JP2959683B2 - Method for producing high-purity alumina fiber molded body - Google Patents
Method for producing high-purity alumina fiber molded bodyInfo
- Publication number
- JP2959683B2 JP2959683B2 JP3124389A JP12438991A JP2959683B2 JP 2959683 B2 JP2959683 B2 JP 2959683B2 JP 3124389 A JP3124389 A JP 3124389A JP 12438991 A JP12438991 A JP 12438991A JP 2959683 B2 JP2959683 B2 JP 2959683B2
- Authority
- JP
- Japan
- Prior art keywords
- fiber
- alumina
- precursor
- molded body
- calcined
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/63—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
- C04B35/632—Organic additives
- C04B35/634—Polymers
- C04B35/63448—Polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- C04B35/63488—Polyethers, e.g. alkylphenol polyglycolether, polyethylene glycol [PEG], polyethylene oxide [PEO]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B30/00—Compositions for artificial stone, not containing binders
- C04B30/02—Compositions for artificial stone, not containing binders containing fibrous materials
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/10—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
- C04B35/111—Fine ceramics
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/62227—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres
- C04B35/62231—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres based on oxide ceramics
- C04B35/62236—Fibres based on aluminium oxide
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/62605—Treating the starting powders individually or as mixtures
- C04B35/62625—Wet mixtures
- C04B35/6264—Mixing media, e.g. organic solvents
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/63—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
- C04B35/6303—Inorganic additives
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/71—Ceramic products containing macroscopic reinforcing agents
- C04B35/78—Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
- C04B35/80—Fibres, filaments, whiskers, platelets, or the like
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B38/00—Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
- C04B38/007—Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof characterised by the pore distribution, e.g. inhomogeneous distribution of pores
- C04B38/0074—Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof characterised by the pore distribution, e.g. inhomogeneous distribution of pores expressed as porosity percentage
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F9/00—Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
- D01F9/08—Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3205—Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
- C04B2235/3206—Magnesium oxides or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3217—Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3217—Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
- C04B2235/322—Transition aluminas, e.g. delta or gamma aluminas
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3231—Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3232—Titanium oxides or titanates, e.g. rutile or anatase
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3231—Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3241—Chromium oxides, chromates, or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3231—Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3244—Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3231—Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3256—Molybdenum oxides, molybdates or oxide forming salts thereof, e.g. cadmium molybdate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/327—Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3272—Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3281—Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3296—Lead oxides, plumbates or oxide forming salts thereof, e.g. silver plumbate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/44—Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/44—Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
- C04B2235/443—Nitrates or nitrites
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/44—Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
- C04B2235/444—Halide containing anions, e.g. bromide, iodate, chlorite
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/44—Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
- C04B2235/448—Sulphates or sulphites
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/44—Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
- C04B2235/449—Organic acids, e.g. EDTA, citrate, acetate, oxalate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/52—Constituents or additives characterised by their shapes
- C04B2235/5208—Fibers
- C04B2235/526—Fibers characterised by the length of the fibers
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/52—Constituents or additives characterised by their shapes
- C04B2235/5208—Fibers
- C04B2235/5264—Fibers characterised by the diameter of the fibers
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/54—Particle size related information
- C04B2235/5418—Particle size related information expressed by the size of the particles or aggregates thereof
- C04B2235/5454—Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/60—Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
- C04B2235/602—Making the green bodies or pre-forms by moulding
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6562—Heating rate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/72—Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/74—Physical characteristics
- C04B2235/77—Density
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/96—Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S264/00—Plastic and nonmetallic article shaping or treating: processes
- Y10S264/19—Inorganic fiber
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Nanotechnology (AREA)
- General Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Composite Materials (AREA)
- General Chemical & Material Sciences (AREA)
- Textile Engineering (AREA)
- Physics & Mathematics (AREA)
- Inorganic Fibers (AREA)
- Compositions Of Oxide Ceramics (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、高温断熱材や触媒担体
などとして好適な高い耐熱性を有する高純度アルミナ繊
維成形体の製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a high-purity alumina fiber molded article having high heat resistance and suitable as a high-temperature heat insulating material or a catalyst carrier.
【0002】[0002]
【従来の技術】アルミナ系繊維は、高い強度と優れた耐
熱性を有する材料であり、綿状あるいは成形体の形で使
用されているが、特にアルミナ系繊維を各種バインダー
成分やマトリックス成分を用いて成形した成形体は、嵩
密度が小さく軽量で、断熱効果も大きいため高温断熱材
などに好適である。2. Description of the Related Art Alumina-based fibers are materials having high strength and excellent heat resistance, and are used in the form of flocculent or molded products. In particular, alumina-based fibers are prepared by using various binder components and matrix components. The molded article formed by molding has a small bulk density, is lightweight, and has a large heat insulating effect, and thus is suitable for a high-temperature heat insulating material or the like.
【0003】これらのアルミナ系繊維の成形体を製造す
る方法としては、従来、アルミナ、アルミナーシリカあ
るいはアルミナーシリカーホウ素系セラミックス繊維を
適当な長さに切断し、これにシリカ繊維やアルミナゾ
ル、シリカゾルなどの無機バインダーあるいは有機バイ
ンダーを加えて成形乾燥し製造する方法等が知られてい
る(例えば、特開昭59−152281号公報、特開昭
61−141683号公報、特開昭64−42373号
公報など)。さらにこれらの方法により製造された成形
体を耐熱性向上を目的としてさらに適当な温度で焼成す
る方法もある。[0003] As a method of producing these alumina-based fiber compacts, conventionally, alumina, alumina-silica or alumina-silica-boron-based ceramic fibers are cut into appropriate lengths, which are then cut into silica fibers, alumina sol, or silica sol. For example, there is known a method in which an inorganic binder or an organic binder such as described above is added and molded and dried to produce (for example, JP-A-59-152281, JP-A-61-141683, and JP-A-64-42373). Gazettes). Furthermore, there is a method of firing the molded body produced by these methods at a more appropriate temperature for the purpose of improving heat resistance.
【0004】要するに、上記従来技術では、所望の強
度、耐熱性等を実現するため原料として焼成後の繊維を
用い、かつ繊維の焼結性を補うためバインダーを必須成
分として含有する構成となっている。[0004] In short, the above-mentioned prior art uses a fiber after firing as a raw material in order to realize desired strength, heat resistance and the like, and contains a binder as an essential component to supplement the sinterability of the fiber. I have.
【0005】しかしながら、これらの方法により製造さ
れたアルミナ、アルミナーシリカあるいはアルミナーシ
リカーホウ素系セラミックス繊維成形体では使用に際し
高温時の熱収縮によるひび割れが発生し易いなど耐熱性
に問題がある。また、1000℃以上の温度で焼成して
得られるアルミナ繊維を使用する場合には、高純度アル
ミナ繊維成形体は得られるが繊維自体の焼結性が低いた
めバインダーを添加しても繊維どうしの焼結が不十分で
あり、成形体の強度が低くなったり、使用場面で高温時
に繊維の結晶化が進み成形体の表面から繊維が脱落し易
いという問題がある。However, the alumina, alumina-silica or alumina-silica-boron-based ceramic fiber molded bodies produced by these methods have a problem in heat resistance such that cracks due to thermal shrinkage at high temperatures are liable to occur when used. When alumina fibers obtained by firing at a temperature of 1000 ° C. or higher are used, a high-purity alumina fiber molded body is obtained, but the sinterability of the fibers themselves is low. There is a problem that the sintering is insufficient, the strength of the molded body is reduced, and the fibers are easily crystallized at the time of use in a high temperature, and the fibers easily fall off from the surface of the molded body.
【0006】一方、アルミナ、シリカ、ジルコニア等の
前駆体繊維を成形し焼成することで製造時のエネルギー
消費を少なくし、強度の高い繊維質耐火材を得る方法も
提案されている(特公平2−25873号公報)。しか
し、この方法では前駆体繊維が保存時に癒着し溶媒中に
分散させ抄造・成形する際に繊維形状の維持が難しい、
焼成時の収縮が大きいためひび割れが発生し易いなどの
問題がある。On the other hand, a method has been proposed in which a precursor fiber of alumina, silica, zirconia or the like is molded and fired to reduce energy consumption during production and obtain a fibrous refractory material having high strength (Japanese Patent Publication No. Hei 2 (1994)). -25873). However, in this method, it is difficult to maintain the fiber shape when the precursor fiber adheres at the time of storage and is dispersed and dispersed in a solvent, and is formed and molded.
There is a problem that cracks easily occur due to large shrinkage during firing.
【0007】[0007]
【発明が解決しようとする課題】前述従来技術の問題点
を要約すれば、原料として1000℃以上で焼成された
繊維を用いる場合は、アルミナが高純度でなければ充分
な耐熱性、強度等が得られない一方、高純度化すると焼
結性不充分により強度低下や成形体表面からの繊維剥離
等を招く。更に、1000℃以上で焼成した繊維を使用
するため製造時のエネルギー消費が大きい。又、原料と
して前駆体繊維を用いる場合は、強度の高い耐熱性の優
れた成形体を低エネルギー消費で得ることが可能である
反面、前駆体繊維の取扱いが容易でなく、保存中に癒着
し、成形体が得られない場合もある。To summarize the problems of the prior art described above, when fibers fired at 1000 ° C. or higher are used as raw materials, sufficient heat resistance, strength, etc. are obtained unless alumina is of high purity. On the other hand, if it is not obtained, if it is highly purified, the sinterability will be insufficient and the strength will be reduced and the fiber will be peeled off from the surface of the molded product. Furthermore, energy consumption during production is large because fibers fired at 1000 ° C. or higher are used. When precursor fibers are used as a raw material, a molded article having high strength and excellent heat resistance can be obtained with low energy consumption, but the handling of the precursor fibers is not easy, and the precursor fibers adhere during storage. In some cases, a molded product cannot be obtained.
【0008】本発明は、上記従来技術の現状に鑑み、簡
単なプロセスにより軽量、高強度で耐熱性に優れた高純
度アルミナ繊維成形体を安定的に製造する方法を提供す
ることを目的とする。かかる成形体は高温断熱材、各種
複合材料の基材あるいは触媒担体などとして極めて有用
である。The present invention has been made in view of the above-mentioned state of the art, and has as its object to provide a method for stably producing a high-purity alumina fiber molded article having a light weight, high strength and excellent heat resistance by a simple process. . Such a molded article is extremely useful as a high-temperature insulating material, a base material of various composite materials, a catalyst carrier, or the like.
【0009】[0009]
【課題を解決するための手段】本発明者らは、前記目的
を達成するべく鋭意検討の結果、高純度アルミナ繊維の
製造工程で得られる仮焼体繊維を成形し、焼成すること
により高純度のアルミナ繊維成形体が得られることを見
出し、本発明を完成した。前駆体繊維を用いるがこれを
仮焼体とすることで繊維形状を維持でき繊維を原料とし
たのと同じ効果があるばかりか、前駆体であるため繊維
使用に伴う問題点が生じない。Means for Solving the Problems The inventors of the present invention have conducted intensive studies to achieve the above object, and as a result, formed and calcined calcined body fibers obtained in the process of producing high-purity alumina fibers to obtain high-purity alumina fibers. The present inventors have found that an alumina fiber molded product of the formula (1) can be obtained and completed the present invention. Although the precursor fiber is used, the calcined body can be used to maintain the fiber shape, which has the same effect as using the fiber as a raw material. In addition, since it is a precursor, there is no problem associated with the use of the fiber.
【0010】すなわち、本発明は、高純度のアルミナ繊
維前駆体を主成分とする紡糸液を紡糸して前駆体繊維と
し、その前駆体繊維を低温度で仮焼して得られる仮焼体
繊維に、必要によりバインダー成分及び/又は成形助剤
を加えて成形し、得られた仮焼体繊維成形体を焼成する
ことを特徴とする高純度アルミナ繊維成形体の製造方法
である。ここに高純度とは焼成後の繊維中の全酸化物量
基準で95%以上のアルミナが含有されていることをい
う。従って、繊維を構成しない成分は基準に含まず、例
えば成形体が機能性複合材料として用いられる場合等で
は繊維以外の触媒活性成分等を含有し得るが、かかる場
合も繊維中の全酸化物量で換算する。That is, the present invention provides a calcined body fiber obtained by spinning a spinning solution containing a high-purity alumina fiber precursor as a main component to form a precursor fiber, and calcining the precursor fiber at a low temperature. And then, if necessary, adding a binder component and / or a molding aid, and molding the resultant, and calcining the obtained calcined fiber molded article, thereby producing a high-purity alumina fiber molded article. Here, high purity means that 95% or more of alumina is contained based on the total amount of oxides in the fiber after firing. Therefore, components that do not constitute fibers are not included in the standards.For example, when a molded article is used as a functional composite material, it may contain catalytically active components other than fibers. Convert.
【0011】以下、本発明の方法を詳細に説明する。Hereinafter, the method of the present invention will be described in detail.
【0012】本発明の方法においては、先ず、高純度の
アルミナ繊維の前駆体繊維を製造し、これを仮焼して仮
焼体繊維とする。「前駆体繊維」とは高純度のアルミナ
繊維前駆体を主成分とする紡糸液を紡糸したものをい
う。前駆体繊維を得る方法は特に限定されるものではな
く、無機塩法等の方法でもよいが、高純度の前駆体繊維
が得られるスラリー法(特公昭57−27210号公
報、特開昭63−75117号公報など)が好適であ
る。In the method of the present invention, first, a precursor fiber of high-purity alumina fiber is produced and calcined to obtain a calcined body fiber. “Precursor fiber” refers to a fiber obtained by spinning a spinning solution containing a high-purity alumina fiber precursor as a main component. The method for obtaining the precursor fiber is not particularly limited, and a method such as an inorganic salt method may be used. However, a slurry method for obtaining a high-purity precursor fiber (JP-B-57-27210, JP-A-63-27210) No. 75117).
【0013】以下、スラリー法に基づいて本発明の方法
を詳細に説明する。先ず、塩基性アルミニウム塩の水溶
液又は水とアルコール類等の水溶性溶媒との混合溶媒等
の水系溶媒溶液中に焼成後の繊維中の全酸化物量基準
(以下、酸化物基準という。)で10〜40重量%相当
の平均粒径0.1μm以下のアルミナあるいは焼成によ
りアルミナとなるアルミニウム化合物の粉末、4〜10
重量%相当の紡糸助剤、さらに所望により酸化物基準で
3重量%以下の焼結助剤とを含有するスラリーを紡糸液
とし、これを紡糸、乾燥して前駆体繊維とする。Hereinafter, the method of the present invention will be described in detail based on the slurry method. First, the fiber after firing in an aqueous solvent solution such as an aqueous solution of a basic aluminum salt or a mixed solvent of water and a water-soluble solvent such as an alcohol, is based on the total amount of oxides in the fiber (hereinafter referred to as oxide basis). Powder of alumina having an average particle size of 0.1 μm or less corresponding to 4040% by weight or an aluminum compound which becomes alumina by firing;
A slurry containing, by weight, a spinning aid and, if desired, 3% by weight or less of a sintering aid on an oxide basis is used as a spinning solution, which is spun and dried to obtain precursor fibers.
【0014】ここで使用する塩基性アルミニウム塩とし
ては塩基性塩化アルミニウム、塩基性硝酸アルミニウ
ム、塩基性酢酸アルミニウム、塩基性アルミニウムクロ
ロアセテートなどがあげられる。また、紡糸原料の流動
性を向上させかつ仮焼及び焼結時の揮発分を少なくし、
繊維強度の向上を図るために添加する粉末としてはアル
ミナのほか、ベーマイト、バイヤライト、ダイアスポア
あるいは凝ベーマイトなどの焼結によりアルミナとなる
アルミニウム化合物を使用することができる。さらに紡
糸原料の曳糸性を向上させるための紡糸助剤として、エ
チレングリコール、グリセリン、酢酸等の有機化合物又
は、ポリビニルアルコール、ポリエチレンオキシド、ポ
リプロピレンオキシド等の水溶性有機高分子化合物ある
いはこれらの混合物を酸化物基準で0.1〜10重量%
添加する。また、焼結助剤としてCuO、MgO、Zr
O2 、PbO、Cr2 O3 、Fe2 O3 、MoO3 、及
びTiO2 の中から選ばれる1種以上の酸化物あるいは
CuSO4 、MgCl2 、ZrCl2 などの焼成により
これらの酸化物となる化合物を添加するのが好ましい。The basic aluminum salt used here includes basic aluminum chloride, basic aluminum nitrate, basic aluminum acetate, basic aluminum chloroacetate and the like. Also, improve the fluidity of the spinning raw material and reduce volatile matter during calcination and sintering,
As the powder to be added to improve the fiber strength, besides alumina, an aluminum compound which becomes alumina by sintering such as boehmite, bayerite, diaspore or coagulated boehmite can be used. Further, as a spinning aid for improving the spinnability of the spinning raw material, an organic compound such as ethylene glycol, glycerin, and acetic acid, or a water-soluble organic polymer compound such as polyvinyl alcohol, polyethylene oxide, and polypropylene oxide, or a mixture thereof is used. 0.1 to 10% by weight based on oxide
Added. Also, CuO, MgO, Zr as sintering aids
One or more oxides selected from O 2 , PbO, Cr 2 O 3 , Fe 2 O 3 , MoO 3 and TiO 2 or these oxides by firing such as CuSO 4 , MgCl 2 , ZrCl 2 Is preferred.
【0015】このようにして得られた前駆体繊維は繊維
径5〜200μm程度であり、酸化物基準では「高純
度」となっている。次に、これを酸化雰囲気中で400
〜1000℃の比較的低温度で仮焼して仮焼体繊維とす
る。「仮焼体繊維」とは、前駆体繊維を400〜100
0℃で仮焼した繊維であり、溶媒中に分散させた際に繊
維の形状が損なわれることがなく、繊維どうしの癒着性
もないが、仮焼温度より高い1000℃以上の温度で焼
成することにより焼結し得る性状を有する繊維をいう。
通常、高純度アルミナ繊維の製造工程(前駆体−仮焼−
焼成(1000℃以上))における最終の焼成工程を実
施する前段階で得られる。仮焼温度は、前駆体繊維の性
状、成形工程での処理条件、添加する成形助剤あるいは
バインダー成分の性状や配合割合、目的とする成形体の
性状等により、前記温度範囲内において適宜設定すれば
よいが、400℃未満では仮焼処理の間に繊維が融着す
る恐れがあり、また、1000℃を超えると繊維の焼結
が進み過ぎて仮焼体繊維の焼結活性が低下し、成形体の
強度が得られないので好ましくない。また、成形体の原
料として、1000℃以上の焼成品を用いれば成形時に
水等の溶媒への分散性が悪く(仮焼体繊維は分散し易
い)、前駆体繊維を使用すれば特にスラリー法の場合水
が使用できず、また、焼成時の収縮が大きく寸法調整が
難しい等のため工程制御が難しくなる。The precursor fiber thus obtained has a fiber diameter of about 5 to 200 μm, and has “high purity” on an oxide basis. Next, this is placed in an oxidizing atmosphere at 400
The calcined body fiber is calcined at a relatively low temperature of up to 1000 ° C. "Calcined body fiber" refers to a precursor fiber of 400 to 100.
The fiber is calcined at 0 ° C, and when dispersed in a solvent, the shape of the fiber is not damaged and there is no adhesion between fibers, but it is fired at a temperature of 1000 ° C or higher, which is higher than the calcining temperature. Refers to a fiber that has the property of being able to be sintered.
Usually, the manufacturing process of high-purity alumina fiber (precursor-calcination-
It is obtained before the final baking step in baking (1000 ° C. or higher). The calcining temperature is appropriately set within the above temperature range depending on the properties of the precursor fiber, the processing conditions in the molding step, the properties and mixing ratio of the molding aid or the binder component to be added, the properties of the target molded body, and the like. However, if the temperature is lower than 400 ° C., the fibers may be fused during the calcination treatment, and if the temperature exceeds 1000 ° C., the sintering of the fibers proceeds excessively, and the sintering activity of the calcined body fibers decreases. It is not preferable because the strength of the molded body cannot be obtained. Further, if a calcined product at 1000 ° C. or higher is used as a raw material of the molded body, dispersibility in a solvent such as water is poor at the time of molding (the calcined body fiber is easily dispersed). In this case, water cannot be used, and shrinkage during firing is large, so that dimensional adjustment is difficult, so that process control becomes difficult.
【0016】このようにして得られた仮焼体繊維を0.
1〜30mmの長さに調整したのち、成形し、仮焼体繊
維成形体とする。長さは目的とする用途に応じて設定す
ればよい。仮焼体繊維の長さの調整は仮焼体繊維の状態
で切断してもよいが、前駆体繊維の状態で長さを調整し
たのち仮焼してもよい。このように長さを調整した仮焼
体繊維を溶媒中に分散させ、必要により成形助剤、バイ
ダー成分を添加し、得られたスラリーから抄造、濾過、
蒸発などの方法により過剰の溶媒を除去し、さらに必要
により加圧処理などの手段を施したのち乾燥し、仮焼体
繊維の成形体とする。なお、成形助剤やバインダー成分
は、抄造、濾過などにより過剰の溶媒を除去したあとに
改めて含浸させてもよい。本発明においては、仮焼体繊
維が充分な焼結活性を有するため、バインダー成分、特
に無機バインダー成分の添加は不可欠ではなくなる。こ
れは従来技術ではバインダーがなければ成形体が得られ
なかったことと対照的である。The calcined body fiber obtained in this manner is used in 0.1 g.
After adjusting to a length of 1 to 30 mm, it is molded to obtain a calcined body fiber molded body. The length may be set according to the intended use. The length of the calcined body fiber may be adjusted in the state of the calcined body fiber, but may be calcined after adjusting the length in the state of the precursor fiber. The calcined body fiber whose length has been adjusted in this way is dispersed in a solvent, and if necessary, a molding aid and a binder component are added.
Excess solvent is removed by a method such as evaporation, and if necessary, a means such as a pressure treatment is applied, followed by drying to obtain a molded body of calcined fiber. The molding aid and the binder component may be impregnated again after removing the excess solvent by papermaking, filtration and the like. In the present invention, since the calcined fiber has a sufficient sintering activity, the addition of a binder component, particularly an inorganic binder component, is not essential. This is in contrast to the prior art in which no molded article was obtained without the binder.
【0017】仮焼体繊維成形体の形状は、適当な型枠中
で溶媒除去を行うか、成形体とした後に切削加工を行う
等の方法によりシート状、ボード状、柱状、筒状あるい
はハニカム状など任意の形状とすることができる。The shape of the calcined body fiber molded article is determined by removing the solvent in an appropriate mold, or cutting the molded article into a sheet, a board, a column, a tube, or a honeycomb. Any shape such as a shape can be used.
【0018】ここで使用する溶媒としては、取扱の容易
さから水が最適であるが、使用するアルミナ繊維前駆体
の種類に応じて分散性や揮発性等を勘案し、メタノー
ル、エタノール、ジエチレングリコールなどのアルコー
ル系溶媒、ベンゼン、トルエンなどの芳香族系溶媒ある
いはアセトン、メチルエチルケトンなどのケトン系溶媒
などの有機溶媒又はこれらの混合溶媒あるいはこれらの
有機溶媒と水との混合溶媒を使用することができる。As the solvent to be used here, water is optimal because of its easy handling. However, depending on the type of the alumina fiber precursor to be used, dispersibility and volatility are taken into consideration, and methanol, ethanol, diethylene glycol and the like are used. Or an organic solvent such as an aromatic solvent such as benzene or toluene, a ketone solvent such as acetone or methyl ethyl ketone, or a mixed solvent thereof, or a mixed solvent of these organic solvents and water.
【0019】成形工程において必要により使用する成形
助剤は、成形性及び成形体の物性を改良する効果があ
り、例えばポリビニルアルコール、ポリビニルメチルエ
ーテル、ポリアクリル酸アミド、ポリエチレングリコー
ル、ポリビニルピロリドン、グリセリン、澱粉、酢酸セ
ルロース、メチルセルロース、カルボキシメチルセルロ
ース、アルギン酸等が挙げられる。繊維間の焼結をより
強固にする目的で酸化物基準で10%以下の量のバイン
ダー成分を添加してもよい。バインダー成分の例として
は、塩化アルミニウム、リン酸アルミニウム、硝酸アル
ミニウム、硫酸アルミニウム、二酢酸水酸化アルミニウ
ム、ヨウ化アルミニウ、硫酸アンモニウムアルミニウム
などのアルミニウム化合物が好適である。ここでバイン
ダー成分として前駆体繊維の製造に用いたアルミナ繊維
前駆体を使用すると繊維との親和性がよく、しかも均質
な成形体を得ることができる。さらに、仮焼体繊維のス
ラリー中に寒天、ゼラチン、金属アルコキシド化合物な
どのゲル形成剤を添加し、それぞれのゲル形成剤のゲル
化条件下で処理してゲル化、固化させたのち、乾燥し、
焼結させることによって、アルミナ繊維が溶液中にラン
ダムに配向した状態を保持したまま結合した成形体を得
ることができる。The molding aid optionally used in the molding step has the effect of improving the moldability and the physical properties of the molded article. For example, polyvinyl alcohol, polyvinyl methyl ether, polyacrylamide, polyethylene glycol, polyvinylpyrrolidone, glycerin, Examples include starch, cellulose acetate, methyl cellulose, carboxymethyl cellulose, alginic acid and the like. For the purpose of strengthening the sintering between fibers, a binder component in an amount of 10% or less on an oxide basis may be added. Preferred examples of the binder component include aluminum compounds such as aluminum chloride, aluminum phosphate, aluminum nitrate, aluminum sulfate, aluminum diacetate hydroxide, aluminum iodide, and ammonium aluminum sulfate. Here, when the alumina fiber precursor used in the production of the precursor fiber is used as the binder component, a homogeneous molded article having good affinity with the fiber can be obtained. Further, a gel forming agent such as agar, gelatin, or a metal alkoxide compound is added to the slurry of the calcined body fiber, and the mixture is treated under the gelling conditions of the respective gel forming agents to be gelled and solidified, and then dried. ,
By sintering, it is possible to obtain a molded body that is bonded while maintaining a state in which alumina fibers are randomly oriented in the solution.
【0020】このようにして得られた仮焼体繊維成形体
を、仮焼時よりも高い温度の1000〜1900℃の温
度で焼成することにより、高純度のアルミナ繊維成形体
を得ることができる。1000℃未満では焼結が不十分
であり、1900℃を超えると成形体の形状保持に問題
を生ずる恐れがある。焼成時間は成形体の大きさ形状等
により適宜設定する。なお、仮焼体繊維成形体中に有機
成分が残っている場合には、焼成時の昇温速度が早すぎ
ると、有機質成分の分解及び燃焼が急激に起こり、成形
体に亀裂を生じたり、繊維間の焼結が進みにくくなり、
成形体の強度が低下する恐れがあるので、焼成時の昇温
速度は200℃/hr以下とするのが好ましく、特に、
有機質成分の分解、脱離や、バインダー成分の組成変化
と初期の焼結が進行する室温から1250℃までは、5
0℃/hr以下の昇温速度とするのが好ましい。By calcining the calcined body fiber compact thus obtained at a temperature of 1000 to 1900 ° C., which is higher than the calcining temperature, a high-purity alumina fiber compact can be obtained. . If it is lower than 1000 ° C., sintering is insufficient, and if it is higher than 1900 ° C., a problem may occur in maintaining the shape of the compact. The firing time is appropriately set according to the size and shape of the molded body. In addition, when the organic component remains in the calcined body fiber molded body, if the heating rate during firing is too fast, the decomposition and combustion of the organic component occur rapidly, and the molded body is cracked, Sintering between the fibers becomes difficult to progress,
Since there is a possibility that the strength of the molded body may be reduced, the heating rate during firing is preferably 200 ° C./hr or less.
From room temperature to 1250 ° C. where decomposition and desorption of organic components, change in composition of binder components and initial sintering proceed, 5
It is preferable that the heating rate is 0 ° C./hr or less.
【0021】本発明の方法によって得られる高純度アル
ミナ繊維成形体は、仮焼体繊維の段階で成形し焼成して
いるので繊維間の接着が強固で5〜80Kg/cm2 の
圧縮強度を有しており、嵩密度が0.05〜1.0g/
cm3 と軽量で、微細な気孔が均一に分布した気孔率7
5〜98%の多孔体であり、1900℃程度までの高い
耐熱性を有し、高温断熱材や高温条件下で使用する触媒
担体などの用途に好適な材料である。また、ゲル形成剤
を使用して成形したものは、特に繊維の配向がなく機械
的、熱的、電気的に等方的な性質を有するという特徴が
ある。さらに、この高純度アルミナ繊維成形体は、任意
の形状に切削加工が可能であり、また、表面に特定の波
長の赤外線を放射する物質を含有したり、黒色等の特定
の色調を有する塗料やゆう薬を塗布して断熱効果や熱反
射効率を高めて使用することもできる。なお、あらかじ
め触媒活性成分等の機能性添加材を使用することによ
り、各種の機能性複合材料の基材とすることができる。Since the high-purity alumina fiber molded article obtained by the method of the present invention is molded and calcined at the stage of the calcined fiber, the adhesion between the fibers is strong and has a compressive strength of 5 to 80 kg / cm 2. Has a bulk density of 0.05 to 1.0 g /
cm 3 and a lightweight, porosity fine pores are uniformly distributed 7
It is a porous material of 5 to 98%, has high heat resistance up to about 1900 ° C., and is a material suitable for applications such as a high-temperature insulating material and a catalyst carrier used under high-temperature conditions. In addition, a product molded using a gel forming agent is characterized in that it has mechanical, thermal, and electrical isotropic properties without fiber orientation. Furthermore, the high-purity alumina fiber molded body can be cut into an arbitrary shape, and contains a substance that emits infrared light of a specific wavelength on its surface, or has a specific color tone such as black. It can be used by applying a Yu medicine to enhance the heat insulation effect and the heat reflection efficiency. By using a functional additive such as a catalytically active component in advance, it can be used as a base material for various functional composite materials.
【0022】[0022]
【実施例】以下実施例により本発明の方法をさらに具体
的に説明する。EXAMPLES The method of the present invention will be described more specifically with reference to the following examples.
【0023】 (実施例1) 塩化アルミニウム4.2重量部、無水塩基性塩化アルミ
ニウム46.7重量部、平均粒径0.02μmのγ−ア
ルミナ微粉末10.2重量部及び塩化マグネシウム0.
43重量部を水34重量部に溶解、分散させ、このスラ
リーにポリエチレンオキシド(平均分子量約100万)
4.5重量部を添加し充分混合して紡糸原液とした。こ
の原液を紡糸し、繊維径20μmの前駆体繊維を得た。
この前駆体繊維を最高温度が900℃の電気炉内を滞留
時間1分間で通過させて仮焼体繊維とした。この仮焼体
繊維を長さ1.0mmに切断したもの400gを、水2
0リットルに分散させたのち、濾過、抄造した。抄造
後、成形助剤としてポリビニルアルコールの1%水溶液
1リットルを含浸させ成形し、105℃で24時間乾燥
させ250×250×20mmの仮焼体繊維成形体を得
た。この仮焼体繊維成形体を、100℃/hrの昇温速
度で1100℃まで昇温し、次いで50℃/hrの昇温
速度で1450℃まで昇温し、同温度でて4時間加熱
し、焼結させた。得られた成形体は、アルミナ純度9
9.5%のαーアルミナ質で、圧縮強度は15Kg/c
m2 、嵩密度0.40g/cm 3 、気孔率89%の多孔
体であった。 (実施例2) 実施例1で作成したのと同じ前駆体繊維を長さ1.5m
mに切断したもの545gを電気炉内に入れ、最高温度
500℃で1時間保持し仮焼体繊維とした。この仮焼体
繊維を実施例1と同様の方法で成形し、250×250
×35mmの仮焼体繊維成形体を得た。この仮焼体繊維
成形体を100℃/hrの昇温速度で1000℃まで昇
温し、次いで50℃/hrの昇温速度で1200℃まで
昇温し、さらに100℃/hrの昇温速度で1700℃
まで昇温したのち同温度でて4時間加熱し、焼結させ
た。得られた成形体は、アルミナ純度99.5%のαー
アルミナ質で、圧縮強度は10Kg/cm2 、嵩密度
0.28g/cm 3 、気孔率92%の多孔体であった。Example 1 4.2 parts by weight of aluminum chloride, 46.7 parts by weight of anhydrous basic aluminum chloride, 10.2 parts by weight of γ-alumina fine powder having an average particle size of 0.02 μm, and 0.1 part of magnesium chloride.
43 parts by weight are dissolved and dispersed in 34 parts by weight of water, and polyethylene oxide (average molecular weight: about 1,000,000) is added to the slurry.
4.5 parts by weight were added and mixed well to obtain a spinning dope. This stock solution was spun to obtain a precursor fiber having a fiber diameter of 20 μm.
This precursor fiber was passed through an electric furnace having a maximum temperature of 900 ° C. for a residence time of 1 minute to obtain a calcined body fiber. 400 g of the calcined body fiber cut to a length of 1.0 mm was added to water 2
After dispersing in 0 liter, filtration and papermaking were performed. After the papermaking, 1 liter of a 1% aqueous solution of polyvinyl alcohol was impregnated as a molding aid and molded, and dried at 105 ° C. for 24 hours to obtain a calcined body fiber molded body of 250 × 250 × 20 mm. The calcined body fiber molded body is heated to 1100 ° C. at a heating rate of 100 ° C./hr, then to 1450 ° C. at a heating rate of 50 ° C./hr, and heated at the same temperature for 4 hours. , And sintered. The obtained molded body has an alumina purity of 9
9.5% α-alumina, with compressive strength of 15kg / c
m 2 , a bulk density of 0.40 g / cm 3 , and a porosity of 89%. (Example 2) The same precursor fiber as prepared in Example 1 was 1.5 m in length.
Then, 545 g cut into a piece of m was put in an electric furnace and kept at a maximum temperature of 500 ° C. for 1 hour to obtain a calcined body fiber. This calcined body fiber was formed in the same manner as in Example 1, and 250 × 250
A calcined body fiber molded article of × 35 mm was obtained. This calcined body fiber molded body is heated to 1000 ° C. at a rate of 100 ° C./hr, then to 1200 ° C. at a rate of 50 ° C./hr, and further to 100 ° C./hr. At 1700 ° C
Then, the mixture was heated at the same temperature for 4 hours and sintered. The obtained molded article was an α-alumina substance having an alumina purity of 99.5%, a compressive strength of 10 kg / cm 2 , a bulk density of 0.28 g / cm 3 , and a porosity of 92%.
【0024】 (実施例3) 仮焼温度800℃とした他は実施例1と同様にして得ら
れた、長さ1.0mmの仮焼体繊維600gを、実施例
1と同様の方法で濾過、抄造した。抄造後成形助剤及び
バインダー成分を兼ねて実施例1で使用したものと同じ
紡糸液150gを1.5リットルの水に分散させたスラ
リーを含浸させ、105℃で24時間乾燥させ、250
×250×35mmの仮焼体繊維成形体を得た。この仮
焼体繊維成形体を、100℃/hrの昇温速度で110
0℃まで昇温し、次いで50℃/hrの昇温速度で14
50℃まで昇温し、同温度でて4時間加熱し、焼結させ
た。得られた成形体は、アルミナ純度99.5%のαー
アルミナ質で、圧縮強度は20Kg/cm2 、嵩密度
0.35g/cm 3 、気孔率90%の多孔体であった。 (実施例4) 実施例3と同様にして得られた250×250×20m
mの仮焼体繊維成形体を、50℃/hrの昇温速度で1
000℃まで昇温し、次いで25℃/hrの昇温速度で
1450℃まで昇温し、同温度でて4時間加熱し、焼結
させた。得られた成形体は、アルミナ純度99.5%の
αーアルミナ質で、圧縮強度は50Kg/cm2 、嵩密
度0.60g/cm 3 、気孔率83%の多孔体であっ
た。Example 3 600 g of a calcined body fiber having a length of 1.0 mm obtained in the same manner as in Example 1 except that the calcination temperature was 800 ° C., was filtered in the same manner as in Example 1. , Paper-made. After the papermaking, a slurry obtained by dispersing 150 g of the same spinning solution as used in Example 1 in 1.5 liters of water, also serving as a molding aid and a binder component, was impregnated, dried at 105 ° C. for 24 hours, and dried at 250 ° C. for 250 hours.
A calcined body fiber compact of × 250 × 35 mm was obtained. The calcined body fiber molded body was heated at a heating rate of 100 ° C./hr for 110
The temperature was raised to 0 ° C, and then 14 ° C at a rate of 50 ° C / hr.
The temperature was raised to 50 ° C., heated at the same temperature for 4 hours, and sintered. The obtained molded article was an α-alumina substance having an alumina purity of 99.5%, a compressive strength of 20 kg / cm 2 , a bulk density of 0.35 g / cm 3 , and a porosity of 90%. (Example 4) 250 x 250 x 20 m obtained in the same manner as in Example 3
m at a heating rate of 50 ° C./hr.
The temperature was raised to 000 ° C., then to 1450 ° C. at a rate of 25 ° C./hr, heated at the same temperature for 4 hours, and sintered. The obtained molded body was an α-alumina material having an alumina purity of 99.5%, a compressive strength of 50 kg / cm 2 , a bulk density of 0.60 g / cm 3 , and a porosity of 83%.
【0025】[0025]
【発明の効果】本発明の方法によれば、アルミナ繊維を
仮焼体繊維の状態で成形したのち焼成するので、100
0℃以上で焼成したアルミナ繊維をバインダー成分と混
合して成形・焼成する従来法に比較し繊維間の焼結活性
が高く、密度や強度等の調整上、特に必要がなければ無
機バインダを添加することなく、使用に耐える強度を有
する高純度のアルミナ繊維質成形体を得ることができ
る。本発明の方法は、繊維を1000℃以上で焼結する
工程が省略でき、また仮焼体繊維は1000℃以上で焼
成した繊維に比較して成形時の溶媒への分散性は良好で
ある、前駆体繊維を使用する方法に比較して焼成時の収
縮が小さく寸法調整が容易であるなどの利点があり、著
しいプロセスの簡略化が可能である。また、1000℃
以上で焼成した繊維を使用する場合には、繊維の焼成温
度より高い温度で焼成しなければならないのに対し、比
較的低温から焼結できるため、焼成方法を適当に設定す
ることにより、用途に応じて成形体中のアルミナの結晶
化度を調整することができる。一方、仮焼体繊維は従来
法における前駆体繊維に比較して保存性が良好で、柔軟
性が高く成形時の取扱いも容易な上、得られた仮焼体繊
維成形体の焼成時の収縮率も小さく形状保持性がよいた
め、前駆体繊維を使用する場合よりも大型あるいは複雑
な形状の成形体を得ることができる。According to the method of the present invention, the alumina fiber is molded in the state of the calcined body fiber and then fired, so that
Compared with the conventional method of mixing and molding alumina fibers fired at 0 ° C or higher with a binder component, the sintering activity between the fibers is higher, and an inorganic binder is added if there is no special need for adjusting density and strength. Thus, it is possible to obtain a high-purity alumina fibrous formed body having strength enough to withstand use. In the method of the present invention, the step of sintering the fiber at 1000 ° C. or higher can be omitted, and the calcined body fiber has better dispersibility in the solvent at the time of molding as compared to the fiber fired at 1000 ° C. or higher. Compared to the method using a precursor fiber, there are advantages such as a small shrinkage at the time of firing and easy dimensional adjustment, and the process can be significantly simplified. 1000 ° C
When using the fiber fired above, it must be fired at a temperature higher than the firing temperature of the fiber, but since it can be sintered from a relatively low temperature, by setting the firing method appropriately, The degree of crystallization of alumina in the molded body can be adjusted accordingly. On the other hand, the calcined body fiber has better preservability compared to the precursor fiber in the conventional method, has high flexibility and is easy to handle at the time of molding, and also has a shrinkage during firing of the obtained calcined body fiber molded body. Since the ratio is small and the shape retention is good, it is possible to obtain a molded article having a larger or more complex shape than when the precursor fiber is used.
【0026】本発明の方法によって得られるアルミナ繊
維成形体は、強度が高く、高い耐熱性を有し、特にヒー
トサイクルによって生じるクラックの発生及び拡大が少
ない多孔質材料で、1850℃程度の高温下での連続使
用が可能であり、高温耐火断熱材、高温下で使用する触
媒担体として好適である。The alumina fiber molded article obtained by the method of the present invention is a porous material having high strength, high heat resistance, and in particular, is less likely to generate and expand cracks caused by a heat cycle. It is suitable as a high-temperature refractory heat-insulating material and a catalyst carrier to be used at high temperatures.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 新保 隆 栃木県栃木市国府町1番地 三井鉱山株 式会社 中央研究所内 (72)発明者 中村 浩 東京都中央区日本橋室町2丁目1番1号 三井鉱山株式会社内 (56)参考文献 特開 昭63−75117(JP,A) 特開 平2−25873(JP,A) 特開 平2−307953(JP,A) (58)調査した分野(Int.Cl.6,DB名) C04B 38/00 - 38/10 D01F 9/08 - 9/22 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Takashi Shinbo 1, Kokufucho, Tochigi City, Tochigi Pref. Mitsui Mining Co., Ltd. Central Research Institute (72) Inventor Hiroshi Nakamura 2-1-1, Nihonbashi Muromachi, Chuo-ku, Tokyo Mitsui (56) References JP-A-63-75117 (JP, A) JP-A-2-25873 (JP, A) JP-A-2-307953 (JP, A) (58) Fields studied (Int .Cl. 6 , DB name) C04B 38/00-38/10 D01F 9/08-9/22
Claims (3)
する紡糸液を紡糸して前駆体繊維とし、これを仮焼して
得られる仮焼体繊維を、必要により成形助剤を用いて成
形し、得られた仮焼体繊維成形体を焼成することを特徴
とする高純度アルミナ繊維成形体の製造方法。A spinning solution containing a high-purity alumina fiber precursor as a main component is spun into a precursor fiber, and a calcined body fiber obtained by calcining the precursor fiber is optionally used with a molding aid. A method for producing a high-purity alumina fiber molded body, comprising molding and calcining the obtained calcined body fiber molded body.
する紡糸液を紡糸して前駆体繊維とし、これを仮焼して
得られる仮焼体繊維にバインダー成分を添加し、必要に
より成形助剤を用いて成形し、得られた仮焼体繊維成形
体を焼成することを特徴とする高純度アルミナ繊維成形
体の製造方法。2. A spinning solution containing a high-purity alumina fiber precursor as a main component is spun into a precursor fiber, and a calcined body fiber obtained by calcining the precursor fiber is added with a binder component. A method for producing a high-purity alumina fiber molded body, comprising molding by using an auxiliary agent and calcining the obtained calcined body fiber molded body.
る紡糸液が、塩基性アルミニウム塩を水又は水系溶媒に
溶解させた溶液に、アルミナあるいは焼成によりアルミ
ナとなるアルミニウム化合物の粉末及び紡糸助剤を添加
し、さらに必要により焼結助剤を添加してなるスラリー
である請求項1又は2に記載の高純度アルミナ繊維成形
体の製造方法。3. A spinning solution containing a high-purity alumina fiber precursor as a main component is prepared by adding a powder of alumina or an aluminum compound which becomes alumina when calcined to a solution prepared by dissolving a basic aluminum salt in water or an aqueous solvent; The method for producing a high-purity alumina fiber molded body according to claim 1 or 2, wherein the slurry is a slurry obtained by adding a sintering aid, if necessary.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3124389A JP2959683B2 (en) | 1991-04-30 | 1991-04-30 | Method for producing high-purity alumina fiber molded body |
US07/874,704 US5320791A (en) | 1991-04-30 | 1992-04-28 | Method for preparing molded articles of high-purity alumina fibers |
EP92107323A EP0511661A1 (en) | 1991-04-30 | 1992-04-29 | Method for preparing molded articles of high-purity alumina fibers |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3124389A JP2959683B2 (en) | 1991-04-30 | 1991-04-30 | Method for producing high-purity alumina fiber molded body |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04333619A JPH04333619A (en) | 1992-11-20 |
JP2959683B2 true JP2959683B2 (en) | 1999-10-06 |
Family
ID=14884210
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3124389A Expired - Fee Related JP2959683B2 (en) | 1991-04-30 | 1991-04-30 | Method for producing high-purity alumina fiber molded body |
Country Status (3)
Country | Link |
---|---|
US (1) | US5320791A (en) |
EP (1) | EP0511661A1 (en) |
JP (1) | JP2959683B2 (en) |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5419975A (en) * | 1993-11-22 | 1995-05-30 | The Carborundum Company | Inorganic ceramic paper, its method of manufacture and articles produced therefrom |
US5567536A (en) * | 1993-11-22 | 1996-10-22 | Unifrax Corporation | Inorganic ceramic paper, its method of manufacturing and articles produced therefrom |
EP0704414A1 (en) * | 1994-09-23 | 1996-04-03 | Mitsubishi Kasei Corporation | Alumina fiber granules, process for producing the granules and a process for producing a porous article using the granules |
US5989736A (en) * | 1997-05-30 | 1999-11-23 | Unifrax Corporation | Carbon fiber and ceramic fiber paper composites and uses therefor |
JP4878699B2 (en) * | 2001-05-31 | 2012-02-15 | イビデン株式会社 | Method for producing alumina fiber assembly |
EP2246537A3 (en) | 2001-05-25 | 2012-10-10 | Ibiden Co., Ltd. | Alumina-silica based fiber, ceramic fiber, ceramic fiber aggregation, holding seal material and manufacturing methods thereof, as well as manufacturing method of alumina fiber aggregation |
DE102007018147A1 (en) * | 2007-04-16 | 2008-10-23 | Clariant International Ltd. | Spinning mass for the production of oxide ceramic fibers |
CN101368301B (en) * | 2008-09-26 | 2010-08-11 | 东华大学 | Preparation method for carbon nano-tube aluminum oxide-doped precursor spinning colloidal sols |
US10869413B2 (en) * | 2014-07-04 | 2020-12-15 | Denka Company Limited | Heat-dissipating component and method for manufacturing same |
EP3166908B1 (en) * | 2014-07-30 | 2020-12-09 | Universität Bayreuth | Ceramic matrix composites and processes for their production |
CN112960970B (en) * | 2021-04-23 | 2022-09-20 | 山东东珩国纤新材料有限公司 | Prefabrication forming method of alumina fiber module |
CN113737315A (en) * | 2021-08-16 | 2021-12-03 | 南京理工大学 | Method for preparing hollow alumina-based ceramic fiber by using reed as template |
CN114702305B (en) * | 2022-03-25 | 2023-07-21 | 佛山(华南)新材料研究院 | Transparent ceramic capable of sterilizing and self-cleaning for radio frequency beauty instrument and preparation method thereof |
CN117306021A (en) * | 2023-10-16 | 2023-12-29 | 安徽同和晶体新材料股份有限公司 | Preparation method of rare earth oxide reinforced alumina fiber |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2088130A7 (en) * | 1970-05-21 | 1972-01-07 | Sfec | Alumina threads - drawn from aluminium hydroxide gel |
US3775141A (en) * | 1972-05-03 | 1973-11-27 | Du Pont | Hardened inorganic refractory fibrous compositions |
CH584762A5 (en) * | 1973-05-17 | 1977-02-15 | Alusuisse | |
DE2325575A1 (en) * | 1973-05-19 | 1974-11-28 | Bayer Ag | METHOD OF AFTER-TREATMENT OF INORGANIC FIBERS |
US4250131A (en) * | 1979-01-15 | 1981-02-10 | Uop Inc. | Refractory inorganic oxide fibers |
JPS5727210A (en) * | 1980-07-25 | 1982-02-13 | Toshiba Corp | Narrow band filter |
US4401613A (en) * | 1981-08-03 | 1983-08-30 | Refractory Products Co. | Method of making thermal-insulating module |
JPS59152281A (en) * | 1983-02-18 | 1984-08-30 | 東芝モノフラツクス株式会社 | High temperature heat insulative structure |
DE3426120A1 (en) * | 1984-07-16 | 1986-01-23 | INTERATOM GmbH, 5060 Bergisch Gladbach | METHOD FOR PRODUCING FIBER SHAPED BODIES WITH LIMITED ELASTIC BEHAVIOR |
JPH0247430B2 (en) * | 1984-12-11 | 1990-10-19 | Mitsubishi Jukogyo Kk | DANNETSUKOZOTAI |
US4801562A (en) * | 1986-04-21 | 1989-01-31 | Minnesota Mining And Manufacturing Company | Refractory fibers of alumina and amorphous phosphorus pentoxide |
US4929578A (en) * | 1986-04-21 | 1990-05-29 | Minnesota Mining And Manufacturing Company | Refractory fibers of alumina and organic residue |
IN169482B (en) * | 1986-04-21 | 1991-10-26 | Minnesota Mining & Mfg | |
US4935178A (en) * | 1986-06-24 | 1990-06-19 | General Signal Corporation | Method of making refractory fiber products |
JPH07103491B2 (en) * | 1986-09-17 | 1995-11-08 | 三井鉱山株式会社 | Continuous production method of α-alumina long fiber |
JP2521081B2 (en) * | 1987-03-05 | 1996-07-31 | 住友化学工業株式会社 | Alumina fiber manufacturing method |
JPS6442373A (en) * | 1987-08-11 | 1989-02-14 | Nippon Steel Chemical Co | Fireproof, heat insulating fibrous composition |
JPH087500B2 (en) * | 1988-07-15 | 1996-01-29 | キヤノン株式会社 | Development device |
JPH02234963A (en) * | 1989-03-07 | 1990-09-18 | Nichias Corp | Production of blanket made of alumina fiber |
-
1991
- 1991-04-30 JP JP3124389A patent/JP2959683B2/en not_active Expired - Fee Related
-
1992
- 1992-04-28 US US07/874,704 patent/US5320791A/en not_active Expired - Fee Related
- 1992-04-29 EP EP92107323A patent/EP0511661A1/en not_active Withdrawn
Also Published As
Publication number | Publication date |
---|---|
JPH04333619A (en) | 1992-11-20 |
EP0511661A1 (en) | 1992-11-04 |
US5320791A (en) | 1994-06-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2959683B2 (en) | Method for producing high-purity alumina fiber molded body | |
EP0369638B1 (en) | Sol gel derived ceramic bubbles | |
JP2002068854A (en) | Alumina porous material and production method thereof | |
JP2004504256A (en) | Nanoscale corundum powders, sintered compacts produced from these powders and methods for producing them | |
JPH02229773A (en) | Phosphate-containing ceramic structure and its manufacture | |
WO2003035577A1 (en) | Silicon carbide based porous structure and method for manufacture thereof | |
JP2502251B2 (en) | Method for producing submicron / nanosize ceramic powders from precursors incorporated in polymer foam | |
JP2002535229A5 (en) | ||
JPH04139079A (en) | Production of porous ceramics | |
JPS63297267A (en) | Zirconia composite refractory | |
JPH0641819A (en) | Alumina based fiber and its production | |
JPS58213620A (en) | Production of formed metal carbide | |
JPH05319949A (en) | Production of alumina based fiber formed product | |
JPH04193782A (en) | Production of mullite porous body | |
JP4542282B2 (en) | Method for producing heat-resistant inorganic fiber molded body | |
JPH0274527A (en) | Production of fibrous or filmy substance of titanate having hollandite type structure | |
JP2002293657A (en) | Method of manufacturing inorganic porous composite containing dispersed particle | |
JPH0236549B2 (en) | ||
JPH0640955B2 (en) | An improved monolithic catalyst support incorporating a mixture of alumina and silica as a high surface area catalyst support material. | |
CN118324534A (en) | Preparation method of ceramic composite material 3D printing wire | |
JPS59117570A (en) | Core of colored pencil and its manufacture | |
JPS6317219A (en) | Production of ceramic powder | |
JP2004189575A (en) | Silicon carbide-based porous structure material coated with ceramic and method of producing the same | |
JPS59162168A (en) | Manufacture of porous ceramics | |
JPH04357157A (en) | Production of granulated ceramic powder for forming |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |