that the ballistic performance per unit weight is remarkably lowered, and the weight is required to maintain the performance as a protective garment. There is only a way to make it heavy.
[0016]
On the contrary, the higher the single fiber strength and tensile modulus, the better, and the more preferable range at present in consideration of the yarn-making property and the cost is that the single fiber strength is 28 to 50 g / d in the case of high molecular weight polyethylene. The range of tensile elastic modulus is 900 to 2000 g / d.
[0017]
Of course, these ranges are the current ranges only for high molecular weight polyethylene, and naturally these ranges will change if the material changes, and these ranges will further improve with the development of spinning technology. .
[0018]
Furthermore, the ratio of the fabric A having an elongation at break of 30% or more and comprising a super high strength and high elasticity fiber having a single fiber strength of 18 g / d or more and a tensile elastic modulus of 500 g / d or more is 20 wt (%) or more and less than 90 wt (%). It is preferable that
[0019]
The fabric having a breaking elongation of 30% or more is preferably in the form of a knitted fabric or a non-woven fabric, and includes a woven fabric having a large bent portion. Furthermore, in order to improve the handleability of the nonwoven fabric, a synthetic fiber having a single fiber strength of less than 18 g / d and a tensile modulus of less than 500 g / d, and a non-woven fabric stitched and gripped with natural fibers and fabrics as necessary. used.
The reason why the elongation at break is required to be 30% or more is that when receiving an impact from the outside, there is a degree of freedom, so in addition to the energy consumed for fiber cutting, the effect that can be converted into energy that deforms the fabric widely This is because the more preferable range of the elongation at break includes a range of 60 to 200% in the fabric production process. When the elongation at break is less than 30%, it is preferable because the degree of freedom is small, energy is mainly consumed for fiber cutting, the amount that is converted into energy for widely deforming the fabric is small, and energy conversion efficiency is deteriorated. Absent.
In addition, the basis weight of the fabric A in this case is not particularly limited as long as there is no problem with stitching with the fabric B, but it is preferably in the range of 100 to 500 g / m 2 from the viewpoint of handleability. Is expressed in terms of porosity, the range is 75 to 98%, more preferably 85 to 96%.
[0020]
Furthermore, the ratio of the fabric A having a breaking elongation of 30% or more is preferably 20 wt% or more and less than 90 wt%.
[0021]
When the ratio of the fabric A is less than 20 wt (%), the range in which the degree of freedom exists is small due to the configuration of the protective clothing, and the effect tends to hardly appear.
[0022]
Further, when the ratio of the fabric A exceeds 90 wt (%), the proportion of the fabric having a breaking elongation of less than 30% is small, and there is a local protrusion behind the sample corresponding to the lining of the protective clothing. It grows and damage to the body increases.
[0023]
Although it is somewhat different from the more preferable range, it is reasonable to set it to 40 to 70 wt (%) when targeting a fragment bullet of mass 1g flying at a high speed of 200 m / s to 500 m / s. It is.
[0024]
In addition, the effect of the degree of freedom described here is not clear in detail, but when considering a fragmentary bullet flying in the air at high speed, the fragmentary bullet will have a speed exceeding 200 m / s at the time of landing. Collides with the outer side of the protective clothing. The impact at this moment is considerable, and the outside of the protective clothing that should receive this energy bends momentarily, turning into a harder member soon before bending, and the energy held by the debris only shears the fiber. Converted to only.
[0025]
As the debris hits the protective garment, the fiber constituting the protective garment is cut from the outside one after another and enters the inside, the speed of the debris drops rapidly.
[0026]
Further, the energy of the fragment bullets decreases in proportion to the square of the velocity, and finally the fabric constituting the protective garment follows the velocity of the fragment bullets, bends, misaligns, and stops.
[0027]
The above is the mechanism of the phenomenon in which the velocity of the debris becomes 0 m / s within a few centimeters from the velocity exceeding 200 m / s.
[0028]
As a result of intensive investigations when investigating such a mechanism, the fiber at the moment of impact and contact at a high speed exceeding 200 m / s can be easily cut and converted into energy that causes misalignment and deflection. Turned out not to be.
It was confirmed that the fibers that broke in this way are no longer included in the fiber group that receives the debris bullets, and that the stronger the fiber restraint, the easier it is to break.
[0029]
Analyzing these phenomena, measures to reduce the energy possessed by debris are:
(1) Energy that causes a shearing force to act on the fiber and leads to cutting (2) The fiber needs to be converted into energy consumed by bending, bending, and misalignment over a wide range.
[0030]
Furthermore, if the speed is sufficiently slow and the fabric bends following the speed of the debris, causing the bending and misalignment, the energy can be converted into the energy of both (1) and (2). Is early, the energy is converted only to the above-mentioned (1), and the portion of (2) is completely lost due to the strong restraint of the fibers.
[0031]
Therefore, the focus of the present invention is exactly there, and if you devise a structure that can convert the impact of the fragment bullets flying at a high speed exceeding 200 m / s into the energy of both (1) and (2) above, Protective clothing with maximum protection performance should be obtained with low weight.
[0032]
That is, this is presumed to be the effect of the degree of freedom mentioned here.
[0033]
Further, the ratio of the fabric B having an elongation at break of less than 30% made of ultra-high strength and high elasticity fibers having a single fiber strength of 18 g / d or more and a tensile modulus of 500 g / d or more is 10 wt (%) or more and 80 wt (%). ).
[0034]
The fabric B having a breaking elongation of less than 30% here refers to a normal high-density woven fabric composed of ultra-high-strength and high-elasticity fibers. Resin impregnation and film laminating to such an extent that they are not hindered are also applied as necessary. In addition, as a special example, the fibers are arranged in a straight line so as to be as straight as possible in the warp and weft directions, the sheet is impregnated with resin, and laminated to form a film, and the fiber is inserted in the bias direction. A shaft fabric or the like is also used as necessary.
A more preferable value of the breaking elongation is 10% or less, but because of the configuration of the woven fabric, since the number of driven in the weft direction is increased and the fabric density is improved, a certain degree of warp bending is inevitable. In the present situation, the elongation at break is 10 to 20%.
In addition, in this case, the fabric B has a weight per unit area of 120 to 500 g / m 2 in consideration of the manufacturing cost because the fabric weight is higher and the deformation amount is smaller and the higher the density, the more preferable. A range is desirable. Moreover, if the freedom degree in that case is represented by the porosity, the range of 35 to 75% is preferable, and a more preferable range is 45% to 65%.
The porosity is
Sample volume; A (cm 3 )
Sample weight; w (gf)
When the specific gravity of the sample is ρ (gf / cm 3 ), the porosity is represented by 1− (w / ρ · A) × 100 (%).
[0035]
The ratio of the fabric B is desirably 10 wt (%) or more. If it is less than 10 wt (%), the ratio of the fabric B having a small breaking elongation is too small, the deformation of the rear part of the sample corresponding to the lining of the protective clothing is increased, and damage to the body is also increased.
[0036]
On the contrary, the ratio of the fabric B to the whole is preferably 80 wt (%) or less. If it exceeds 80 wt (%), the degree of freedom described above tends to be small, so that a remarkable protective effect cannot be obtained, which is not preferable.
[0037]
Furthermore, regarding the arrangement of the fabric B having a breaking elongation of less than 30% made of ultrahigh-strength elastic fibers having a single fiber strength of 18 g / d or more and a tensile elastic modulus of 500 g / d or more, the back surface of the protective garment (surface directly in contact with the body) It is necessary that the ratio to be disposed on the fabric B is 50 wt (%) or more of the total weight of the fabric B.
[0038]
This is contrary to the degree of freedom described above, but the higher the degree of freedom, the higher the ability to receive impact. However, since there is a major premise of protecting the body with respect to protective clothing, it is necessary to suppress the deformation behind the sample to some extent.
[0039]
This is very important because the armor does not make sense when it is stopped but bites into the internal organs and causes serious injury. Therefore, it is necessary that the ratio of the fabric B having a breaking elongation of less than 30% to be disposed on the back surface (the surface directly in contact with the body) of the fabric B is at least 50 wt (%) of the total weight of the fabric B.
[0040]
That is, at least 5% or more of the total weight of the protective garment is indispensable, and if it is less than that, it is not preferable because local damage to the body increases.
[0041]
The more optimal range varies depending on the protective clothing configuration, but it is necessary to increase this value in situations where local high impact is expected.
[0042]
In addition, the measurement of the tensile strength of the fabric used here is based on the 6 · 12 · 1 · A method defined in JIS-L1095 (1979). However, the width of the test piece was 3 cm.
[0043]
Furthermore, a normal protective garment is composed of a surface and lining made of synthetic and natural fibers having a single fiber strength of less than 18 g / d and a tensile elastic modulus of less than 500 g / d. It relates to the site to be sutured.
[0044]
Example-1
Melt spinning using ultra-high molecular weight polyethylene having a flexible polymer chain with a weight average molecular weight of 1.9 × 10 6 , the obtained gel fiber was stretched at high magnification in multiple stages, and tensile strength was 35 g / d, A multifilament having an elastic modulus of 1000 g / d and a fineness of 400 d was obtained. Using this multifilament, a woven fabric having a basis weight of 175 g / m 2 having a warp of 45 / inch and a weft of 47 / inch, a warp breaking elongation of 16%, and a weft breaking elongation of 6% was prepared as Fabric B. The multifilament was cut to have a fiber length of 45 mm, and a sheet having a weft elongation of 80% which was subjected to water punch entanglement treatment so as to form a sheet having a basis weight of 210 g / m 2 was designated as fabric A.
[0045]
Then, one sample of the fabric B was arranged on the surface layer, 5 sheets were inserted in the back layer, and 10 fabrics A were inserted in the intermediate layer to produce a sheet having a total weight of 3150 g / m 2 .
[0046]
This sheet is used as a sample, and the weight is 1.1 g, the material is hard steel, and the shape of the cylindrical bullet is penetrated in the speed range of 340 m / s to 520 m / s so that the ratio of non-penetration is halved. A total of 24 shots were fired. Among these, data of 5 points from the low speed side of the penetrating bullet and 5 points from the high speed side of the non-penetrating bullet were adopted, and the bullet resistance performance was evaluated with the average value (V50). (However, it is assumed that the landing position of the adopted data is 5 cm or more in the weft direction and 2 cm or more in the oblique direction from the previous landing position)
[0047]
The results of the test, V50 of the test sample is 486m / s, Compared with the fabric of the same weight per unit area of 3150 g / m 2, for ballistic performance is proportional to the square of the speed, nearly 50% ballistic It can be seen that the performance has been improved, and there is no protrusion at the back of the sample, and the requirements for both ultra-lightweight and high ballistic performance have been satisfied. It was confirmed that protective clothing was obtained. (See Table 1)
[0048]
Example-2
In the same manner as in Example 1, the basis weight density is 45 / inch and 47 / inch using multifilaments having a single fiber strength of 35 g / d, a tensile modulus of 1000 g / d, and a fineness of 400 d made of ultrahigh molecular weight polyethylene. A woven fabric of 175 g / m 2 , warp elongation at 16% and weft elongation at 6% is used as fabric B, and further, an aromatic polyamide fiber having a single fiber strength of 24 g / d, a tensile elastic modulus of 1000 g / d, and a fineness of 1500 d. Was cut into a length of 45 mm in the same manner, and a water punch entanglement-treated sheet with an elongation at break of 80% was prepared so as to be a fabric A so as to obtain a sheet having a basis weight of 210 g / m 2 .
[0049]
Then, one sample of the fabric B was arranged on the surface layer, 5 sheets were inserted in the back layer, and 10 fabrics A were inserted in the intermediate layer, thereby producing a sheet having a total weight of 3150 g / m 2 .
[0050]
When this sheet was used as a sample, and evaluation was performed using V50, which is a penetration / non-penetration boundary speed, V50 of the sample was 456 m / s, and when compared with a fabric with the same basis weight of 3150 g / m 2 , Since the ballistic performance is proportional to the square of the speed, it was confirmed that the performance was improved by about 30%. (See Table 1)
Moreover, since the difference with Example-1 is evaluating the same weight matching, even if the fiber performance is equivalent, the difference in specific gravity (the aromatic polyamide fiber is approximately 1. (It has a specific gravity of 5 times).
[0051]
[Comparative Example-1]
Similarly, multi-filaments having a tensile strength of 35 g / d, a tensile modulus of elasticity of 1000 g / d, and a fineness of 400 d, warp of 45 / inch, weft of 47 / inch, weight per unit of 175 g / m 2 , warp breaking elongation of 16%, weft break Using a woven fabric (fabric B) having an elongation of 6%, 18 sheets were laminated to obtain a basis weight equivalent to the example (3150 g / m 2 ), and when V50 was evaluated by the above method, V50 was 400 m / s. However, since the substantial energy is proportional to the square of the speed, the one made of a high-density woven fabric equivalent to the conventional protective garment is still about 2/3 when the weight is the same. It turned out that it was only obtained. (See Table 1)
[0052]
[Comparative Example-2]
In addition, melt spinning using ultrahigh molecular weight polyethylene having a flexible polymer chain with a weight average molecular weight of 1.9 × 10 6 , the obtained gel fiber was stretched in multiple stages at a high magnification, and a tensile strength of 35 g / d. Then, a multifilament having a tensile modulus of 1000 g / d and a fineness of 400 d was obtained, and the multifilament was cut so that the fiber length was 45 mm, and was subjected to a water punch entanglement treatment so as to form a sheet having a basis weight of 210 g / m 2 . Using a sheet (fabric A) having an elongation at break of 80%, 15 sheets of the sheet were laminated, and the ballistic resistance performance by V50 was evaluated by the same method as in the examples.
[0053]
As a result, although V50 recorded 510 m / s, the protrusion behind the sample was severely 5 cm to 7 cm, and a local high impact on the body was expected, which could not be used as protective clothing. .
[0054]
[Comparative Example-3]
Furthermore, a melt strength spinning using an ultra-high molecular weight polyethylene having a flexible polymer chain having a weight-average molecular weight of 1.9 × 10 6 , stretched in multiple stages at a high magnification, a tensile strength of 35 g / d, and a tensile modulus of elasticity of 1000 g / d. Using a multifilament having a fineness of 400d, a fabric having a basis weight of 175 g / m 2 having a warp of 45 / inch and a weft of 47 / inch, a warp breaking elongation of 16% and a weft breaking elongation of 6% was prepared. did. The multifilament is cut so that the fiber length is 45 mm, and a water punch entanglement treatment is performed so that a sheet with a basis weight of 210 g / m 2 is formed. did.
Then, 5 samples of fabric B were inserted into the surface layer, 1 sheet was inserted into the back layer, and 10 fabrics A were inserted into the intermediate layer to produce a total weight of 3150 g / m 2. I tried to evaluate the performance.
As a result, although V50 recorded 492 m / s, the protrusion behind the sample was about 2 cm to 3 cm, and local high impact on the body was expected as in Comparative Example-2. (See Table 1)
[0055]
[Table 1]
Figure 0003611040
[0056]
However, regarding the evaluation of the deformation of the rear part of the sample, ◎: Good (within 5 mm)
X: Evaluated based on a criterion for defects (5 cm or more).
[0057]
【The invention's effect】
As described above, the protective garment configured according to the present invention has a fabric configuration that receives energy most efficiently according to the speed of the debris, so that the high-density woven fabric configured from conventional high-strength and high-elasticity fibers. Compared with protective clothing made of, the greatest concern is that the protective clothing will be extremely lightweight if the protective performance is maintained, and it will be possible to improve the protective performance if the weight is the same. It can satisfy the improvement of certain protection performance and weight reduction at the same time.
Furthermore, local shocks received by the body can be dispersed over a wide range by minimizing the deformation of the part that is in direct contact with the body, and the gaps present in the protective clothing are moderately flexible. It is expected that the wear will be overlooked due to the weight and the poor comfort, and that the body will suffer less damage in the future. .

Claims (3)

単繊維強度18g/d以上、引張り弾性率500g/d以上の超高強力高弾性繊維からなる破断伸度が30%以上である布帛A(防護衣中の比率が20wt(%)以上90wt(%)以下)と単繊維強度が18g/d以上、引張り弾性率が500g/d以上の超高強力高弾性繊維からなる破断伸度が30%未満である布帛B(防護衣中の比率が10wt(%)以上80wt(%)以下)からなる防護衣であって、布帛Aの両面に布帛Bが配置され上記布帛Bが防護衣の裏面(身体に直接接する面)に配置される比率が布帛B全体の重量の50wt(%)以上であることを特徴とする防護衣。Fabric A having a single fiber strength of 18 g / d or more and a tensile strength of 500 g / d or more and having an ultra high strength and high elasticity fiber having a breaking elongation of 30% or more ( the ratio in the protective clothing is 20 wt (%) or more and 90 wt (%) ) And the like, and fabric B having a breaking elongation of less than 30% made of ultra-high strength and high elasticity fibers having a single fiber strength of 18 g / d or more and a tensile elastic modulus of 500 g / d or more ( the ratio in the protective clothing is 10 wt. %) And 80 wt (%) or less), and the ratio of the cloth B disposed on both sides of the cloth A and the cloth B disposed on the back surface (the surface directly contacting the body) of the cloth B is the cloth B. A protective garment characterized by being 50 wt (%) or more of the total weight. 布帛Aが編物又は不織布であり、布帛Bが織物であることを特徴とする請求項1記載の防護衣。2. The protective garment according to claim 1, wherein the fabric A is a knitted fabric or a non-woven fabric, and the fabric B is a woven fabric. 布帛Aの空隙率が75〜98%、布帛Bの空隙率が35〜75%であることを特徴とする請求項1又は2記載の防護衣。The protective clothing according to claim 1 or 2, wherein the porosity of the fabric A is 75 to 98% and the porosity of the fabric B is 35 to 75%.
JP00869794A 1994-01-28 1994-01-28 Protective clothing Expired - Fee Related JP3611040B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00869794A JP3611040B2 (en) 1994-01-28 1994-01-28 Protective clothing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00869794A JP3611040B2 (en) 1994-01-28 1994-01-28 Protective clothing

Publications (2)

Publication Number Publication Date
JPH07218191A JPH07218191A (en) 1995-08-18
JP3611040B2 true JP3611040B2 (en) 2005-01-19

Family

ID=11700123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00869794A Expired - Fee Related JP3611040B2 (en) 1994-01-28 1994-01-28 Protective clothing

Country Status (1)

Country Link
JP (1) JP3611040B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2738996B1 (en) * 1995-09-25 1997-12-19 Europ De Dev Ind Comp PROTECTION AGAINST SHOCK, AND VEST INCORPORATING SUCH PROTECTIVE ELEMENTS
US6534426B1 (en) * 2000-01-14 2003-03-18 E. I. Du Pont De Nemours And Company Knife-stab-resistant composite
JP4831974B2 (en) * 2005-01-27 2011-12-07 帝人テクノプロダクツ株式会社 Protective clothing

Also Published As

Publication number Publication date
JPH07218191A (en) 1995-08-18

Similar Documents

Publication Publication Date Title
US5918309A (en) Blunt force resistant structure for a protective garment
JP4945442B2 (en) Flexible elastic assembly
EP2519668B1 (en) Enhanced lightweight ballistic materials
US5660913A (en) Anti-ballistic protective composite fabric
US5536553A (en) Protective fabric comprising calendered sub-plies of woven fabric joined together by stitching
JP2009518619A (en) Fragment resistant and puncture resistant flexible material with reduced trauma effects
US20100124862A1 (en) Woven bullet resistant fabric
TW200404672A (en) Ballistic fabric laminates
CZ241494A3 (en) Non-woven layer containing short polyolefin fibers and process for preparing thereof
EP1883532A2 (en) Laminated felt articles
JP4511932B2 (en) Penetration resistant life protection article
JP2008546565A (en) Composite materials for piercing, ice pick and armor applications
JPH10195729A (en) Bulletproof woven fabric and its production
WO2010091476A1 (en) Ballistic fabric
US7114186B2 (en) Ballistic vest
JP3611040B2 (en) Protective clothing
JP2002309482A (en) Protective material and protective clothing consisting of the same
EP1269103B1 (en) Ballistic vest
JPH11503512A (en) Bulletproof helmet
JPS61275440A (en) Elasticity resistant cloth for bulletproof jacket
RU2721191C2 (en) Glove suitable for human wearing, made of composite protective material
JP3689649B2 (en) Protective components, protective clothing, and protective articles
JP3637585B2 (en) Bulletproof material
JPH0861896A (en) Member for protective clothing
JP2000028296A (en) Bullet-proof member and bullet-proof clothes

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040305

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040603

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040930

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041013

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071029

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081029

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081029

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091029

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091029

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101029

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111029

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121029

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121029

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131029

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees