JP3282592B2 - Surface-coated cemented carbide cutting tool that demonstrates excellent wear resistance in high-speed cutting - Google Patents

Surface-coated cemented carbide cutting tool that demonstrates excellent wear resistance in high-speed cutting

Info

Publication number
JP3282592B2
JP3282592B2 JP25495598A JP25495598A JP3282592B2 JP 3282592 B2 JP3282592 B2 JP 3282592B2 JP 25495598 A JP25495598 A JP 25495598A JP 25495598 A JP25495598 A JP 25495598A JP 3282592 B2 JP3282592 B2 JP 3282592B2
Authority
JP
Japan
Prior art keywords
layer
average
crystal structure
thickness
cutting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP25495598A
Other languages
Japanese (ja)
Other versions
JPH11172464A (en
Inventor
惠滋 中村
高歳 大鹿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP25495598A priority Critical patent/JP3282592B2/en
Publication of JPH11172464A publication Critical patent/JPH11172464A/en
Application granted granted Critical
Publication of JP3282592B2 publication Critical patent/JP3282592B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/044Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material coatings specially adapted for cutting tools or wear applications
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/048Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material with layers graded in composition or physical properties
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/40Coatings including alternating layers following a pattern, a periodic or defined repetition
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/40Coatings including alternating layers following a pattern, a periodic or defined repetition
    • C23C28/42Coatings including alternating layers following a pattern, a periodic or defined repetition characterized by the composition of the alternating layers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • C23C30/005Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process on hard metal substrates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、特に硬質被覆層
を構成する炭窒化チタン層が微細な縦長成長結晶組織を
有し、これによって例えば鋼や鋳鉄などの高速切削に用
いた場合にも、すぐれた耐摩耗性を長期に亘って発揮す
るようになる表面被覆超硬合金製切削工具(以下、被覆
超硬工具と云う)に関するものである。
[0001] The present invention relates to a titanium carbide nitride layer constituting a hard coating layer, which has a fine vertically-grown crystal structure, and is used for high-speed cutting of steel or cast iron, for example. The present invention relates to a cutting tool made of a surface-coated cemented carbide (hereinafter referred to as a coated cemented carbide tool) capable of exhibiting excellent wear resistance over a long period of time.

【0002】[0002]

【従来の技術】従来、一般に、炭化タングステン基超硬
合金基体(以下、超硬基体という)の表面に、いずれも
粒状結晶組織を有する、炭化チタン(以下、TiCで示
す)層、窒化チタン(以下、同じくTiNで示す)層、
炭窒化チタン(以下、TiCNで示す)層、炭酸化チタ
ン(以下、TiCOで示す)層、窒酸化チタン(以下、
TiNOで示す)層、および炭窒酸化チタン(以下、T
iCNOで示す)層のうちの1種または2種以上からな
るTi化合物層と、同じく粒状結晶組織を有する、α型
酸化アルミニウム(以下、α−Al23 で示す)層お
よび/またはκ型酸化アルミニウム(以下、κ−Al2
3 で示す)層とで構成された硬質被覆層を3〜20μ
mの平均層厚で化学蒸着および/または物理蒸着してな
る被覆超硬工具が知られており、またこの被覆超硬工具
が鋼や鋳鉄などの連続切削や断続切削に用いられている
ことも知られている。また、例えば特開平7−3288
08号公報および特開平6−8010号公報などに記載
されるように、上記被覆超硬工具の硬質被覆層におい
て、通常の化学蒸着装置を用い、1000℃以上の高温
で形成していた上記TiCN層を、反応ガスとして有機
炭窒化物を含む混合ガスを使用して700〜950℃の
中温温度域で化学蒸着を行うことにより形成した縦長成
長結晶組織を有するTiCN層に代えることにより硬質
被覆層の靭性向上を図り、もって切刃に欠けやチッピン
グ(微小欠け)などが発生するのを著しく抑制した被覆
超硬工具も知られている。
2. Description of the Related Art Conventionally, a titanium carbide (hereinafter referred to as TiC) layer and a titanium nitride (hereinafter referred to as TiC) layer each having a granular crystal structure are generally provided on the surface of a tungsten carbide-based cemented carbide substrate (hereinafter referred to as a cemented carbide substrate). Hereinafter, also denoted by TiN) layer,
Titanium carbonitride (hereinafter referred to as TiCN) layer, titanium carbonate (hereinafter referred to as TiCO) layer, titanium oxynitride (hereinafter referred to as TiCO)
TiNO) layer and titanium carbonitride (hereinafter referred to as T
a Ti compound layer composed of one or more of iCNO layers, an α-type aluminum oxide (hereinafter referred to as α-Al 2 O 3 ) layer and / or a κ-type layer also having a granular crystal structure. Aluminum oxide (hereinafter referred to as κ-Al 2
(Shown as O 3 )).
Coated carbide tools made by chemical vapor deposition and / or physical vapor deposition with an average layer thickness of m are known, and the coated carbide tools are used for continuous or interrupted cutting of steel, cast iron, etc. Are known. Further, for example, Japanese Patent Laid-Open No. 7-3288
08, JP-A-6-8010, etc., in the hard coating layer of the coated cemented carbide tool, the TiCN formed at a high temperature of 1000 ° C. or higher using a normal chemical vapor deposition apparatus. The hard coating layer is formed by replacing the layer with a TiCN layer having a vertically grown crystal structure formed by performing chemical vapor deposition at a medium temperature range of 700 to 950 ° C. using a mixed gas containing an organic carbonitride as a reaction gas. There is also known a coated carbide tool which aims to improve the toughness of the steel and thereby significantly suppresses the occurrence of chipping or chipping (small chipping) of the cutting edge.

【0003】[0003]

【発明が解決しようとする課題】一方、近年の切削装置
の高性能化および高出力化に伴い、かつ切削加工の省力
化および省エネ化の面からも切削加工は高速化の傾向に
あるが、上記の従来被覆超硬工具においては、これを高
速切削に用いると、切刃の摩耗進行が著しく促進される
ことから、比較的短時間で使用寿命に至るのが現状であ
り、このことは切削装置のFA化の点からも望ましくな
い。
On the other hand, with the recent high performance and high output of the cutting device, and in view of labor saving and energy saving of the cutting process, the cutting process tends to be faster. In the above-mentioned conventional coated carbide tool, if it is used for high-speed cutting, the progress of wear of the cutting edge is remarkably accelerated, and at present, the service life is reached in a relatively short time. This is not desirable from the viewpoint of making the device FA.

【0004】[0004]

【課題を解決するための手段】そこで、本発明者等は、
上述のような観点から、例えば鋼や鋳鉄などの連続切削
や断続切削を高速で行ってもすぐれた耐摩耗性を発揮す
る被覆超硬工具を開発すべく、特に硬質被覆層の耐摩耗
性向上に着目し、研究を行った結果、基体表面に形成さ
れる硬質被覆層の構成層を、第1層としていずれも粒状
結晶組織を有するTiN層(以下、単にTiN層で示
す)および/またはTiCN層(以下、単にTiCN層
で示す)、第2層として縦長成長結晶組織を有するTi
CN層(以下、l−TiCN層で示す)、第3層として
いずれも粒状結晶組織を有するTiCO層および/また
はTiCNO層(以下、単にTiCO層およびTiCN
O層で示す)、第4層として同じくいずれも粒状結晶組
織を有するα−Al23 層および/またはκ−Al2
3 層(以下、単にα−Al23 層およびκ−Al2
3 層で示す)、さらに必要に応じて、第5層として粒
状結晶組織を有するTiN層(以下、単にTiN層で示
す)、に特定した上で、上記硬質被覆層における第1層
のTiN層および/またはTiCN層とl−TiCN層
の間に、前記l−TiCN層と同じ縦長成長結晶組織を
有する炭窒酸化チタン(以下、l−TiCNOで示す)
層を介在させると、前記l−TiCNO層は相対的に微
細な組織とすることができ、したがってこの微細組織の
前記l−TiCNO層の上に形成される前記l−TiC
N層は、前記l−TiCNO層の微細結晶を核として成
長するようになることから、同じく微細な結晶組織をも
つようになり、このように硬質被覆層の層構成が特定さ
れ、かつこれを構成するl−TiCN層が微細化した結
晶組織を有する硬質被覆層で超硬基体表面を被覆してな
る被覆超硬工具は、通常の条件での連続切削や断続切削
は勿論のこと、これらの切削を高速で行った場合にもす
ぐれた耐摩耗性を長期に亘って発揮するようになるとい
う研究結果を得たのである。
Means for Solving the Problems Accordingly, the present inventors have
In view of the above, in order to develop a coated carbide tool that exhibits excellent wear resistance even when performing continuous cutting or interrupted cutting of steel or cast iron at high speeds, in particular, improving the wear resistance of the hard coating layer As a result of conducting research, the constituent layers of the hard coating layer formed on the surface of the substrate were changed to a TiN layer having a granular crystal structure (hereinafter simply referred to as a TiN layer) and / or a TiCN layer as a first layer. Layer (hereinafter simply referred to as a TiCN layer), and a Ti layer having a vertically elongated crystal structure as a second layer.
As a third layer, a TiCO layer and / or a TiCNO layer (hereinafter simply referred to as a TiCO layer and a TiCN layer)
O layer) and an α-Al 2 O 3 layer and / or κ-Al 2 layer each having a granular crystal structure.
O 3 layer (hereinafter simply referred to as α-Al 2 O 3 layer and κ-Al 2
O shows three layers) and, if necessary, a TiN layer having a granular crystal structure as the fifth layer (hereinafter, simply indicated by TiN layer), the on identified, TiN of the first layer in the hard layer Layer and / or between the TiCN layer and the 1-TiCN layer, a titanium carbonitride having the same vertically-growing crystal structure as the 1-TiCN layer (hereinafter, referred to as 1-TiCNO)
With the intervening layer, the l-TiCNO layer can have a relatively fine structure, and thus the l-TiC layer formed on the l-TiCNO layer having the fine structure can be formed.
Since the N layer grows with the fine crystals of the l-TiCNO layer as nuclei, the N layer also has a fine crystal structure. Thus, the layer configuration of the hard coating layer is specified, and Coated cemented carbide tools in which the constituent l-TiCN layer is coated on the surface of a cemented carbide substrate with a hard coating layer having a fine-grained crystal structure include not only continuous cutting and interrupted cutting under ordinary conditions, but also The research results show that even when cutting is performed at high speed, excellent wear resistance will be exhibited over a long period of time.

【0005】この発明は、上記の研究結果に基づいてな
されたものであって、超硬基体の表面に、(a)第1層
として平均層厚:0.1〜2μmのTiN層および/ま
たはTiCN層、(b)第2層として平均層厚:0.5
〜3μmのl−TiCNO層、(c)第3層として平均
層厚:2〜20μmのl−TiCN層、(d)第4層と
して平均層厚:0.05〜2μmのTiCO層および/
またはTiCNO層、(e)第5層として平均層厚:
0.2〜15μmのα−Al23 層および/またはκ
−Al23 層、(f)必要に応じて、第6層として平
均層厚:0.1〜2μmのTiN層、以上第1層〜第6
層で構成された硬質被覆層を3〜30μmの全体平均層
厚で化学蒸着および/または物理蒸着してなる、高速切
削ですぐれた耐摩耗性を発揮する被覆超硬工具に特徴を
有するものである。
The present invention has been made on the basis of the above-mentioned research results, wherein (a) a TiN layer having an average layer thickness of 0.1 to 2 μm and / or TiCN layer, (b) average layer thickness as second layer: 0.5
(C) Average layer thickness as a third layer: 2-20 μm l-TiCN layer, (d) Average layer thickness as a fourth layer: 0.05-2 μm TiCO layer and / or
Or a TiCNO layer, (e) a fifth layer having an average layer thickness:
0.2-15 μm α-Al 2 O 3 layer and / or κ
-Al 2 O 3 layer, optionally (f), the average layer thickness as the sixth layer: TiN layer of 0.1-2 .mu.m, more first layer to the sixth
A hard coated layer composed of layers is chemically and / or physically deposited with an overall average layer thickness of 3 to 30 μm. is there.

【0006】つぎに、この発明の被覆超硬工具の硬質被
覆層の構成層の平均層厚および全体平均層厚を上記の通
りに限定した理由を説明する。 (a)TiN層およびTiCN層(第1層) TiN層およびTiCN層は、いずれも超硬基体表面に
対する密着性にすぐれ、かつ超硬基体の構成成分の硬質
被覆層中への拡散移動を阻止し、もって硬質被覆層の耐
摩耗性低下を抑制する作用をもつが、その層厚が0.1
μm未満では前記作用が十分に発揮されず、一方前記作
用は2μmまでの層厚で十分であることから、その層厚
を0.1〜2μmと定めた。
Next, the reason why the average layer thickness of the constituent layers of the hard coating layer and the overall average layer thickness of the coated carbide tool of the present invention are limited as described above will be described. (A) TiN layer and TiCN layer (first layer) Both the TiN layer and the TiCN layer have excellent adhesion to the surface of the superhard substrate, and prevent diffusion of components of the superhard substrate into the hard coating layer. Therefore, the hard coating layer has an effect of suppressing a decrease in wear resistance.
When the thickness is less than μm, the above effect is not sufficiently exhibited, while the above effect is sufficient with a layer thickness of up to 2 μm. Therefore, the layer thickness is set to 0.1 to 2 μm.

【0007】(b)l−TiCNO層(第2層) l−TiCNO層は、上記の通りl−TiCN層に比し
て一段の組織微細化が可能であり、したがってこれの上
に形成されるl−TiCN層を微細化組織の前記l−T
iCNO層の微細結晶を核として成長させることができ
るようになるので、成長後のl−TiCN層が微細な縦
長成長結晶組織をもつようにすることができる作用があ
るが、その層厚が0.5μm未満ではl−TiCN層に
及ぼす微細化効果が不十分であり、一方その層厚が3μ
mを越えても、前記作用が飽和し、より一層の微細化効
果は現れないことから、その層厚を0.5〜3μmと定
めた。なお、上記の微細結晶組織を有するl−TiCN
O層は、通常の化学蒸着装置および物理蒸着装置を用
い、 反応ガス組成(容量%で)−TiCl4 :0.5〜3
%、CO:0.1〜1%、CH3 CN:0.1〜1%、
2 :5〜30%、H2 :残り、 雰囲気温度:870〜930℃、 雰囲気圧力:30〜200Torr、 の条件で形成することができる。
(B) 1-TiCNO Layer (Second Layer) As described above, the 1-TiCNO layer can be further refined in structure as compared with the 1-TiCN layer, and is thus formed thereon. The l-TiCN layer is refined by the above-mentioned l-T
Since it is possible to grow the fine crystal of the iCNO layer as a nucleus, there is an effect that the grown l-TiCN layer can have a fine vertical growth crystal structure. When the thickness is less than 0.5 μm, the effect of miniaturization on the l-TiCN layer is insufficient, while the thickness is 3 μm.
Even if it exceeds m, the above-mentioned action is saturated and no further miniaturization effect appears, so the layer thickness is set to 0.5 to 3 μm. It should be noted that l-TiCN having the above fine crystal structure
For the O layer, a normal chemical vapor deposition apparatus and a physical vapor deposition apparatus were used, and the reaction gas composition (in% by volume) —TiCl 4 : 0.5 to 3
%, CO: 0.1~1%, CH 3 CN: 0.1~1%,
N 2 : 5 to 30%, H 2 : remaining, atmosphere temperature: 870 to 930 ° C., atmosphere pressure: 30 to 200 Torr.

【0008】(c)l−TiCN層(第3層) l−TiCN層は、下層の微細結晶組織を有するl−T
iCNO層の作用で縦長成長結晶組織が微細化し、これ
によってl−TiCN層のもつすぐれた靭性と相まっ
て、硬質被覆層の耐摩耗性を一段と向上させ、高速切削
でもすぐれた切削性能を長期に亘って発揮せしめる作用
があるが、その層厚が2μm未満では前記作用を十分に
発揮させることができず、一方その層厚が20μmを越
えると、切刃に熱塑性変形が生じ易くなり、これが偏摩
耗の原因となることから、その層厚を2〜20μmと定
めた。
(C) l-TiCN layer (third layer) The l-TiCN layer is an l-T layer having a lower layer fine crystal structure.
Due to the action of the iCNO layer, the vertically elongated crystal structure is refined, which, combined with the excellent toughness of the l-TiCN layer, further enhances the wear resistance of the hard coating layer, and provides excellent cutting performance even at high speed cutting for a long time. However, if the layer thickness is less than 2 μm, the above effect cannot be sufficiently exerted. On the other hand, if the layer thickness exceeds 20 μm, the cutting edge is liable to undergo thermoplastic deformation, which causes uneven wear. Therefore, the layer thickness was determined to be 2 to 20 μm.

【0009】(d)TiCO層およびTiCNO層(第
4層) 一般に、例えばl−TiCN層とα−Al23 層の密
着性は相対的に低く、この両者が直接積層された場合、
硬質被覆層剥離の原因となるが、TiCO層およびTi
CNO層は、いずれもl−TiCN層、α−Al23
層およびκ−Al23 層のいずれとも強固に密着し、
もって硬質被覆層の構成層間の密着性向上に寄与する作
用があるが、その層厚が0.05μm未満では所望の密
着性向上効果が得られず、一方その層厚が2μmを越え
ると、切刃に欠けやチッピングが発生し易くなることか
ら、その層厚をいずれも0.05〜2μmと定めた。
(D) TiCO layer and TiCNO layer (fourth layer) In general, for example, the adhesion between the l-TiCN layer and the α-Al 2 O 3 layer is relatively low.
Although it causes the hard coating layer to peel off, the TiCO layer and Ti
Each of the CNO layers is an l-TiCN layer, α-Al 2 O 3
Layer and the κ-Al 2 O 3 layer,
This has the effect of improving the adhesion between the constituent layers of the hard coating layer. However, if the layer thickness is less than 0.05 μm, the desired effect of improving the adhesion cannot be obtained. Since chipping and chipping easily occur in the blade, the thickness of each layer is set to 0.05 to 2 μm.

【0010】(e)α−Al23 層およびκ−Al2
3 層(第5層) α−Al23 層およびκ−Al23 層は、いずれも
耐酸化性および熱的安定性にすぐれ、かつ高硬度をもつ
ことから、上記l−TiCN層と共に、工具の耐摩耗性
向上には不可欠であるが、その層厚が0.2μm未満で
は所望の耐摩耗性を確保することができず、一方その層
厚が15μmを越えると、切刃に欠けやチッピングが発
生し易くなることから、その層厚を0.2〜15μmと
定めた。
(E) α-Al 2 O 3 layer and κ-Al 2
O 3 layer (fifth layer) Both the α-Al 2 O 3 layer and the κ-Al 2 O 3 layer have excellent oxidation resistance and thermal stability and high hardness. Together with the layer, it is indispensable for improving the wear resistance of the tool. However, if the layer thickness is less than 0.2 μm, the desired wear resistance cannot be secured. Since chipping and chipping easily occur, the layer thickness is set to 0.2 to 15 μm.

【0011】(e)TiN層(第6層) TiN層は、これ自体が黄金色の色調を有することか
ら、工具の使用前と使用後の識別を容易にするために、
必要に応じて形成されるものであり、したがって0.1
μm未満の層厚では前記色調の付与が不十分であり、一
方前記色調の付与は2μmまでの層厚で十分であること
から、その層厚を0.1〜2μmと定めた。
(E) TiN layer (sixth layer) Since the TiN layer itself has a golden color tone, it is necessary to make it easy to distinguish between before and after using a tool.
It is formed as needed and therefore 0.1
When the layer thickness is less than μm, the application of the color tone is insufficient. On the other hand, the layer thickness up to 2 μm is sufficient for the application of the color tone. Therefore, the layer thickness is set to 0.1 to 2 μm.

【0012】(f)硬質被覆層の全体平均層厚 その層厚が3μmでは所望のすぐれた耐摩耗性を確保す
ることができず、一方その層厚が30μmを越えると、
切刃に欠けやチッピングが発生し易くなることから、そ
の全体平均層厚を3〜30μmと定めた。
(F) Overall Average Thickness of Hard Coating Layer If the thickness is 3 μm, the desired excellent wear resistance cannot be ensured. On the other hand, if the thickness exceeds 30 μm,
Since chipping and chipping easily occur in the cutting blade, the overall average layer thickness was determined to be 3 to 30 μm.

【0013】[0013]

【発明の実施の形態】つぎに、この発明の被覆超硬工具
を実施例により具体的に説明する。原料粉末として、平
均粒径:3.1μmを有する中粒WC粉末、同5.1μ
mの粗粒WC粉末、同1.4μmの(Ti,W)C(重
量比で、以下同じ、TiC/WC=30/70)粉末、
同1.1μmの(Ti,W)CN(TiC/TiN/W
C=24/20/56)粉末、同1.0μmの(Ta,
Nb)C(TaC/NbC=90/10)粉末、および
同1.2μmのCo粉末を用意し、これら原料粉末を表
1に示される配合組成に配合し、ボールミルで72時間
湿式混合し、乾燥した後、ISO・CNMG12040
8(超硬基体A〜D用)および同SEEN42AFTN
1(超硬基体E用)に定める形状の圧粉体にプレス成形
し、この圧粉体を同じく表1に示される条件で真空焼結
することにより超硬基体A〜Eをそれぞれ製造した。さ
らに、上記超硬基体Cに対して、125TorrのCH
4 ガス雰囲気中、温度:1400℃に50分保持後、徐
冷の浸炭処理を施し、処理後、超硬基体表面に付着する
カーボンとCoを酸およびバレル研磨で除去することに
より、表面から8μmの位置で最大Co含有量:15.
6重量%、深さ:47μmのCo富化帯域を基体表面部
に形成した。また、上記超硬基体AおよびBには、焼結
したままで、それぞれの表面部に、表面から13μmの
位置で最大Co含有量:9.3重量%、深さ:15μm
のCo富化帯域(超硬基体A)、および表面から20μ
mの位置で最大Co含有量:13.0重量%、深さ:2
5μmのCo富化帯域(超硬基体B)が形成されてお
り、残りの超硬基体DおよびEには、前記Co富化帯域
の形成がなく、全体的に均質な組織をもつものであっ
た。なお、表1には、上記超硬基体A〜Eの内部硬さ
(ロックウエル硬さAスケール)をそれぞれ示した。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, the coated carbide tool of the present invention will be specifically described with reference to examples. Medium-sized WC powder having an average particle size of 3.1 μm, and 5.1 μm as the raw material powder
m of coarse WC powder, 1.4 μm of (Ti, W) C (the same in weight ratio, hereinafter, TiC / WC = 30/70) powder,
1.1 μm (Ti, W) CN (TiC / TiN / W
C = 24/20/56) powder, 1.0 μm (Ta,
Nb) C (TaC / NbC = 90/10) powder and Co powder of 1.2 μm were prepared, and these raw material powders were blended in the blending composition shown in Table 1, wet-mixed in a ball mill for 72 hours, and dried. After that, ISO ・ CNMG12040
8 (for carbide substrates A to D) and SEEN42AFTN
Press molded into a green compact having the shape defined in No. 1 (for the super hard substrate E), and the green compact was vacuum-sintered under the conditions shown in Table 1 to produce super hard substrates A to E, respectively. Further, with respect to the cemented carbide substrate C, 125 Torr CH
After holding at a temperature of 1400 ° C. for 50 minutes in a 4 gas atmosphere, a slow carburizing treatment is performed, and after the treatment, carbon and Co adhering to the surface of the super hard substrate are removed by acid and barrel polishing to obtain 8 μm from the surface. Maximum Co content at the position: 15.
A Co-enriched zone of 6% by weight and a depth of 47 μm was formed on the surface of the substrate. The superhard substrates A and B were sintered as they were, and each surface had a maximum Co content of 9.3% by weight and a depth of 15 μm at a position of 13 μm from the surface.
Co-enriched zone (carbide substrate A) and 20 μm from the surface
m, maximum Co content: 13.0% by weight, depth: 2
A 5 μm Co-enriched zone (carbide substrate B) was formed, and the remaining cemented carbide substrates D and E had no such Co-enriched zone and had an overall homogeneous structure. Was. Table 1 shows the internal hardness (Rockwell hardness A scale) of each of the carbide substrates A to E.

【0014】ついで、これらの超硬基体A〜Eの表面
に、ホーニングを施した状態で、通常の化学蒸着装置を
用い、表2(表中のl−TiCNO層およびl−TiC
N層はいずれも縦長成長結晶組織を有するものであっ
て、前記l−TiCN層は特開平6−8010号公報に
記載される縦長成長結晶組織を有するTiCN層に相当
するものである)に示される条件にて、表3〜6に示さ
れる組成および目標層厚の硬質被覆層を形成することに
より本発明被覆超硬工具1〜20、およびl−TiCN
O層の形成がない以外は同じ条件で比較被覆超硬工具1
〜20をそれぞれ製造した。なお、この結果得られた本
発明被覆超硬工具1〜20および比較被覆超硬工具1〜
20について、それぞれの硬質被覆層の構成層の平均層
厚を光学顕微鏡による断面組織写真により測定したとこ
ろ、目標層厚と実質的に同じ値を示した。
Then, the surfaces of these super-hard substrates A to E were honed, and a conventional chemical vapor deposition apparatus was used to obtain them in Table 2 (the l-TiCNO layer and the l-TiC
Each of the N layers has a vertically elongated crystal structure, and the l-TiCN layer corresponds to a TiCN layer having a vertically elongated crystal structure described in JP-A-6-8010. Under the conditions described below, the hard coated layers having the compositions and target layer thicknesses shown in Tables 3 to 6 were formed to obtain the coated carbide tools 1 to 20 of the present invention, and l-TiCN.
Comparative coated carbide tool 1 under the same conditions except that no O layer was formed
-20 were each manufactured. The resulting coated carbide tools 1 to 20 and comparative coated carbide tools 1 to 20 obtained as a result were obtained.
As for No. 20, when the average layer thickness of the constituent layers of each hard coating layer was measured by a cross-sectional structure photograph with an optical microscope, the average thickness was substantially the same as the target layer thickness.

【0015】つぎに、上記本発明被覆超硬工具1〜7、
上記本発明被覆超硬工具11〜17、比較被覆超硬工具
11〜17、および比較被覆超硬工具1〜7について
は、 被削材:JIS・SCM440(硬さ:HB 210)の
丸棒、 切削速度:350m/min.、 切り込み:1.6mm、 送り:0.31mm/rev.、 切削時間:10分、 の条件での合金鋼の乾式高速連続切削試験、 被削材:JIS・FC300の丸棒、 切削速度:420m/min.、 切り込み:1.6mm、 送り:0.31mm/rev.、 切削時間:10分、 の条件での鋳鉄の乾式高速連続切削試験、 被削材:JIS・SCM440(硬さ:HB 210)の
角材、 切削速度:250m/min.、 切り込み:1.6mm、 送り:0.22mm/rev.、 切削時間:5分、 の条件での合金鋼の乾式高速断続切削試験を行い、いず
れの切削試験でも切刃の逃げ面摩耗幅を測定した。
Next, the above-mentioned coated carbide tools 1 to 7 according to the present invention,
The present invention coated cemented carbide tools 11 to 17, Comparative coated carbide tools 11 to 17, and Comparative coated cemented carbide tools 1 to 7, Workpiece: JIS · SCM440 (hardness: H B 210) round bar Cutting speed: 350 m / min. Infeed: 1.6 mm Feed: 0.31 mm / rev. Cutting time: 10 minutes, Dry high-speed continuous cutting test of alloy steel under the following conditions: Work material: JIS FC300 round bar, Cutting speed: 420 m / min. Infeed: 1.6 mm Feed: 0.31 mm / rev. Cutting Time: 10 min, dry high-speed continuous cutting test of cast iron in the conditions, Workpiece: JIS · SCM440 (hardness: H B 210) square bar of cutting speed: 250 meters / min. Notch: 1.6 mm Feed: 0.22 mm / rev. The cutting speed was 5 minutes. A dry high-speed intermittent cutting test was performed on the alloy steel under the following conditions, and the flank wear width of the cutting edge was measured in each cutting test.

【0016】また、上記本発明被覆超硬工具8〜10、
上記本発明被覆超硬工具18〜20、比較被覆超硬工具
8〜10、および比較被覆超硬工具18〜20について
は、 被削材:JIS・SCM440(硬さ:HB 210)の
角材、 使用条件:直径125mmのカッターに単刃取り付け、 切削速度:310m/min.、 切り込み:1.6mm、 送り:0.18mm/刃、 切削時間:10分、 の条件で合金鋼の乾式高速フライス切削(断続切削)試
験を行い、切刃の逃げ面摩耗幅を測定した。これらの測
定結果を表7、8に示した。
Further, the above-described coated carbide tools 8 to 10 of the present invention,
The present invention coated carbide tools 18-20 and Comparative coated cemented carbide tool 8-10 and Comparative coated carbide tools 18-20, are Workpiece: JIS · SCM440 (hardness: H B 210) square bar of Usage conditions: Single blade attached to a 125 mm diameter cutter, Cutting speed: 310 m / min. , Depth of cut: 1.6 mm, feed: 0.18 mm / tooth, cutting time: 10 minutes, a dry high-speed milling (intermittent cutting) test of the alloy steel was performed, and the flank wear width of the cutting edge was measured. Tables 7 and 8 show the measurement results.

【0017】[0017]

【表1】 [Table 1]

【0018】[0018]

【表2】 [Table 2]

【0019】[0019]

【表3】 [Table 3]

【0020】[0020]

【表4】 [Table 4]

【0021】[0021]

【表5】 [Table 5]

【0022】[0022]

【表6】 [Table 6]

【0023】[0023]

【表7】 [Table 7]

【0024】[0024]

【表8】 [Table 8]

【0025】[0025]

【発明の効果】表3〜8に示される結果から、硬質被覆
層の第2層として微細結晶組織のl−TiCNO層が存
在し、これによってその上に形成されるl−TiCN層
も微細結晶組織を有する本発明被覆超硬工具1〜20
は、いずれも苛酷な切削条件となる鋼および鋳鉄の高速
連続切削並びに高速断続切削で、前記TiCNO層の形
成がない比較被覆超硬工具1〜20に比して一段とすぐ
れた耐摩耗性を発揮することが明らかである。上述のよ
うに、この発明の被覆超硬工具は、鋼や鋳鉄などの通常
の条件での連続切削や断続切削は勿論のこと、特にこれ
らの切削を高速で行っても、すぐれた耐摩耗性を発揮
し、長期に亘っての切削を可能とするものであり、切削
加工の省力化および省エネ化に寄与するものである。
As can be seen from the results shown in Tables 3 to 8, the 1-TiCNO layer having a fine crystal structure is present as the second layer of the hard coating layer, and the 1-TiCN layer formed thereon is also a fine crystal. The coated carbide tool of the present invention having a texture 1-20
Exhibits higher wear resistance compared to the comparative coated carbide tools 1-20 without the formation of the TiCNO layer in high-speed continuous cutting and high-speed interrupted cutting of steel and cast iron, all of which are subjected to severe cutting conditions. It is clear that As described above, the coated cemented carbide tool of the present invention has excellent wear resistance, as well as continuous cutting and interrupted cutting under ordinary conditions such as steel and cast iron, especially even when these cuttings are performed at high speed. And enables long-term cutting, which contributes to labor saving and energy saving in cutting.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C23C 28/04 B23B 27/14 C23C 14/06 C23C 16/30 ──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int. Cl. 7 , DB name) C23C 28/04 B23B 27/14 C23C 14/06 C23C 16/30

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 炭化タングステン基超硬合金基体の表面
に、 硬質被覆層の第1層として0.1〜2μmの平均層厚を
有する粒状結晶組織の窒化チタン層および/または炭窒
化チタン層、 同第2層として0.5〜3μmの平均層厚を有する縦長
成長結晶組織の炭窒酸化チタン層、 同第3層として2〜20μmの平均層厚を有する縦長成
長結晶組織の炭窒化チタン層、 同第4層として0.05〜2μmの平均層厚を有する粒
状結晶組織の炭酸化チタン層および/または炭窒酸化チ
タン層、 同第5層として0.2〜15μmの平均層厚を有する粒
状結晶組織のα型および/またはκ型酸化アルミニウム
層、 以上第1層〜第5層で構成された硬質被覆層を3〜20
μmの全体平均層厚で化学蒸着および/または物理蒸着
してなる、高速切削ですぐれた耐摩耗性を発揮する表面
被覆超硬合金製切削工具。
1. A titanium nitride layer and / or a titanium carbonitride layer having a granular crystal structure having an average layer thickness of 0.1 to 2 μm as a first layer of a hard coating layer on a surface of a tungsten carbide-based cemented carbide substrate, As the second layer, a vertically grown titanium carbonitride layer having an average layer thickness of 0.5 to 3 μm, and as the third layer, a titanium carbonitride layer having a vertically elongated crystal structure having an average layer thickness of 2 to 20 μm A titanium carbonate layer and / or a titanium carbonitride layer having a granular crystal structure having an average layer thickness of 0.05 to 2 μm as the fourth layer, and an average layer thickness of 0.2 to 15 μm as the fifth layer. An α-type and / or κ-type aluminum oxide layer having a granular crystal structure, and a hard coating layer composed of the first to fifth layers is 3 to 20.
A surface-coated cemented carbide cutting tool with excellent wear resistance in high-speed cutting, which is formed by chemical vapor deposition and / or physical vapor deposition with a total average layer thickness of μm.
【請求項2】 炭化タングステン基超硬合金基体の表面
に、 硬質被覆層の第1層として0.1〜2μmの平均層厚を
有する粒状結晶組織の窒化チタン層および/または炭窒
化チタン層、 同第2層として0.5〜3μmの平均層厚を有する縦長
成長結晶組織の炭窒酸化チタン層、 同第3層として2〜20μmの平均層厚を有する縦長成
長結晶組織の炭窒化チタン層、 同第4層として0.05〜2μmの平均層厚を有する粒
状結晶組織の炭酸化チタン層および/または炭窒酸化チ
タン層、 同第5層として0.2〜15μmの平均層厚を有する粒
状結晶組織のα型および/またはκ型酸化アルミニウム
層、 同第6層として0.1〜2μmの平均層厚を有する粒状
結晶組織の窒化チタン層、以上第1層〜第6層で構成さ
れた硬質被覆層を3〜20μmの全体平均層厚で化学蒸
着および/または物理蒸着してなる、高速切削ですぐれ
た耐摩耗性を発揮する表面被覆超硬合金製切削工具。
2. A titanium nitride layer and / or titanium carbonitride layer having a granular crystal structure having an average layer thickness of 0.1 to 2 μm as a first layer of a hard coating layer on a surface of a tungsten carbide-based cemented carbide substrate, As the second layer, a vertically grown titanium carbonitride layer having an average layer thickness of 0.5 to 3 μm, and as the third layer, a titanium carbonitride layer having a vertically elongated crystal structure having an average layer thickness of 2 to 20 μm A titanium carbonate layer and / or a titanium carbonitride layer having a granular crystal structure having an average layer thickness of 0.05 to 2 μm as the fourth layer, and an average layer thickness of 0.2 to 15 μm as the fifth layer. An α-type and / or κ-type aluminum oxide layer having a granular crystal structure; a titanium nitride layer having a granular crystal structure having an average layer thickness of 0.1 to 2 μm as the sixth layer; and a first to sixth layers. Hard coating layer of 3 to 20 μm A surface-coated cemented carbide cutting tool that exhibits excellent wear resistance in high-speed cutting, made by chemical vapor deposition and / or physical vapor deposition with an average layer thickness.
JP25495598A 1997-09-18 1998-09-09 Surface-coated cemented carbide cutting tool that demonstrates excellent wear resistance in high-speed cutting Expired - Lifetime JP3282592B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25495598A JP3282592B2 (en) 1997-09-18 1998-09-09 Surface-coated cemented carbide cutting tool that demonstrates excellent wear resistance in high-speed cutting

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP9-253068 1997-09-18
JP25306897 1997-09-18
JP25495598A JP3282592B2 (en) 1997-09-18 1998-09-09 Surface-coated cemented carbide cutting tool that demonstrates excellent wear resistance in high-speed cutting

Publications (2)

Publication Number Publication Date
JPH11172464A JPH11172464A (en) 1999-06-29
JP3282592B2 true JP3282592B2 (en) 2002-05-13

Family

ID=26541023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25495598A Expired - Lifetime JP3282592B2 (en) 1997-09-18 1998-09-09 Surface-coated cemented carbide cutting tool that demonstrates excellent wear resistance in high-speed cutting

Country Status (1)

Country Link
JP (1) JP3282592B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3462859B2 (en) 2001-02-01 2003-11-05 住友電気工業株式会社 Coated cutting tool

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5077758B2 (en) * 2008-01-11 2012-11-21 三菱マテリアル株式会社 Surface coated cutting tool
JP5077759B2 (en) * 2008-01-11 2012-11-21 三菱マテリアル株式会社 Surface coated cutting tool
JP5110377B2 (en) * 2008-03-28 2012-12-26 三菱マテリアル株式会社 Surface coated cutting tool
JP5110376B2 (en) * 2008-03-28 2012-12-26 三菱マテリアル株式会社 Surface coated cutting tool
JP2010069576A (en) * 2008-09-19 2010-04-02 Mitsubishi Materials Corp Surface-coated cutting tool
JP5402533B2 (en) * 2009-03-18 2014-01-29 三菱マテリアル株式会社 Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP5679048B2 (en) * 2011-04-20 2015-03-04 株式会社タンガロイ Coated cutting tool

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3462859B2 (en) 2001-02-01 2003-11-05 住友電気工業株式会社 Coated cutting tool

Also Published As

Publication number Publication date
JPH11172464A (en) 1999-06-29

Similar Documents

Publication Publication Date Title
JP3052586B2 (en) Surface-coated tungsten carbide based cemented carbide cutting tool with excellent chipping resistance
JP3250134B2 (en) Surface coated cemented carbide cutting tool with excellent chipping resistance
JP2867803B2 (en) Surface-coated tungsten carbide based cemented carbide cutting tool with excellent chipping resistance
JP3282592B2 (en) Surface-coated cemented carbide cutting tool that demonstrates excellent wear resistance in high-speed cutting
JP3887811B2 (en) Cutting tool made of surface-coated tungsten carbide based cemented carbide with a hard coating layer that provides excellent wear resistance in high-speed cutting
JP3250414B2 (en) Method for producing cutting tool coated with titanium carbonitride layer surface
JP4351521B2 (en) Surface coated cutting tool
JPH08118105A (en) Surface-coated cemented carbide alloy cutting tool with tungsten carbide group having hard coating layer excellent in interlayer adhesion
JP3360565B2 (en) Surface coated cemented carbide cutting tool with a hard coating layer exhibiting excellent wear resistance
JP3266047B2 (en) Surface coated cemented carbide cutting tool with excellent interlayer adhesion with hard coating layer
JPH10204639A (en) Cutting tool made of surface-coated cemented carbide in which hard coating layer has excellent chipping resistance
JP3837959B2 (en) Surface coated tungsten carbide based cemented carbide cutting tool with excellent wear resistance due to hard coating layer
JP3371796B2 (en) Surface coated cemented carbide cutting tool with excellent fracture resistance
JP3661503B2 (en) Surface coated tungsten carbide based cemented carbide cutting tool with excellent chipping resistance with hard coating layer in intermittent heavy cutting
JP3230396B2 (en) Surface-coated tungsten carbide based cemented carbide cutting tool with excellent interlayer adhesion with hard coating layer
JPH10244405A (en) Cutting tool made of surface-covering cemented carbide with its hard covering layer having excellent abrasion resistance
JP3358530B2 (en) Slow-away cutting insert made of surface-coated cemented carbide with excellent fracture resistance
JP3358533B2 (en) Slow-away cutting insert made of surface-coated cemented carbide with excellent fracture resistance
JP2000218409A (en) Surface coated cemented carbide cutting tool having hard coated layer of good defect resistance
JP3230375B2 (en) Surface-coated tungsten carbide-based cemented carbide cutting tool with excellent interlayer adhesion and fracture resistance with a hard coating layer
JPH11236671A (en) Throw away cutting tip made of surface-coated cemented carbide excellent in chipping resistance
JP3282600B2 (en) Surface-coated cemented carbide cutting tool with a hard coating layer that exhibits excellent fracture resistance
JP4484500B2 (en) Surface coated cutting tool
JP3358538B2 (en) Slow-away cutting insert made of cemented carbide with excellent wear resistance
JPH1076405A (en) Cemented carbide cutting tool covered with hard covering layer excellent in anti-chipping property

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020129

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090301

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100301

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100301

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100301

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110301

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130301

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140301

Year of fee payment: 12

EXPY Cancellation because of completion of term