JP2002293657A - Method of manufacturing inorganic porous composite containing dispersed particle - Google Patents

Method of manufacturing inorganic porous composite containing dispersed particle

Info

Publication number
JP2002293657A
JP2002293657A JP2001103036A JP2001103036A JP2002293657A JP 2002293657 A JP2002293657 A JP 2002293657A JP 2001103036 A JP2001103036 A JP 2001103036A JP 2001103036 A JP2001103036 A JP 2001103036A JP 2002293657 A JP2002293657 A JP 2002293657A
Authority
JP
Japan
Prior art keywords
gel
porous composite
inorganic porous
solvent
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001103036A
Other languages
Japanese (ja)
Other versions
JP4784719B2 (en
Inventor
Naohiro Soga
直弘 曽我
Kazuki Nakanishi
和樹 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2001103036A priority Critical patent/JP4784719B2/en
Publication of JP2002293657A publication Critical patent/JP2002293657A/en
Application granted granted Critical
Publication of JP4784719B2 publication Critical patent/JP4784719B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0045Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by a process involving the formation of a sol or a gel, e.g. sol-gel or precipitation processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00793Uses not provided for elsewhere in C04B2111/00 as filters or diaphragms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/0081Uses not provided for elsewhere in C04B2111/00 as catalysts or catalyst carriers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Filtering Materials (AREA)
  • Silicon Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To manufacture an inorganic porous composite whose energy cost to be raised by burning a binder and whose environmental load to be increased by discharging carbon dioxide, can be cut down and whose pore shape and pore size distribution are made uniform. SOLUTION: This inorganic porous composite is manufactured by forming the gel having the pores of >=100 nm diameter by reacting a fine particle component with a precursor of a mesh forming component in the fine particle component-dispersed solvent or mixing the fine particle-dispersed liquid in the mesh forming component-dissolved reaction solution to react them so that phase separation and sol-gel transition are caused at the same time, cleaning the wet gel with a new solvent or displacing the solvent of the wet gel with the new solvent, removing the new solvent and heat-treating the solvent-removed gel at the adequate temperature, if necessary.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、分散粒子を含む無
機系多孔質複合体の製造法に関する。本発明により製造
された多孔質材料は、フィルターや担体材料として利用
される。
[0001] The present invention relates to a method for producing an inorganic porous composite containing dispersed particles. The porous material produced according to the present invention is used as a filter or a carrier material.

【0002】[0002]

【従来の技術】一般にセラミックスに代表される無機系
多孔質体は、バインダーあるいは造孔剤と呼ばれる樹脂
成分によって結着された原料微粒子の圧縮成形体を、バ
インダーの燃焼を伴って焼結させることにより作製され
ている。気孔の形成はバインダー焼失により、その占め
ていた空間が焼結粒子間に残ることによっており、細孔
容積にほぼ等しい体積のバインダーを燃焼させるエネル
ギーコストと二酸化炭素排出による環境負荷は極めて高
い。また、粒子の連結構造は必然的にネック部を有する
ため、細孔形状が不均一でそのサイズ分布も広いものと
なることが多い。他方、相分離を利用したゾル−ゲル法
によって、シリカを始めとする無機系多孔質体が再現性
良く製造されることが知られている。この方法では溶媒
に富む相が蒸発することによって多孔構造が形成される
ため、従来法よりも環境負荷を劇的に低減することがで
きる。また、細孔形状やそのサイズ分布は極めて均一性
が高く、従来よりも高効率な分離、精製プロセスを行う
ことができる可能性が高い。
2. Description of the Related Art In general, an inorganic porous material represented by ceramics is obtained by sintering a compact formed of raw material fine particles bound by a resin component called a binder or a pore-forming agent with the combustion of the binder. It is manufactured by. The pores are formed by burning out the binder and leaving the space occupied by the sintered particles. The energy cost of burning the binder having a volume almost equal to the pore volume and the environmental load due to carbon dioxide emission are extremely high. In addition, since the connection structure of the particles necessarily has a neck portion, the shape of the pores is non-uniform and the size distribution is often wide. On the other hand, it is known that an inorganic porous material such as silica is produced with good reproducibility by a sol-gel method utilizing phase separation. In this method, a porous structure is formed by evaporating the solvent-rich phase, so that the environmental load can be dramatically reduced as compared with the conventional method. Further, the shape of the pores and the size distribution thereof are extremely uniform, and there is a high possibility that the separation and purification processes can be performed with higher efficiency than before.

【0003】[0003]

【発明が解決しようとする課題】そこで本件発明者が研
究したところ、シリカを主成分とするゾル−ゲル反応溶
液にあらかじめ分散粒子成分を共存させておき、粒子が
沈降や凝集を起こさない条件で相分離を伴うゾル−ゲル
転移を起こさせることにより、ゲル相に分散粒子が取り
込まれた多孔質複合体が得られることが明らかになっ
た。
Accordingly, the present inventor has studied and found that a dispersed particle component was previously allowed to coexist in a sol-gel reaction solution containing silica as a main component under conditions that do not cause sedimentation or aggregation of the particles. It has been clarified that by causing a sol-gel transition accompanied by phase separation, a porous composite having dispersed particles incorporated in a gel phase can be obtained.

【課題を解決するための手段】すなわち、本発明は、ゾ
ル−ゲル反応溶液に分散粒子成分を共存させておき、相
転移を伴うゾル−ゲル転移を起こさせることによって開
気孔と分散粒子を含む骨格成分からなる無機系多孔質複
合体を製造することを特徴とする無機系多孔質複合体の
製造方法である。ここで、開気孔は、直径100nm以上、
好ましくは200〜10000nmである。直径100nm以上のマ
クロ孔は、相分離の際に生じる溶媒相の占めていた領域
として形成されるので、通常の乾燥操作により燃焼や熱
分解を伴うことなく形成し、溶媒相とゲル相が各々絡み
合って連続したいわゆる共連続構造を形成する場合に
は、極めて鋭いサイズ分布を得ることができる。
That is, the present invention includes an open pore and a dispersed particle by causing a dispersed particle component to coexist in a sol-gel reaction solution and causing a sol-gel transition accompanied by a phase transition. A method for producing an inorganic porous composite, which comprises producing an inorganic porous composite comprising a skeleton component. Here, the open pores have a diameter of 100 nm or more,
Preferably it is 200 to 10,000 nm. Macropores with a diameter of 100 nm or more are formed as areas occupied by the solvent phase generated during phase separation, so they are formed by ordinary drying operations without burning or thermal decomposition, and the solvent phase and the gel phase are each separated. When forming a so-called co-continuous structure that is entangled and continuous, an extremely sharp size distribution can be obtained.

【0004】その方法は、あらかじめ微粒子成分を分散
させた溶媒中で網目形成成分の前駆体を反応させる、あ
るいは、あらかじめ網目形成成分を溶解した反応溶液
に、微粒子分散液を混合して反応させることによって、
相分離とゾル−ゲル転移を同時に引き起こし、直径100n
m以上の気孔を有するゲルを形成させ、引き続いて湿潤
ゲルの洗浄あるいは溶媒置換処理の後に、溶媒を除去
し、必要に応じて適切な温度で熱処理することを特徴と
する。
The method includes reacting a precursor of a network-forming component in a solvent in which fine-particle components are dispersed in advance, or mixing and reacting a fine-particle dispersion with a reaction solution in which the network-forming component is dissolved in advance. By
Causes phase separation and sol-gel transition simultaneously, 100n diameter
The method is characterized in that a gel having pores of m or more is formed, the solvent is removed after the subsequent washing or solvent replacement treatment of the wet gel, and heat treatment is performed at an appropriate temperature if necessary.

【0005】相分離は、材料の製造プロセスにおいて、
沈殿や析出によって出発成分と異なる成分を持つ領域が
生成する広汎な現象であり、ゾル−ゲル反応系において
は、ゲル形成を起こす網目形成成分に富む相(ゲル相)
と、ゲル形成を起こさない溶媒成分に富む相(溶媒相)
とに、分離が起こる。各相領域の形成にあたっては、化
学ポテンシャルの差を駆動力として濃度勾配に逆らった
成分の拡散が起こり、各相領域が与えられた温度・圧力
下での平衡組成に達するまで、物質移動が継続する。こ
の際に、出発組成に分散粒子成分を共存させ、なおかつ
分散粒子成分が相分離やゾル−ゲル反応に著しい影響を
与えないような条件を選ぶと、分散粒子の性質に従っ
て、ゲル相あるいは溶媒相に、優先的に分散粒子を分配
することが可能となる。すなわち、ゲル相を形成する成
分と親和性が高く溶媒相を形成する成分と親和性の低い
分散粒子を共存させた場合には、分散粒子はゲル相に優
先的に分配される。逆の場合には溶媒相に分散粒子が優
先的に分配されることになるが、ゲル形成の後溶媒相を
除去して多孔体を作製する場合には、前者の条件を満た
す分散粒子を選択することが重要になる。
[0005] Phase separation is an important part of the material manufacturing process.
This is a widespread phenomenon in which a region having a component different from the starting component is generated by precipitation or precipitation. In a sol-gel reaction system, a phase rich in a network-forming component causing gel formation (gel phase)
And a phase rich in solvent components that does not cause gel formation (solvent phase)
Then, separation occurs. In forming each phase region, diffusion of components against the concentration gradient occurs using the difference in chemical potential as the driving force, and mass transfer continues until each phase region reaches the equilibrium composition at the given temperature and pressure. I do. At this time, if the dispersed particle component is made to coexist in the starting composition and conditions are selected so that the dispersed particle component does not significantly affect the phase separation or the sol-gel reaction, the gel phase or the solvent phase may be selected according to the properties of the dispersed particles. In addition, it is possible to preferentially distribute the dispersed particles. That is, when dispersed particles having a high affinity for the component forming the gel phase and a low affinity for the component forming the solvent phase coexist, the dispersed particles are preferentially distributed to the gel phase. In the opposite case, the dispersed particles are preferentially distributed in the solvent phase.However, when the solvent phase is removed after gel formation to produce a porous body, the dispersed particles satisfying the former condition are selected. It becomes important.

【0006】ゾル−ゲル反応に用いられるゲル形成を起
こす網目成分の前駆体としては、金属アルコキシド、錯
体、金属塩、有機修飾金属アルコキシド、有機架橋金属
アルコキシド、およびこれらの部分加水分解生成物、部
分重合生成物である多量体を用いることができる。水ガ
ラスほかケイ酸塩水溶液のpHを変化させることによる
ゾル−ゲル転移も、同様に利用することができる。
[0006] The precursor of the network component causing gel formation used in the sol-gel reaction includes metal alkoxides, complexes, metal salts, organically modified metal alkoxides, organic cross-linked metal alkoxides, and partial hydrolysis products and partial products thereof. A polymer which is a polymerization product can be used. The sol-gel transition by changing the pH of water glass or an aqueous silicate solution can be used as well.

【0007】さらに本発明の具体的な製造方法は、水溶
性高分子を酸性水溶液に溶かし、それに微粒子成分を分
散させた後、加水分解性の官能基を有する金属化合物を
添加して加水分解反応を行い、生成物が固化した後、次
いで乾燥し加熱する。ここで、水溶性高分子は、理論的
には適当な濃度の水溶液と成し得る水溶性有機高分子で
あって、加水分解性の官能基を有する金属化合物によっ
て生成するアルコールを含む反応系中に均一に溶解し得
るものであれば良いが、具体的には高分子金属塩である
ポリスチレンスルホン酸のナトリウム塩またはカリウム
塩、高分子酸であって解離してポリアニオンとなるポリ
アクリル酸、高分子塩基であって水溶液中でポリカチオ
ンを生ずるポリアリルアミンおよびポリエチレンイミ
ン、あるいは中性高分子であって主鎖にエーテル結合を
持つポリエチレンオキシド、あるいはポリビニルピロリ
ドン等が好適である。また、有機高分子に代えてホルム
アミド、多価アルコール、界面活性剤を用いてもよく、
その場合多価アルコールとしてはグリセリンが、界面活
性剤としてはポリオキシエチレンアルキルエーテル類が
最適である。
Further, in a specific production method of the present invention, a water-soluble polymer is dissolved in an acidic aqueous solution, fine particle components are dispersed therein, and a metal compound having a hydrolyzable functional group is added thereto to carry out a hydrolysis reaction. After the product has solidified, it is then dried and heated. Here, the water-soluble polymer is a water-soluble organic polymer that can theoretically be formed into an aqueous solution having an appropriate concentration, and is used in a reaction system containing an alcohol generated by a metal compound having a hydrolyzable functional group. As long as it can be uniformly dissolved in water, specifically, a sodium or potassium salt of polystyrene sulfonic acid which is a polymer metal salt, polyacrylic acid which is a polymer acid and dissociates into a polyanion, Preferred are polyallylamine and polyethyleneimine, which are molecular bases and generate polycations in an aqueous solution, or polyethylene oxide, which is a neutral polymer having an ether bond in the main chain, or polyvinylpyrrolidone. Further, formamide, polyhydric alcohol, a surfactant may be used instead of the organic polymer,
In that case, glycerin is optimal as the polyhydric alcohol, and polyoxyethylene alkyl ethers are optimal as the surfactant.

【0008】加水分解性の官能基を有する金属化合物と
しては、金属アルコキシド又はそのオリゴマーを用いる
ことができ、これらのものは例えば、メトキシ基、エト
キシ基、プロポキシ基等の炭素数の少ないものが好まし
い。また、その金属としては、最終的に形成される酸化
物の金属、例えばSi、Ti、Zr、Alが使用され
る。この金属としては1種又は2種以上であっても良い。
一方オリゴマーとしてはアルコールに均一に溶解分散で
きるものであればよく、具体的には10量体程度まで使
用できる。また、これらのケイ素アルコキシドのアルコ
キシ基のいくつかがアルキル基に置換された、アルキル
アルコキシシラン類、およびそれらの10量体程度まで
のオリゴマーが好適に用いられる。またケイ素に変えて
中心金属元素を、チタン、ジルコニウム、アルミニウム
等に置換したアルキル置換金属アルコキシドも同様に用
いることができる。
As the metal compound having a hydrolyzable functional group, a metal alkoxide or an oligomer thereof can be used. For example, those having a small number of carbon atoms such as a methoxy group, an ethoxy group and a propoxy group are preferable. . As the metal, a metal of an oxide finally formed, for example, Si, Ti, Zr, or Al is used. One or more of these metals may be used.
On the other hand, any oligomer can be used as long as it can be uniformly dissolved and dispersed in alcohol, and specifically, up to about 10-mers can be used. Alkoxyalkoxysilanes, in which some of the alkoxy groups of these silicon alkoxides are substituted with alkyl groups, and oligomers of up to about 10-mers thereof are preferably used. Alkyl-substituted metal alkoxides in which the central metal element is replaced with titanium, zirconium, aluminum or the like instead of silicon can also be used.

【0009】また、酸性水溶液としては、通常塩酸、硝
酸等の鉱酸0.001規定以上のもの、あるいはギ酸、
酢酸等の有機酸0.1規定以上のものが好ましい。加水
分解にあたっては、溶液を室温40〜80℃で0.5〜
5時間保存することによって達成できる。
The acidic aqueous solution is usually a mineral acid such as hydrochloric acid or nitric acid having a concentration of 0.001 N or more, or formic acid,
Organic acids such as acetic acid having a concentration of 0.1N or more are preferred. In the hydrolysis, the solution was heated at room temperature 40-80 ° C for 0.5-
This can be achieved by storing for 5 hours.

【0010】現在工業的に生産・市販されている分散粒
子は、有機高分子、金属酸化物あるいは金属を主成分と
し、その粒径(平均直径)は5nm程度から100μm程度
まで非常に広い範囲にわたっている。これらの微粒子
と、ゲル形成を起こす網目成分との化学的な親和性は、
多くの場合粒子表面の化学修飾などによって自由に制御
できることが知られており、ゾル−ゲル反応時に凝集や
沈降を起こさない条件を満たす粒子であれば、化学組成
に関係なく本製造方法に適用することができる。したが
って、本発明において分散粒子は、金属酸化物、金属、
有機高分子およびそれらの複合体を用いることができ、
好ましい平均直径は5nmから100μmである。具体的に
は、酸化ケイ素、酸化チタン、酸化ジルコニウム、酸化
アルミニウム、酸化カルシウム、酸化マグネシウム、酸
化鉄ほか遷移金属酸化物、酸化イットリウムおよび酸化
ランタンほか希土類酸化物などが好適である。さらに反
応溶液中で安定な炭酸塩、硝酸塩、硫酸塩、燐酸塩、ハ
ロゲン化物、無機塩類なども同様に用いることができ
る。有機塩、錯体、保護された金属コロイド、高分子ラ
テックスほか微粒子状有機高分子も、反応溶液への分散
性を制御することによって本発明による無機系多孔質複
合体の作製に用いることができる。また、添加する分散
粒子の量は、90重量%以下、好ましくは80重量%以下で
ある。分散粒子の添加量の増加とともに細孔径は小さく
なる。
[0010] Currently, industrially produced and marketed dispersed particles are mainly composed of an organic polymer, a metal oxide or a metal, and their particle diameters (average diameters) range from about 5 nm to about 100 μm in a very wide range. I have. The chemical affinity between these fine particles and the network component that causes gel formation,
It is known that it can be freely controlled in many cases by chemical modification of the particle surface, etc., and if the particle satisfies conditions that do not cause aggregation or sedimentation during the sol-gel reaction, it can be applied to the present production method regardless of the chemical composition. be able to. Therefore, in the present invention, the dispersed particles are a metal oxide, a metal,
Organic polymers and their complexes can be used,
Preferred average diameters are between 5 nm and 100 μm. Specifically, silicon oxide, titanium oxide, zirconium oxide, aluminum oxide, calcium oxide, magnesium oxide, iron oxide, transition metal oxides, yttrium oxide, lanthanum oxide, and rare earth oxides are suitable. Further, carbonates, nitrates, sulfates, phosphates, halides, inorganic salts, and the like, which are stable in the reaction solution, can also be used. An organic salt, a complex, a protected metal colloid, a polymer latex, and a particulate organic polymer can also be used for preparing the inorganic porous composite according to the present invention by controlling the dispersibility in the reaction solution. The amount of the dispersed particles to be added is 90% by weight or less, preferably 80% by weight or less. The pore size decreases as the amount of the dispersed particles increases.

【0011】本発明の製造方法によれば、骨格相に分散
粒子を含み100nm以上の気孔を有する無機系多孔質
複合体が得られる。
According to the production method of the present invention, an inorganic porous composite containing dispersed particles in a skeletal phase and having pores of 100 nm or more can be obtained.

【0012】[0012]

【実施例】まず水溶性高分子であるポリエチレンオキシ
ド(アルドリッチ製 商品番号85,645-2)0.90gを0.01
規定酢酸水溶液10gに溶解し、この溶液にアルミナ粉末
(平均粒径0.5ミクロン、住友化学工業(株)製 易焼
結性アルミナ粉末 AES-12 #00601)をかくはん下で加
えて分散させた。ついで、テトラメトキシシラン5mlを
かくはん下で加えて、加水分解反応を行った。数分かく
はんしたのち、得られた透明溶液を密閉容器に移し、4
0℃の恒温漕中に保持したところ約40分後に固化し
た。得られたゲルをそのままの温度で3日間熟成させ、
そののち溶媒を蒸発除去することによって塊状の多孔質
複合体を得た。アルミナ粉末の量を、0.25、0.50、1.0
0、2.00g(反応溶液に対して約1.5、3.0、5.9、11.1
%)に変化させたところ、いずれの量においても連続貫
通孔を持つ多孔質複合体が得られたが、アルミナ粉末の
添加量の増加と共に細孔径は小さくなり、細孔の形状は
アルミナを入れない場合に見られる滑らかなものから、
表面の粗い形状へと変化した。アルミナ添加量0.25gの
多孔質複合体の細孔径分布を水銀圧入法で求めた結果を
図1に示す。直径1.0ミクロンを中心とした鋭い細孔
分布が得られていることが分かる。また、アルミナ添加
量0.50gの多孔質複合体の細孔径分布を水銀圧入法で求
めた結果を図2に示す。直径0.7ミクロンを中心とし
た鋭い細孔分布が得られていることが分かる。アルミナ
粉末の添加量の増加と共に細孔径は小さくなる。
Example First, 0.90 g of polyethylene oxide (product number 85,645-2, manufactured by Aldrich), which is a water-soluble polymer, was added to 0.01 parts.
The solution was dissolved in 10 g of a normal acetic acid aqueous solution, and alumina powder (average particle size: 0.5 μm, easily sinterable alumina powder AES-12 # 00601 manufactured by Sumitomo Chemical Co., Ltd.) was added to the solution under stirring and dispersed. . Then, 5 ml of tetramethoxysilane was added under stirring to carry out a hydrolysis reaction. After stirring for a few minutes, transfer the resulting clear solution to a closed container and add
When it was kept in a constant temperature bath at 0 ° C., it solidified after about 40 minutes. The obtained gel is aged at the same temperature for 3 days,
Thereafter, the solvent was removed by evaporation to obtain a massive porous composite. The amount of alumina powder was 0.25, 0.50, 1.0
0, 2.00 g (about 1.5, 3.0, 5.9, 11.1
%), A porous composite having continuous through-holes was obtained at any amount. However, the pore diameter became smaller with the increase in the amount of alumina powder added, and the pore shape was changed by adding alumina. From the smooth thing you see when you don't have
The surface changed to a rough shape. FIG. 1 shows the results obtained by determining the pore size distribution of the porous composite having an alumina addition amount of 0.25 g by the mercury porosimetry. It can be seen that a sharp pore distribution centering on a diameter of 1.0 micron is obtained. FIG. 2 shows the result of the pore size distribution of the porous composite having an alumina content of 0.50 g determined by the mercury porosimetry. It can be seen that a sharp pore distribution centering on a diameter of 0.7 micron is obtained. The pore size becomes smaller as the amount of alumina powder added increases.

【0013】[0013]

【発明の効果】本発明によれば、従来法のようなバイン
ダーを燃焼させることによるエネルギーコストと二酸化
炭素排出による環境負荷を削減でき、しかも細孔形状や
サイズ分布の均一な無機系多孔質複合体を製造できる。
According to the present invention, it is possible to reduce the energy cost of burning a binder and the environmental load due to carbon dioxide emission as in the conventional method, and furthermore, the inorganic porous composite having a uniform pore shape and size distribution. Body can be manufactured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】アルミナ添加量0.25gの多孔質複合体の細孔径
分布を水銀圧入法で求めた図
FIG. 1 is a diagram showing the pore size distribution of a porous composite containing 0.25 g of alumina added by a mercury intrusion method.

【図2】アルミナ添加量0.50gの多孔質複合体の細孔径
分布を水銀圧入法で求めた図
FIG. 2 is a diagram showing the pore size distribution of a porous composite containing 0.50 g of alumina added by a mercury intrusion method.

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成13年5月31日(2001.5.3
1)
[Submission date] May 31, 2001 (2001.5.3)
1)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】請求項1[Correction target item name] Claim 1

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0003[Correction target item name] 0003

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0003】[0003]

【発明が解決しようとする課題】そこで本件発明者が研
究したところ、シリカを主成分とするゾル−ゲル反応溶
液にあらかじめ分散粒子成分を共存させておき、粒子が
沈降や凝集を起こさない条件で相分離を伴うゾル−ゲル
転移を起こさせることにより、ゲル相に分散粒子が取り
込まれた多孔質複合体が得られることが明らかになっ
た。
Accordingly, the present inventor has studied and found that a dispersed particle component was previously allowed to coexist in a sol-gel reaction solution containing silica as a main component under conditions that do not cause sedimentation or aggregation of the particles. It has been clarified that by causing a sol-gel transition accompanied by phase separation, a porous composite having dispersed particles incorporated in a gel phase can be obtained.

【課題を解決するための手段】すなわち、本発明は、ゾ
ル−ゲル反応溶液に分散粒子成分を共存させておき、相
分離を伴うゾル−ゲル転移を起こさせることによって開
気孔と分散粒子を含む骨格成分からなる無機系多孔質複
合体を製造することを特徴とする無機系多孔質複合体の
製造方法である。ここで、開気孔は、直径100nm以上、
好ましくは200〜10000nmである。直径100nm以上のマ
クロ孔は、相分離の際に生じる溶媒相の占めていた領域
として形成されるので、通常の乾燥操作により燃焼や熱
分解を伴うことなく形成し、溶媒相とゲル相が各々絡み
合って連続したいわゆる共連続構造を形成する場合に
は、極めて鋭いサイズ分布を得ることができる。
That is, the present invention includes an open pore and a dispersed particle by causing a dispersed particle component to coexist in a sol-gel reaction solution and causing a sol-gel transition accompanied by phase separation. A method for producing an inorganic porous composite, which comprises producing an inorganic porous composite comprising a skeleton component. Here, the open pores have a diameter of 100 nm or more,
Preferably it is 200 to 10,000 nm. Macropores with a diameter of 100 nm or more are formed as areas occupied by the solvent phase generated during phase separation, so they are formed by ordinary drying operations without burning or thermal decomposition, and the solvent phase and the gel phase are each separated. When forming a so-called co-continuous structure that is entangled and continuous, an extremely sharp size distribution can be obtained.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4D019 BA01 BA05 BA06 BA16 BB06 BD01  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4D019 BA01 BA05 BA06 BA16 BB06 BD01

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】ゾル−ゲル反応溶液に分散粒子成分を共存
させておき、相転移を伴うゾル−ゲル転移を起こさせる
ことによって開気孔と分散粒子を含む骨格成分からなる
無機系多孔質複合体を製造することを特徴とする無機系
多孔質複合体の製造方法。
An inorganic porous composite comprising a skeleton component containing open pores and dispersed particles by causing a dispersed particle component to coexist in a sol-gel reaction solution and causing a sol-gel transition accompanied by a phase transition. And a method for producing an inorganic porous composite.
【請求項2】開気孔が直径100nm以上である請求項1記
載の無機系多孔質複合体の製造方法。
2. The method for producing an inorganic porous composite according to claim 1, wherein the open pores have a diameter of 100 nm or more.
【請求項3】分散粒子が、金属酸化物、金属、有機高分
子およびそれらの複合体である、請求項1又は2に記載
の無機系多孔質複合体の製造方法。
3. The method for producing an inorganic porous composite according to claim 1, wherein the dispersed particles are a metal oxide, a metal, an organic polymer and a composite thereof.
【請求項4】分散粒子の平均直径が5nmから100μmで
ある請求項1乃至3に記載の無機系多孔質複合体の製造
法。
4. The method for producing an inorganic porous composite according to claim 1, wherein the dispersed particles have an average diameter of 5 nm to 100 μm.
【請求項5】骨格相に分散粒子を含み100nm以上の気孔
を有する無機系多孔質複合体。
5. An inorganic porous composite containing dispersed particles in a skeletal phase and having pores of 100 nm or more.
JP2001103036A 2001-04-02 2001-04-02 Method for producing inorganic porous composite containing dispersed particles Expired - Fee Related JP4784719B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001103036A JP4784719B2 (en) 2001-04-02 2001-04-02 Method for producing inorganic porous composite containing dispersed particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001103036A JP4784719B2 (en) 2001-04-02 2001-04-02 Method for producing inorganic porous composite containing dispersed particles

Publications (2)

Publication Number Publication Date
JP2002293657A true JP2002293657A (en) 2002-10-09
JP4784719B2 JP4784719B2 (en) 2011-10-05

Family

ID=18956153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001103036A Expired - Fee Related JP4784719B2 (en) 2001-04-02 2001-04-02 Method for producing inorganic porous composite containing dispersed particles

Country Status (1)

Country Link
JP (1) JP4784719B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005051864A1 (en) * 2003-11-28 2005-06-09 Ngk Insulators, Ltd. Porous formed article, porous sintered article, method for producing the same and composite member comprising the same
JP2007290913A (en) * 2006-04-25 2007-11-08 Sharp Corp Electroconductive porous honeycomb structure and its manufacturing method
JPWO2007021037A1 (en) * 2005-08-19 2009-02-26 国立大学法人京都大学 INORGANIC POROUS BODY AND PROCESS FOR PRODUCING THE SAME
US7666336B2 (en) 2003-11-06 2010-02-23 Merck Patent Gmbh Process for the production of monolithic mouldings

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09110413A (en) * 1995-10-24 1997-04-28 Mizusawa Ind Chem Ltd Spherical silica gel having increased macropore and its production

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09110413A (en) * 1995-10-24 1997-04-28 Mizusawa Ind Chem Ltd Spherical silica gel having increased macropore and its production

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7666336B2 (en) 2003-11-06 2010-02-23 Merck Patent Gmbh Process for the production of monolithic mouldings
WO2005051864A1 (en) * 2003-11-28 2005-06-09 Ngk Insulators, Ltd. Porous formed article, porous sintered article, method for producing the same and composite member comprising the same
JPWO2005051864A1 (en) * 2003-11-28 2007-06-21 日本碍子株式会社 Porous molded body, porous sintered body, manufacturing method thereof, and composite member thereof
JP4683554B2 (en) * 2003-11-28 2011-05-18 日本碍子株式会社 Method for producing porous titania molded body
JPWO2007021037A1 (en) * 2005-08-19 2009-02-26 国立大学法人京都大学 INORGANIC POROUS BODY AND PROCESS FOR PRODUCING THE SAME
JP4874976B2 (en) * 2005-08-19 2012-02-15 国立大学法人京都大学 INORGANIC POROUS BODY AND PROCESS FOR PRODUCING THE SAME
JP2007290913A (en) * 2006-04-25 2007-11-08 Sharp Corp Electroconductive porous honeycomb structure and its manufacturing method
JP4539871B2 (en) * 2006-04-25 2010-09-08 シャープ株式会社 Porous honeycomb structure having conductivity and method for manufacturing the same

Also Published As

Publication number Publication date
JP4784719B2 (en) 2011-10-05

Similar Documents

Publication Publication Date Title
US10487005B2 (en) Porous glass ceramic composition and method for manufacturing the same
Buelna et al. Sol–gel-derived mesoporous γ-alumina granules
JP6666621B2 (en) Method for producing silica glass precursor, silica glass precursor, method for producing silica glass, and silica glass
JP4997408B2 (en) Hollow composite and method for producing the same
JPH02180631A (en) Hollow ceramic microsphere produced by sol-gel process and manufacture thereof
JPH10226514A (en) Production of mesoporous solid, said solid and its use
WO2001053225A1 (en) Sol-gel process for producing synthetic silica glass
JP4035440B2 (en) Sol-gel process for producing dry gels with large dimensions and glasses derived thereby
JP2010537948A (en) Porous washcoat-bonded fiber substrate and manufacturing method
JP2959683B2 (en) Method for producing high-purity alumina fiber molded body
JP4221498B2 (en) Porous alumina crystalline particles and method for producing the same
JP5102306B2 (en) Method for producing molded product without addition of binder from pyrogenic SiO2
JP4784719B2 (en) Method for producing inorganic porous composite containing dispersed particles
JPH0829952B2 (en) Porous glass manufacturing method
JP4724858B2 (en) Porous composite and method for producing the same
Chen et al. Preparation of alumina-zirconia materials by the sol-gel method from metal alkoxides
Jiang et al. Synthesis of stable hollow spheres of Si/Al composite oxide with controlled pore size in the shell wall
US20050095416A1 (en) Inorganic porous materials containing dispersed particles
WO2005042402A1 (en) Inorganic porous material containing dispersed particles
EP0355242B1 (en) Method for making mineral filtration beads to be used in gel adsorption and permeation chromatography
KR100483512B1 (en) Porous ceramic filter and method of producing the same
RU2352544C1 (en) Method for production of highly porous cellular glass-ceramic material
Kamitani et al. Fabrication of highly porous alumina-based ceramics with connected spaces by employing PMMA microspheres as a template
EP1250295A1 (en) Sol-gel process for producing synthetic silica glass
JPH0222120A (en) Spherical silica porous form and production thereof

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20010417

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20010417

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20010531

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110407

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110415

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110621

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110628

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140722

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees