JP2742437B2 - Method for producing compound superconducting stranded wire - Google Patents
Method for producing compound superconducting stranded wireInfo
- Publication number
- JP2742437B2 JP2742437B2 JP1033473A JP3347389A JP2742437B2 JP 2742437 B2 JP2742437 B2 JP 2742437B2 JP 1033473 A JP1033473 A JP 1033473A JP 3347389 A JP3347389 A JP 3347389A JP 2742437 B2 JP2742437 B2 JP 2742437B2
- Authority
- JP
- Japan
- Prior art keywords
- conductor
- wire
- stranded
- superconducting
- situ
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
Landscapes
- Superconductors And Manufacturing Methods Therefor (AREA)
- Processes Specially Adapted For Manufacturing Cables (AREA)
Description
【発明の詳細な説明】 「産業上の利用分野」 この発明は、超電導発電機の界磁巻線などとして好適
な交流用の化合物系超電導撚線の製造方法に関する。Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a compound superconducting stranded superconducting wire suitable for use as a field winding of a superconducting generator.
「従来の技術」 超電導線においては量子磁束線の運動などに起因して
発熱を生じる場合があり、このような場合に超電導線に
部分的に常電導の芽が発生し、超電導線の全体が常電導
状態に転位するおそれがある。そこで従来、このような
磁気的不安定性および常電導転位などを防止して超電導
線を安定化するために、以下に記載する技術が採用され
ている。"Conventional technology" In a superconducting wire, heat may be generated due to the movement of quantum flux lines, and in such a case, normal conduction buds are partially generated in the superconducting wire, and the entire superconducting wire becomes There is a risk of dislocation to the normal conduction state. Therefore, in order to stabilize the superconducting wire by preventing such magnetic instability, normal conduction dislocation, and the like, conventionally, the following technology has been adopted.
超電導体を銅などの良導電性の安定化母材の内部に埋
設する。特に、安定化母材を高純度の銅から形成する。A superconductor is buried inside a stable base material of good conductivity such as copper. In particular, the stabilizing matrix is formed from high-purity copper.
超電導体を数μ〜数十μmの径のフィラメント状に極
細化する。The superconductor is made extremely thin into a filament having a diameter of several μm to several tens μm.
多心線をツイスト加工する。Twist multi-core wire.
編組や成形撚線の構造を採用する。Adopt a braided or formed stranded wire structure.
超電導線を交流用として使用する場合、Cu−Ni合金な
どの高抵抗金属材料から安定化母材を構成し、超電導フ
ィラメント間に生じる結合電流を抑制する。When a superconducting wire is used for alternating current, a stabilizing base material is formed from a high-resistance metal material such as a Cu-Ni alloy to suppress a coupling current generated between superconducting filaments.
金属間化合物系の超電導体は極めて硬く、脆いので、
機械歪が加わると超電導特性が劣化する傾向があり、こ
のため超電導線に補強材を添設して機械歪が加わること
を阻止する。Intermetallic compound superconductors are extremely hard and brittle,
When the mechanical strain is applied, the superconductivity tends to deteriorate. Therefore, a reinforcing material is added to the superconducting wire to prevent the mechanical strain from being applied.
「発明が解決しようとする課題」 以上のような背景から、従来、交流用の超電導線の一
構造例として、Nb−Ti線等の線材を撚線化する方法など
が採用されているが、Nb3Snなどの化合物系の超電導線
材においては機械歪に弱い欠点があるために、交流用超
電導発電機等の導体としての応用例はほとんど見られな
かった。`` Problems to be Solved by the Invention '' From the background described above, conventionally, as a structural example of a superconducting wire for AC, a method of twisting a wire material such as an Nb-Ti wire has been adopted, Since compound-based superconducting wires such as Nb 3 Sn have weak defects in mechanical strain, there are few applications as conductors for superconducting generators for AC and the like.
そこで、化合物系超電導線の超電導発電機用としての
応用について検討してみると、最大の課題はコイル加工
した場合の機械歪に対する対策と通電時の交流損失を低
減することである。Therefore, when examining the application of the compound superconducting wire for a superconducting generator, the biggest problems are to countermeasure mechanical distortion in coil processing and to reduce AC loss during energization.
ここでコイル加工時の歪特性の低減には、Nb3Sn超電
導体を導体の中心側に配置し、外部側に安定化導体を配
置する構造を採用するならば、コイル加工時の超電導体
の曲がり量を最小にできるので歪を低減し得るが、この
構造を採用した場合、安定化導体を中心側に配置し、そ
の外部側に超電導体を配置した構造の超電導線に比較し
て交流損失が増加する問題がある。Here, in order to reduce the distortion characteristics at the time of coil processing, if a structure in which the Nb 3 Sn superconductor is arranged at the center side of the conductor and the stabilizing conductor is arranged outside is adopted, if the superconductor at the time of coil processing is adopted, Since the amount of bending can be minimized, distortion can be reduced.However, when this structure is adopted, the AC loss is lower than that of a superconducting wire in which a stabilizing conductor is placed on the center side and a superconductor is placed on the outside. There is a problem that increases.
なお、化合物系超電導線において、超電導金属間化合
物を構成する複数の元素を含み、拡散熱処理を施すこと
により超電導線となる加工可能な複合素線を形成し、こ
の複合素線の段階で撚線化を行い、撚線加工後に拡散熱
処理を施して超電導撚線を製造する方法が知られてい
る。The compound superconducting wire contains a plurality of elements constituting the superconducting intermetallic compound, and is subjected to diffusion heat treatment to form a workable composite wire that becomes a superconducting wire. There is known a method of producing a superconducting stranded wire by performing diffusion heat treatment after forming a stranded wire.
従ってこの方法を超電導発電機用の超電導撚線の製造
方法に適用することが検討されているが、前述した如く
撚線状に形成する超電導線にあっては、超電導線の1本
あたりの断面積を極めて小さく形成するので、拡散熱処
理を施す以前の加工可能な複合素線の状態であっても、
撚線の外周部には凹凸があり、撚線加工を繰り返す場合
に撚線の外周部が損傷し易いなどの理由から、成形性に
問題があり、撚線加工中に断線するなどのトラブルを生
じるおそれがある。また、撚線加工された状態の超電導
線は撚線間に空隙があって安定性が悪く、剛性不足な問
題があった。Therefore, application of this method to a method of manufacturing a superconducting stranded wire for a superconducting generator has been studied. However, as described above, in the case of a superconducting wire formed in a stranded shape, a break per one superconducting wire is required. Since the area is formed extremely small, even in the state of a composite wire that can be processed before performing diffusion heat treatment,
The outer periphery of the stranded wire has irregularities, and the outer periphery of the stranded wire is liable to be damaged when repeating the stranded wire. May occur. In addition, the superconducting wire in a state where the stranded wire is processed has a problem that there is a gap between the stranded wires, the stability is poor, and the rigidity is insufficient.
本発明は前記課題を解決するためになされたもので、
剛性が高く、撚線間の間隙が少なく、加工性にも優れる
とともに、超電導発電機用などの交流用として優れた構
造の化合物超電導撚線を製造する方法を提供することを
目的とする。The present invention has been made to solve the above problems,
It is an object of the present invention to provide a method for producing a compound superconducting stranded wire having high rigidity, a small gap between stranded wires, excellent workability, and an excellent structure for alternating current such as for a superconducting generator.
「課題を解決するための手段」 本発明は前記課題を解決するために、超電導金属間化
合物を構成する複数の元素を含み、拡散熱処理を施すこ
とにより超電導導体となる複合素線を用意するととも
に、良導電生の安定化導体を用意し、前記安定化導体の
外周に前記複合素線を撚線化して安定化導体の外方に撚
線導体部を設けた複合導体を形成し、この後に前記複合
導体に塑性加工を施して撚線導体部を変形させ、複合素
線間の空隙を閉塞して圧密撚線導体部を形成し、この後
に拡散熱処理を施して圧密撚線導体部に超電導金属間化
合物を生成させるものである。"Means for Solving the Problems" In order to solve the above problems, the present invention includes a plurality of elements constituting a superconducting intermetallic compound, and prepares a composite element wire which becomes a superconducting conductor by performing a diffusion heat treatment. Preparing a stabilizing conductor of good conductivity, forming a composite conductor in which the composite element wire is stranded on the outer periphery of the stabilizing conductor and a stranded conductor portion is provided outside the stabilizing conductor, and thereafter The composite conductor is subjected to plastic working to deform the stranded conductor, forming a consolidated stranded conductor by closing the gap between the composite wires, and then performing diffusion heat treatment to superconduct the stranded conductor. It forms an intermetallic compound.
「作用」 安定化導体の外方に撚線化して設けた複合素線を塑性
加工により圧密するので撚線化された複合素線間に存在
する空隙が閉塞され、撚線化部分の剛性が向上するとと
もに、撚線化された複合素線の外周部の凹凸が滑らかに
されるので加工性も向上する。また、複合素線拡散熱処
理前に撚線加工するので、撚線加工が容易にできる。"Action" Since the composite strand provided by twisting outside the stabilizing conductor is compacted by plastic working, the gap existing between the twisted composite strands is closed, and the rigidity of the twisted part is reduced. In addition, the unevenness of the outer peripheral portion of the twisted composite strand is smoothed, so that the workability is also improved. In addition, since the stranded wire processing is performed before the composite element wire diffusion heat treatment, the stranded wire processing can be easily performed.
以下に本発明を更に詳細に説明する。 Hereinafter, the present invention will be described in more detail.
第1図ないし第7図は本発明の方法をNb3Sn系の交流
用超電導撚線を製造する場合に適用した例について説明
するためのもので、この例の方法を実施するには、ま
ず、第1図に示す安定化導体1を用意する。FIGS. 1 to 7 are for explaining an example in which the method of the present invention is applied to the case of manufacturing an Nb 3 Sn-based superconducting stranded twisted wire for alternating current. A stabilizing conductor 1 shown in FIG. 1 is prepared.
この安定化導体1は、純銅からなるコア導体2と、こ
のコア導体2の外周面を被覆して設けられた拡散防止層
3と、この拡散防止層3の外周面を被覆して設けられた
合金層4とから構成されている。前記拡散防止層3はコ
ア導体2を構成する純銅との間に不要な化合物などを生
じない材料であって、融点の高いTaあるいはNbなどの金
属材料からなり、後述する拡散熱処理時にコア導体2に
外部から不要な元素が拡散しないようにするために設け
られる。また、前記合金層4は電気抵抗の高いCu−Ni合
金あるいはCu−Sn合金などからなるものである。The stabilizing conductor 1 is provided by covering a core conductor 2 made of pure copper, an anti-diffusion layer 3 provided to cover the outer peripheral surface of the core conductor 2, and an outer peripheral surface of the anti-diffusion layer 3. And an alloy layer 4. The diffusion preventing layer 3 is a material that does not generate an unnecessary compound or the like between the pure copper constituting the core conductor 2 and is made of a metal material such as Ta or Nb having a high melting point. Is provided to prevent unnecessary elements from diffusing from the outside. The alloy layer 4 is made of a Cu--Ni alloy or a Cu--Sn alloy having a high electric resistance.
なお、前記コア導体2の外方に拡散防止層3と合金層
4を形成するには、コア導体1の外方にメッキ処理を施
すか、あるいは、コア導体1の外方に前記材料からなる
テープあるいは箔などを被せて伸線加工するなどの手段
により容易に形成することができる。In order to form the diffusion preventing layer 3 and the alloy layer 4 outside the core conductor 2, plating is performed on the outside of the core conductor 1, or the material is formed on the outside of the core conductor 1. It can be easily formed by means such as drawing with a tape or foil.
次に前記安定化導体1の外方に撚線化して設けられる
複合素線を用意する。この例では、複合素線としてSnメ
ッキされたインサイチュー線を用いる。インサイチュー
線を得るには、所定成分のCu−Nb合金あるいはCu−Nb−
Sn合金などを溶製して第2図に示すインサイチューイン
ゴット6を作成し、このインサイチューインゴット6を
線引加工することにより作成される。前記インサイチュ
ーインゴット6は、CuあるいはCu−Sn製の金属基地の内
部に、Nbからなる無数の樹枝状晶が分散された構造をな
すもので、このインサイチューインゴット6を線引加工
することで金属基地内に繊維状のNbフィラメントが分散
された構造の第3図に示すインサイチュー線7を得るこ
とができる。Next, a composite element wire which is provided by twisting outside the stabilizing conductor 1 is prepared. In this example, an in-situ wire plated with Sn is used as the composite wire. To obtain an in-situ wire, a Cu-Nb alloy or Cu-Nb-
The in-situ ingot 6 shown in FIG. 2 is prepared by melting a Sn alloy or the like, and the in-situ ingot 6 is formed by drawing. The in-situ ingot 6 has a structure in which a myriad of dendrites composed of Nb are dispersed inside a metal base made of Cu or Cu-Sn, and is formed by drawing the in-situ ingot 6. An in-situ wire 7 shown in FIG. 3 having a structure in which fibrous Nb filaments are dispersed in a metal matrix can be obtained.
次にこのインサイチュー線7の外周面にメッキ処理に
よってSnの被覆層を形成して第8図に示すメッキインサ
イチュー線(複合素線)8を形成する。このメッキイン
サイチュー線8を用意したならば、メッキインサイチュ
ー線8を複数本用意してこれらを前記安定化導体1の外
方に撚線化して設けることにより、第5図に示す如く、
安定化導体1の外方に撚線導体部9を設けた1次複合導
体10を得る。Next, a coating layer of Sn is formed on the outer peripheral surface of the in-situ wire 7 by plating to form a plated in-situ wire (composite strand) 8 shown in FIG. When the plating in-situ wire 8 is prepared, a plurality of plating in-situ wires 8 are prepared, and these are provided by twisting outside the stabilizing conductor 1, as shown in FIG.
A primary composite conductor 10 having a stranded conductor portion 9 provided outside the stabilized conductor 1 is obtained.
1次複合導体10を作成したならば、この1次複合導体
10を180〜450℃の温度に所定時間加熱する低温熱処理を
施し、メッキインサイチュー線8の外面に形成されてい
る被覆層のSnをメッキインサイチュー線8の内部に拡散
させる。この低温熱処理において、Snの融点(231.9
℃)以上の温度に最初から加熱するとSnの被覆層がイン
サイチュー線7から溶け落ちるので、低温熱処理におい
ては、Snの融点よりも低い温度で、かつ、Snの拡散が進
行し易い温度、即ち、180〜220℃程度の温度で1次加熱
処理を数時間〜数十時間行って被覆層のSnをインサイチ
ュー線7の内部に十分に拡散させて被覆層を消失させる
ことが好ましい。この後に300〜450℃程度の温度で数時
間〜数十時間の熱処理を行ってSnの拡散を更に促進する
とともに、インサイチュー線7内におけるCuとSnの不要
な化合物相の生成を抑制してインサイチュー線7の金属
基地を安定なCu−Sn合金相とする。なお、前記低温熱処
理において450℃より高い温度で熱処理すると、SnとNb
の拡散反応が進行してNb3Snが生成し始め、インサイチ
ュー線7の加工性が低下するので好ましくない。Once the primary composite conductor 10 has been created,
10 is subjected to a low-temperature heat treatment at a temperature of 180 to 450 ° C. for a predetermined time, so that Sn of the coating layer formed on the outer surface of the plating in-situ wire 8 is diffused into the plating in-situ wire 8. In this low-temperature heat treatment, the melting point of Sn (231.9
° C) or more from the beginning, the coating layer of Sn melts off from the in-situ wire 7, so in the low-temperature heat treatment, the temperature is lower than the melting point of Sn, and the temperature at which the diffusion of Sn is easy to proceed, that is, It is preferable to perform primary heat treatment at a temperature of about 180 to 220 ° C. for several hours to several tens of hours to sufficiently diffuse Sn of the coating layer into the inside of the in-situ wire 7 so that the coating layer disappears. Thereafter, heat treatment is performed at a temperature of about 300 to 450 ° C. for several hours to several tens of hours to further promote the diffusion of Sn and to suppress the generation of unnecessary compound phases of Cu and Sn in the in-situ wire 7. The metal matrix of the in-situ wire 7 is a stable Cu-Sn alloy phase. When the heat treatment is performed at a temperature higher than 450 ° C. in the low-temperature heat treatment, Sn and Nb
The diffusion reaction of Nb 3 Sn proceeds to generate Nb 3 Sn, and the workability of the in-situ wire 7 deteriorates, which is not preferable.
次に低温熱処理後の1次複合導体10をダイス引きある
いは溝ロール加工などの塑性加工法により圧密し、撚線
導体部9を断面略矩形状に変形させて撚線導体部9に存
在する空隙を閉塞し、第6図に示すように圧密された圧
密撚線導体部11を有する線材12を形成する。この線材12
を作成する場合においては、既に前記低温熱処理によ
り、メッキインサイチュー線8における被覆層のSnが消
失されてインサイチュー線7の内部に拡散され、インサ
イチュー線7が強化されているので、径の小さなインサ
イチュー線7を使用した場合であっても塑性加工中に断
線することはない。Next, the primary composite conductor 10 after the low-temperature heat treatment is compacted by a plastic working method such as die drawing or groove roll processing, and the stranded conductor part 9 is deformed into a substantially rectangular cross section to form a void existing in the stranded conductor part 9. To form a wire rod 12 having a consolidated stranded conductor portion 11 as shown in FIG. This wire rod 12
In the case of forming the in-situ wire 7, the Sn in the coating layer in the plated in-situ wire 8 has already disappeared and diffused into the in-situ wire 7 by the low-temperature heat treatment, and the in-situ wire 7 has been strengthened. Even when a small in-situ wire 7 is used, there is no breakage during plastic working.
次に線材12を更に複数本集合し、撚線化して第7図に
示す2次撚線導体13を作成する。この2次撚線導体13を
作成する場合において、撚線導体部9が既に圧密されて
圧密撚線導体部11となって剛性が向上しているために、
加工中にこの部分が断線することはない。Next, a plurality of wires 12 are further assembled and twisted to form a secondary stranded conductor 13 shown in FIG. In the case where the secondary stranded conductor 13 is formed, the stranded conductor portion 9 has already been consolidated and becomes the consolidated stranded conductor portion 11 and the rigidity is improved.
This part does not break during processing.
次いで2次撚線導体13を500〜700℃に数十〜数百時間
加熱する拡散熱処理を施し、インサイチュー線7の内部
側に拡散させたSnとNbフィラメントを反応させ、Nb3Sn
超電導金属間化合物のフィラメントを生成させて第7図
に示す2次撚線構造の超電導撚線を得ることができる。
なお、前記拡散熱処理時において、合金層4に含有され
ているSnあるいはNiが安定化導体1の内部側にも拡散し
ようとするが、拡散防止層3で内部側への拡散を阻止さ
れるので、純銅製のコア導体2がSnなどの不要元素で汚
染されることがない。コア導体2がSnなどの元素で汚染
されると極低温におけるコア導体2の電気抵抗が上昇し
てコア導体2の安定化導体としての性能が低下するので
好ましくない。Next, the secondary stranded conductor 13 is subjected to a diffusion heat treatment of heating to 500 to 700 ° C. for several tens to several hundreds hours, and the Sn and the Nb filament diffused into the inside of the in-situ wire 7 react with each other, and Nb 3 Sn
By generating a filament of the superconducting intermetallic compound, a superconducting stranded wire having a secondary stranded structure shown in FIG. 7 can be obtained.
At the time of the diffusion heat treatment, Sn or Ni contained in the alloy layer 4 attempts to diffuse into the inside of the stabilized conductor 1, but the diffusion prevention layer 3 prevents the diffusion into the inside. In addition, the pure copper core conductor 2 is not contaminated with unnecessary elements such as Sn. If the core conductor 2 is contaminated with an element such as Sn, the electric resistance of the core conductor 2 at an extremely low temperature is increased, and the performance of the core conductor 2 as a stabilized conductor is undesirably reduced.
以上のように製造された超電導撚線は、塑性加工によ
り撚線部分が圧密されているために、剛性が高く、しか
も撚線部分の外周部が円滑になっている。更に、2次撚
線化された構造であるために、交流用として安定性も高
い。また、インサイチュー線7から作成された超電導導
体部分とコア導体2とが高電気抵抗の合金層4で遮断さ
れているので超電導導体部分とコア導体2との間に生じ
ようとする渦電流損失を低減することができる。しか
も、インサイチュー線7から超電導導体部分を製造して
いるので、臨界電流特性に優れ、機械歪を受けても超電
導特性の劣化が少ないなど機械強度の面でも優れてい
る。The superconducting stranded wire manufactured as described above has high rigidity because the stranded wire portion is compacted by plastic working, and the outer peripheral portion of the stranded wire portion is smooth. Furthermore, because of the secondary stranded structure, it has high stability for AC use. Further, since the superconducting conductor portion formed from the in-situ wire 7 and the core conductor 2 are interrupted by the alloy layer 4 having a high electric resistance, an eddy current loss that tends to occur between the superconducting conductor portion and the core conductor 2 Can be reduced. In addition, since the superconducting conductor portion is manufactured from the in-situ wire 7, it is excellent in critical current characteristics, and is excellent in mechanical strength such that the superconducting characteristics are less deteriorated even when subjected to mechanical strain.
従って前記構造の超電導撚線は超電導発電機の界磁巻
線用などとの交流用として好適である。Therefore, the superconducting stranded wire having the above-described structure is suitable for alternating current with a field winding of a superconducting generator.
なお、前記の例においては、超電導導体部分をインサ
イチュー線7を用いて形成したが、Nbの芯材にSnパイプ
を被せて縮径する操作を複数回行って製造した複合多心
線をインサイチュー線7の代用として用いても良いのは
勿論である。In the above-described example, the superconducting conductor portion was formed using the in-situ wire 7. However, a composite multi-core wire manufactured by performing a plurality of operations of reducing the diameter by covering an Nb core material with a Sn pipe is performed in an in-situ manner. Of course, it may be used as a substitute for the chewing wire 7.
また、前記の例では、2次撚線導体13を拡散熱処理し
て超電導撚線としたが、1次撚線導体10を拡散熱処理し
て超電導撚線を形成しても良い。In the above example, the secondary stranded conductor 13 is subjected to diffusion heat treatment to form a superconducting stranded wire, but the primary stranded conductor 10 may be subjected to diffusion heat treatment to form a superconducting stranded wire.
更に、前記の例においては、本発明方法をNb3Sn系の
超電導撚線の製造方法に適用した例について説明した
が、本発明の方法をV3Ga系、Nb3Ge、NB3Alなどの化合物
系超電導撚線の製造方法として適用できることは勿論で
ある。Furthermore, in the above example, an example was described in which the method of the present invention was applied to a method for producing a superconducting stranded Nb 3 Sn-based wire, but the method of the present invention was applied to V 3 Ga-based, Nb 3 Ge, NB 3 Al, etc. Of course, it can be applied as a method for producing a compound superconducting stranded wire.
「実施例」 Cu−40w%Nbの組成を有する棒状のインサイチューイ
ンゴットを溶製し、これに鍛造加工と押出加工と線引加
工を施し、更にその外周面に厚さ8μmのSnメッキ層を
被覆して直径0.2mmのインサイチュー線を得た。また、
純度99.9%の無酸素銅製のコア導体の周囲にNb層とCu−
Ni合金層を被覆してなる直径1.3mmの安定化導体を用意
し、この安定化導体の周囲に前記インサイチュー線を成
形撚線化して1次複合導体を作成した。"Example" A rod-shaped in-situ ingot having a composition of Cu-40w% Nb was melted, forged, extruded, and drawn, and an Sn plating layer having a thickness of 8 µm was formed on the outer peripheral surface thereof. Coating yielded a 0.2 mm diameter in-situ wire. Also,
Nb layer and Cu- around the 99.9% pure oxygen-free copper core conductor
A stabilized conductor having a diameter of 1.3 mm, which was coated with a Ni alloy layer, was prepared, and the in-situ wire was formed and twisted around the stabilized conductor to form a primary composite conductor.
この後N2ガス雰囲気中において180℃で96時間加熱し
た後に400℃で48時間加熱する低温熱処理を行ってイン
サイチュー線の内部にSnを拡散させてインサイチュー線
の一体化を行った。続いてこの1次複合導体にダイスを
用いた線引加工により塑性加工を施して外周打の撚線部
分を圧密して圧密導体部を形成する。この際、インサイ
チュー線の断線は生じなかった。Thereafter, a low-temperature heat treatment of heating at 180 ° C. for 96 hours and then heating at 400 ° C. for 48 hours in an N 2 gas atmosphere was performed to diffuse Sn into the in-situ wires to integrate the in-situ wires. Subsequently, the primary composite conductor is subjected to plastic working by wire drawing using a dice to consolidate the stranded wire portion formed on the outer periphery to form a consolidated conductor portion. At this time, no disconnection of the in-situ wire occurred.
この後に前記1次複合導体を第7図に示すように7本
用いて2次撚線化を行い、厚さ3mm、幅5mmの2次撚線導
体を得た。この2次撚線導体においては、巻線加工を容
易に行うことができた。Thereafter, as shown in FIG. 7, seven primary composite conductors were used to form a secondary stranded wire to obtain a secondary stranded conductor having a thickness of 3 mm and a width of 5 mm. In this secondary stranded conductor, winding processing could be easily performed.
前記巻線加工後、500〜550℃に150〜200時間加熱する
Nb3Sn生成用の拡散熱処理を施して高流用のNb3Sn超電導
撚線を得ることができた。After the winding process, heat to 500-550 ° C for 150-200 hours
Diffusion heat treatment for Nb 3 Sn generation was performed, and a Nb 3 Sn superconducting stranded wire for high flow was obtained.
「発明の効果」 以上説明したように本発明の方法は、安定化導体の外
方に撚線化して設けた撚線導体部を塑性加工により圧密
するので撚線導体部に存在する空隙を閉塞することがで
き、撚線部分の剛性を向上させることができるととも
に、撚線導体部の外周部に存在する凹凸を滑らかにでき
るので加工性を向上させることができる。また、複合素
線を拡散熱処理する前に撚線加工するので、断線などの
トラブルを起こすことなく撚線加工が容易にできる。[Effects of the Invention] As described above, the method of the present invention closes the voids existing in the stranded wire conductor portion by plasticizing the stranded wire portion provided by twisting the outside of the stabilized conductor. The rigidity of the stranded wire portion can be improved, and the unevenness existing on the outer peripheral portion of the stranded wire conductor can be smoothed, so that the workability can be improved. Further, since the composite wire is subjected to the stranded wire processing before the diffusion heat treatment, the stranded wire processing can be easily performed without causing trouble such as disconnection.
従って本発明方法により、超電導発電機の界磁巻線な
どの交流用として優れた超電導撚線を製造することがで
きる。Therefore, according to the method of the present invention, a superconducting stranded wire excellent for alternating current, such as a field winding of a superconducting generator, can be manufactured.
第1図ないし第7図は本発明をNb3Sn径の超電導撚線の
製造方法に適用した一例を説明するためのもので、第1
図は安定化導体の断面図、第2図はインサイチューイン
ゴットの断面図、第3図はインサイチュー線の断面図、
第4図はメッキインサイチュー線の断面図、第5図は1
次複合導体の断面図、第6図は圧密撚線導体の断面図、
第7図は2次撚線導体の断面図である。 1……安定化導体、2……コア導体、3……拡散防止
層、 4……合金層、6……インサイチューインゴット、7…
…インサイチュー線、8……メッキインサイチュー線
(複合素線)、9……撚線導体部、10……1次複合導
体、11……圧密撚線導体部、12……線材、13……2次撚
線導体。FIGS. 1 to 7 are diagrams for explaining an example in which the present invention is applied to a method for manufacturing a superconducting stranded wire having an Nb 3 Sn diameter.
The figure is a sectional view of the stabilizing conductor, FIG. 2 is a sectional view of the in-situ ingot, FIG. 3 is a sectional view of the in-situ line,
FIG. 4 is a cross-sectional view of the plating in-situ wire, and FIG.
Fig. 6 is a cross-sectional view of a consolidated stranded conductor,
FIG. 7 is a sectional view of the secondary stranded conductor. 1 stabilizing conductor, 2 core conductor, 3 anti-diffusion layer, 4 alloy layer, 6 in-situ ingot, 7
... in-situ wire, 8 ... plated in-situ wire (composite strand), 9 ... stranded conductor, 10 ... primary composite conductor, 11 ... consolidated stranded conductor, 12 ... wire, 13 ... ... Secondary stranded conductor.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 丹下 雅善 東京都江東区木場1丁目5番1号 藤倉 電線株式会社内 (72)発明者 河野 宰 東京都江東区木場1丁目5番1号 藤倉 電線株式会社内 (56)参考文献 特開 昭60−39705(JP,A) 特開 昭54−119681(JP,A) 特開 昭55−100611(JP,A) ──────────────────────────────────────────────────続 き Continued on the front page (72) Masayoshi Tange 1-5-1, Kiba, Koto-ku, Tokyo Inside Fujikura Electric Wire Co., Ltd. (72) Inventor Satoshi Kono 1-1-1, Kiba, Koto-ku, Tokyo Fujikura Electric Wire (56) References JP-A-60-39705 (JP, A) JP-A-54-119681 (JP, A) JP-A-55-100611 (JP, A)
Claims (1)
を含み、拡散熱処理を施すことにより超電導導体となる
複合素線を用意するとともに、良導電性の安定化導体を
用意し、前記安定化導体の外周に前記複合素線を撚線化
して安定化導体の外方に撚線導体部を設けた複合導体を
形成し、この後に前記複合導体に塑性加工を施して撚線
導体部を変形させ、複合素線間の空隙を閉塞して圧密撚
線導体部を形成し、この後に拡散熱処理を施して前記圧
密撚線導体部に超電導金属間化合物を生成させることを
特徴とする化合物系超電導撚線の製造方法。1. A composite element wire comprising a plurality of elements constituting a superconducting intermetallic compound and being subjected to a diffusion heat treatment to prepare a superconducting conductor, and a stabilizing conductor having good conductivity being prepared. The composite strand is twisted around the outer periphery of the conductor to form a composite conductor having a stranded conductor outside the stabilized conductor, and thereafter, the composite conductor is subjected to plastic working to deform the stranded conductor. And forming a consolidated stranded conductor by closing a gap between the composite strands, and thereafter performing a diffusion heat treatment to generate a superconducting intermetallic compound in the consolidated stranded conductor. Manufacturing method of stranded wire.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1033473A JP2742437B2 (en) | 1989-02-13 | 1989-02-13 | Method for producing compound superconducting stranded wire |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1033473A JP2742437B2 (en) | 1989-02-13 | 1989-02-13 | Method for producing compound superconducting stranded wire |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02213010A JPH02213010A (en) | 1990-08-24 |
JP2742437B2 true JP2742437B2 (en) | 1998-04-22 |
Family
ID=12387516
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1033473A Expired - Fee Related JP2742437B2 (en) | 1989-02-13 | 1989-02-13 | Method for producing compound superconducting stranded wire |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2742437B2 (en) |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54119681A (en) * | 1978-03-09 | 1979-09-17 | Showa Electric Wire & Cable Co | Method of producing super conductor |
JPS6039705A (en) * | 1983-08-15 | 1985-03-01 | 日本原子力研究所 | Aluminum stabilized superconductive conductor |
JPS60250506A (en) * | 1984-05-28 | 1985-12-11 | 株式会社東芝 | Compound superconductive wire blank |
-
1989
- 1989-02-13 JP JP1033473A patent/JP2742437B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH02213010A (en) | 1990-08-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA1092206A (en) | Superconducting composite conductor and method of manufacturing same | |
US4990411A (en) | Compound superconducting wire and method of manufacturing the same | |
WO2005081700A9 (en) | METHOD FOR PRODUCING (Nb, Ti)3Sn WIRE BY USE OF Ti SOURCE RODS | |
US4506109A (en) | Al-stabilized superconducting wire and the method for producing the same | |
US3838503A (en) | Method of fabricating a composite multifilament intermetallic type superconducting wire | |
US4084989A (en) | Method for producing a stabilized electrical superconductor | |
JP2742437B2 (en) | Method for producing compound superconducting stranded wire | |
JP2742436B2 (en) | Method for producing compound superconducting stranded wire | |
JP3045517B2 (en) | Compound based superconducting stranded wire and method for producing the same | |
JP4013335B2 (en) | Nb3Sn compound superconductor precursor wire and method for manufacturing the same, Nb3Sn compound superconductor conductor manufacturing method, and Nb3Sn compound superconductor coil manufacturing method | |
JPH08180752A (en) | Nb3sn superconductive wire and manufacture thereof | |
JP2874955B2 (en) | Method of manufacturing Nb (3) Sn superconducting wire for superconducting generator | |
JP2878390B2 (en) | Method of manufacturing Nb (3) Sn superconducting wire for superconducting generator | |
JPH05804B2 (en) | ||
JP2719155B2 (en) | Superconducting stranded wire manufacturing method | |
Sugimoto et al. | Development of Cu-Nb Reinforced Nb3Sn Wires | |
JP2742421B2 (en) | Superconducting wire and its manufacturing method | |
JP3143908B2 (en) | Superconducting conductor | |
JP2845905B2 (en) | Compound conducting wire for alternating current | |
JPH02103811A (en) | Compound superconducting wire | |
JP2742422B2 (en) | Method of manufacturing compound superconducting wire | |
JPS604573B2 (en) | Manufacturing method of compound hollow superconducting magnet | |
JPH04301322A (en) | Manufacture of niobium-tin superconducting wire | |
JPH087681A (en) | A3b type compound superconductive wire rod and manufacture thereof | |
JPS5936438B2 (en) | Method for manufacturing compound-based hollow superconducting wire |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |