JP3534288B2 - Light control glass and manufacturing method thereof - Google Patents

Light control glass and manufacturing method thereof

Info

Publication number
JP3534288B2
JP3534288B2 JP05311197A JP5311197A JP3534288B2 JP 3534288 B2 JP3534288 B2 JP 3534288B2 JP 05311197 A JP05311197 A JP 05311197A JP 5311197 A JP5311197 A JP 5311197A JP 3534288 B2 JP3534288 B2 JP 3534288B2
Authority
JP
Japan
Prior art keywords
light control
control glass
layer
transparent electrode
ecd
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP05311197A
Other languages
Japanese (ja)
Other versions
JPH10253995A (en
Inventor
喜好 中瀬
正人 田尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP05311197A priority Critical patent/JP3534288B2/en
Publication of JPH10253995A publication Critical patent/JPH10253995A/en
Application granted granted Critical
Publication of JP3534288B2 publication Critical patent/JP3534288B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material

Landscapes

  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
  • Joining Of Glass To Other Materials (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、エレクトロクロミ
ック素子を基板表面に形成した調光ガラスおよびその製
造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a light control glass having an electrochromic element formed on a surface of a substrate and a method for manufacturing the same.

【0002】[0002]

【従来の技術】電圧を印加すると可逆的に電解酸化また
は還元反応が起こり、可逆的に着消色する現象をエレク
トロクロミズムという。
2. Description of the Related Art A phenomenon in which a reversible electrolytic oxidation or reduction reaction occurs when a voltage is applied to cause reversible color fading is called electrochromism.

【0003】このような現象を示すエレクトロクロミッ
ク(以下、ECと略す)物質を用いて、電圧操作により着
消色するEC素子(以下、ECD と略す)を作り、このECD
を光量制御素子(例えば調光ガラスや防眩ミラー等)や
7セグメントを利用した数字表示素子に利用しようとす
る試みは、20年以上前から行われている。
By using an electrochromic (hereinafter abbreviated as EC) substance exhibiting such a phenomenon, an EC element (hereinafter abbreviated as ECD) which is colored and decolored by voltage operation is prepared.
It has been attempted for more than 20 years to use a light quantity control element (for example, a light control glass or an antiglare mirror) or a numerical display element using 7 segments.

【0004】例えば、ガラス基板の上に透明電極膜(陰
極)、三酸化タングステン薄膜、二酸化ケイ素のような
絶縁膜、電極膜(陽極)を順次積層してなるECD (特公
昭52−46098 号参照)が全固体型ECD として知られてい
る。
For example, an ECD (see Japanese Examined Patent Publication No. 52-46098) formed by sequentially laminating a transparent electrode film (cathode), a tungsten trioxide thin film, an insulating film such as silicon dioxide, and an electrode film (anode) on a glass substrate. ) Is known as an all-solid-state ECD.

【0005】このECD に電圧を印加すると三酸化タング
ステン(WO3 )薄膜が青色に着色する。その後、このEC
D に逆の電圧を印加すると、WO3 薄膜の青色が消えて、
無色になる。この着消色する機構は詳しくは解明されて
いないが、WO3 薄膜及び絶縁膜(イオン導電層)中に含
まれる少量の水分がWO3 の着消色を支配していると理解
されている。
When a voltage is applied to this ECD, the tungsten trioxide (WO 3 ) thin film is colored blue. Then this EC
When the reverse voltage is applied to D, the blue color of the WO 3 thin film disappears,
It becomes colorless. The mechanism of this fading / discoloring has not been clarified in detail, but it is understood that a small amount of water contained in the WO 3 thin film and the insulating film (ion conductive layer) governs the fading / discoloring of WO 3 . .

【0006】着色の反応式は、以下のように推定されて
いる。 H2O → H+ +OH- (WO3 膜=陰極側)WO3 +nH+ +ne- →HnWO3 無色透明 青着色 (絶縁膜=陽極側)OH- → (1/2)H20 +(1/4)O2 ↑+(1/2)e- その他にECD として知られているものは、上部電極と下
部電極の間に、還元着色性EC層(例えばWO3 )、イオン
導電層(例えば酸化タンタル)、可逆的電解酸化層(例
えば酸化または水酸化イリジウム)が積層〔EC三層〕さ
れ、両電極間に所定の電圧を印加できる構造となってい
る。
The reaction equation for coloring is estimated as follows. H 2 O → H + + OH - (WO 3 film = cathode) WO 3 + nH + + ne - → HnWO 3 colorless blue colored (insulating film = anode) OH - → (1/2) H 2 0 + (1 / 4) O 2 ↑ + (1/2) e - Other known ECDs include a reduction coloring EC layer (eg WO 3 ) and an ion conductive layer (eg WO 3 ) between the upper electrode and the lower electrode. Tantalum oxide) and a reversible electrolytic oxidation layer (for example, oxidation or iridium hydroxide) are laminated [EC three layers], and a predetermined voltage can be applied between both electrodes.

【0007】ところで、EC層を直接または間接的に挟む
一対の電極層は、EC層の着消色を外部に見せるために少
なくとも一方は透明でなければならない。特に透過型の
ECDの場合には両電極層とも透明でなければならない。
By the way, at least one of the pair of electrode layers that directly or indirectly sandwich the EC layer must be transparent so that the color of the EC layer can be seen outside. Especially transparent
In the case of ECD, both electrode layers must be transparent.

【0008】透明な電極材料としては、現在のところSn
O2、In2O3 、ITO (In2O3 とSnO2の混合物)、ZnO 等が
知られているが、これらの材料は比較的透明度が悪いた
めに薄くせねばならず、この理由及びその他の理由から
ECD は基板(例えばガラス板やプラスチック板)の上に
形成されるのが普通である。
Currently, Sn is used as a transparent electrode material.
O 2 , In 2 O 3 , ITO (mixture of In 2 O 3 and SnO 2 ), ZnO, etc. are known, but these materials have relatively poor transparency and must be thinned. For other reasons
The ECD is usually formed on a substrate (eg glass plate or plastic plate).

【0009】また、ECD は用途によって、素子を保護す
るための封止基板を素子基板と対向するように配置し、
例えばエポキシ樹脂等を用いて密封封止して用いられ
る。ところで、電気素子を用いる調光ガラスは、ECD や
液晶を利用するものなど、種々提案されており、液晶で
は既に実用化されている。
Further, the ECD is arranged such that a sealing substrate for protecting the element is arranged so as to face the element substrate, depending on the application.
For example, it is used by hermetically sealing with an epoxy resin or the like. By the way, various types of light control glass using an electric element have been proposed, such as one using ECD or liquid crystal, and have already been put to practical use in liquid crystal.

【0010】ECD を用いる調光ガラスは、実用化は遅れ
ているが、透過光のエネルギーを連続的に制御でき、し
かも視角依存性がない等の液晶にはない優れた特性を有
する。ECD には、材料(主に電解質)の形態として溶液
型、ゲル型、全固体型等の種類がある。
Although the light control glass using ECD has been delayed in practical use, it has excellent characteristics that liquid crystal can control the energy of transmitted light continuously and has no viewing angle dependency, which are not found in liquid crystals. ECD has various types of materials (mainly electrolytes) such as solution type, gel type and all solid type.

【0011】建築用、車両用窓材等をターゲットにした
調光ガラスの大型化が要請され、ECD においても大型化
の研究開発が進められているが、EC着色層、電解質層、
電極層等をすべて薄膜状に連続的に形成する全固体型EC
D は、貼り合わせや液状材料密封といった工程が不要で
あり、工程上最も大型化が容易と考えられている。
There is a demand for an increase in the size of dimming glass targeted for window materials for buildings and vehicles, and research and development for increasing the size of ECD are also underway. However, EC coloring layer, electrolyte layer,
All-solid-state EC that continuously forms all electrode layers in a thin film
D does not require processes such as bonding and sealing of liquid materials, and is considered to be the largest in size.

【0012】ECD 調光ガラスの電極層には透明導電膜が
用いられる。現在、透明導電膜に多く使われているのは
ITO であるが、ZnO やSnO2等その他の材料も検討されて
いる。これらの材料を使用して一対の透明電極層(上部
と下部の透明膜)が、通常、真空蒸着法やスパッタリン
グ法等で基板上に形成されるが、金属電極層と比較する
とかなり高抵抗である。
A transparent conductive film is used for the electrode layer of the ECD light control glass. Currently, the most widely used transparent conductive film is
Although it is ITO, other materials such as ZnO and SnO 2 are also being considered. A pair of transparent electrode layers (upper and lower transparent films) using these materials are usually formed on the substrate by a vacuum deposition method, a sputtering method, etc., but have a considerably higher resistance than a metal electrode layer. is there.

【0013】前記上部、下部透明電極層とも外部電源か
ら電圧を印加するために外部配線との接続が必要であ
る。しかし、上下部透明電極層に対応して外部配線との
接続するための電極として透明電極部(バスバ−部:上
下部透明電極層の適宜対向辺に対に)を使用した場合に
は、透明電極部が外部配線に比べて高抵抗であるので、
透明電極部に重ねて(即ち、接触させて)低抵抗の電極
部分を設ける。通常は、基板表面端部に位置する透明電
極層の端辺部に、帯状に低抵抗透明電極部を設ける(例
えば、金属製クリップを装着する)。
Both the upper and lower transparent electrode layers need to be connected to external wiring in order to apply a voltage from an external power source. However, when a transparent electrode part (bus bar part: paired on opposite sides of the upper and lower transparent electrode layers as appropriate) is used as an electrode for connecting to the external wiring corresponding to the upper and lower transparent electrode layers, it is transparent. Since the electrode part has a higher resistance than the external wiring,
A low resistance electrode portion is provided so as to overlap (that is, contact with) the transparent electrode portion. Usually, a low resistance transparent electrode portion is provided in a strip shape (for example, a metal clip is attached) on the edge portion of the transparent electrode layer located on the edge portion of the substrate surface.

【0014】また、ECD 調光ガラスは素子劣化を防ぐた
めに封止樹脂(例えばエポキシ樹脂)及び封止基板によ
り封止されて用いられる。本出願人が既に出願した発明
に係わる特開平6-167724号公報では、調光ガラスの製造
方法を記載し、少なくともエレクトロクロミック層とこ
れを挟む一対の透明電極層とからなるエレクトロクロミ
ック素子を素子基板表面に形成した調光ガラスの製造方
法において、素子基板表面の端部及び内部に位置する前
記透明電極層上に低抵抗電極部を設け、この素子基板を
合わせガラス用中間膜および封止基板により封止したこ
とを開示した。
The ECD light control glass is used after being sealed with a sealing resin (eg epoxy resin) and a sealing substrate in order to prevent element deterioration. Japanese Patent Application Laid-Open No. 6-167724, which relates to the invention that the present applicant has already applied, describes a method for producing a light control glass, and an electrochromic element including at least an electrochromic layer and a pair of transparent electrode layers sandwiching the electrochromic element is provided as an element. In the method for producing a light control glass formed on the surface of a substrate, a low resistance electrode portion is provided on the transparent electrode layer located inside and inside the end portion of the surface of the element substrate, and the element substrate is used as an intermediate film for laminated glass and a sealing substrate It was disclosed that it was sealed by.

【0015】[0015]

【発明が解決しようとする課題】ECD 調光ガラスの大型
化には種々の技術的問題を伴うが、その中の大きな問題
点に不均一な着消色がある。この不均一な着消色は、EC
D 着色時に時間が経過しても着色濃度がECD の全面で一
定とならないで濃淡差(色むら)ができ、また消色時に
も濃淡差(色むら)が目立つ現象であり、外観不良の
他、耐久性低下の原因となる。
There are various technical problems in increasing the size of the ECD light control glass, and a major problem among them is uneven coloring / erasing. This non-uniform coloration is due to EC
D The coloring density is not uniform over the entire surface of the ECD even when a certain amount of time passes during coloring, and a shade difference (color shading) occurs. Also, when the color is erased, a shade difference (color shading) is noticeable. It causes deterioration of durability.

【0016】また、別の問題点に封止の生産性が悪いこ
とがある。硬化する前の封止樹脂は液状であり、ECD 調
光ガラスの光学歪みや素子劣化を防ぐために、素子面全
体に均一な厚さで封止樹脂を硬化させる必要がある。こ
の均一な厚さの達成には、封止樹脂量、加圧力及び加圧
力分布の適切な調整を要する。
Another problem is that the sealing productivity is poor. The encapsulating resin before curing is liquid, and it is necessary to cure the encapsulating resin with a uniform thickness over the entire element surface to prevent optical distortion and element deterioration of the ECD light control glass. In order to achieve this uniform thickness, it is necessary to appropriately adjust the amount of sealing resin, the applied pressure, and the applied pressure distribution.

【0017】例えば、基板面からはみだす程封止樹脂量
を十分に多くすると、均一厚さのための加圧力及び加圧
力分布の調整は比較的容易となるが、はみだした樹脂を
除去する工程が必要になる。また、基板面からはみださ
ないように封止樹脂量を少なくすると、はみだした樹脂
を除去する工程が不要になるが、均一厚さのための加圧
力及び加圧力分布の調整が非常に困難となり、均一厚さ
を実現できないか、または調整に多大の時間を要するこ
とになる。
For example, if the amount of the sealing resin is set to be sufficiently large to protrude from the substrate surface, adjustment of the pressing force and the pressing force distribution for uniform thickness becomes relatively easy, but the step of removing the protruding resin is required. You will need it. Also, if the amount of sealing resin is reduced so that it does not stick out from the substrate surface, the step of removing the sticking out resin becomes unnecessary, but the pressing force and the pressing force distribution for uniform thickness can be adjusted very much. Difficulty, uniform thickness cannot be achieved, or adjustment takes a lot of time.

【0018】また、本出願人が既に出願した発明に係わ
る特開平6-167724号公報に記載の調光ガラスの製造方法
では、着消色が均一で外観や耐久性及び生産性を向上せ
しめることができたものの、例えば上下電極部(バスバ
−部)に低抵抗電極部を粘着テ─プで適宜貼り付けてい
たが、貼り付け作業に時間がかかることがあり、また長
期の使用では該貼り付け部の接着が剥離する現象が起こ
ることがあって、外観不良になるばかりか、前記上下電
極部と前記低抵抗電極部との接触が悪くなり、接触抵抗
が高くなって着消色時とも応答性が低下することがあ
り、さらなる耐久性が望まれるものであった。
Further, in the method for producing a light control glass described in Japanese Patent Application Laid-Open No. 6-167724 related to the invention which the present applicant has already filed, it is possible to improve the appearance, durability and productivity by uniform coloring and decoloring. Although the low resistance electrode part was properly attached to the upper and lower electrode parts (bus bar part) with an adhesive tape, the attachment work may take time, and in the case of long-term use, There is a case where the adhesion of the attachment part peels off, resulting in poor appearance and poor contact between the upper and lower electrode parts and the low resistance electrode part, resulting in a high contact resistance and even when the color is erased and erased. Responsiveness may decrease, and further durability was desired.

【0019】本発明の目的は、着消色が均一で良好な外
観をより長く持続でき、より長期的な耐久性を備え、長
期的安定性に優れる調光ガラスを生産性をより向上しコ
ストダウンを図り、製造することにある。
The object of the present invention is to improve the productivity and cost of a light control glass which has a uniform appearance and coloration, can maintain a good appearance for a longer time, has longer-term durability, and is excellent in long-term stability. It is about down and manufacturing.

【0020】[0020]

【課題を解決するための手段】ECD 調光ガラスの大型化
に伴って、基板表面端部に位置する透明電極層上に設け
た低抵抗電極部の間隔が増大する。図7は、ECD 調光ガ
ラスの概略断面図であり、図9は、従来のECD 調光ガラ
スであって、基板表面端部に位置する透明電極層上に設
けた低抵抗電極部(例えば金属製クリップ)H1,H2の間
隔が大きいECDに電圧を印加した場合における電流Iの
流れる様子を模式的に示した図〔図9(a) 〕、およびこ
れによるECD 調光ガラスにおける着色状況を示した図
〔図9(b)〕である。
[Means for Solving the Problems] With the increase in size of ECD light control glass, the distance between the low resistance electrode portions provided on the transparent electrode layer located at the edge of the substrate surface increases. FIG. 7 is a schematic cross-sectional view of the ECD light control glass, and FIG. 9 shows a conventional ECD light control glass, which has a low resistance electrode portion (for example, metal Fig. 9 (a)] is a diagram that schematically shows how the current I flows when a voltage is applied to an ECD with a large gap between H1 and H2 [Fig. 9 (a)], and the resulting coloring of the ECD light control glass. FIG. 9 (b)].

【0021】ECD が大型化するに従い、透明電極層の抵
抗が増大してECD の内部方向への抵抗よりも大きくなる
ので、図9に示すように、電流Iの大部分は、透明電極
層の一端から比較的低抵抗で流れやすいECD 内部に流れ
込んでしまい、その結果、低抵抗電極部H1に近い部分で
は早く濃く着色するが、低抵抗電極部H1から離れた中央
部から他端にかけては、ほとんど電流が流れず、着色が
非常に遅く薄くなり、特に大型のECD において、この傾
向が著しいことが判った。
As the ECD becomes larger, the resistance of the transparent electrode layer increases and becomes larger than the inward resistance of the ECD. Therefore, as shown in FIG. It flows from one end into the ECD where it is relatively low-resistance and easy to flow, and as a result, the part near the low-resistance electrode part H1 is colored quickly and darkly, but from the central part away from the low-resistance electrode part H1 to the other end, It turned out that almost no current flows and the coloring becomes very slow and thin, especially in large ECDs.

【0022】また、消色時も、着色時に比べれば不均一
の傾向は少ないものの、同様の原因で不均一に消色する
ことが判った。なお、図6は、従来のECD 調光ガラス
の基板の4辺端部に4本の導電性クリップH を装着した
場合の状態を示す概略平面図である。
It was also found that even when the color was erased, the tendency of non-uniformity was less than in coloration, but the color was erased non-uniformly due to the same cause. Fig. 6 shows the conventional ECD light control glass 4
FIG. 6 is a schematic plan view showing a state in which four conductive clips H are attached to the four side end portions of the substrate of FIG.

【0023】従って、図8に示すような均等な電流が流
れ、均一に着消色する大型ECD とするためには、透明電
極層の抵抗をECD の内部抵抗程度に小さくすればよいこ
とが判った。
Therefore, it is understood that the resistance of the transparent electrode layer should be made as small as the internal resistance of the ECD in order to obtain a large ECD in which uniform current flows as shown in FIG. It was

【0024】透明電極層の抵抗を小さくするためには、
低抵抗の電極材料を使用すれば良いが、現状の透明電極
材料(ITO 、ZnO 、SnO2等)では、この要求を充分に満
たすことができない。
In order to reduce the resistance of the transparent electrode layer,
Although low resistance electrode materials may be used, the current transparent electrode materials (ITO, ZnO, SnO 2, etc.) cannot sufficiently meet this requirement.

【0025】本発明者らは、低抵抗の電極部の形成方法
について、ECD 調光ガラスの封止に合わせガラス用中間
膜を使用し、該中間膜に低抵抗電極部を直接熱着し、該
低抵抗電極部と前記したバスバ−部(上下電極部)に当
たる上下透明電極層の端辺部とをそれぞれ直接接触させ
るようにすると、長期の使用でも前記した剥離現象が起
こることもなく、着消色が均一で良好な外観をより長く
持続でき、より長期的な耐久性を備え、長期的安定性に
優れる調光ガラスを製造することができ、封止の生産性
がより向上しコストダウンができることを見出した。
Regarding the method of forming a low resistance electrode part, the present inventors used an intermediate film for laminated glass for sealing ECD light control glass, and directly heat-bonded the low resistance electrode part to the intermediate film, When the low resistance electrode portion and the edge portions of the upper and lower transparent electrode layers corresponding to the bus bar portion (upper and lower electrode portions) are brought into direct contact with each other, the peeling phenomenon described above does not occur even after long-term use, and It is possible to manufacture a light control glass with uniform decoloring that can maintain a good appearance for a longer period of time, has longer-term durability, and is excellent in long-term stability. I found that I can do it.

【0026】本発明は、少なくともエレクトロクロミッ
ク層とこれを挟む一対の透明電極層とからなるエレクト
ロクロミック素子を素子基板表面に形成した調光ガラス
において、前記透明電極層上のバスバ−部に当たる低抵
抗電極部に対応する位置に予め低抵抗電極部を設けた合
わせガラス用中間膜を透明電極層上に重ねてなることを
特徴とする調光ガラス、また、前記低抵抗電極部が素子
基板表面の端部の位置の前記透明電極層上に形成された
導電性の箔またはワイヤ−からなり、その箔またはワイ
ヤ−の一部が前記合わせガラス用中間膜の縁から外側へ
突出しており、リ−ド線との接続部となることを特徴と
する上述した調光ガラス、また、一対の透明電極層の重
なりがある領域の上部透明電極層上に、前記低抵抗電極
部に接続された導電性のワイヤ−を配設してなることを
特徴とする上述した調光ガラスを提供するものである。
According to the present invention, in a light control glass having an electrochromic element having at least an electrochromic layer and a pair of transparent electrode layers sandwiching the electrochromic layer formed on the surface of an element substrate, a low resistance corresponding to a bus bar portion on the transparent electrode layer is provided. Light control glass characterized in that an intermediate film for laminated glass having a low resistance electrode portion provided in advance at a position corresponding to the electrode portion is laminated on a transparent electrode layer, and the low resistance electrode portion is an element substrate surface. It is composed of a conductive foil or wire formed on the transparent electrode layer at the end position, and a part of the foil or wire projects outward from the edge of the interlayer film for laminated glass, The light control glass described above, which serves as a connection portion with a lead wire, and a conductor connected to the low resistance electrode portion on the upper transparent electrode layer in a region where the pair of transparent electrode layers overlap. There is provided the above-described light control glass, characterized in that formed by arranging - sexual wire.

【0027】さらに、本発明は、少なくともエレクトロ
クロミック層とこれを挟む一対の透明電極層とからなる
エレクトロクロミック素子を素子基板表面に形成した調
光ガラスの製造方法において、前記透明電極層上にバス
バ−部に当たる低抵抗電極部を設けるために、該低抵抗
電極部に対応する位置に予め低抵抗電極部を設けた合わ
せガラス用中間膜を前記透明電極層上に重ねることを特
徴とする調光ガラスの製造方法を提供するものである前
記低抵抗電極部を、熱によって合わせガラス用中間膜に
貼着するとよく、前記熱の温度が、約80℃以上150 ℃以
下程度であると好ましい。
Furthermore, the present invention provides a method for producing a light control glass in which an electrochromic element comprising at least an electrochromic layer and a pair of transparent electrode layers sandwiching the electrochromic layer is formed on the surface of an element substrate, wherein a bus bar is provided on the transparent electrode layer. In order to provide a low resistance electrode part corresponding to the − part, an intermediate film for laminated glass having a low resistance electrode part provided in advance at a position corresponding to the low resistance electrode part is laminated on the transparent electrode layer. The low resistance electrode portion that provides a method for producing glass may be adhered to the interlayer film for laminated glass by heat, and the temperature of the heat is preferably about 80 ° C. or higher and 150 ° C. or lower.

【0028】また、前記貼着する手段は、通電による発
熱、あるいはハンダゴテまたはこれに類するものでの熱
であるとよい。さらに、前記合わせガラス用中間膜は、
可塑化ポリビニールブチラール、もしくは変成エチレン
ビニールアセテートが好ましい。
The means for attaching may be heat generated by energization, or heat generated by a soldering iron or the like. Further, the interlayer film for laminated glass,
Plasticized polyvinyl butyral or modified ethylene vinyl acetate is preferred.

【0029】[0029]

【発明の実施の形態】本発明の調光ガラスでは、基板表
面端部に位置する透明電極層上だけでなく、透明電極層
パターンの輪郭線よりも内側の基板表面内部の上部透明
電極層上に低抵抗電極部(以後、この低抵抗電極部を補
助バスバーとも呼ぶ)を設けることにより、上下透明電
極層上の低抵抗電極部間隔を低減して透明電極層の抵抗
をECDの内部抵抗に近づけることができる。
BEST MODE FOR CARRYING OUT THE INVENTION In the light control glass of the present invention, not only on the transparent electrode layer located at the end of the substrate surface but also on the upper transparent electrode layer inside the substrate surface inside the outline of the transparent electrode layer pattern. By providing a low-resistance electrode section (hereinafter, this low-resistance electrode section is also called an auxiliary bus bar) on the upper and lower transparent electrode layers, the distance between the low-resistance electrode sections is reduced and the resistance of the transparent electrode layer becomes the internal resistance of the ECD. You can get closer.

【0030】その結果、ECD に電圧を印加した時の電流
Iは、図8に示すようにECD 内部方向だけでなく上部透
明電極層の水平方向にも充分に流れ、しかも比較的低抵
抗のECD 内部に於ける着色の拡散効果があるので、ECD
全面に渡って均一に着色させることができる。
As a result, the current I when a voltage is applied to the ECD sufficiently flows not only in the ECD internal direction as shown in FIG. 8 but also in the horizontal direction of the upper transparent electrode layer and has a relatively low resistance. Since there is a diffusion effect of coloring inside, ECD
The entire surface can be colored uniformly.

【0031】バスバーの材料としては、例えば金、銀、
アルミニウム、銅、白金、クロム、スズ、亜鉛、ニッケ
ル、ルテニウム、ロジウム、ステンレス等の金属ワイヤ
ー、金属箔及び金属薄膜または導電性ペースト等が使用
できる。
Examples of the material for the bus bar include gold, silver,
A metal wire such as aluminum, copper, platinum, chromium, tin, zinc, nickel, ruthenium, rhodium or stainless steel, a metal foil and a metal thin film or a conductive paste can be used.

【0032】シ−トR の端部に設けたバスバ−の一部を
合わせガラス用中間膜の端縁から外側へ突出させてリ−
ド線との接続部とすることが好ましく、金属箔または金
属ワイヤ−を用いる場合は、その長さ方向に対して端部
を外側へ90°折り曲げるだけでよい。
A portion of the bus bar provided at the end of the sheet R is projected outward from the end edge of the interlayer film for laminated glass and then reheated.
It is preferable that the connecting portion is connected to a wire, and when a metal foil or a metal wire is used, it is sufficient to bend the end portion by 90 ° outward with respect to the length direction.

【0033】ところで、バスバ−の長さとしては、基板
の−辺の長さいっぱいと長すぎると着色時にコ−ナ−4
箇所の透過率が下がりすぎ、全体のバランスがとれなく
なるため、基板の−辺の長さより短めとすることが好ま
しい(恐らく他の場所と比べ、通電による電圧降下の影
響が少ない)。最適のバスバ−の長さは、印加電圧、IT
O の抵抗、ECD の抵抗、ECD の形状、使用温度などの複
雑な要因を考慮して適宜決める。
By the way, regarding the length of the bus bar, if the full length of the side of the substrate is too long or too long, the corner-4 at the time of coloring will
It is preferable to make the length shorter than the length of the minus side of the substrate (probably less affected by voltage drop due to energization), because the transmittance of the portion becomes too low and the overall balance cannot be achieved. The optimum bus bar length is the applied voltage, IT
Determine as appropriate in consideration of complex factors such as O resistance, ECD resistance, ECD shape, and operating temperature.

【0034】なお、図7〜9に見られるように、バスバ
−が下部ITO 電極部、上部ITO 電極部ともに1本(1
辺)づつであれば、バスバーの長さを短くする必要はな
い。また、本発明にかかる合わせガラス用中間膜には、
例えば可塑化PVB (ポリビニールブチラール)または変
成EVA (エチレンビニールアセテート)が好ましいが、
これらに類するものであれば特に限定されるものではな
い。
As shown in FIGS. 7 to 9, one bus bar is provided for each of the lower ITO electrode portion and the upper ITO electrode portion (1
It is not necessary to shorten the length of the bus bar if it is on each side. In addition, the interlayer film for laminated glass according to the present invention,
For example, plasticized PVB (polyvinyl butyral) or modified EVA (ethylene vinyl acetate) is preferred,
There is no particular limitation as long as it is similar to these.

【0035】本発明に於けるECD の積層構造は、特にど
れと限定されるものではないが、固体型ECD の構造とし
ては、例えば電極層/EC層(酸化発色膜または還元発
色膜)/イオン導電層/電極層のような4層構造、なら
びに電極層/還元着色型EC層/イオン導電層/可逆的
電解酸化層/電極層のような5層構造〔図7〕が挙げら
れる。
The laminated structure of the ECD in the present invention is not particularly limited, but the solid ECD structure is, for example, an electrode layer / EC layer (oxidation coloring film or reduction coloring film) / ion. There are a four-layer structure such as a conductive layer / electrode layer, and a five-layer structure such as an electrode layer / reduction coloring type EC layer / ion conductive layer / reversible electrolytic oxidation layer / electrode layer [FIG. 7].

【0036】還元着色型EC層としては、一般にWO3 ,Mn
O3,V2O5等が使用される。イオン導電層としては、例え
ば酸化ケイ素、酸化タンタル、酸化チタン、酸化アルミ
ニウム、酸化ニオブ、酸化ジルコニウム、酸化ハフニウ
ム、酸化ランタン、フッ化マグネシウム等が使用され
る。また、イオン導電層は、電子に対して絶縁体である
が、プロトン(H+ ) 及びヒドロキシイオン (OH- ) に対
しては良導体となる。EC層の着消色反応にはカチオンが
必要とされ、 H+ やLi+ をEC層その他に含有させる必要
がある。 H+ は、初めからイオンである必要はなく、電
圧が印加された時に H+ が生じればよく、従って H+
代わりに水を含有させてもよい。この水は、非常に少な
くて充分であり、しばしば大気中から自然に侵入する水
分でも着消色する。
As the reduction-colored EC layer, generally, WO 3 , Mn is used.
O 3 , V 2 O 5, etc. are used. As the ion conductive layer, for example, silicon oxide, tantalum oxide, titanium oxide, aluminum oxide, niobium oxide, zirconium oxide, hafnium oxide, lanthanum oxide, magnesium fluoride or the like is used. Further, the ion conductive layer is an insulator for electrons, but is a good conductor for protons (H + ) and hydroxy ions (OH ). A cation is required for the coloration / decoloration reaction of the EC layer, and H + and Li + must be contained in the EC layer and the like. H + does not have to be an ion from the beginning, and H + may be generated when a voltage is applied, and thus water may be contained instead of H + . The amount of this water is very small and sufficient, and even water that naturally invades from the atmosphere often wears and disappears.

【0037】可逆的電解酸化層としては、例えば酸化な
いし水酸化イリジウム、同じくニッケル、同じくクロ
ム、同じくルテニウム、同じくロジウム等が挙げられ
る。これらの物質は、イオン導電層または透明電極層中
に分散されていてもよいし、逆にそれらを分散していて
もよい。
Examples of the reversible electrolytic oxidation layer include iridium oxide or hydroxide, nickel, chromium, ruthenium, rhodium and the like. These substances may be dispersed in the ion conductive layer or the transparent electrode layer, or conversely may be dispersed therein.

【0038】なお、前記酸化発色膜(可逆的電解酸化
層)または還元発色膜(還元着色型EC層)は、どちらを
上にしても下にしてもよいが、同一の膜を上下には使用
しない。
The oxidation coloring film (reversible electrolytic oxidation layer) or the reduction coloring film (reduction coloring type EC layer) may be either up or down, but the same film is used above and below. do not do.

【0039】前記の場合は、EC層とイオン導電層と
は、どちらを上にしても下にしてもよい。さらに前記
の場合は、EC層に対して間にイオン導電層を挟んで(場
合により酸化着色性EC層ともなる)可逆的電解酸化層
(ないし触媒層)を配設してもよい。
In the above case, either the EC layer or the ionic conductive layer may be on either side. Further, in the above case, a reversible electrolytic oxidation layer (or a catalyst layer) may be arranged with an ion conductive layer sandwiched between the EC layers (which may also serve as an oxidation coloring EC layer).

【0040】[0040]

【実施例】以下、実施例により本発明を具体的に説明す
るが、本発明はこれに限定されるものではない。
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited thereto.

【0041】実施例1 図1〜3に示す約45cm×45cmサイズの全固体型のECD
(エレクトロクロミック素子)調光ガラスを以下の手
順で作製した。
Example 1 All solid type ECD of about 45 cm × 45 cm size shown in FIGS.
(Electrochromic element) Light control glass 1 was produced by the following procedure.

【0042】(1) 約45cm×45cmサイズのガラス製素子基
板S の表面全体にDCスパッタリングにより下部ITO 電極
層B を形成した。スパッタリング時の基板加熱温度は約
200℃、該ITO 電極層の膜厚は約1000Å、該ITO 電極層
のシート抵抗は約25Ω/口であった。
(1) A lower ITO electrode layer B was formed on the entire surface of a glass element substrate S having a size of about 45 cm × 45 cm by DC sputtering. Substrate heating temperature during sputtering is approx.
At 200 ° C., the film thickness of the ITO electrode layer was about 1000Å, and the sheet resistance of the ITO electrode layer was about 25Ω / port.

【0043】(2) 図2と3に示すように、フォトエッチ
ングにより上記下部ITO 電極層の両側B',B''の領域のIT
O 電極層を除去した。なお、ITO をマスク蒸着すること
により直接にこれらのパターンを形成してもよい。
(2) As shown in FIGS. 2 and 3, by photo-etching, the IT in the regions B ′ and B ″ on both sides of the lower ITO electrode layer is formed.
The O 2 electrode layer was removed. Alternatively, these patterns may be directly formed by mask-depositing ITO.

【0044】(3) DCスパッタリングにより酸化イリジウ
ムと酸化スズとの混合物からなる可逆的電解酸化層C 、
酸化タンタルのイオン導電層D 、酸化タングステン層E
を順次形成した。
(3) Reversible electrolytic oxidation layer C composed of a mixture of iridium oxide and tin oxide by DC sputtering,
Tantalum oxide ion conductive layer D, Tungsten oxide layer E
Were sequentially formed.

【0045】(4) DCスパッタリングにより上部ITO 電極
層A を形成して、ECD を作製した。スパッタリング時の
基板加熱は行わず(加熱すると先に成膜したEC層が劣化
する)、上部ITO 電極層A の膜厚を約3000Åにして上部
ITO 電極層A のシート抵抗が下部電極層B と同じ約25Ω
/口になるようにした。
(4) An upper ITO electrode layer A was formed by DC sputtering to prepare an ECD. The substrate is not heated during sputtering (heating causes deterioration of the EC layer previously formed), and the film thickness of the upper ITO electrode layer A is set to about 3000 Å
The sheet resistance of ITO electrode layer A is about 25Ω, which is the same as that of lower electrode layer B.
/ I tried to speak.

【0046】(5) 合わせガラス用中間膜であるシートR
(変成EVA または可塑化PVB )を約45cm×45cmの大きさ
に切り出し、シートR の所定の場所〔図1〜3のJ (上
部透明電極用の低抵抗電極部=バスバ−)、K (下部透
明電極用の低抵抗電極部=バスバ−)の位置〕にエンボ
ス加工付き銅箔(厚さ10μm 、巾2.5mm 、長さ25mm。エ
ンボス加工がなくてもよいが、後工程の合わせ(封止)
時に良好な接着が得られるため該加工があるものの方が
好ましい)が一致するように置き、図4に示すように、
AC7Vの電圧を約1cm の間隔の通電端子に印加し、銅箔の
任意の点を押さえ、火花が僅かに発生するとともに、銅
箔とシ−トR とは瞬間的に接着した。このような操作を
銅箔1本当たり十数箇所連続して行った。
(5) Sheet R which is an interlayer film for laminated glass
Cut out (modified EVA or plasticized PVB) to a size of about 45 cm x 45 cm, and place it in a predetermined place on the sheet R [J in Fig. 1 to 3 (low resistance electrode part for upper transparent electrode = bus bar), K (bottom part) Position of low-resistance electrode part for transparent electrode = bus bar)] Copper foil with embossing (thickness 10 μm, width 2.5 mm, length 25 mm. No embossing is required, but post-process alignment (sealing) )
(Sometimes it is preferable to have this processing because good adhesion can be obtained.)
A voltage of 7V AC was applied to the current-carrying terminals with a space of about 1 cm, and an arbitrary point on the copper foil was pressed, a slight spark was generated, and the copper foil and the sheet R were momentarily bonded. Such an operation was continuously performed at ten or more locations per copper foil.

【0047】なお、銅箔とシートR とを接着する場所
は、銅箔とシートR のサイズにより適宜決めればよい。
また通電端子の大きさや形状についても適宜決めればよ
く、本実施例に限定されない。また複数の通電端子を用
いてもよい。
The place where the copper foil and the sheet R are bonded may be appropriately determined depending on the sizes of the copper foil and the sheet R.
Further, the size and shape of the current-carrying terminal may be appropriately determined, and the present invention is not limited to this example. Also, a plurality of energizing terminals may be used.

【0048】また、銅箔は後でリ−ド線と接続するた
め、シ−トR と接着していない部分を設け、シ−トR の
縁から外側へ接着した銅箔の長さ方向に対し90°に折り
曲げた〔図1〜3におけるJ'(上部電極部=バスバ−の
接続部),K' (下部電極部=バスバ−の接続部)〕。な
お、印加電圧はそれほど大きくなくても銅箔とシートR
とは充分接着した。印加電圧としては、ACまたはDCで約
3〜10V で約1秒以内程度が好ましいものであった。ま
た、ハンダゴテの温度は約80〜150 ℃程度で押さえ時間
は約1秒以内とほぼ瞬時の接着である。また接着力につ
いては、長期的に通電抵抗が増加する変化が起こらない
低抵抗の導通が維持できるものであればよく、このよう
な接着方法でよい。
Since the copper foil will be connected to the lead wire later, a portion not adhered to the sheet R is provided, and the copper foil adhered from the edge of the sheet R to the outside in the length direction. It was bent at 90 ° (J '(upper electrode portion = bus bar connection portion), K' (lower electrode portion = bus bar connection portion) in Figs. 1 to 3). Even if the applied voltage is not so large, the copper foil and sheet R
And was well bonded. The applied voltage is approximately AC or DC.
It is preferable that the voltage is 3 to 10 V and within about 1 second. Also, the temperature of the soldering iron is about 80 to 150 ° C., and the holding time is within about 1 second, which means almost instant adhesion. Regarding the adhesive force, any adhesive can be used as long as it can maintain low-resistance conduction without causing a change in increase in energization resistance over a long period of time, and such an adhesive method may be used.

【0049】(6) このエンボス加工付きの銅箔を上記方
法で熔着的に貼り付けたシ−トR (EVA 膜:デュミラン
F300、約250 μm )およびガラス製の封止基板G によ
り、該銅箔熔着EVA 膜であるシ─トR (銅箔熔着面を素
子基板のEC素子面向きとする)をEC素子付きガラス板で
ある素子基板S (素子側を内向きとする)と封止基板G
とを、上記(4) の工程で形成した透明電極層上に銅箔が
バスバ−の位置になるようにサンドイッチ状に重ね、ラ
ミネ−タ−(プレス用)を用い、例えば約40℃、約5分
で約0.1 〜0.5Torr または/および約85℃、約25分で0.
1 〜5Torr 等の条件により圧着することで合わせ、冷却
することによって素子を封止した。
(6) A sheet R (EVA film: Dumiran) obtained by welding the embossed copper foil by the above method.
F300, approx. 250 μm) and glass encapsulation substrate G, the sheet R, which is the copper foil welding EVA film (with the copper foil welding surface facing the EC element surface of the element substrate), has an EC element Device substrate S (device side is inward) and sealing substrate G that are glass plates
And are laminated in a sandwich shape so that the copper foil is located at the bus bar position on the transparent electrode layer formed in the step (4), and using a laminator (for press), for example, about 40 ° C, about About 0.1 to 0.5 Torr in 5 minutes or / and about 85 ° C. in about 25 minutes.
The elements were sealed by pressure bonding under conditions such as 1 to 5 Torr, and then cooled to seal the element.

【0050】なお、合わせによる封止の手順等、そのや
り方は特に限定されない。 (7) 上部電極層及び下部電極層のバスバーJ ,K のJ',
k' にそれぞれ外部配線(外部配線の端子LA,LB)をボ
ンディングしてECD 調光ガラスを作製した。なお、前
記ボンディングする位置については特に左右限定される
ものではなく、また別の銅箔やワイヤ−等(補助バスバ
−)を、例えば中央部に貼り付けたシ−トR (貼り付け
なくてもよい)を用いる等、適宜最適な位置を選択すれ
ばよい。
There is no particular limitation on the method such as the procedure of sealing by matching. (7) Bus bar J of upper electrode layer and lower electrode layer, J'of K,
External wiring (terminals LA and LB of the external wiring) were bonded to k ', respectively, to fabricate ECD light control glass 1 . The position for bonding is not particularly limited to the left and right, and a sheet R (for example, a copper foil, a wire or the like (auxiliary bus bar)) attached to the central portion (without needing to be attached) is used. The optimal position may be selected as appropriate.

【0051】この様にして作製したECD 調光ガラス
前記端子LA,LBを介して駆動電源Suから約+1.5 V の消
色電圧を約5分間印加して、この時のECD 調光ガラス
の着色部全面における C光源による透過率分布を測定し
たところ、約22〜27%程度であり、図8(b) に示すよう
になり、特に気になるような不均一な着色は観察されな
かった。次に、約−1.5 V の消色電圧を約1分間印加す
ると透過率は65〜68%程度に回復し、消色中も気になる
ような色ムラは観察されなかった。
An erasing voltage of about +1.5 V from the driving power supply Su is applied to the ECD light control glass 1 thus manufactured through the terminals LA and LB for about 5 minutes, and the ECD light control at this time is performed. Glass 1
The transmittance distribution measured by the C light source on the entire surface of the colored part was about 22 to 27%, and it was as shown in Fig. 8 (b), and no particularly noticeable non-uniform coloring was observed. It was Next, when an erasing voltage of about -1.5 V was applied for about 1 minute, the transmittance was restored to about 65 to 68%, and no noticeable color unevenness was observed during erasing.

【0052】実施例2 図5に示すように、上部透明電極(点線A)上の対向す
る両端部に形成した銅箔または銅薄膜のバスバーJ ,J
を接続するようにニッケルメッキを施した約0.2mm φ、
長さ約44.5〜45mmの銅線からなる導電性のワイヤ−(2
点鎖線W )を約5cm 間隔で5本並べたシ−トR を形成し
て低抵抗電極部の補助バスバ−とした他は、実施例1と
同様にしてECD 調光ガラスを作製した。
Example 2 As shown in FIG. 5, bus bars J, J of copper foil or copper thin film formed on opposite ends of the upper transparent electrode (dotted line A).
About 0.2mmφ with nickel plating to connect
Conductive wire made of copper wire with a length of approximately 44.5 to 45 mm- (2
An ECD light control glass 2 was produced in the same manner as in Example 1 except that a sheet R was formed by arranging five dashed-dotted lines W) at intervals of about 5 cm to form an auxiliary bus bar for the low resistance electrode portion.

【0053】このECD 調光ガラスに駆動電源Suから約
−1.5Vの消色電圧を約1分間印加して測定したリーク電
流は、約−0.8mA 程度であり、実施例1の場合よりもや
や増加した。リーク電流がやや大きいのは、図5に示す
ように、ニッケルメッキ銅線バスバーを設けた場所にお
いて圧力がかかり、上下透明電極A,B パタ−ンの重なり
部分に何らかの影響があるためと考えられる。
The leakage current measured by applying an erasing voltage of about -1.5 V to the ECD light control glass 2 from the driving power supply Su for about 1 minute is about -0.8 mA, which is more than that of the first embodiment. Slightly increased. The reason why the leakage current is a little large is that, as shown in FIG. 5, pressure is applied at the place where the nickel-plated copper wire bus bar is provided, and there is some influence on the overlapping portion of the upper and lower transparent electrodes A and B patterns. .

【0054】該ECD 調光ガラスに駆動電源Suから約+
1.5Vの着色電圧を約2分間印加して、この時のECD 調光
ガラスの着消色部全面における C光源による透過率分
布を測定したところ、約20〜23%程度であり、実施例1
と同様に、気になる不均一な着色は観察されなかった。
Approximately + from the drive power supply Su to the ECD light control glass 2
A coloring voltage of 1.5 V was applied for about 2 minutes, and the transmittance distribution by the C light source on the entire surface of the coloration / erasing part of the ECD light control glass 2 at this time was measured and was about 20 to 23%. 1
Similarly, no noticeable non-uniform coloring was observed.

【0055】次に、約−1.5Vの消色電圧を約1分間印加
すると透過率は約67〜70%程度に回復し、消色中も気に
なるような色ムラは観察されなかった。また、応答が約
2〜3倍に速くなったのは、上部ITO 膜にニッケルメッ
キ銅線バスバーを設けたため、上部ITO 膜のシ−ト抵抗
が見かけ上下がったためである。
Next, when an erasing voltage of about -1.5 V was applied for about 1 minute, the transmittance was restored to about 67 to 70%, and no noticeable color unevenness was observed during erasing. Also, the response is about
The reason why the speed was 2-3 times faster is that the sheet resistance of the upper ITO film was apparently raised or lowered because the upper ITO film was provided with the nickel-plated copper wire bus bar.

【0056】なお、補助電極として用いたニッケルメッ
キ銅線バスバーについては、これに限らず低抵抗の導体
であれば何でもよいが、導体の抵抗については1本当た
り約3Ω以下程度となるものが好ましい。3Ω程度以上
となると上部ITO 膜への補助電極としての効果が薄れ、
応答性の向上が少なくなる。さらにより好ましくは約0.
5 Ω前後程度以下(低ければ低いほどよい)である。
The nickel-plated copper wire bus bar used as the auxiliary electrode is not limited to this and may be any conductor having a low resistance, but the resistance of the conductor is preferably about 3 Ω or less. . When it is about 3Ω or more, the effect as an auxiliary electrode on the upper ITO film is weakened,
Less improvement in responsiveness. Even more preferably about 0.
It is about 5 Ω or less (the lower the better).

【0057】実施例3 図1に示したバスバーJ 、K の銅箔を貼り付けるシ−ト
R 上の位置に、銀ペ−ストによる銀薄膜またはマスク蒸
着により銅薄膜をコ−ティングした他は、実施例1と同
様にしてECD 調光ガラスを作製した。
Example 3 A sheet for attaching the copper foils of the bus bars J and K shown in FIG.
An ECD dimming glass was prepared in the same manner as in Example 1 except that a silver thin film with a silver paste or a copper thin film was mask-deposited at a position on R.

【0058】このECD 調光ガラスに駆動電源Suから約−
1.5Vの消色電圧を約1分間印加して測定したリーク電流
は、約−0.5mA 程度であった。このECD 調光ガラスに駆
動電源Suから約+1.5Vの着色電圧を約5分間印加して、
この時のECD 調光ガラスの着消色部全面における C光源
による透過率分布を測定したところ、約21〜26%程度で
あり、実施例1と同様に、気になる不均一な着色は観察
されなかった。次に、約−1.5Vの消色電圧を約1分間印
加すると透過率は約65〜68%程度に回復し、消色中も気
になる色ムラは観察されなかった。
From the drive power supply Su to this ECD light control glass
The leak current measured by applying a decoloring voltage of 1.5 V for about 1 minute was about -0.5 mA. Applying a coloring voltage of about + 1.5V from the drive power supply Su to this ECD light control glass for about 5 minutes,
At this time, the transmittance distribution by the C light source was measured on the entire surface of the ECD light control glass, which was about 21 to 26%. As with Example 1, uneven coloration was observed. Was not done. Next, when an erasing voltage of about -1.5 V was applied for about 1 minute, the transmittance was restored to about 65 to 68%, and no noticeable color unevenness was observed during erasing.

【0059】比較例1 サイズを約25cm×15cmとし、断面がコの字型で長さが約
15cmのリン青銅またはステンレス製の導電性クリップH
(H1、H2)を2本用意し、この導電性クリップH 2本を
図9に示す様に素子基板端部の対抗する辺に装着し、こ
れにより導電性クリップH が上部、下部各電極層の取り
出し部を圧着するようにした他は、実施例1と同様にし
てECD 調光ガラスを作製した。
Comparative Example 1 The size was about 25 cm × 15 cm, the cross section was U-shaped and the length was about
15cm phosphor bronze or stainless conductive clip H
Two pieces of (H1, H2) are prepared, and two pieces of these conductive clips H are attached to the opposite sides of the end of the element substrate as shown in FIG. 9, so that the conductive clips H are placed on the upper and lower electrode layers. An ECD dimming glass was produced in the same manner as in Example 1 except that the take-out portion of (1) was pressure-bonded.

【0060】このECD 調光ガラスに駆動電源Suから約−
1.5Vの消色電圧を約0.5 分間印加して測定したリーク電
流は、約−0.1mA 程度であった。このECD 調光ガラスに
駆動電源Suから約+1.5Vの着色電圧を約3分間印加し
て、この時のECD 調光ガラスの着消色部全面における C
光源による透過率分布を測定したところ、約27〜35%程
度であり、図9の(a) および(b) に示すように、模式図
のような不均等な電流が流れ、平面図にあるような気に
なる不均一な着色が観察された。次に、約−1.5Vの消色
電圧を約0.5 分間印加すると透過率は、約65〜68%程度
に回復したが、消色中もやはり気になる色ムラが観察さ
れた。
From the drive power supply Su to this ECD light control glass,
The leakage current measured by applying a decoloring voltage of 1.5 V for about 0.5 minutes was about -0.1 mA. Applying a coloring voltage of about + 1.5V from the drive power supply Su to this ECD light control glass for about 3 minutes, and at this time C
When the transmittance distribution by the light source is measured, it is about 27-35%. As shown in (a) and (b) of FIG. Annoying non-uniform coloring was observed. Next, when a decoloring voltage of about -1.5 V was applied for about 0.5 minutes, the transmittance was restored to about 65 to 68%, but annoying color unevenness was observed during the decoloring.

【0061】なお、本発明の調光ガラスの製造方法はEC
D について詳述したが、ECD 分野だけでなく、液晶(LC
D )分野等これらに類する分野にも広く採用することが
可能であることは言うまでもない。
The method for producing the light control glass of the present invention is EC
I explained D in detail, but not only in the ECD field, but also in the liquid crystal (LC
It goes without saying that it can be widely adopted in fields similar to these, such as field D).

【0062】比較例2 実施例1と同じ大きさで、断面がコの字型で長さが約25
cmのリン青銅またはステンレス製の導電性クリップH
(H1、H2)を4本用意し、この導電性クリップH4本を
図6に示す様に素子基板端部の対抗する辺に装着し、こ
れにより導電性クリップH が上部、下部各電極層の取り
出し部を圧着するようにした他は、実施例1と同様にし
てECD 調光ガラスを作製した。
Comparative Example 2 The size was the same as in Example 1, the cross section was U-shaped, and the length was about 25.
cm conductive phosphor bronze or stainless steel conductive clip H
Four (H1, H2) are prepared, and four conductive clips H are attached to the opposite sides of the element substrate edge as shown in FIG. 6, so that the conductive clips H are attached to the upper and lower electrode layers. ECD light control glass 4 was produced in the same manner as in Example 1 except that the take-out portion was pressure-bonded.

【0063】このECD 調光ガラスに駆動電源Suから約−
1.5Vの消色電圧を約1分間印加して測定したリーク電流
は、約−0.5mA 程度であった。このECD 調光ガラスに駆
動電源Suから約+1.5Vの着色電圧を約5分間印加して、
この時のECD 調光ガラスの着消色部全面における C光源
による透過率分布を測定したところ、約30〜38%程度で
あり、比較例1と同様の傾向を示す不均等な電流が流
れ、気になる不均一な着色が観察された。次に、約−1.
5Vの消色電圧を約1分間印加すると透過率は、約67〜70
%程度に回復したが、消色中もやはり気になる色ムラが
観察された。
From the drive power supply Su to this ECD light control glass,
The leak current measured by applying a decoloring voltage of 1.5 V for about 1 minute was about -0.5 mA. Applying a coloring voltage of about + 1.5V from the drive power supply Su to this ECD light control glass for about 5 minutes,
At this time, the transmittance distribution by the C light source was measured on the entire surface of the ECD light control glass, which was about 30 to 38%, and an uneven current flow showing the same tendency as in Comparative Example 1 flowed. Annoying non-uniform coloring was observed. Then about -1.
When 5V erasing voltage is applied for about 1 minute, the transmittance is about 67-70.
%, But still noticeable color unevenness was observed during the erasing.

【0064】なお、本発明の調光ガラスの製造方法はEC
D について詳述したが、ECD 分野だけでなく、液晶(LC
D )分野等これらに類する分野にも広く採用することが
可能であることは言うまでもない。
The method for producing the light control glass of the present invention is EC
I explained D in detail, but not only in the ECD field, but also in the liquid crystal (LC
It goes without saying that it can be widely adopted in fields similar to these, such as field D).

【0065】[0065]

【発明の効果】以上の通り、本発明によれば、合わせガ
ラス用中間膜に電流の発熱等を利用して低抵抗電極部
(バスバー)を熱熔着させ、これを基板表面の端部の透
明電極層上に圧着し、この素子基板および封止基板によ
り封止するようにしたので、着消色が均一で良好な外観
をより長く持続でき、より長期的な耐久性を備え、長期
的安定性ならびに応答性が優れた調光ガラスをより生産
性よく製造することができ、コストダウンを図れる。
As described above, according to the present invention, the low resistance electrode portion (bus bar) is heat-welded to the interlayer film for laminated glass by utilizing heat generation of electric current and the like, and the low resistance electrode portion (bus bar) is attached to the end portion of the substrate surface. Since it is pressure-bonded on the transparent electrode layer and is sealed by this element substrate and sealing substrate, the color tone is uniform and the good appearance can be maintained for a long time, and it has long-term durability and long-term durability. The dimming glass having excellent stability and responsiveness can be manufactured with high productivity, and the cost can be reduced.

【0066】また、一対の透明電極層の重なりがある領
域に前記貼着低抵抗電極部(バスバ−)に接続した前記
低抵抗電極部(補助バスバー)を設けることにより、さ
らに応答性が格段に優れた耐久性の良好な調光ガラスを
製造することができる。
Further, by providing the low resistance electrode portion (auxiliary bus bar) connected to the pasted low resistance electrode portion (bus bar) in the region where the pair of transparent electrode layers overlap, the response is further improved. It is possible to manufacture a light control glass having excellent durability.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1にかかるECD 調光ガラスの概略断面図
である。
FIG. 1 is a schematic sectional view of an ECD light control glass according to a first embodiment.

【図2】図1の実施例1にかかるECD 調光ガラスのバス
バーのパターン等を示す概略平面図である。
FIG. 2 is a schematic plan view showing a bus bar pattern and the like of the ECD light control glass according to the first embodiment of FIG.

【図3】図1の実施例1にかかるECD 調光ガラスの概略
斜視図である。
FIG. 3 is a schematic perspective view of an ECD light control glass according to the first embodiment of FIG.

【図4】実施例1にかかる中間膜へのバスバーの接着方
法を示す説明図である。
FIG. 4 is an explanatory diagram showing a method of adhering a bus bar to an intermediate film according to Example 1.

【図5】実施例2にかかるECD 調光ガラスのバスバ−と
補助バスバ−のパターン等を示す概略平面図である。
FIG. 5 is a schematic plan view showing patterns and the like of a bus bar and an auxiliary bus bar of the ECD light control glass according to the second embodiment.

【図6】従来の調光ガラスにおける基板端部に導電性ク
リップを装着した状態を示す概略平面図である。
FIG. 6 is a schematic plan view showing a state in which a conductive clip is attached to an end portion of a substrate in a conventional light control glass.

【図7】ECD 調光ガラスの概略断面図である。FIG. 7 is a schematic sectional view of an ECD light control glass.

【図8】本発明にかかるECD 調光ガラスにおいて電流I
が流れる様子を示す模式図:図8(a) 、およびこれによ
るECD 調光ガラスの着色状況を示す平面図:図8(b) で
ある。
FIG. 8 shows the current I in the ECD light control glass according to the present invention.
Fig. 8 (a) is a schematic diagram showing the flow of light, and Fig. 8 (b) is a plan view showing the coloring of the ECD light control glass.

【図9】比較例1のECD 調光ガラスにおいて電流Iが流
れる様子を示す模式図:図9(a) 、およびこれによるEC
D 調光ガラスの着色状況を示す平面図:図9(b) であ
る。
9 is a schematic diagram showing how a current I flows in the ECD light control glass of Comparative Example 1: FIG. 9 (a), and the resulting EC
FIG. 9 (b) is a plan view showing the coloring of the D light control glass.

【符号の説明】 ・・・ECD 調光ガラス ・・・ECD 調光ガラス ・・・ECD 調光ガラス A・・・上部ITO 電極層 B・・・下部ITO 電極層 E・・・酸化タングステン層 D・・・イオン導電層 C・・・可逆的電解酸化層 ECD ・・エレクトロクロミック素子 R・・・シ−ト(合わせガラス用中間膜) S・・・素子基板 G・・・封止基板 H・・・導電性クリップ J・・・上部透明電極用の低抵抗電極部(バスバー) K・・・下部透明電極用の低抵抗電極部(バスバー) J’・・上部電極部(バスバー)の接続部 K’・・下部電極部(バスバー)の接続部 I・・・ECD 駆動電流 W・・・導電性のワイヤ−(補助バスバーの一例) LA・・・J’からの外部配線の端子 LB・・・K’からの外部配線の端子 Su・・・駆動電源[Explanation of symbols] 1 ... ECD light control glass 2 ... ECD light control glass 4 ... ECD light control glass A ... Upper ITO electrode layer B ... Lower ITO electrode layer E ... Oxidation Tungsten layer D ... Ion conductive layer C ... Reversible electrolytic oxidation layer ECD ... Electrochromic element R ... Sheet (interlayer film for laminated glass) S ... Element substrate G ... Encapsulation Substrate H ... Conductive clip J ... Low resistance electrode portion (bus bar) for upper transparent electrode K ... Low resistance electrode portion (bus bar) for lower transparent electrode J '... Upper electrode portion (bus bar) Connection part K '... Connection part of lower electrode part (bus bar) I ... ECD drive current W ... Conductive wire- (an example of auxiliary bus bar) LA ... Terminal of external wiring from J' LB ・ ・ ・ External wiring terminal from K'Su ・ ・ ・ Drive power supply

フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G02F 1/15 502 C03C 27/12 Front page continuation (58) Fields surveyed (Int.Cl. 7 , DB name) G02F 1/15 502 C03C 27/12

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 少なくともエレクトロクロミック層とこ
れを挟む一対の透明電極層とからなるエレクトロクロミ
ック素子を素子基板表面に形成した調光ガラスにおい
て、前記透明電極層上のバスバ−部に当たる低抵抗電極
部に対応する位置に予め低抵抗電極部を設けた合わせガ
ラス用中間膜を透明電極層上に重ねてなることを特徴と
する調光ガラス。
1. A light control glass in which an electrochromic element comprising at least an electrochromic layer and a pair of transparent electrode layers sandwiching the electrochromic layer is formed on a surface of an element substrate, and a low resistance electrode portion corresponding to a bus bar portion on the transparent electrode layer. 1. A light control glass comprising an intermediate film for laminated glass, which is provided with a low resistance electrode portion in advance at a position corresponding to, on a transparent electrode layer.
【請求項2】 前記低抵抗電極部が素子基板表面の端部
の位置の前記透明電極層上に形成された導電性の箔また
はワイヤ−からなり、その箔またはワイヤ−の一部が前
記合わせガラス用中間膜の縁から外側へ突出しており、
リ−ド線との接続部となることを特徴とする請求項1記
載の調光ガラス。
2. The low resistance electrode portion is made of a conductive foil or wire formed on the transparent electrode layer at a position of an end portion of the surface of the element substrate, and a part of the foil or wire is the bonded layer. It protrudes outward from the edge of the interlayer film for glass,
The light control glass according to claim 1, which is a connection portion with a lead wire.
【請求項3】 一対の透明電極層の重なりがある領域の
上部透明電極層上に、前記低抵抗電極部に接続された導
電性のワイヤ−を配設してなることを特徴とする請求項
1乃至2記載の調光ガラス。
3. A conductive wire connected to the low resistance electrode portion is disposed on the upper transparent electrode layer in a region where a pair of transparent electrode layers overlap each other. 1. The light control glass according to 1 or 2.
【請求項4】 少なくともエレクトロクロミック層とこ
れを挟む一対の透明電極層とからなるエレクトロクロミ
ック素子を素子基板表面に形成した調光ガラスの製造方
法において、前記透明電極層上にバスバ−部に当たる低
抵抗電極部を設けるために、該低抵抗電極部に対応する
位置に予め低抵抗電極部を設けた合わせガラス用中間膜
を前記透明電極層上に重ねることを特徴とする調光ガラ
スの製造方法。
4. A method for manufacturing a light control glass in which an electrochromic element comprising at least an electrochromic layer and a pair of transparent electrode layers sandwiching the electrochromic layer is formed on a surface of an element substrate. In order to provide a resistance electrode part, an intermediate film for laminated glass in which a low resistance electrode part is previously provided at a position corresponding to the low resistance electrode part is laminated on the transparent electrode layer, and a method for producing light control glass. .
【請求項5】 前記低抵抗電極部を、熱によって合わせ
ガラス用中間膜に貼着することを特徴とする請求項4記
載の調光ガラスの製造方法。
5. The method for producing light control glass according to claim 4, wherein the low resistance electrode portion is attached to the interlayer film for laminated glass by heat.
【請求項6】 前記合わせガラス用中間膜が、可塑化ポ
リビニールブチラール、もしくは変成エチレンビニール
アセテートであることを特徴とする請求項4乃至5記載
の調光ガラスの製造方法。
6. The method for producing light control glass according to claim 4, wherein the interlayer film for laminated glass is plasticized polyvinyl butyral or modified ethylene vinyl acetate.
JP05311197A 1997-03-07 1997-03-07 Light control glass and manufacturing method thereof Expired - Fee Related JP3534288B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05311197A JP3534288B2 (en) 1997-03-07 1997-03-07 Light control glass and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05311197A JP3534288B2 (en) 1997-03-07 1997-03-07 Light control glass and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH10253995A JPH10253995A (en) 1998-09-25
JP3534288B2 true JP3534288B2 (en) 2004-06-07

Family

ID=12933697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05311197A Expired - Fee Related JP3534288B2 (en) 1997-03-07 1997-03-07 Light control glass and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3534288B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020070254A (en) * 2000-11-10 2002-09-05 가부시키가이샤 무라카미 가이메이도 Solid-state electrochromic device, and mirror system and CRT display using same
FR2829723B1 (en) * 2001-09-14 2004-02-20 Saint Gobain FUNCTIONALIZED SAFETY GLASS
US6791065B2 (en) * 2002-07-24 2004-09-14 Ppg Industries Ohio, Inc. Edge sealing of a laminated transparency
FR2857617B1 (en) * 2003-07-16 2006-10-27 Saint Gobain FUNCTIONALIZED SAFETY GLAZING
FR2865420B1 (en) 2004-01-28 2007-09-14 Saint Gobain METHOD FOR CLEANING A SUBSTRATE
FR2904437B1 (en) * 2006-07-28 2008-10-24 Saint Gobain ACTIVE DEVICE HAVING VARIABLE ENERGY / OPTICAL PROPERTIES
JP2009015152A (en) * 2007-07-06 2009-01-22 Murakami Corp Connection structure of electronic device and method of manufacturing the same
FR2961916B1 (en) 2010-06-25 2013-04-12 Saint Gobain LIQUID CRYSTAL VARIABLE DIFFUSION SHEET, METHOD FOR MANUFACTURING SAME, AND DEVICE FOR MANUFACTURING THE SAME
PL2879869T3 (en) * 2012-08-01 2020-11-02 Saint-Gobain Glass France Laminated glass pane with electric contacts
JP6000378B2 (en) * 2013-02-05 2016-09-28 日本板硝子株式会社 Laminated glass
CN105717713A (en) * 2014-12-05 2016-06-29 汉朗科技(北京)有限责任公司 Improved smectic phase light dimming glass
JP7103217B2 (en) * 2016-04-05 2022-07-20 凸版印刷株式会社 Dimming module
JP7463072B2 (en) * 2019-10-11 2024-04-08 キヤノン株式会社 Electrochromic element, lens unit, imaging device and light-control window
EP4100251B1 (en) * 2020-02-07 2023-12-06 Saint-Gobain Glass France Flexible flat cable
CN118591760A (en) * 2022-02-14 2024-09-03 株式会社日本显示器 Dimming device and panel unit

Also Published As

Publication number Publication date
JPH10253995A (en) 1998-09-25

Similar Documents

Publication Publication Date Title
JP3534288B2 (en) Light control glass and manufacturing method thereof
JP4799113B2 (en) Electrochromic device and driving method thereof
JP4938200B2 (en) Electrochromic electrochemical device or photovoltaic device and electrical connection means thereof
EP0356099B1 (en) Electrochromic device
CN110073283A (en) Electroactive device with three layers of busbar
JPS63305326A (en) Ec antidazzle mirror for automobile
KR20150087012A (en) Electrochromic Device
US10768501B2 (en) Tiled electrochromic devices on carrier glass and methods of making the same
EP1653276B1 (en) Laminated Glass Comprising a Light Adjuster
WO2024222861A1 (en) Photoelectric functional film, light-transmitting assembly and method for preparing same, and vehicle
CN115390330A (en) Conductive substrate, light adjustable device and rearview mirror
JPH06167724A (en) Production of light control glass
CN211786487U (en) PDLC light modulation film
JPS62143032A (en) Light dimming body
JPH0247627A (en) Automatic light controller
JPH01259325A (en) Electrochromic light control plate
JPH0820648B2 (en) EC device with extraction electrodes on the end face
JPH055536Y2 (en)
JPH0740977Y2 (en) Electrochromic device having conductive clip terminal
JPH0631452Y2 (en) An electrochromic device equipped with a long clip provided with a slit portion and an external wiring connection portion
JPH04107427A (en) Production of transmission type electrochromic element
JP2505006Y2 (en) Electrochromic device
CN215895195U (en) Wiring arrangement of electrochromic lens
JPS63158528A (en) Electrochromic element
JP2827247B2 (en) Electrochromic element that uniformly colors

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040304

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees