JP3661503B2 - Surface coated tungsten carbide based cemented carbide cutting tool with excellent chipping resistance with hard coating layer in intermittent heavy cutting - Google Patents

Surface coated tungsten carbide based cemented carbide cutting tool with excellent chipping resistance with hard coating layer in intermittent heavy cutting Download PDF

Info

Publication number
JP3661503B2
JP3661503B2 JP21882599A JP21882599A JP3661503B2 JP 3661503 B2 JP3661503 B2 JP 3661503B2 JP 21882599 A JP21882599 A JP 21882599A JP 21882599 A JP21882599 A JP 21882599A JP 3661503 B2 JP3661503 B2 JP 3661503B2
Authority
JP
Japan
Prior art keywords
layer
cutting
average
hard coating
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP21882599A
Other languages
Japanese (ja)
Other versions
JP2001062603A (en
Inventor
哲彦 本間
斉 功刀
昌之 見市
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP21882599A priority Critical patent/JP3661503B2/en
Publication of JP2001062603A publication Critical patent/JP2001062603A/en
Application granted granted Critical
Publication of JP3661503B2 publication Critical patent/JP3661503B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Chemical Vapour Deposition (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、特に断続切削を高送りおよび高切り込みなどの重切削条件で行った場合に硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆炭化タングステン基超硬合金製切削工具(以下、被覆超硬工具という)に関するものである。
【0002】
【従来の技術】
従来、一般に、炭化タングステン基超硬合金基体(以下、超硬基体という)の表面に、
(a) いずれも0.1〜3μmの平均層厚および粒状結晶組織を有する、炭化チタン(以下、TiCで示す)層、窒化チタン(以下、同じくTiNで示す)層、炭窒化チタン(以下、TiCNで示す)層、炭酸化チタン(以下、TiCOで示す)層、窒酸化チタン(以下、TiNOで示す)層、および炭窒酸化チタン(以下、TiCNOで示す)層のうちの1種または2種以上からなるTi化合物層と、
(b) 2〜10μmの平均層厚および縦長成長結晶組織を有する炭窒化チタン(以下、l−TiCNで示す)層と、
(c) 0.5〜5μmの平均層厚および粒状結晶組織を有する酸化アルミニウム(以下、Al23 で示す)層と、
で構成された硬質被覆層を3〜15μmの全体平均層厚で化学蒸着してなる被覆超硬工具が知られており、またこの被覆超硬工具が鋼や鋳鉄などの連続切削や断続切削に用いられることも知られている。
また、一般に上記の被覆超硬工具の硬質被覆層を構成するAl23 層として、α型結晶構造をもつものやκ型結晶構造をもつものなどが広く実用に供されることも良く知られており、さらに上記l−TiCN層は、例えば特開平6−8010号公報や特開平7−328808号公報などにより公知であり、通常の化学蒸着装置にて、反応ガスとして有機炭窒化物を含む混合ガスを使用し、700〜950℃の中温温度域で化学蒸着することにより形成されるものである。
【0003】
【発明が解決しようとする課題】
一方、近年の切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削加工は、高送りおよび高切り込みなどの重切削条件で行われる傾向にあるが、上記の従来被覆超硬工具においては、特にこれを断続切削を高送りおよび高切り込みなどの重切削条件で行うのに用いると、硬質被覆層にチッピング(微小欠け)が発生し易く、これが原因で比較的短時間で使用寿命に至るのが現状である。
【0004】
【課題を解決するための手段】
そこで、本発明者等は、上述のような観点から、上記の従来被覆超硬工具における硬質被覆層の耐チッピング性向上を図るべく研究を行った結果、
(a)上記の従来被覆超硬工具の硬質被覆層においては、これを化学蒸着法にて形成した場合、いずれの構成層にも30〜70kgf/mm2の残留引張応力が存在し、これが高衝撃のかかる断続重切削ではチッピング発生の原因となること。
【0005】
(b)上記の通り被覆超硬工具の硬質被覆層を構成するTi化合物層およびAl23 層を化学蒸着法により形成した場合、いずれも引張応力が残留し、これを圧縮応力が残留するように形成することはできないが、同l−TiCN層の場合には、引張応力が残留したl−TiCN層(下方部分層)を形成した後に、蒸着条件を変えることにより前記下方部分層のもつ縦長成長結晶組織を損なわずに、すなわち前記下方部分層のもつ縦長成長結晶組織と連続した縦長成長結晶組織のままで、5〜20kgf/mm2の圧縮応力が残留したl−TiCN層(上方部分層)を形成することができること。
【0006】
(c)上記の5〜20kgf/mm2の圧縮応力が残留したl−TiCN層(上方部分層)は、まず通常の条件、すなわち、
反応ガス組成(容量%で、以下同じ)−TiCl4 :1〜3%、N2:20〜40%、CH3CN:0.1〜1%、H2 :残り、
雰囲気温度:800〜920℃、
雰囲気圧力:50〜150Torr、
の条件で30〜70kgf/mm2の残留引張応力が存在するl−TiCN層(下方部分層)を所定層厚になるまで化学蒸着形成した後で、蒸着条件を、
反応ガス組成(容量%で、以下同じ)−TiCl4 :0.1〜1%、N2:30〜50%、CH4:0.1〜1%、H2 :残り、
雰囲気温度:940〜1000℃、
雰囲気圧力:50〜200Torr、
に変え、所定時間化学蒸着を行うことにより形成できること。
(d)上記の通り硬質被覆層のうちのl−TiCN層においては、下方部分に残留引張応力が存在し、上方部分に残留圧縮応力が存在した応力分布にすることができるが、この残留引張応力と残留圧縮応力が共存したl−TiCN層を上記硬質被覆層の構成層として存在させると、この結果の被覆超硬工具は、断続切削を重切削条件で行う高衝撃付加切削にも、前記硬質被覆層がすぐれた耐チッピング性をもつようになることから、長期に亘ってすぐれた切削性能発揮するようになること。
(d)上記硬質被覆層を構成するl−TiCN層での残留圧縮応力が存在する上方部分層は、後述する理由により前記l−TiCN層の平均層厚の20〜40%に相当する層厚をもつことが必要であること。
以上(a)〜(d)に示される研究結果を得たのである。
【0007】
この発明は、上記の研究結果に基づいてなされたものであって、
超硬基体の表面に、
(a) いずれも0.1〜3μmの平均層厚および粒状結晶組織を有し、かつ残留引張応力が存在する、TiC層、TiN層、TiCN層、TiCO層、TiNO層、およびTiCNO層のうちの1種または2種以上からなるTi化合物層と、
(b) 2〜10μmの平均層厚を有し、残留圧縮応力が存在する上方部分層と残留引張応力が存在する下方部分層からなり、前記上方部分層と前記下方部分層は相互に連続した縦長成長結晶組織を有し、かつ前記上方部分層は、前記3〜10μmの平均層厚の20〜40%に相当する層厚を有するl−TiCN層と、
(c) 0.5〜5μmの平均層厚および粒状結晶組織を有し、かつ残留引張応力が存在するAl23 層と、
で構成された硬質被覆層を3〜15μmの全体平均層厚で化学蒸着してなる、断続重切削で硬質被覆層がすぐれた耐チッピング性を発揮する被覆超硬工具に特徴を有するものである。
【0008】
なお、この発明の被覆超硬工具の硬質被覆層を構成するl−TiCN層における上方部分層の層厚を前記l−TiCN層の20〜40%に相当する層厚としたのは、その層厚が前記l−TiCN層の20%未満ではこれのもつ残留圧縮応力が相対的に小さく、十分満足な耐チッピング性を確保することができず、一方その層厚が前記l−TiCN層の40%を越えると、縦長成長結晶組織に粒状結晶組織が混入し、縦長成長結晶組織によってもたらされるすぐれた靭性が損なわれるようになるという理由によるもでもである。
【0009】
さらに、この発明の被覆超硬工具の硬質被覆層における構成層の平均層厚は以下の理由により定めたものである。
すなわち、Ti化合物層のそれぞれには、共通する性質として構成層相互間の層間密着性を向上させる作用があり、したがってその平均層厚が0.1μm未満では、所望のすぐれた層間密着性を確保することができず、一方その平均層厚が3μmを越えると、特に構成層としてTiC層が存在する場合、高速切削で切刃にチッピングが発生し易くなり、また同じく軟質のTiN層が存在する場合には、硬質被覆層の摩耗が促進されるようになることから、その平均層厚を0.1〜3μmと定めた。
【0010】
また、Al2 3 層には、硬質被覆層の耐摩耗性を向上させる作用があるが、その平均層厚が0.5μm未満では、所望のすぐれた耐摩耗性を確保することができず、一方その平均層厚が5μmを越えると切刃にチッピングが発生し易くなることから、その平均層厚を0.5〜5μmと定めた。
【0011】
さらに、l−TiCN層には、上記の通り硬質被覆層に縦長成長結晶組織によるすぐれた靭性を付与し、かつ残留引張応力が存在する下方部分層の上に形成してはじめて圧縮応力の残留を可能ならしめた上方部分層によって硬質被覆層の耐チッピング性を向上させる作用があるが、その平均層厚が2μm未満では、前記作用に所望の効果が得られず、一方その平均層厚が10μmを越えると切刃に欠けやチッピングが発生し易くなることから、その平均層厚を2〜10μmと定めた。
また、硬質被覆層の全体平均層厚を3〜15μmとしたのは、その平均層厚が3μm未満では、所望の耐摩耗性を確保することができず、一方その平均層厚が15μmを越えると、切刃に欠けやチッピングが発生し易くなるという理由からである。
【0012】
【発明の実施の形態】
つぎに、この発明の被覆超硬工具を実施例により具体的に説明する。
原料粉末として、平均粒径:1.5μmの細粒WC粉末、3.0μmの中粒WC粉末、同1.2μmの(Ti,W)CN(重量比で、以下同じ、TiC/TiN/WC=24/20/56)粉末、同1.3μmの(Ta,Nb)C(TaC/NbC=90/10)粉末、同1.2μmのCr32粉末、および同1.2μmのCo粉末を用意し、これら原料粉末を表1に示される配合組成に配合し、ボールミルで72時間湿式混合し、乾燥した後、この混合粉末をISO規格CNMG120412に則したスローアウエイチップ形状の圧粉体にプレス成形し、この圧粉体を10-3torrの真空雰囲気中、1400〜1460℃の範囲内の所定の温度に1時間保持の条件で真空焼結することにより超硬基体A〜Eをそれぞれ製造した。
さらに、上記超硬基体Eに対して、100torrのCH4ガス雰囲気中、温度:1400℃に1時間保持後、徐冷の条件で浸炭処理を施し、処理後超硬基体表面に付着するカーボンとCoを酸およびバレル研磨で除去することにより、表面から11μmの位置で最大Co含有量:15.9重量%、深さ:42μmのCo富化帯域を基体表面部に形成した。
また、いずれも焼結したままで、上記超硬基体Cには表面部に表面から17μmの位置で最大Co含有量:10.5重量%、深さ:23μmのCo富化帯域、上記超硬基体Dには表面部に表面から22μmの位置で最大Co含有量:14.5重量%、深さ:29μmのCo富化帯域がそれぞれ形成されており、残りの超硬基体AおよびBには前記Co富化帯域の形成はなく、全体的に均一な組織をもつものであった。
さらに、表1には上記超硬基体A〜Eの内部硬さ(ロックウエル硬さAスケール)をそれぞれ示した。
【0013】
ついで、これらの超硬基体A〜Eを、所定の形状に加工およびホーニング加工した状態で、その表面に、通常の化学蒸着装置を用い、表2に示される条件にて、表3、4に示される目標組成および目標層厚(切刃の逃げ面)の硬質被覆層を形成することにより、硬質被覆層の構成層のうちl−TiCN層が残留圧縮応力が存在する上方部分層と残留引張応力が存在する下方部分層で構成された本発明被覆超硬工具1〜10、並びに前記l−TiCN層には残留引張応力のみが存在する従来被覆超硬工具1〜10をそれぞれ製造した。
なお、この結果得られた各種の被覆超硬工具について、硬質被覆層の構成層の組成および平均層厚を電子プローブマイクロアナライザーおよび光学顕微鏡を用いて測定し、またそれぞれの構成層の残留応力をX線回折の測定結果に基づいて算出したところ、いずれも表3、4に示される目標組成および目標層厚と実質的に同じ組成および平均層厚を示し、かつ目標残留応力と実質的に同じ残留応力を示した。
【0014】
つぎに、上記本発明被覆超硬工具1〜10および従来被覆超硬工具1〜10について、
被削材:JIS・SCM440の長さ方向等間隔4本縦溝入り丸棒、
切削速度:200m/min.、
切り込み:4mm、
送り:0.3mm/rev.、
切削時間:10分、
の条件での合金鋼の乾式断続高切り込み切削試験、並びに、
被削材:JIS・SCr420Hの長さ方向等間隔4本縦溝入り丸棒、
切削速度:200m/min.、
切り込み:1.5mm、
送り:0.6mm/rev.、
切削時間:10分、
の条件での合金鋼の乾式断続高送り切削試験を行い、いずれの切削試験でも切刃の最大逃げ面摩耗幅を測定した。この測定結果を表5に示した。
【0015】
【表1】

Figure 0003661503
【0016】
【表2】
Figure 0003661503
【0017】
【表3】
Figure 0003661503
【0018】
【表4】
Figure 0003661503
【0019】
【表5】
Figure 0003661503
【0020】
【発明の効果】
表2〜5に示される結果から、硬質被覆層中に構成層として存在するl−TiCN層が残留圧縮応力を有する上方部分層と残留引張応力を有する下方部分層からなる本発明被覆超硬工具1〜10は、いずれも前記硬質被覆層がすぐれた耐チッピング性を具備することから、特に断続切削を高送りや高切り込みなどの重切削条件で行っても切刃に欠けやチッピングの発生なく、すぐれた耐摩耗性を長期に亘って発揮するのに対して、前記l−TiCN層には残留引張応力のみが存在する従来被覆超硬工具1〜10においては、いずれも前記l−TiCN層以外の構成層も残留引張応力を具備することと相俟って高衝撃の加わる断続重切削ではチッピングが発生し、これが原因で比較的短時間で使用寿命に至ることが明らかである。
上述のように、この発明の被覆超硬工具は、例えば鋼や鋳鉄などの連続切削や断続切削は勿論のこと、高衝撃の加わる断続重切削にもすぐれた耐チッピング性を発揮し、長期に亘ってすぐれた切削性能を示すものであるから、切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。[0001]
BACKGROUND OF THE INVENTION
The present invention provides a surface-coated tungsten carbide-based cemented carbide cutting tool that exhibits excellent chipping resistance when the intermittent cutting is performed under heavy cutting conditions such as high feed and high cutting. This is related to carbide tools.
[0002]
[Prior art]
Conventionally, in general, on the surface of a tungsten carbide base cemented carbide substrate (hereinafter referred to as a cemented carbide substrate),
(A) Titanium carbide (hereinafter referred to as TiC) layer, titanium nitride (hereinafter also referred to as TiN) layer, titanium carbonitride (hereinafter referred to as TiN) layer each having an average layer thickness and granular crystal structure of 0.1 to 3 μm. One or two of a TiCN layer, a titanium carbonate (hereinafter referred to as TiCO) layer, a titanium nitride oxide (hereinafter referred to as TiNO) layer, and a titanium carbonitride oxide (hereinafter referred to as TiCNO) layer A Ti compound layer comprising more than seeds;
(B) a titanium carbonitride (hereinafter referred to as 1-TiCN) layer having an average layer thickness of 2 to 10 μm and a vertically grown crystal structure;
(C) an aluminum oxide (hereinafter referred to as Al 2 O 3 ) layer having an average layer thickness of 0.5 to 5 μm and a granular crystal structure;
A coated carbide tool made by chemical vapor deposition of a hard coating layer composed of 3 to 15 μm in total thickness is known, and this coated carbide tool is used for continuous cutting and intermittent cutting of steel and cast iron. It is also known to be used.
It is also well known that generally Al 2 O 3 layers constituting the hard coating layer of the above-mentioned coated carbide tool are widely used in practical use, such as those having an α-type crystal structure and those having a κ-type crystal structure. Further, the l-TiCN layer is known, for example, from JP-A-6-8010 and JP-A-7-328808, and an organic carbonitride is used as a reaction gas in a normal chemical vapor deposition apparatus. It is formed by chemical vapor deposition at a medium temperature range of 700 to 950 ° C. using a mixed gas.
[0003]
[Problems to be solved by the invention]
On the other hand, there is a strong demand for labor saving and energy saving and cost reduction for cutting in recent years. With this, cutting tends to be performed under heavy cutting conditions such as high feed and high cutting. In conventional coated carbide tools, especially when this is used to perform intermittent cutting under heavy cutting conditions such as high feed and high cutting, chipping (microchips) is likely to occur in the hard coating layer, which The current situation is that the service life is reached in a short time.
[0004]
[Means for Solving the Problems]
Therefore, the present inventors conducted research to improve the chipping resistance of the hard coating layer in the above conventional coated carbide tool from the above viewpoint,
(A) In the hard coating layer of the above conventional coated carbide tool, when it is formed by the chemical vapor deposition method, there is a residual tensile stress of 30 to 70 kgf / mm 2 in any of the constituent layers, which is high. It may cause chipping in intermittent heavy cutting with impact.
[0005]
(B) As described above, when the Ti compound layer and the Al 2 O 3 layer constituting the hard coating layer of the coated carbide tool are formed by chemical vapor deposition, tensile stress remains in both, and compression stress remains in this. In the case of the same l-TiCN layer, after forming the l-TiCN layer (lower partial layer) in which the tensile stress remains, the deposition condition is changed to change the lower partial layer. The 1-TiCN layer (upper portion) in which the compressive stress of 5 to 20 kgf / mm 2 remains without damaging the vertically grown crystal structure, that is, the vertically grown crystal structure continuous with the vertically grown crystal structure of the lower partial layer. Layer).
[0006]
(C) The 1-TiCN layer (upper partial layer) in which the compressive stress of 5 to 20 kgf / mm 2 remains is first subjected to normal conditions, that is,
Reaction gas composition (in% by volume, hereinafter the same) -TiCl 4: 1~3%, N2 : 20~40%, CH 3 CN: 0.1~1%, H2: rest,
Atmospheric temperature: 800-920 ° C
Atmospheric pressure: 50 to 150 Torr,
After forming the l-TiCN layer (lower partial layer) having a residual tensile stress of 30 to 70 kgf / mm 2 under the conditions of
(By volume%, hereinafter the same) reaction gas composition -TiCl 4: 0.1~1%, N 2 : 30~50%, CH 4: 0.1~1%, H 2: remainder,
Atmospheric temperature: 940 to 1000 ° C.
Atmospheric pressure: 50 to 200 Torr,
And can be formed by performing chemical vapor deposition for a predetermined time.
(D) As described above, in the l-TiCN layer of the hard coating layer, the residual tensile stress is present in the lower part and the residual compressive stress is present in the upper part. When an l-TiCN layer in which stress and residual compressive stress coexist is present as a constituent layer of the hard coating layer, the resulting coated carbide tool can perform the above-described high-impact additional cutting that performs intermittent cutting under heavy cutting conditions. Since the hard coating layer has excellent chipping resistance, it should exhibit excellent cutting performance over a long period of time.
(D) The upper partial layer where the residual compressive stress is present in the l-TiCN layer constituting the hard coating layer has a layer thickness corresponding to 20 to 40% of the average layer thickness of the l-TiCN layer for the reason described later. It is necessary to have
The research results shown in (a) to (d) above were obtained.
[0007]
This invention was made based on the above research results,
On the surface of the carbide substrate,
(A) Of the TiC layer, TiN layer, TiCN layer, TiCO layer, TiNO layer, and TiCNO layer, all of which have an average layer thickness and granular crystal structure of 0.1 to 3 μm and have residual tensile stress A Ti compound layer comprising one or more of the following:
(B) It has an average layer thickness of 2 to 10 μm, and consists of an upper partial layer in which residual compressive stress exists and a lower partial layer in which residual tensile stress exists, and the upper partial layer and the lower partial layer are continuous with each other An l-TiCN layer having a vertically elongated crystal structure and the upper partial layer having a layer thickness corresponding to 20 to 40% of the average layer thickness of 3 to 10 μm;
(C) an Al 2 O 3 layer having an average layer thickness of 0.5 to 5 μm and a granular crystal structure and having residual tensile stress;
It is characterized by a coated carbide tool that exhibits excellent chipping resistance by intermittent heavy cutting, which is formed by chemical vapor deposition of a hard coating layer composed of 3 to 15 μm in total average layer thickness. .
[0008]
Note that the layer thickness of the upper partial layer in the l-TiCN layer constituting the hard coating layer of the coated carbide tool of the present invention is equivalent to 20 to 40% of the l-TiCN layer. If the thickness is less than 20% of the 1-TiCN layer, the residual compressive stress of the 1-TiCN layer is relatively small, and a sufficiently satisfactory chipping resistance cannot be ensured. If the ratio exceeds 50%, the granular crystal structure is mixed in the vertically grown crystal structure, and the excellent toughness provided by the vertically grown crystal structure is impaired.
[0009]
Furthermore, the average layer thickness of the constituent layers in the hard coating layer of the coated carbide tool of the present invention is determined for the following reason.
That is, each of the Ti compound layers has a common property of improving the interlayer adhesion between the constituent layers. Therefore, when the average layer thickness is less than 0.1 μm, the desired excellent interlayer adhesion is ensured. On the other hand, when the average layer thickness exceeds 3 μm, especially when a TiC layer is present as a constituent layer, chipping is likely to occur at the cutting edge during high-speed cutting, and a soft TiN layer is also present. In this case, since the wear of the hard coating layer is promoted, the average layer thickness is determined to be 0.1 to 3 μm.
[0010]
In addition, the Al 2 O 3 layer has the effect of improving the wear resistance of the hard coating layer, but if the average layer thickness is less than 0.5 μm, the desired excellent wear resistance cannot be ensured. On the other hand, if the average layer thickness exceeds 5 μm, chipping is likely to occur at the cutting edge, so the average layer thickness was set to 0.5 to 5 μm.
[0011]
Furthermore, the l-TiCN layer, as described above, imparts excellent toughness due to the vertically grown crystal structure to the hard coating layer, and the compression stress remains only after it is formed on the lower partial layer where residual tensile stress exists. The upper partial layer made possible has the effect of improving the chipping resistance of the hard coating layer, but if the average layer thickness is less than 2 μm, the desired effect cannot be obtained, while the average layer thickness is 10 μm. When the thickness exceeds 1, the cutting edge tends to be chipped or chipped, so the average layer thickness was determined to be 2 to 10 μm.
Also, the reason that the overall average layer thickness of the hard coating layer is 3 to 15 μm is that when the average layer thickness is less than 3 μm, the desired wear resistance cannot be ensured, while the average layer thickness exceeds 15 μm. This is because chipping and chipping are likely to occur in the cutting edge.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Next, the coated carbide tool of the present invention will be specifically described with reference to examples.
As raw material powder, average particle size: 1.5 μm fine WC powder, 3.0 μm medium WC powder, 1.2 μm (Ti, W) CN (weight ratio, the same below, TiC / TiN / WC) = 24/20/56) powder, 1.3 μm (Ta, Nb) C (TaC / NbC = 90/10) powder, 1.2 μm Cr 3 C 2 powder, and 1.2 μm Co powder These raw material powders are blended in the composition shown in Table 1, wet-mixed with a ball mill for 72 hours, dried, and then the mixed powder is formed into a throwaway chip shaped green compact in accordance with ISO standard CNMG120212. Cemented carbide substrates A to E are respectively formed by press molding and vacuum sintering the compact in a vacuum atmosphere of 10 −3 torr at a predetermined temperature within the range of 1400 to 1460 ° C. for 1 hour. Manufactured.
Further, the carbide substrate E was subjected to carburizing treatment under a slow cooling condition after being kept at a temperature of 1400 ° C. for 1 hour in a CH 4 gas atmosphere of 100 torr, and the carbon adhering to the surface of the carbide substrate after treatment. By removing Co by acid and barrel polishing, a Co-enriched zone having a maximum Co content of 15.9% by weight and a depth of 42 μm was formed on the surface of the substrate at a position of 11 μm from the surface.
In addition, in the above-mentioned cemented carbide substrate C, the Co substrate enriched zone having a maximum Co content of 10.5% by weight and a depth of 23 μm at the position of 17 μm from the surface on the surface of the cemented carbide substrate C, In the substrate D, a Co-enriched zone having a maximum Co content of 14.5% by weight and a depth of 29 μm is formed on the surface portion at a position of 22 μm from the surface, respectively. The Co-enriched zone was not formed, and the entire structure was uniform.
Further, Table 1 shows the internal hardness (Rockwell hardness A scale) of the above-mentioned carbide substrates A to E, respectively.
[0013]
Then, these carbide substrates A to E are processed and honed into a predetermined shape, and the surface thereof is subjected to Tables 3 and 4 under the conditions shown in Table 2 using a normal chemical vapor deposition apparatus. By forming a hard coating layer having the indicated target composition and target layer thickness (flank of the cutting edge), the l-TiCN layer among the constituent layers of the hard coating layer and the upper partial layer in which residual compressive stress exists and the residual tension The coated carbide tools 1 to 10 of the present invention constituted by the lower partial layer in which stress exists, and the conventional coated carbide tools 1 to 10 in which only the residual tensile stress exists in the l-TiCN layer were produced, respectively.
For the various coated carbide tools obtained as a result, the composition and average layer thickness of the constituent layers of the hard coating layer were measured using an electron probe microanalyzer and an optical microscope, and the residual stress of each constituent layer was measured. When calculated based on the measurement results of X-ray diffraction, all showed substantially the same composition and average layer thickness as the target composition and target layer thickness shown in Tables 3 and 4, and substantially the same as the target residual stress. Residual stress was shown.
[0014]
Next, for the present invention coated carbide tools 1-10 and conventional coated carbide tools 1-10,
Work material: JIS · SCM440 lengthwise equidistant 4 vertical grooved round bar,
Cutting speed: 200 m / min. ,
Incision: 4mm,
Feed: 0.3 mm / rev. ,
Cutting time: 10 minutes,
Dry intermittent high cutting test of alloy steel under the conditions of, and
Work material: JIS · SCr420H lengthwise equidistant 4 round bars with vertical grooves,
Cutting speed: 200 m / min. ,
Incision: 1.5mm,
Feed: 0.6 mm / rev. ,
Cutting time: 10 minutes,
The dry interrupted high feed cutting test was performed on the alloy steel under the above conditions, and the maximum flank wear width of the cutting edge was measured in any cutting test. The measurement results are shown in Table 5.
[0015]
[Table 1]
Figure 0003661503
[0016]
[Table 2]
Figure 0003661503
[0017]
[Table 3]
Figure 0003661503
[0018]
[Table 4]
Figure 0003661503
[0019]
[Table 5]
Figure 0003661503
[0020]
【The invention's effect】
From the results shown in Tables 2 to 5, the coated carbide tool of the present invention in which the l-TiCN layer existing as a constituent layer in the hard coating layer is composed of an upper partial layer having a residual compressive stress and a lower partial layer having a residual tensile stress. Nos. 1 to 10 have no chipping or chipping even if the hard coating layer has excellent chipping resistance, especially when the intermittent cutting is performed under heavy cutting conditions such as high feed and high cutting. In the conventional coated cemented carbide tools 1 to 10, where only the residual tensile stress exists in the l-TiCN layer, the l-TiCN layer exhibits excellent wear resistance over a long period of time. In combination with the fact that the other constituent layers also have residual tensile stress, it is clear that intermittent cutting with high impact causes chipping, which leads to a service life in a relatively short time.
As described above, the coated carbide tool of the present invention exhibits excellent chipping resistance not only for continuous cutting and intermittent cutting of, for example, steel and cast iron, but also for intermittent heavy cutting with high impact. Since it shows excellent cutting performance over time, it can sufficiently satisfy the labor-saving and energy-saving of cutting, and further cost reduction.

Claims (1)

炭化タングステン基超硬合金基体の表面に、
(a) いずれも0.1〜3μmの平均層厚および粒状結晶組織を有し、かつ残留引張応力が存在する、炭化チタン層、窒化チタン層、炭窒化チタン層、炭酸化チタン層、および炭窒酸化チタン層のうちの1種または2種以上からなるTi化合物層と、
(b) 2〜10μmの平均層厚を有し、残留圧縮応力が存在する上方部分層と残留引張応力が存在する下方部分層からなり、前記上方部分層と前記下方部分層は相互に連続した縦長成長結晶組織を有し、かつ前記上方部分層は、前記2〜10μmの平均層厚の20〜40%に相当する層厚を有する炭窒化チタン層と、
(c) 0.5〜5μmの平均層厚および粒状結晶組織を有する酸化アルミニウム層と、
で構成された硬質被覆層を3〜15μmの全体平均層厚で化学蒸着してなる、断続重切削で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆炭化タングステン基超硬合金製切削工具。
On the surface of the tungsten carbide base cemented carbide substrate,
(A) Titanium carbide layer, titanium nitride layer, titanium carbonitride layer, titanium carbonate layer, and charcoal, each having an average layer thickness of 0.1 to 3 μm and a granular crystal structure, and having residual tensile stress A Ti compound layer composed of one or more of the titanium nitride oxide layers;
(B) It has an average layer thickness of 2 to 10 μm, and consists of an upper partial layer in which residual compressive stress exists and a lower partial layer in which residual tensile stress exists, and the upper partial layer and the lower partial layer are continuous with each other A titanium carbonitride layer having a vertically elongated crystal structure and the upper partial layer having a layer thickness corresponding to 20 to 40% of the average layer thickness of 2 to 10 μm;
(C) an aluminum oxide layer having an average layer thickness of 0.5 to 5 μm and a granular crystal structure;
A surface-coated tungsten carbide-based cemented carbide cutting tool that exhibits excellent chipping resistance by intermittent heavy cutting, which is obtained by chemical vapor deposition of a hard coating layer composed of 3 to 15 μm in average thickness. .
JP21882599A 1999-06-23 1999-08-02 Surface coated tungsten carbide based cemented carbide cutting tool with excellent chipping resistance with hard coating layer in intermittent heavy cutting Expired - Lifetime JP3661503B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21882599A JP3661503B2 (en) 1999-06-23 1999-08-02 Surface coated tungsten carbide based cemented carbide cutting tool with excellent chipping resistance with hard coating layer in intermittent heavy cutting

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP11-177157 1999-06-23
JP17715799 1999-06-23
JP21882599A JP3661503B2 (en) 1999-06-23 1999-08-02 Surface coated tungsten carbide based cemented carbide cutting tool with excellent chipping resistance with hard coating layer in intermittent heavy cutting

Publications (2)

Publication Number Publication Date
JP2001062603A JP2001062603A (en) 2001-03-13
JP3661503B2 true JP3661503B2 (en) 2005-06-15

Family

ID=26497795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21882599A Expired - Lifetime JP3661503B2 (en) 1999-06-23 1999-08-02 Surface coated tungsten carbide based cemented carbide cutting tool with excellent chipping resistance with hard coating layer in intermittent heavy cutting

Country Status (1)

Country Link
JP (1) JP3661503B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012063515A1 (en) 2010-11-10 2012-05-18 住友電工ハードメタル株式会社 Surface-coated cutting tool

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8389108B2 (en) 2008-04-30 2013-03-05 Sumitomo Electric Industries, Ltd. Surface coated cutting tool
EP2287359B1 (en) 2009-07-03 2012-05-23 Sandvik Intellectual Property AB Coated cutting tool insert
JP6699056B2 (en) * 2016-06-14 2020-05-27 住友電工ハードメタル株式会社 Surface coated cutting tool

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012063515A1 (en) 2010-11-10 2012-05-18 住友電工ハードメタル株式会社 Surface-coated cutting tool

Also Published As

Publication number Publication date
JP2001062603A (en) 2001-03-13

Similar Documents

Publication Publication Date Title
JP3052586B2 (en) Surface-coated tungsten carbide based cemented carbide cutting tool with excellent chipping resistance
JP2867803B2 (en) Surface-coated tungsten carbide based cemented carbide cutting tool with excellent chipping resistance
JP3887811B2 (en) Cutting tool made of surface-coated tungsten carbide based cemented carbide with a hard coating layer that provides excellent wear resistance in high-speed cutting
JP3236899B2 (en) Manufacturing method of surface coated tungsten carbide based cemented carbide cutting tool with excellent wear and fracture resistance
JP2004122269A (en) Surface coated cermet cutting tool exhibiting superior chipping resistance under high speed heavy duty cutting
JP2861832B2 (en) Surface coated tungsten carbide based cemented carbide cutting tool with excellent interlayer adhesion with hard coating layer
JP3661503B2 (en) Surface coated tungsten carbide based cemented carbide cutting tool with excellent chipping resistance with hard coating layer in intermittent heavy cutting
JP3269305B2 (en) Surface coated tungsten carbide based cemented carbide cutting tool with excellent interlayer adhesion with hard coating layer
JP4029529B2 (en) Surface coated tungsten carbide based cemented carbide cutting tool with excellent chipping resistance with hard coating layer in intermittent heavy cutting
JPH11172464A (en) Cutting tool made of surface coated sintered hard alloy exhibiting excellent wear resistance in high-speed cutting
JPH09262705A (en) Surface coated tungsten carbide group super hard alloy cutting tool having excellent toughness in hard coating layer thereof
JP3087504B2 (en) Manufacturing method of surface-coated tungsten carbide based cemented carbide cutting tools with excellent wear and fracture resistance
JP2927181B2 (en) Surface coated tungsten carbide based cemented carbide cutting tool with excellent interlayer adhesion with hard coating layer
JPH10204639A (en) Cutting tool made of surface-coated cemented carbide in which hard coating layer has excellent chipping resistance
JP3837959B2 (en) Surface coated tungsten carbide based cemented carbide cutting tool with excellent wear resistance due to hard coating layer
JPH1076406A (en) Cemented carbide cutting tool covered with hard covering layer excellent in anti-chipping property
JP4210930B2 (en) Surface-coated throw-away tip that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP3887812B2 (en) Surface coated tungsten carbide based cemented carbide cutting tool with excellent chipping resistance with hard coating layer in intermittent heavy cutting
JP3230396B2 (en) Surface-coated tungsten carbide based cemented carbide cutting tool with excellent interlayer adhesion with hard coating layer
JP3371796B2 (en) Surface coated cemented carbide cutting tool with excellent fracture resistance
JP2000218409A (en) Surface coated cemented carbide cutting tool having hard coated layer of good defect resistance
JP3282600B2 (en) Surface-coated cemented carbide cutting tool with a hard coating layer that exhibits excellent fracture resistance
JP2001150206A (en) Surface-coated tungsten carbide group sintered allow- made cutting tool which displays excellent defect resistance in interrupted double cutting
JP3119414B2 (en) Surface coated tungsten carbide based cemented carbide cutting tool with excellent interlayer adhesion with hard coating layer
JPH08187604A (en) Cutting tool of surface coated tungsten carbide based cemented carbide with its hard coating layer having excellent inter-layer adhesion

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050314

R150 Certificate of patent or registration of utility model

Ref document number: 3661503

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080401

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090401

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100401

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100401

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100401

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110401

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120401

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120401

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130401

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130401

Year of fee payment: 8

EXPY Cancellation because of completion of term