JP3042027B2 - Sealed lead-acid battery - Google Patents

Sealed lead-acid battery

Info

Publication number
JP3042027B2
JP3042027B2 JP3141663A JP14166391A JP3042027B2 JP 3042027 B2 JP3042027 B2 JP 3042027B2 JP 3141663 A JP3141663 A JP 3141663A JP 14166391 A JP14166391 A JP 14166391A JP 3042027 B2 JP3042027 B2 JP 3042027B2
Authority
JP
Japan
Prior art keywords
battery
separator
sealed lead
acid battery
electrode plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP3141663A
Other languages
Japanese (ja)
Other versions
JPH04366546A (en
Inventor
宗良 野田
幸弘 小野田
正史 若松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=15297285&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3042027(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP3141663A priority Critical patent/JP3042027B2/en
Publication of JPH04366546A publication Critical patent/JPH04366546A/en
Application granted granted Critical
Publication of JP3042027B2 publication Critical patent/JP3042027B2/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Cell Separators (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は密閉形鉛蓄電池の改良に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in a sealed lead-acid battery.

【0002】[0002]

【従来の技術】従来より密閉形鉛蓄電池はどのような姿
勢,設置方向で用いても希硫酸電解液の電池外への漏れ
を防ぐためと、極板と電解質との電気化学的接触を保つ
ため、希硫酸電解液は実質的に非流動化されている。こ
の電解液を非流動化する方法として現在大別して次の2
種類の方法がある。
2. Description of the Related Art Conventionally, a sealed lead-acid battery is used in any posture and installation direction to prevent the diluted sulfuric acid electrolyte from leaking out of the battery and to maintain the electrochemical contact between the electrode plate and the electrolyte. Therefore, the diluted sulfuric acid electrolyte is substantially non-fluidized. At present, the following two methods can be used to make this electrolyte non-fluidized.
There are different ways.

【0003】1つは電解質にシリカ等の無機酸化物を添
加することにより、ゲル化して非流動化する方法(ゲル
式密閉形鉛蓄電池とよばれる。)であり、もう1つはガ
ラス繊維を主成分とした高保液性のセパレータを極板間
に配し、このセパレータ中に自由に遊離できない程度に
電解液を含浸させる方法(リテーナ式密閉形鉛蓄電池と
よばれる。)である。ゲル式の場合電解液を豊富に保持
できる反面、寿命の面では極板に均一で高い圧力をかけ
ることができないため、いわゆる陽極板の軟化、脱落現
象による容量劣化をおこし寿命が短かった。これに対し
て、リテーナ式の場合セパレータの柔軟性と反発力を利
用して極板群に均一な圧力を加えることができるので、
軟化,脱落を抑え長寿命の電池となり、現在リテーナ式
が多く利用されている。
[0003] One is a method in which an inorganic oxide such as silica is added to an electrolyte to make it gel and become non-fluidized (referred to as a gel-type sealed lead-acid battery). This is a method in which a separator having high liquid retention as a main component is disposed between electrode plates, and an electrolytic solution is impregnated to such an extent that the separator cannot be freely released into the separator (this is referred to as a retainer type sealed lead storage battery). In the case of the gel type, the electrolyte solution can be retained abundantly, but in terms of life, it is impossible to apply a uniform and high pressure to the electrode plate. Therefore, the capacity is deteriorated due to the so-called softening and falling off of the anode plate, and the life is short. On the other hand, in the case of the retainer type, uniform pressure can be applied to the electrode plate group using the flexibility and repulsion of the separator,
It becomes a long-life battery by suppressing softening and falling off, and the retainer type is currently widely used.

【0004】リテーナ式の場合そのセパレータとして
は、セパレータ内に電解液を保持しておくためと、液式
電池でみられるようなサイクル中に電解液上下で比重差
がおこる成層化現象を防止するために毛細管現象による
電解液の上下移動をおさえるようセパレータの最大孔径
は、8〜15μmのものを使用していた。
[0004] As a separator when the retainer expression, and to hold the electrolyte solution in the separator, the formation layering phenomenon specific gravity difference Ru to put in an electrolytic solution up and down during the cycle as seen in the liquid type battery a maximum pore diameter of separators so as to suppress the vertical movement of <br/> electrolyte by capillary action to prevent had with the existing 8 to 15 m.

【0005】[0005]

【発明が解決しようとする課題】しかしこのような最大
孔径8〜15μmのセパレータは、孔径を小さくするた
め細いガラス繊維を使ったり、ガラス繊維の充填密度を
上げることによって作成しているので、電解液を保液す
ることのできる充填体積は、80〜90%に制限されて
いた。そのため電池から取り出せる容量も制限されてい
た。またこのようなセパレータは生産性のよくない細い
ガラス繊維を使用すること、およびガラス繊維の充填量
を多く必要とするため高価なものとなっている。さらに
孔径の小さなセパレータは液体の吸液スピードがおそい
ため、電池内への電解液の注液に時間がかかり生産性が
悪いなどの問題があった。
However, since such a separator having a maximum pore size of 8 to 15 μm is made by using thin glass fibers to reduce the pore size or by increasing the packing density of the glass fibers, electrolytic separators are used. The filling volume that can hold the liquid was limited to 80 to 90%. Therefore, the capacity that can be taken out of the battery is also limited. Further, such a separator is expensive because it uses thin glass fibers with low productivity and requires a large amount of glass fibers . Further, since the separator having a small pore diameter has a low liquid absorption speed, it takes a long time to inject the electrolytic solution into the battery, which causes a problem such as low productivity.

【0006】またこの構成の電池を電槽内で化成する場
合、セパレータの保液性が低いため極板と電解液の接触
に問題があり、極板の化成上がり状態が悪く放電容量は
化成済極板に比べて5%程度低かった。
Further, when a battery having this structure is formed in a battery case, there is a problem in contact between the electrode plate and the electrolytic solution due to the low liquid retaining property of the separator, the electrode plate is poorly formed, and the discharge capacity is already formed. It was about 5% lower than the electrode plate.

【0007】[0007]

【課題を解決するための手段】本発明は上記問題点を解
決するため、最大孔径が15〜30μmのガラス繊維を
主成分としたセパレータを用い、電解液にシリカ粒子を
0.5〜2.0重量%分散させてゲル化させたことを特
徴とするものである。
In order to solve the above-mentioned problems, the present invention uses a separator mainly composed of glass fiber having a maximum pore diameter of 15 to 30 μm, and contains silica particles in an electrolyte of 0.5 to 2 μm. It is characterized by being dispersed and gelled by 0% by weight.

【0008】[0008]

【作用】電解液中にシリカを分散させることにより、セ
パレータの網目中で電解液がゲル化しセパレータの上下
における電解液の移動が抑えられる。このことによりサ
イクル中における成層化を防止できる。シリカを添加し
た場合のセパレータの最大孔径は15〜30μmが適切
である。15μm以下では電解液の移動が悪くなりすぎ
て放電容量が減少する。また30μm以上では毛細管
象による保液性が悪くなり放電容量が減少する。シリカ
の添加量は0.5〜2.0重量%が適切であり0.5%
以下ではゲル化状態が悪く成層化防止効果が小さい。逆
に2.0%以上ではサイクル進行とともに電解液の
化が進行して電池の内部抵抗が増大し放電容量が減少す
る。
By dispersing silica in the electrolytic solution, the electrolytic solution gels in the mesh of the separator and the movement of the electrolytic solution above and below the separator is suppressed. This can prevent stratification during the cycle. When silica is added, the maximum pore size of the separator is suitably 15 to 30 μm. If the thickness is less than 15 μm, the movement of the electrolyte becomes too bad, and the discharge capacity decreases. The discharge capacity becomes poor liquid retaining by the hair tubule current <br/> elephants decreases with 30μm or more. The addition amount of silica is suitably 0.5 to 2.0% by weight and 0.5%
Below, the gelation state is poor and the effect of preventing stratification is small. The cycle proceeds in reverse to 2.0% or more by gelation of the electrolytic solution progresses increases the internal resistance of the battery discharge capacity decreases.

【0009】最大孔径が15〜30μmのセパレータ
は、ガラス繊維の充填密度を低くおさえることができる
ので、電解液の充填体積は90〜96%まで保液可能と
なり、放電容量を向上させることができる。さらに、セ
パレータとして細いガラス繊維の使用や充填密度を上げ
なくてもよいため安価なものとなる。また孔径が大きい
ことによりセパレータの吸液スピードが速くなって、電
池内への電解液の注液が速くでき生産性を向上させるこ
とができる。
The separator having a maximum pore size of 15 to 30 μm can keep the filling density of the glass fiber low, so that the filling volume of the electrolyte can be maintained up to 90 to 96%, and the discharge capacity can be improved. . Furthermore, since it is not necessary to use thin glass fiber as a separator or to increase the packing density, the separator is inexpensive. In addition, since the pore diameter is large, the liquid absorbing speed of the separator is increased, and the injection of the electrolytic solution into the battery is accelerated, so that the productivity can be improved.

【0010】さらに電槽内化成時には、保液性の高いセ
パレータを使用することにより極板と電解液の接触はよ
くなり、化成上がり状態は化成済み極板と同程度にな
り、放電容量を改善することができる。
[0010] Further, during formation in a battery case, the use of a separator having a high liquid retaining property improves the contact between the electrode plate and the electrolytic solution, and the formation state is the same as that of the formed electrode plate, thereby improving the discharge capacity. can do.

【0011】[0011]

【実施例】本発明の実施例を従来との比較で説明する。
最大孔径10,20,35μmの3種類のガラス繊維セ
パレータを用いて極板高さ230mm,幅140mmで定格
容量200Ah(10時間率)の未注液の電池を組みた
て、(表1)に示すような組み合せで、注液を行った。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described in comparison with a conventional example.
Using three types of glass fiber separators having a maximum pore diameter of 10, 20, and 35 μm, an unpoured battery having an electrode plate height of 230 mm, a width of 140 mm, and a rated capacity of 200 Ah (10 hour rate) was assembled. Injections were made in the combinations shown.

【0012】[0012]

【表1】 [Table 1]

【0013】No.1電池は従来例で注液時間に約2分か
かった。No.2〜8の電池ではセパレータの最大孔径が
大きいため、吸液スピードがく注液時間は約1分30
秒であった。また注液量は従来例に比べて約5%多く入
れることができた。そのため初期容量は、No.1電池に
比べNo.2〜8電池で約5〜7%向上した。最大孔径3
5μmのNo.9の電池では、孔径が大きすぎて毛細管
象による保液能力が低下し、初期容量は従来例以下であ
った。またここで紹介した電池よりも小容量の電池でも
同じ結果を得た。
The No. 1 battery took about 2 minutes in the conventional example. Since a large maximum pore size of the separator in batteries Nanba2~8, the liquid suction speed rather fast pouring time is about 1 minute 30
Seconds. Also, the amount of liquid injected could be increased by about 5% as compared with the conventional example. Therefore, the initial capacity was improved by about 5 to 7% in the No. 2 to 8 batteries compared to the No. 1 battery. Maximum hole diameter 3
In No.9 battery of 5 [mu] m, the liquid retaining capacity decreases due to hair tubule current <br/> elephant pore size is too large, the initial capacity was less than the prior art. The same result was obtained with a battery with a smaller capacity than the battery introduced here.

【0014】次にこれらの電池のサイクル寿命試験をお
こなった。試験条件は、20Aで5時間放電を行い、2
0Aで6時間充電するパターンを1サイクルとし、50
サイクルおきに10時間率容量を測定した。その結果を
図1に示す。No.2の電池の容量低下が最も大きく試験
終了後、電池を調査すると、電池の下部の比重が1.3
2で上部が1.24であり比重差が0.08あり、また
極板下部がサルフェーションを起こしていた。No.1,
4〜7電池では、下部の比重が1.27で上部が1.2
6であり、成層化を防止していた。シリカを2.5%添
加したNo.8の電池は、サイクルの進行によって電解液
が減りゲル化がさらに進行して、電池の内部抵抗が増大
し放電容量が減少した。
Next, cycle life tests of these batteries were performed. The test conditions were as follows: discharge at 20 A for 5 hours;
The pattern of charging for 6 hours at 0A is defined as one cycle,
The 10 hour rate capacity was measured every cycle. The result is shown in FIG. After the test was completed, the battery of No. 2 had the largest decrease in capacity.
In Example 2, the upper portion was 1.24, the specific gravity difference was 0.08, and the lower portion of the electrode plate was sulphated. No.1,
For 4 to 7 batteries, the specific gravity of the lower part is 1.27 and the specific gravity of the upper part is 1.2.
6, which prevented stratification. In the battery of No. 8 to which 2.5% of silica was added, the electrolytic solution decreased due to the progress of the cycle, the gelation further advanced, the internal resistance of the battery increased, and the discharge capacity decreased.

【0015】上記の電池は化成済みの極板を使用してい
たが、従来例のNo.10電池と最大孔径20μmのセパ
レータにシリカを1.0%添加したNo.11電池につい
て電槽内化成をおこなった。No.11電池は化成中極板
からのガス発生による電解液の撹拌作用によりシリカは
ゲル化することなく化成後ゲル化が進行した。従来例N
o.10電池の初期容量は化成済み極板を用いたNo.1電
池に比べ5%低かった。またNo.11電池の初期容量は
同じ構成の化成済み極板を用いたNo.5電池と同程度で
あり、従来例No.10電池に比べ10%以上高かった。
これらの電池を調査すると従来例No.10電池は、セパ
レータの保液性が低いため極板と電解液の接触に問題が
あり、極板の化成上がり状態が悪く未化成化合物の硫酸
鉛が正極板に約8%残っていた。本発明によるNo.11
電池では、保液性の高いセパレータを使用できるので極
板と電解液の接触は良くなり、極板の化成上がり状態は
化成済み極板と同程度で正極板の硫酸鉛量は、約2%で
あった。
Although the above-mentioned batteries used electrode plates which had already been formed, the No. 10 battery of the conventional example and the No. 11 battery in which 1.0% silica was added to a separator having a maximum pore diameter of 20 μm were formed in a battery case. Was done. In the No. 11 battery, the silica was not gelled by the agitating action of the electrolytic solution due to gas generation from the electrode plate during the formation, but the gelation proceeded after the formation. Conventional example N
The initial capacity of the o.10 battery was 5% lower than that of the No. 1 battery using the formed electrode plate. Also, the initial capacity of the No. 11 battery was about the same as that of the No. 5 battery using the converted electrode plate having the same configuration, and was 10% or more higher than the No. 10 battery of the conventional example.
Investigation of these batteries revealed that the conventional battery No. 10 had a problem in contact between the electrode plate and the electrolyte solution due to the low liquid retention of the separator, the electrode plate was poorly formed, and the unformed chemical compound lead sulfate was used as the positive electrode. About 8% remained on the board. No. 11 according to the present invention
In a battery, a separator with high liquid retention can be used, so that the contact between the electrode plate and the electrolytic solution is improved. Met.

【0016】[0016]

【発明の効果】以上に詳しく説明したように本発明の方
法によれば、最大孔径が大きな保液性の高いセパレータ
を使用することにより安価で生産性も高く、放電容量が
大きい密閉形鉛蓄電池を得ることが可能である。
As described in detail above, according to the method of the present invention, the use of a separator having a large maximum pore size and a high liquid retaining property enables the use of a sealed lead-acid battery which is inexpensive, has high productivity, and has a large discharge capacity. It is possible to obtain

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例および比較例の充放電サイクル
数と放電容量の関係を示す図
FIG. 1 is a diagram showing the relationship between the number of charge / discharge cycles and the discharge capacity in Examples and Comparative Examples of the present invention.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭62−136750(JP,A) 特開 昭61−269852(JP,A) 特開 平3−43954(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 2/16 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-62-136750 (JP, A) JP-A-61-269852 (JP, A) JP-A-3-43954 (JP, A) (58) Field (Int.Cl. 7 , DB name) H01M 2/16

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】ガラス繊維を主成分としたセパレータと
正,負極板からなる極板群を有する密閉形鉛蓄電池にお
いて、前記セパレータの最大孔径が15〜30μmであ
り、かつ希硫酸電解液にシリカ粒子を0.5〜2.0重
量%分散させてゲル化させたことを特徴とする密閉形鉛
蓄電池。
1. A sealed lead-acid battery having a separator mainly composed of glass fiber and an electrode group consisting of positive and negative electrodes, wherein the separator has a maximum pore size of 15 to 30 μm, and the diluted sulfuric acid electrolyte contains silica. A sealed lead-acid battery in which particles are dispersed and gelled by 0.5 to 2.0% by weight.
【請求項2】前記極板群の化成を群構成後の電槽内で行
う請求項1記載の密閉形鉛蓄電池。
2. The sealed lead-acid battery according to claim 1, wherein the formation of the electrode group is performed in a battery case after the group is formed.
JP3141663A 1991-06-13 1991-06-13 Sealed lead-acid battery Ceased JP3042027B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3141663A JP3042027B2 (en) 1991-06-13 1991-06-13 Sealed lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3141663A JP3042027B2 (en) 1991-06-13 1991-06-13 Sealed lead-acid battery

Publications (2)

Publication Number Publication Date
JPH04366546A JPH04366546A (en) 1992-12-18
JP3042027B2 true JP3042027B2 (en) 2000-05-15

Family

ID=15297285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3141663A Ceased JP3042027B2 (en) 1991-06-13 1991-06-13 Sealed lead-acid battery

Country Status (1)

Country Link
JP (1) JP3042027B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102103307B1 (en) * 2018-10-22 2020-04-23 주식회사 한국아트라스비엑스 AGM battery manufacturing method using electrolytic solution containing colloidal silica in a container formation process and AGM battery

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1495502A4 (en) 2002-02-07 2006-12-13 Kvg Technologies Inc Lead acid battery with gelled electrolyte formed by filtration action of absorbent separatorscomma ; electrolyte thereforcomma ; and absorbent separators therefor
JP2006185743A (en) * 2004-12-27 2006-07-13 Furukawa Battery Co Ltd:The Control valve type lead-acid battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102103307B1 (en) * 2018-10-22 2020-04-23 주식회사 한국아트라스비엑스 AGM battery manufacturing method using electrolytic solution containing colloidal silica in a container formation process and AGM battery

Also Published As

Publication number Publication date
JPH04366546A (en) 1992-12-18

Similar Documents

Publication Publication Date Title
JP2003123760A (en) Negative electrode for lead-acid battery
JP3042027B2 (en) Sealed lead-acid battery
JP3555177B2 (en) Sealed lead-acid battery
JP2949839B2 (en) Negative gas absorption sealed lead-acid battery
JP3146438B2 (en) Sealed lead-acid battery
JP2000348715A (en) Manufacture of lead-acid battery
JP2000149932A (en) Lead-acid battery and its manufacture
JP2559610B2 (en) Method for manufacturing sealed lead acid battery
JP2001126752A (en) Paste-type sealed lead-acid battery and manufacturing method therefor
JP2002110125A (en) Lead-acid battery and its manufacturing method
JP2006185743A (en) Control valve type lead-acid battery
JPH10199562A (en) Sealed lead-acid battery
JP3221154B2 (en) Sealed lead-acid battery
JP2958790B2 (en) Sealed lead-acid battery
JP2591975B2 (en) Sealed clad type lead battery
JP2855706B2 (en) Sealed lead-acid battery
JP2002343359A (en) Sealed type lead storage battery
JP2855677B2 (en) Sealed lead-acid battery
JPH06187966A (en) Sealed lead-acid battery
JPH0536395A (en) Sealed alkaline accumulator
JPH04149968A (en) Sealed-type lead secondary battery
JPH0355757A (en) Lead storage battery
JPH05326011A (en) Sealed lead-acid battery
JPH0513081A (en) Lead-acid battery
JPH0654661B2 (en) Sealed lead acid battery

Legal Events

Date Code Title Description
RVOP Cancellation by post-grant opposition