JP3143908B2 - Superconducting conductor - Google Patents

Superconducting conductor

Info

Publication number
JP3143908B2
JP3143908B2 JP02056218A JP5621890A JP3143908B2 JP 3143908 B2 JP3143908 B2 JP 3143908B2 JP 02056218 A JP02056218 A JP 02056218A JP 5621890 A JP5621890 A JP 5621890A JP 3143908 B2 JP3143908 B2 JP 3143908B2
Authority
JP
Japan
Prior art keywords
stranded wire
wire
superconducting
twisted
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP02056218A
Other languages
Japanese (ja)
Other versions
JPH03257716A (en
Inventor
一也 大松
正之 永田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP02056218A priority Critical patent/JP3143908B2/en
Publication of JPH03257716A publication Critical patent/JPH03257716A/en
Application granted granted Critical
Publication of JP3143908B2 publication Critical patent/JP3143908B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Wire Processing (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、超電導発電機等の電力応用機器に用いる
ことのできる超電導導体に関するものである。
Description: TECHNICAL FIELD The present invention relates to a superconducting conductor that can be used for power application equipment such as a superconducting generator.

[従来の技術] 超電導発電機の界磁コイル、電機子コイル等の電力応
用機器に使用する大容量の導体としては、動作時の磁界
変動によって導体内に生じる交流損失や、機械的発熱に
よる常電導転移を生じないことが必要である。さらに、
高い電流密度が要求される。
[Prior art] Large-capacity conductors used in power-applied devices such as field coils and armature coils of superconducting generators are commonly used due to AC loss generated in the conductors due to magnetic field fluctuations during operation and mechanical heat generation. It is necessary that no conduction transition occurs. further,
High current density is required.

たとえば、超速応励磁型発電機用界磁巻線用導体にお
いては、交流損失を低減するため、CuNi/Cu/NbTiの三層
構造とし、かつフィラメント径を3μm程度まで細くし
ている。これにより、励磁制御時の磁界変動(4T→6T→
4T,10T/s)における交流損失を10kW/m3以下に低減した
超電導素線とし、この素線を用いた平角成型撚撚線が開
発されている。
For example, a conductor for a field winding for a super fast excitation type generator has a three-layer structure of CuNi / Cu / NbTi and a filament diameter as small as about 3 μm in order to reduce AC loss. As a result, the magnetic field fluctuation during excitation control (4T → 6T →
A superconducting element wire whose AC loss at 4 T, 10 T / s) has been reduced to 10 kW / m 3 or less, and a rectangular shaped twisted wire using this element has been developed.

また電機子コイル用導体では、同様な三層構造線でフ
ィラメント径を0.5μm程度まで細めて、50/60Hzの交流
損失を100kW/m3レベルまで低減した素線を用いた、平角
成型撚撚線が開発されている。
In the conductor the armature coils, narrowed the filament diameter up to about 0.5μm by the same three-layer structure line, with reduced wire AC loss of 50 / 60Hz to 100 kW / m 3 level, flat molding Yoyo Lines are being developed.

これらの導体は、いずれも0.6mm以下の細い線径とな
るため、1次撚線として7本撚り、2次撚線として9本
から30本程度の平角成型撚撚線の構成とされている。
Each of these conductors has a thin wire diameter of 0.6 mm or less, and is configured as a primary twisted wire having seven twists and a secondary twisted wire having about nine to thirty flat twisted twisted wires. .

[発明が解決しようとする課題] 従来のこのような超電導導体では、ボイド率が25%以
上であるため、導体の電流密度が低いという問題があっ
た。この明細書において、ボイド率とは、1次撚線の場
合には導体が外接する円の領域内において、平角成型撚
撚線の場合には導体が外接する平行四辺形の領域内にお
いて、導体以外のボイド部分が占める断面積の割合をい
う。また、ボイド率が大きいと、剛性を高めることがで
きず、動作時における磁界変動によって導体が機械的に
動き発熱を生じて、導体が常電導転移しやすいという問
題も生じる。
[Problem to be Solved by the Invention] Such a conventional superconducting conductor has a problem that the current density of the conductor is low because the void ratio is 25% or more. In the present specification, the void ratio is defined as a value within a circle area where a conductor circumscribes in the case of a primary stranded wire, or a parallelogram area where a conductor circumscribes in a case of a rectangular shaped stranded stranded wire. Means the ratio of the cross-sectional area occupied by voids other than If the void ratio is large, the rigidity cannot be increased, and the conductor moves mechanically due to a magnetic field fluctuation during operation, generating heat, which causes a problem that the conductor easily transitions to normal conduction.

たとえば、超速応励磁型発電機用界磁巻線用導体の場
合には、線径0.59mmの素線のまわりに10μmの厚みのホ
ルマール絶縁膜を施し、この超電導素線を7本撚りして
1次撚線とし、さらにこの1次撚線を11本撚りして平角
成型撚撚線としているが、1次撚線の段階ですでにボイ
ド率が23.3%に達している。したがって平角成型撚撚線
の段階において25%以下のボイド率にすることは困難で
あった。ボイド率を25%以下とするために平角成型撚撚
線の段階において強い圧縮加工を行なうと、超電導素線
が変形し、臨界電流密度や残留抵抗等が低下し、超電導
特性や安定性が大幅に低下する。
For example, in the case of a field winding conductor for a super fast excitation type generator, a 10 μm thick formal insulating film is applied around a wire having a wire diameter of 0.59 mm, and seven superconducting wires are twisted. The primary stranded wire is further stranded, and 11 primary stranded wires are stranded to form a rectangular shaped stranded wire. At the stage of the primary stranded wire, the void ratio has already reached 23.3%. Therefore, it has been difficult to reduce the void ratio to 25% or less at the stage of the rectangular shaped stranded wire. If strong compression processing is performed at the stage of twisting twisted flat wire to reduce the void ratio to 25% or less, the superconducting wire will be deformed, the critical current density and residual resistance will be reduced, and the superconducting properties and stability will be drastic. To decline.

また、導体に用いる超電導素線としては、例えばNbTi
超電導素線が典型的なものとして用いられているが、素
線断面積当りの電流密度を増加させるためにNbTiの合金
の割合を増加させ、かつ臨界電流密度を増加させるため
に中間の熱処理と加工等を繰返し多く施しているため、
素線自体が本質的に加工性の乏しいものとなっている。
このため、ボイド率を25%以下にするために著しい圧縮
加工を行なおうとすると、素線が断線してしまうという
問題も生じる。
As the superconducting element wire used for the conductor, for example, NbTi
Although superconducting wires are typically used, an intermediate heat treatment is used to increase the percentage of NbTi alloy in order to increase the current density per wire cross-sectional area, and to increase the critical current density. Due to repeated processing, etc.,
The wire itself is essentially poor in workability.
For this reason, when remarkable compression processing is performed to reduce the void ratio to 25% or less, there is a problem in that the strand is broken.

この発明の目的は、このような従来の問題点を解消
し、ボイド率が25%以下で、かつ超電導特性や安定性に
優れた超電導導体を提供することにある。
An object of the present invention is to solve such a conventional problem and to provide a superconducting conductor having a void ratio of 25% or less and having excellent superconducting characteristics and stability.

[課題を解決するための手段] この発明に従った超電導導体は、絶縁被覆層を有する
超電導素線を撚り合わせた1次撚線を撚り合わせて平角
成型撚撚線とした超電導導体において、1次撚線を圧縮
加工することによりボイド率を15%以下にした後、撚り
合わせることを特徴としている。
[Means for Solving the Problems] A superconducting conductor according to the present invention is a superconducting conductor that is formed by twisting a primary stranded wire obtained by twisting a superconducting element wire having an insulating coating layer into a rectangular shaped twisted stranded wire. After the void ratio is reduced to 15% or less by compressing the next twisted wire, twisting is performed.

また、この発明の超電導導体において、1次撚線の撚
返しは、60%から140%の間で行なうことが好ましい。
In the superconducting conductor of the present invention, it is preferable that the twisting of the primary stranded wire is performed between 60% and 140%.

またこの発明において、超電導素線は、ホルマールで
絶縁されていることが好ましい。
In the present invention, the superconducting element wires are preferably insulated with formal.

[作用] 第5図は、従来例の1次撚線を示す断面図である。第
5図を参照して、1次撚線21は、超電導素線22を7本撚
り合せることにより構成されている。このような1次撚
線21を撚り合わせて圧縮成型し平角成型撚撚線とする。
この発明では、この1次撚線の段階で圧縮加工を行な
い、ボイド率を15%以下にしている。
[Operation] FIG. 5 is a sectional view showing a conventional primary stranded wire. Referring to FIG. 5, primary stranded wire 21 is formed by twisting seven superconducting wires 22. Such a primary stranded wire 21 is twisted and compression-molded to form a rectangular shaped stranded wire.
In the present invention, compression processing is performed at the stage of the primary stranded wire to reduce the void ratio to 15% or less.

第1図は、この発明に伴う一実施例の1次撚線を示す
断面図である。第1図に示すように、1次撚線1は圧縮
加工を受け、外側に位置する超電導素線が主に変形を受
け、ボイド率が15%以下にされている。このような1次
撚線1を撚り合わせて圧縮成型し、第2図に示すような
平角成型撚撚線3とする。
FIG. 1 is a sectional view showing a primary stranded wire of one embodiment according to the present invention. As shown in FIG. 1, the primary stranded wire 1 is subjected to compression processing, and the superconducting element wire located outside is mainly deformed, so that the void ratio is reduced to 15% or less. Such a primary stranded wire 1 is twisted and compression-molded to obtain a rectangular shaped stranded wire 3 as shown in FIG.

第3図は、この発明に従う他の実施例の1次撚線を示
す断面図である。第3図に示すように、この1次撚線11
は超電導素線12を19本撚り合わせた後、圧縮加工するこ
とにより構成されている。このような1次撚線11を第4
図で示すように撚り合せて圧縮成型して平角成型撚撚線
13とする。
FIG. 3 is a sectional view showing a primary stranded wire of another embodiment according to the present invention. As shown in FIG.
Is formed by twisting 19 superconducting wires 12 and then compressing them. Such a primary stranded wire 11 is
Twisted and compression molded as shown in the figure to form a flat rectangular twisted wire
13

上記の例では、1次撚線として7本撚りおよび19本撚
り示したが、この発明はこれらに限定されることなく、
例えば3本撚り、および10本撚りなどその他の構成でも
よい。
In the above example, as the primary stranded wire, 7 strands and 19 strands are shown, but the present invention is not limited to these,
For example, other configurations such as three twists and ten twists may be used.

超電導素線を絶縁する場合には、上述のようにホルマ
ールによる絶縁が好ましい。ホルマールによる絶縁は加
工性が良好であるため、1次撚線の際の圧縮加工や2次
撚線の際の圧縮成型が行ないやすくなるからである。し
かしながら、この発明は、ホルマール絶縁に限定される
ものではなく、その他の加工性の良好な材質による絶縁
でもよい。
When the superconducting element wire is insulated, the insulation by formal is preferable as described above. This is because formal insulation has good workability, so that compression processing at the time of primary stranded wire and compression molding at the time of secondary stranded wire can be easily performed. However, the present invention is not limited to formal insulation, and may be insulation using other materials having good workability.

この発明の超電導導体では、1次撚線の段階でボイド
率をすでに15%以下に低減しているため、2次撚線後の
平角成型撚撚線でのボイド率を25%以下に低減すること
ができる。このため、高い導体電流密度を達成すること
ができる。また、剛性も向上させることができる。さら
に、平角成型撚撚線への著しい圧縮成型を行なう必要が
ないため、超電導素線の超電導特性や安定性の低下を少
なくすることができ、超電導素線の断線を生じさせるこ
とはなくなる。
In the superconducting conductor of the present invention, since the void ratio has already been reduced to 15% or less at the stage of the primary stranded wire, the void ratio of the rectangular shaped stranded wire after the secondary stranded wire is reduced to 25% or less. be able to. Therefore, a high conductor current density can be achieved. Further, the rigidity can be improved. Further, since it is not necessary to perform remarkable compression molding on the flat-shaped twisted stranded wire, a decrease in the superconducting characteristics and stability of the superconducting wire can be reduced, and the superconducting wire does not break.

1次撚線の圧縮加工は、例えばダイスやローラを用い
て成型圧縮することにより行なうことができる。
The compression processing of the primary stranded wire can be performed by molding and compressing using, for example, a die or a roller.

この発明ではまた、1次撚線を撚り合せる際の撚返し
を60%から140%の間で行なうことが好ましい。ここで
撚返しとは、2次撚線での平角成型撚撚線のときに、1
ピッチ撚る毎に供給する1次撚線も導体の撚方向と逆方
向に導体の進行方向に対して一回転した場合に100%の
撚返しとなるものを言う。このように撚返しを100±40
%の範囲内にすることにより、圧縮成型した導体中の素
線の乱れを少なくすることができ、高い剛性を保持した
ままで平角成型撚撚線を製造することができる。このよ
うに撚返しは、素線の材質や撚本数都の条件に応じて、
60%から140%の間で適宜選択することができる。
In the present invention, it is preferable that the twisting of the primary stranded wire is performed between 60% and 140%. The term “twisting” as used herein means “1” when the secondary twisted wire is a flat rectangular twisted wire.
The primary stranded wire supplied every time the pitch is twisted also means a 100% twisted turn when it makes one turn in the direction opposite to the conductor twisting direction with respect to the traveling direction of the conductor. The twist is 100 ± 40
%, It is possible to reduce the disturbance of the strands in the compression-molded conductor, and it is possible to manufacture a rectangular-shaped twisted strand while maintaining high rigidity. In this way, the twisting depends on the material of the strand and the conditions of several strands.
It can be appropriately selected between 60% and 140%.

[実施例] 実施例1 線径0.44mmのNbTi超電導線に厚み10μmのホルマール
絶縁を施し、線径0.46mmの素線とした。この素線を7本
撚りして1次撚線を作製し、この1次撚線をローラーダ
イスで圧縮加工した。この結果、第1表に示すようにボ
イド率が14.5%となった。この1次撚線を15本撚り合せ
た後圧縮成型し、第2図に示すような平角成型撚撚線を
作製した。この結果、第1表に示すようにボイド率21.0
%の平角成型撚撚線が得られた(実施例1)。
[Example] Example 1 Formal insulation having a thickness of 10 µm was applied to a NbTi superconducting wire having a wire diameter of 0.44 mm to obtain a strand having a wire diameter of 0.46 mm. Seven strands were twisted to produce a primary stranded wire, and the primary stranded wire was subjected to compression processing with a roller die. As a result, the void ratio was 14.5% as shown in Table 1. After fifteen primary strands were twisted, they were compression-molded to produce a rectangular shaped twisted strand as shown in FIG. As a result, as shown in Table 1, the void ratio was 21.0.
% Was obtained (Example 1).

比較として、1次撚線のボイド率が15%以上になるよ
うに圧縮加工したものを作製し、これを上記実施例1と
同様にして15本撚り合わせて2次撚線とし圧縮成型して
平角成型撚撚線とした。(比較例1)。
As a comparison, a compression-processed product was prepared so that the void ratio of the primary stranded wire became 15% or more, and this was twisted by 15 wires in the same manner as in Example 1 to form a secondary stranded wire and compression molded. A rectangular molded twisted stranded wire was used. (Comparative Example 1).

また、さらに比較として、従来と同様に1次撚線に圧
縮加工を加えず、第5図に示すような状態の1次撚線を
15本撚り合せた後圧縮成型して平角成型撚撚線を作製し
た(従来例1)。
As a further comparison, the primary stranded wire was not subjected to compression processing as in the prior art, and the primary stranded wire in a state as shown in FIG.
After fifteen strands were twisted together, compression molding was performed to produce a rectangular shaped twisted strand (conventional example 1).

上記の実施例1、比較例1、および従来例1の1次撚
線のボイド率および2次撚線すなわち平角成型撚撚線の
ボイド率を第1表に示す。
Table 1 shows the void fraction of the primary stranded wire and the void fraction of the secondary stranded wire, that is, the rectangular shaped stranded stranded wire of Example 1, Comparative Example 1, and Conventional Example 1.

さらに、上記の実施例1、比較例1、および従来例1
のそれぞれについて、1次撚線の0.2%耐緑、5T,4.2Kに
おける素線の臨界電流密度、ならびに5T,4.2Kにおける
導体の電流密度をそれぞれ測定し、併せて第1表に示し
た。
Further, the above Example 1, Comparative Example 1, and Conventional Example 1
For each of the above, the 0.2% green resistance of the primary stranded wire, the critical current density of the strand at 5T, 4.2K, and the current density of the conductor at 5T, 4.2K were measured, and are shown in Table 1.

第1表から明らかなように、実施例1では1次撚線の
ボイド率が14.5%であり、2次撚線のボイド率が25%以
下の21.0%になっている。これに対して、1次撚線のボ
イド率が17.0%の比較例1では、2次撚線のボイド率が
25.2%と25%より大きなボイド率になっている。さら
に、従来例1の1次撚線のボイド率は23%であり、2次
撚線のボイド率は26.8%であった。
As is clear from Table 1, in Example 1, the void ratio of the primary stranded wire is 14.5%, and the void ratio of the secondary stranded wire is 21.0%, which is 25% or less. In contrast, in Comparative Example 1 in which the void ratio of the primary stranded wire was 17.0%, the void ratio of the secondary stranded wire was
The void ratio is 25.2%, which is larger than 25%. Further, the void ratio of the primary stranded wire of Conventional Example 1 was 23%, and the void ratio of the secondary stranded wire was 26.8%.

さらに第1表から明らかなように、実施例1の1次撚
線の0.2%耐力は、従来例1のものより1割近く増加し
ており、素線の0.2%耐力とほぼ同等の値を示してい
る。このことから、実施例1の1次撚線は高い剛性を有
していることが明らかである。
Further, as is clear from Table 1, the 0.2% proof stress of the primary stranded wire of Example 1 is increased by nearly 10% from that of the conventional example 1, and has a value almost equal to the 0.2% proof stress of the strand. Is shown. From this, it is clear that the primary stranded wire of Example 1 has high rigidity.

また、第1表に示されるように、導体から取出した素
線の臨界電流密度は、従来例1、比較例1、および実施
例1ともにほとんど同様の値であった。このことより、
平角成型撚撚線の圧縮成型により、いずれも超電導特性
が低下しなかったことが明らかになった。
Further, as shown in Table 1, the critical current densities of the strands extracted from the conductors were almost the same in Conventional Example 1, Comparative Example 1, and Example 1. From this,
It was clarified that the superconducting properties did not decrease in any case by the compression molding of the rectangular molded twisted wire.

さらに第1表から明らかなように、導体の電流密度
は、実施例1において80A/mm2以上の値であり、比較例
1および従来例1よりも高い値が得られた。
Further, as is clear from Table 1, the current density of the conductor was 80 A / mm 2 or more in Example 1, and a higher value than Comparative Example 1 and Conventional Example 1 was obtained.

実施例2 1次撚線を撚り合わせた後に圧縮成型して平角成型撚
撚線を作製する際の圧縮成型の条件を変えて、2次撚
線、すなわち平角成型撚撚線におけるボイド率を変化さ
せたものを作製した。1次撚線として実施例1のものを
用いたもの(実施例2)と、従来例1を用いたもの(従
来例2)について行った。
Example 2 The void ratio in the secondary stranded wire, that is, the rectangular molded stranded wire, was changed by changing the compression molding conditions when the primary stranded wire was twisted and then compression molded to produce a rectangular molded stranded wire. This was made. The first stranded wire was used for the first example (Example 2), and the first stranded wire was used for the first conventional example (Conventional example 2).

評価は、平角成型撚撚線から取出した素線の臨界電流
密度(Jc)を測定しJcの劣化率を算出するとともに、素
線の断線状況を観察し断線が発生したか否かで行った。
The evaluation was carried out by measuring the critical current density (Jc) of the strand taken out of the flat twisted stranded wire, calculating the degradation rate of Jc, observing the situation of the strand break, and determining whether or not the break occurred. .

ボイド率としては第2表に示すように約27%、約25
%、および約21%の種類のものを作製した。結果を第2
表に示す。
As shown in Table 2, the void ratio is about 27% and about 25%.
%, And about 21%. Second result
It is shown in the table.

第2表から明らかなように、この発明に従う実施例2
ではボイド率が小さくなるように成型加工しても、あま
りJcの低下は認められず、また素線の断線も発生しなか
った。これに対し従来例2では、ボイド率を小さくする
につれてJcの劣化率が大きくなり、また素線の断線が発
生した。
As is clear from Table 2, Example 2 according to the present invention
Even when the molding process was performed to reduce the void ratio, the Jc was not significantly reduced, and the wire was not broken. On the other hand, in the conventional example 2, as the void ratio was reduced, the deterioration rate of Jc was increased, and the wire was broken.

また、残留抵抗比においても、従来例2のものは、約
27%から約21%にすると140から52まで低下したのに対
し、実施例2では80までの低下にとまった。
Also, the residual resistance ratio of the conventional example 2 is about
When it was increased from 27% to about 21%, it decreased from 140 to 52, while in Example 2, it decreased to 80.

実施例3 実施例1で用いた1次撚線を撚り合わせる際の撚返し
を第3表に示すように種々変えたものを作製した。
Example 3 As shown in Table 3, twisted primary strands used in Example 1 were variously changed as shown in Table 3.

第3表から明らかなように、撚返率が60%から140%
の間のものは、素線の乱れがなく良好な導体として作製
することができた。撚返率が60%より小さくなると、1
次撚線の撚りがもどり、素線の浮き上がりが生じた。
As is clear from Table 3, the twisting rate is 60% to 140%
The one in the middle was able to be manufactured as a good conductor without disturbance of the strands. If the twisting ratio is less than 60%, 1
The twist of the next twisted wire was returned, and the wire was lifted.

また、撚返率が140%を越えると、素線の乱れはない
ものの、1次撚線の凹凸が著しくなり、安定した導体を
製造することが困難になった。
On the other hand, when the twisting ratio exceeds 140%, although the strands are not disturbed, the irregularities of the primary stranded wire become remarkable, and it becomes difficult to produce a stable conductor.

上記の各実施例では、1次撚線をローラダイズにより
圧縮加工したが、その他の手段により圧縮加工してもよ
い。
In each of the above embodiments, the primary stranded wire is compressed by a roller soybean, but may be compressed by other means.

[発明の効果] 以上説明したように、この発明の超電導導体では、圧
縮加工により1次撚線における超電導素線間が互いに近
接して配置されているため、導体内の空間部が従来に比
べ著しく小さくなっている。したがって、剛性の高い金
属部分の占める割合が多くなり、導体自身の剛性は従来
よりも著しく高められる。また、超電導素線が互いに近
接しているため、電流密度も同時に高めることができ
る。
[Effects of the Invention] As described above, in the superconducting conductor of the present invention, since the superconducting wires in the primary stranded wire are arranged close to each other by compression, the space in the conductor is smaller than in the conventional case. It is significantly smaller. Therefore, the proportion of the metal portion having high rigidity increases, and the rigidity of the conductor itself is significantly increased as compared with the conventional case. Further, since the superconducting wires are close to each other, the current density can be increased at the same time.

したがって、この発明の超電導導体を巻付けた超電導
マグネットでは、高磁界が発生可能となる。また、超電
導マグネットのコンパクト化を図ることができる。ま
た、素線の健全性が保たれることによって、超電導特性
や安定性を維持し、信頼性の高いマグネットを製作する
ことができる。さらに、この発明の超電導導体では、フ
ィラメント径の細いものを用いることによって、交流損
失を小さくし、変動電流や交流運転においても安定して
稼動することができるようになる。この発明の超電導導
体は、高速励磁においても安定な導体であるので、超電
導発電機等の大容量交流機器用導体として、有効に利用
されるものである。
Therefore, in the superconducting magnet around which the superconducting conductor of the present invention is wound, a high magnetic field can be generated. Further, the superconducting magnet can be made compact. In addition, by maintaining the soundness of the wires, superconducting characteristics and stability can be maintained, and a highly reliable magnet can be manufactured. Further, in the superconducting conductor according to the present invention, by using a thinner filament, the AC loss can be reduced, and the superconducting conductor can be operated stably even in a fluctuating current or AC operation. The superconducting conductor of the present invention is a conductor that is stable even in high-speed excitation, and thus is effectively used as a conductor for large-capacity AC equipment such as a superconducting generator.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、この発明に従う一実施例の1次撚線を示す断
面図である。 第2図は、第1図に示す1次撚線を撚り合わせた平角成
型撚撚線を示す断面図である。 第3図は、この発明に従う他の実施例の1次撚線を示す
断面図である。 第4図は、第3図に示す1次撚線を撚り合わせた平角成
型撚撚線を示す断面図である。 第5図は、従来例の1次撚線を示す断面図である。 図において、1,11は1次撚線、2,12は超電導素線、3,13
は平角成型撚撚線を示す。
FIG. 1 is a sectional view showing a primary stranded wire of one embodiment according to the present invention. FIG. 2 is a cross-sectional view showing a rectangular molded stranded wire obtained by twisting the primary stranded wires shown in FIG. FIG. 3 is a sectional view showing a primary stranded wire of another embodiment according to the present invention. FIG. 4 is a cross-sectional view showing a rectangular molded stranded wire obtained by twisting the primary stranded wires shown in FIG. FIG. 5 is a sectional view showing a conventional primary stranded wire. In the figure, 1,11 is the primary stranded wire, 2,12 is the superconducting wire, 3,13
Indicates a rectangular shaped stranded wire.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01B 12/08 H01B 13/00 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) H01B 12/08 H01B 13/00

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】絶縁被覆層を有する超電導素線を撚り合わ
せた1次撚線を撚り合わせて平角成型撚撚線とした超電
導導体において、 前記1次撚線を圧縮加工することによりボイド率を15%
以下にした後、撚り合わせることを特徴とする、超電導
導体。
1. A superconducting conductor which is formed by twisting a primary stranded wire obtained by twisting a superconducting element wire having an insulating coating layer into a rectangular shaped twisted stranded wire. 15%
A superconducting conductor characterized by being twisted after the following.
【請求項2】前記1次撚線の撚返しを60%から140%の
間で行なうことを特徴とする、請求項1に記載の超電導
導体。
2. The superconductor according to claim 1, wherein the twisting of the primary stranded wire is performed between 60% and 140%.
JP02056218A 1990-03-07 1990-03-07 Superconducting conductor Expired - Fee Related JP3143908B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02056218A JP3143908B2 (en) 1990-03-07 1990-03-07 Superconducting conductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02056218A JP3143908B2 (en) 1990-03-07 1990-03-07 Superconducting conductor

Publications (2)

Publication Number Publication Date
JPH03257716A JPH03257716A (en) 1991-11-18
JP3143908B2 true JP3143908B2 (en) 2001-03-07

Family

ID=13020967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02056218A Expired - Fee Related JP3143908B2 (en) 1990-03-07 1990-03-07 Superconducting conductor

Country Status (1)

Country Link
JP (1) JP3143908B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7214689B2 (en) * 2020-08-28 2023-01-30 矢崎総業株式会社 Compressed stranded conductor, method for producing compressed stranded conductor, insulated wire and wire harness

Also Published As

Publication number Publication date
JPH03257716A (en) 1991-11-18

Similar Documents

Publication Publication Date Title
JPH04106906A (en) High temperature superconducting coil
Kikuchi et al. Cu Stabilized $\hbox {Nb} _ {3}\hbox {Al} $ Strands for the High Field Accelerator Magnet
JP3143908B2 (en) Superconducting conductor
US4094059A (en) Method for producing composite superconductors
JP3718480B2 (en) Method for reducing AC losses in superconducting coils
JPH0377607B2 (en)
JPH06325632A (en) Superconductive flat square molded stranded wire
JP4150129B2 (en) Oxide superconducting compression molded conductor and manufacturing method thereof
JP3505894B2 (en) Compound superconducting wire
JP3324288B2 (en) Method for producing Al-stabilized Nb-Ti superconductor
JP2742436B2 (en) Method for producing compound superconducting stranded wire
JPS62285319A (en) Ac superconductor
JP2862874B2 (en) Superconducting molded stranded wire
JP2932515B2 (en) NbTi multi-core superconducting wire
JP2742437B2 (en) Method for producing compound superconducting stranded wire
JPH10162663A (en) Aluminum stabilized superconductor
JPH10125150A (en) Oxide superconducting molded stranded wire and its manufacture
JPH0146963B2 (en)
JP2000036221A (en) Compression molded conductor of oxide superconductor and manufacture thereof
JPH04132108A (en) Nb3al superconductor
JPH02126519A (en) Superconducting conductor
JPH07141930A (en) Nb3sn superconductor and manufacture of superconductive coil
JPH07114837A (en) Super quick response type nbti superconductor
JPH09147635A (en) Type a15 superconducting wire and its manufacture
JPH08212847A (en) Composite multicore superconducting wire

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090105

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees