JP2866131B2 - Method for producing ultrafine long-fiber nonwoven fabric - Google Patents

Method for producing ultrafine long-fiber nonwoven fabric

Info

Publication number
JP2866131B2
JP2866131B2 JP799190A JP799190A JP2866131B2 JP 2866131 B2 JP2866131 B2 JP 2866131B2 JP 799190 A JP799190 A JP 799190A JP 799190 A JP799190 A JP 799190A JP 2866131 B2 JP2866131 B2 JP 2866131B2
Authority
JP
Japan
Prior art keywords
polymer component
fiber
nonwoven fabric
web
arc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP799190A
Other languages
Japanese (ja)
Other versions
JPH03213554A (en
Inventor
孝一 長岡
芳基 宮原
文夫 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YUNICHIKA KK
Original Assignee
YUNICHIKA KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YUNICHIKA KK filed Critical YUNICHIKA KK
Priority to JP799190A priority Critical patent/JP2866131B2/en
Publication of JPH03213554A publication Critical patent/JPH03213554A/en
Application granted granted Critical
Publication of JP2866131B2 publication Critical patent/JP2866131B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Multicomponent Fibers (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Nonwoven Fabrics (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は,極細長繊維からなる不織布の製造方法に関
し,さらに詳しくは,繊細な表面形態と緻密な構造を有
する極細長繊維からなる不織布の製造方法に関するもの
である。
Description: FIELD OF THE INVENTION The present invention relates to a method for producing a nonwoven fabric made of ultrafine fibers, and more particularly, to a method for producing a nonwoven fabric made of ultrafine fibers having a delicate surface morphology and a dense structure. It relates to a manufacturing method.

(従来の技術) 従来から,不織布は,衣料用,産業資材用,土木建築
資材用,農芸演芸資材用,生活関連資材用あるいは医療
衛生材用等,種々の用途に使用されている。中でも,長
繊維からなる不織布は,短繊維からなる不織布に対し,
強力が高く,しかも生産性に優れるため,広く使用され
ている。この長繊維からなる不織布において,表面が繊
細で,かつ緻密な構造を有する不織布を得る試みが数多
くなされてきた。例えば,特公昭44−24699号公報,特
公昭52−30629号公報及び特公昭62−41316号公報には,
シートに化学薬品処理を施して繊維を構成する重合体の
一部を溶解させること,あるいは溶解除去することによ
り細繊度の繊維から構成される不織布を得る方法が開示
されている。また,特公平1−47585号公報及び特公平
1−47586号公報には,シートを高圧水流により処理し
繊維を割繊して極細繊維とするとともに繊維に3次元的
交絡を施すことにより極細繊維からなる不織布を得る方
法が開示されており,特公平1−47579号公報には,不
織布を水洗処理して水溶性成分を除去することにより極
細繊維からなる不織布を得る方法が開示されている。し
かしながら,これらの不織布の製造方法には,生産工程
が複雑であり,しかも重合体を除去する必要があるた
め,製造コストが高くなるという問題がある。さらに,
特公昭53−10169号公報には,シートをバフ掛けして繊
維を割繊することにより極細繊維からなる不織布を得る
方法が開示されているが,この製造方法には,構成繊維
が部分的に損傷を受けるという問題がある。
(Prior Art) Conventionally, nonwoven fabrics have been used for various purposes such as clothing, industrial materials, civil engineering and building materials, agricultural and entertainment materials, living related materials and medical hygiene materials. In particular, nonwoven fabrics made of long fibers are more
It is widely used because of its high strength and excellent productivity. Many attempts have been made to obtain a nonwoven fabric having a delicate surface and a dense structure in the nonwoven fabric made of long fibers. For example, Japanese Patent Publication No. 44-24699, Japanese Patent Publication No. 52-30629 and Japanese Patent Publication No.
A method is disclosed in which a sheet is subjected to a chemical treatment to dissolve a part of the polymer constituting the fiber, or is dissolved and removed to obtain a nonwoven fabric composed of fine fibers. Further, Japanese Patent Publication Nos. 1-47585 and 1-47586 disclose that a sheet is treated with a high-pressure water stream to split the fibers into ultrafine fibers, and that the fibers are three-dimensionally entangled. A method for obtaining a nonwoven fabric comprising ultrafine fibers is disclosed in Japanese Patent Publication No. 47579/1994, in which the nonwoven fabric is washed with water to remove water-soluble components. However, these nonwoven fabric manufacturing methods have a problem that the production process is complicated and the production cost is high because the polymer must be removed. further,
Japanese Patent Publication No. 53-10169 discloses a method of obtaining a nonwoven fabric made of ultrafine fibers by buffing a sheet and splitting the fibers. There is a problem of being damaged.

(発明が解決しようとする課題) 本発明は,前記問題を解決し,繊細な表面形態と緻密
な構造を有する極細長繊維からなる不織布を効率よく製
造することができる方法を提供しようとするものであ
る。
(Problems to be Solved by the Invention) The present invention is intended to solve the above-mentioned problems and to provide a method capable of efficiently producing a nonwoven fabric composed of ultrafine long fibers having a delicate surface morphology and a dense structure. It is.

(課題を解決するための手段) 本発明者らは,前記問題を解決すべく鋭意検討の結
果,本発明に到達した。すなわち,本発明は,重合体成
分Aと,前記重合体成分Aに対し非相溶性で,かつ前記
重合体成分Aの融点より30〜150℃高い融点を有する重
合体成分Bからなる2個以上の凸レンズ状横断面を有す
るセグメントとから構成され,繊維軸に垂直な横断面に
おける重合体成分Bによる凸レンズ状部分での曲率半径
R0及びR1,円弧の弧長L0及びL1が下記及び式を満足
する2成分複合長繊維を溶融複合紡出し,紡出された前
記分割型2成分複合長繊維をエアーサツカからなる引取
り手段により引取り,ウエブコンベア等の捕集面上に堆
積させてウエブとし,ウエブを2個以上のロールからな
る高線圧力のロール群で処理することによって前記高融
点の重合体成分Bからなる繊維を前記複合長繊維から少
なくとも一部剥離させて割繊長繊維とし,前記低融点の
重合体成分Aからなる繊維により繊維間を少なくとも部
分的に接着することを特徴とする極細長繊維不織布の製
造方法を要旨とするものである。
(Means for Solving the Problems) As a result of intensive studies to solve the above problems, the present inventors have reached the present invention. That is, the present invention relates to a polymer component A and two or more polymer components B which are incompatible with the polymer component A and have a melting point higher by 30 to 150 ° C. than the melting point of the polymer component A. And a segment having a convex lens-shaped cross-section, and a radius of curvature at the convex lens-shaped portion due to the polymer component B in a cross-section perpendicular to the fiber axis.
R 0 and R 1 , and the arc lengths L 0 and L 1 of the circular arc satisfy the following formula and melt-spun bicomponent conjugate filaments, and the spun split bicomponent conjugate filaments are drawn by air suction. The high-melting-point polymer component B is collected by taking up by a picking means, depositing it on a collecting surface of a web conveyor or the like to form a web, and treating the web with a group of high linear pressure rolls composed of two or more rolls. At least partially exfoliating the composite fiber from the composite filament to obtain a split filament, and at least partially bonding the fibers with the fiber comprising the polymer component A having a low melting point. Of the present invention.

R1/R0<1 …… 1<L1/L0≦3 …… 〔R0:重合体成分Aと接していない円弧の曲率半径,R1:
重合体成分Aと接している円弧の曲率半径,L0:重合体成
分Aと接していない円弧の弧長,L1:重合体成分Aと接し
ている円弧の弧長〕 次に,本発明を詳細に説明する。
R 1 / R 0 <1 ... 1 <L 1 / L 0 ≤3 ... [R 0 : radius of curvature of an arc not in contact with polymer component A, R 1 :
Radius of curvature of an arc in contact with polymer component A, L 0 : arc length of an arc not in contact with polymer component A, L 1 : arc length of an arc in contact with polymer component A] Will be described in detail.

本発明にいう非相溶性の重合体成分A及びBとは,い
ずれも繊維形成能を有し,通常の溶融紡糸装置を使用し
て溶融紡出することができるものである。重合体成分A
及びBの組合せとしては,例えば,ポリエステル系とポ
リアミド系,ポリエステル系とポリオレフイン系,ポリ
アミド系とポリオレフイン系等が挙げられ,ポリエステ
ル系重合体としては,ポリエチレンテレフタレート,ポ
リブチレンテレフタレートあるいはそれらを主成分とす
る共重合ポリエステル等のポリエステルが,ポリアミド
系としては,ナイロン6,ナイロン46,ナイロン66,ナイロ
ン610あるいはそれらを主成分とする共重合ナイロン等
のポリアミドが,ポリオレフイン系としては,ポリプロ
ピレン,高密度ポリエチレン,線状低密度ポリエチレ
ン,エチレン/プロピレン共重合体等のポリオレフイン
が挙げられる。また,重合体成分A及びBには,各々,
通常の艶消剤,熱安定剤,顔料あるいは重合体の結晶化
促進剤等の添加剤を添加してもよい。
The incompatible polymer components A and B referred to in the present invention both have fiber-forming ability and can be melt-spun using a conventional melt-spinning apparatus. Polymer component A
And B are, for example, polyester-based and polyamide-based, polyester-based and polyolefin-based, polyamide-based and polyolefin-based, and the like. As the polyester-based polymer, polyethylene terephthalate, polybutylene terephthalate or a mixture of these as a main component is used. Polyesters such as nylons, polyamides such as nylon 6, nylon 46, nylon 66, nylon 610, or polyamides such as copolymerized nylon based on them. Polyolefins such as polypropylene and high density polyethylene And polyolefins such as linear low-density polyethylene and ethylene / propylene copolymer. The polymer components A and B have
Additives such as ordinary matting agents, heat stabilizers, pigments or crystallization accelerators for polymers may be added.

本発明の極細長繊維不織布の製造方法は,まず,前記
重合体成分Aと,前記重合体成分Aに対し非相溶性で,
かつ前記重合体成分Aの融点より30〜150℃高い融点を
有する重合体成分Bからなる2個以上の凸レンズ状横断
面を有するセグメントとから構成される2成分複合長繊
維を,通常の溶融複合紡糸装置を使用して溶融複合紡糸
する。紡糸口金装置としては,溶融した重合体成分Aの
導入孔の外周部から溶融した重合体成分Bが2個以上誘
導される構造の複合紡糸口金装置を使用する。重合体成
分Aが重合体成分Bを分割する数,すなわち前記重合体
成分Bからなる凸レンズ状横断面を有するセグメントの
数は,2個以上,多いほど極細繊維を得ることができて好
ましいが,多過ぎると重合体成分Bのみから構成される
セグメント同士が接着した横断面構造となり,後工程で
割繊・剥離することができなくなるという問題が生じる
ため,通常,16個程度までとするのがよい。また,前記
重合体成分Bからなるセグメントは,凸レンズ状の横断
面を有することが必要であり,この場合,重合体成分B
のみからなるセグメントが重合体成分Aと接触する接触
周長が比較的短くなるため,後工程で2成分複合長繊維
を割繊するときに割繊性が向上する。
The method for producing the ultrafine long-fiber nonwoven fabric according to the present invention comprises the steps of: first, the polymer component A is incompatible with the polymer component A;
And two or more segments having a convex lens-like cross section composed of a polymer component B having a melting point higher by 30 to 150 ° C. than the melting point of the polymer component A. The composite spinning is performed using a spinning apparatus. As the spinneret device, a composite spinneret device having a structure in which two or more molten polymer components B are guided from the outer periphery of the introduction hole of the molten polymer component A is used. The number by which the polymer component A divides the polymer component B, that is, the number of the segments having the convex lens-like cross section made of the polymer component B is preferably 2 or more, and the larger the number, the more preferable the fine fiber can be obtained. If the amount is too large, the cross-sectional structure in which the segments composed only of the polymer component B are bonded to each other will cause a problem that splitting and peeling cannot be performed in a later process. Good. Further, the segment composed of the polymer component B needs to have a convex lens-shaped cross section.
Since the contact circumference in which the segment consisting of only the polymer component A comes into contact with the polymer component A is relatively short, the splitting property is improved when splitting the bicomponent composite filament in the subsequent step.

次に,紡出された2成分複合長繊維をエアーサツカ等
の引取り手段により引取り,ウエブコンベア等の捕集面
上に堆積させ,ウエブを高線圧力の加熱された表面平滑
なロール群で処理することによって高融点の重合体成分
Bからなるセグメントを複合長繊維から剥離させて割繊
長繊維とし,それと同時に,低融点の重合体成分Aから
なる繊維により繊維間を少なくとも部分的に接着する。
また,ウエブを高線圧力の非加熱の表面平滑なロール群
で処理し,一旦,高融点の重合体成分Bからなるセグメ
ントを複合長繊維から剥離させて割繊長繊維とし,次い
で,加熱ロールで低融点の重合体成分Aからなる繊維に
より繊維間を少なくとも部分的に接着してもよい。表面
平滑な加熱ロールに代わり,加熱されたエンボスロール
を使用することもできる。ウエブを加熱されたエンボス
ロールを使用し,低融点の重合体成分Aからなる繊維に
より繊維間を少なくとも部分的に接着して不織布を得,
次いで,不織布を高線圧力の表面平滑なロール群で処理
することによって高融点の重合体成分Bからなるセグメ
ントを複合長繊維から剥離させて割繊長繊維としてもよ
い。なお,得られた不織布に,不織布の柔軟性を向上さ
せるための柔軟加工を施してもよい。
Next, the spun bicomponent bicomponent fiber is taken out by a take-up means such as an air sucker and deposited on a collecting surface of a web conveyor or the like, and the web is heated by a group of rolls heated at a high linear pressure and having a smooth surface. By the treatment, the segment composed of the high melting point polymer component B is peeled from the composite long fiber to obtain split long fibers, and at the same time, the fibers are bonded at least partially by the fiber composed of the low melting point polymer component A. I do.
Further, the web is treated with a group of non-heated surface smooth rolls of high linear pressure, and the segment composed of the high melting point polymer component B is once separated from the composite filaments to obtain split filaments. The fibers may be at least partially adhered to each other with fibers made of the polymer component A having a low melting point. A heated embossing roll can be used instead of a heating roll having a smooth surface. Using a heated web with an embossing roll, the fibers are at least partially adhered to each other with fibers of a low melting point polymer component A to obtain a nonwoven fabric.
Next, the segment composed of the polymer component B having a high melting point may be peeled off from the composite filament by treating the nonwoven fabric with a group of rolls having a smooth surface at a high linear pressure to obtain split filaments. The obtained nonwoven fabric may be subjected to a softening process for improving the flexibility of the nonwoven fabric.

本発明にいう重合体成分Bは,重合体成分Aの融点よ
り30〜150℃高い融点を有することが必要である。本発
明にいう重合体の融点とは,パーキンエルマ社製示差熱
量計DSC−2型を使用し,同装置のマニユアルに従い,
試料量を約5mg,走査速度を20℃/分として測定して得ら
れるDSC曲線から求めたものである。重合体成分Bと重
合体成分Aとの融点差が30℃未満であると,ウエブを加
熱ロールで熱接着するときに不織布が熱収縮して寸法安
定性が低下して不織布の風合いが悪くなったり,熱接着
時の接着温度域が狭くなり温度制御が困難となる等の問
題を生じるため,好ましくない。前記融点差が,150℃を
超えると,低融点の重合体成分Aの熱劣化が促進するた
め,好ましくない。なお,ウエブを低融点の重合体成分
Aの融点以上の表面温度の加熱ロールで熱接着すると,
得られる不織布はフイルム状あるいは表面の硬いものと
なるため,好ましくない。
The polymer component B according to the present invention needs to have a melting point 30 to 150 ° C. higher than the melting point of the polymer component A. The melting point of the polymer referred to in the present invention is determined by using a DSC-2 type differential calorimeter manufactured by Perkin Elmer Co. according to the manual of the apparatus.
It was determined from a DSC curve obtained by measuring the sample amount at about 5 mg and the scanning speed at 20 ° C./min. If the difference between the melting points of the polymer component B and the polymer component A is less than 30 ° C., when the web is heat-bonded with a heating roll, the nonwoven fabric is thermally contracted, the dimensional stability is reduced, and the hand of the nonwoven fabric is deteriorated. It is not preferable because there are problems such as that the temperature range becomes narrow and the temperature control becomes difficult during thermal bonding. If the melting point difference exceeds 150 ° C., thermal degradation of the low melting point polymer component A is promoted, which is not preferable. When the web is thermally bonded with a heating roll having a surface temperature equal to or higher than the melting point of the low melting polymer component A,
The resulting nonwoven fabric is not preferred because it has a film shape or a hard surface.

ウエブ化には,溶融紡出された繊維束を冷却し,延伸
して得られる延伸長繊維あるいは高速紡糸法により得ら
れる高配向未延伸長繊維を使用することができる。紡糸
からウエブ化までを連続工程としてもよく,また,別途
製造した延伸長繊維あるいは高配向未延伸長繊維からウ
エブを作成してもよい。ウエブは,これらの長繊維をエ
アーサツカ等の引取り手段により引取り,帯電装置によ
り強制的に帯電させて繊維を開繊し,移動するウエブコ
ンベア等の捕集面上に堆積させることにより作成する。
For web formation, drawn filaments obtained by cooling and drawing a melt-spun fiber bundle or highly oriented undrawn filaments obtained by a high-speed spinning method can be used. The process from spinning to web formation may be a continuous process, or the web may be made from a separately manufactured drawn long fiber or a highly oriented undrawn long fiber. The web is created by taking up these long fibers with a take-up means such as an air sucker, forcibly charging with a charging device, opening the fibers, and depositing the fibers on a collecting surface of a moving web conveyor or the like. .

本発明にいう高線圧力のロール群とは,2個以上のロー
ルから構成されるものであり,通常,1対のロールから多
段式の計10個のロールまでを使用することができる。ロ
ール数が多過ぎると設備投資費が高くなり,好ましくな
い。ロール群の線圧力は,高融点の重合体成分Bからな
るセグメントを複合長繊維から剥離させて割繊長繊維と
するに重要な要因であり,剪断,伸長,圧縮等の応力に
より前記重合体成分Bからなるセグメントを剥離する。
この線圧力は,複合長繊維の割繊性にもよるが,通常,
少なくとも20kg/cm程度とするのが好ましい。20kg/cm未
満であると前記重合体成分Bからなるセグメントを十分
剥離することができず,好ましくない。
The high linear pressure roll group referred to in the present invention is composed of two or more rolls. Generally, from a pair of rolls to a multistage type of a total of ten rolls can be used. If the number of rolls is too large, capital investment costs increase, which is not preferable. The linear pressure of the roll group is an important factor in separating the segment composed of the polymer component B having a high melting point from the composite filament and forming a split filament, and the stress such as shearing, elongation, or compression causes the polymer to lose its length. The segment consisting of component B is peeled off.
Although this linear pressure depends on the splitting property of the composite filament,
It is preferably at least about 20 kg / cm. If it is less than 20 kg / cm, the segment comprising the polymer component B cannot be sufficiently peeled off, which is not preferable.

次に,本発明にいう2成分複合長繊維に関して,説明
する。
Next, the bicomponent composite long fiber according to the present invention will be described.

第1図は,本発明にいう2成分複合長繊維の構造を説
明するための横断面図,第2,3,4及び5図は,本発明の
構成要件を満足する2成分複合長繊維の例を示す横断面
図である。第1図において,R0及びR1は2成分複合長繊
維の繊維軸に垂直な横断面における重合体成分Bによる
凸レンズ状部分での曲率半径であり,R0は重合体成分A
と接していない円弧の曲率半径,R1は重合体成分Aと接
している円弧の曲率半径,L0及びL1は前記凸レンズ状部
分での円弧の弧長であり,L0は重合体成分Aと接してい
ない円弧の弧長,L1は重合体成分Aと接している円弧の
弧長である。R0及びR1は繊維断面を1000倍に拡大して撮
影した断面写真を基にし,それぞれの円弧の弧長の90%
以上が包含されるような仮想円弧を想定して求めたもの
である。また,L0及びL1は同拡大断面写真より実測して
求めたものである。
FIG. 1 is a cross-sectional view for explaining the structure of the bicomponent conjugate filament according to the present invention, and FIGS. 2, 3, 4 and 5 show the bicomponent conjugate filaments satisfying the constitutional requirements of the present invention. It is a cross section showing an example. In FIG. 1, R 0 and R 1 are the radii of curvature at the convex lens-like portions due to the polymer component B in the cross section perpendicular to the fiber axis of the bicomponent bicomponent fiber, and R 0 is the polymer component A.
The radius of curvature of the arc not in contact with the polymer component A, R 1 is the radius of curvature of the arc in contact with the polymer component A, L 0 and L 1 are the arc lengths of the arc in the convex lens-like portion, and L 0 is the polymer component arc length of the arc that is not in contact with a, L 1 is the arc length of the arc that is in contact with the polymer components a. R 0 and R 1 are 90% of the arc length of each circular arc based on the cross-sectional photograph taken by magnifying the fiber cross section 1000 times.
The above is obtained by assuming a virtual arc that includes the above. L 0 and L 1 were obtained by actual measurement from the enlarged cross-sectional photograph.

本発明にいう2成分複合長繊維は,第1図に示したR0
及びR1,L0及びL1が下記及び式を満足するものであ
る。
The bicomponent bicomponent fiber according to the present invention has the R 0 shown in FIG.
And R 1 , L 0 and L 1 satisfy the following and formulas.

R1/R0<1 …… 1<L1/L0≦3 …… このR1/R0がR1/R0≧1であるとL1/L0は自ずとL1/L0
1となるが,この場合には,選択する重合体成分Aと重
合体成分Bによっては紡糸工程あるいは延伸工程で前記
重合体成分Aと重合体成分Bとが剥離してしまい,紡糸
工程あるいは延伸工程で断糸等の不都合が生じ,ウエブ
化するときに繊維の開繊性が低下して均一なウエブを得
ることができず,好ましくない。R1/R0がR1/R0≧1であ
るとL1/L0は自ずと1<L1/L0となるが,この場合には,
選択する重合体成分Aと重合体成分Bによっては紡糸工
程あるいは延伸工程で前記重合体成分Aと重合体成分B
とが剥離することがなく,ウエブ化するときに繊維の開
繊性が良好で均一なウエブを得ることができる。しかし
ながら,R1/R0がR1/R0<1であってもL1/L0がL1/L0>3
であると,ウエブあるいは不織布を高線圧力の表面平滑
なロール群で処理して重合体成分Aと重合体成分Bとを
剥離し割繊することが困難となるので,好ましくない。
R 1 / R 0 <1 ... 1 <L 1 / L 0 ≤3 ... If this R 1 / R 0 is R 1 / R 0 ≥1, L 1 / L 0 naturally becomes L 1 / L 0
However, in this case, depending on the selected polymer component A and polymer component B, the polymer component A and the polymer component B are separated in the spinning step or the drawing step, and the spinning step or the drawing step is performed. Inconveniences such as thread breakage occur in the process, and when the web is formed, the fiber opening property is reduced and a uniform web cannot be obtained, which is not preferable. If R 1 / R 0 satisfies R 1 / R 0 ≧ 1, L 1 / L 0 naturally becomes 1 <L 1 / L 0. In this case,
Depending on the polymer component A and the polymer component B to be selected, the polymer component A and the polymer component B are used in the spinning step or the drawing step.
Is not peeled off, and a uniform web with good fiber opening properties can be obtained when the web is formed. However, R 1 / R 0 is R 1 / R 0 <L 1 / L 0 be a 1 L 1 / L 0> 3
In this case, it is difficult to separate the polymer component A and the polymer component B by treating the web or the nonwoven fabric with a group of rolls having a high linear pressure and having a smooth surface, which is not preferable.

次に,本発明の方法により得られる極細長繊維不織布
に関して,説明する。
Next, the ultrafine long-fiber nonwoven fabric obtained by the method of the present invention will be described.

本発明の方法により得られる極細長繊維不織布は,重
合体成分Aと,前記重合体成分Aに対し非相溶性の重合
体成分Bからなる2個以上の凸レンズ状横断面を有する
セグメントとから構成される2成分複合長繊維と、前記
2成分複合長繊維から重合体成分Bからなるセグメント
が一部剥離した2成分複合長繊維と,前記2成分複合長
繊維の分割により発現した前記重合体成分Aのみから構
成される割繊長繊維と,前記重合体成分Bのみから構成
される割繊長繊維とから構成されるものである。
The ultrafine long-fiber nonwoven fabric obtained by the method of the present invention comprises a polymer component A and two or more segments having a convex lens-like cross section composed of a polymer component B incompatible with the polymer component A. A bicomponent conjugate filament, a bicomponent conjugate filament partially exfoliated from a segment comprising the polymer component B from the bicomponent conjugate filament, and the polymer component developed by splitting the bicomponent conjugate filament. A split fiber composed of only A and a split filament composed of only the polymer component B.

本発明の極細長繊維不織布は,重合体成分Bからなる
セグメントの割繊割合が30%以上95%以下のものであ
る。この割繊割合とは,R0及びR1,L0及びL1が前記及び
式を満足する2成分複合長繊維と,前記2成分複合長
繊維から重合体成分Bからなるセグメントが一部剥離し
た2成分複合長繊維と,前記2成分複合長繊維の分割に
より発現した前記重合体成分Aのみから構成される割繊
長繊維と,前記重合体成分Bのみから構成される割繊長
繊維とから構成される不織布の任意の10箇所を選び,不
織布の断面を100倍に拡大して断面写真を撮影し,次い
で,10枚の断面写真中,複合長繊維から剥離している重
合体成分Bのセグメント総数と存在する重合体成分Bの
セグメント総数とを求め,算出されるもので,存在する
重合体成分Bのセグメント総数に対する剥離している重
合体成分Bのセグメント総数の比(%)を表すものであ
る。
In the ultrafine long-fiber nonwoven fabric of the present invention, the splitting ratio of the segment composed of the polymer component B is 30% or more and 95% or less. The split ratio is defined as a bicomponent conjugate filament in which R 0 and R 1 , L 0 and L 1 satisfy the above and the formula, and a segment composed of the polymer component B from the bicomponent conjugate filament, which is partially separated. A split bicomponent fiber composed solely of the polymer component A and a split fibrous fiber composed solely of the polymer component B, which are expressed by splitting the bicomponent composite filament. Of the non-woven fabric consisting of 10 parts, taking a cross-sectional photograph by enlarging the cross-section of the non-woven fabric by 100 times, And the total number of existing polymer component B segments are calculated and calculated, and the ratio (%) of the total number of exfoliated polymer component B segments to the total number of existing polymer component B segments is calculated. It represents.

本発明の極細長繊維不織布では,前記割繊割合は30%
以上95%以下であることが好ましく,この割繊割合が30
%未満であると,繊細な表面形態と緻密な構造を有する
不織布を得ることができず,好ましくない。
In the ultrafine long-fiber nonwoven fabric of the present invention, the splitting ratio is 30%.
It is preferably at least 95% and the splitting ratio is 30%.
% Is not preferable because a nonwoven fabric having a delicate surface morphology and a dense structure cannot be obtained.

また,前記複合長繊維の分割により発現した前記重合
体成分Bのみから構成される割繊長繊維は,単糸繊度が
0.8デニール以下のものであることが好ましい。前記割
繊割合が30%以上であっても,重合体成分Bからなる前
記割繊長繊維の単糸繊度が0.8デニールを超えると,繊
細な表面と緻密な構造を有する不織布を得ることが困難
となり,この単糸繊度が小さいほど,繊細な表面と緻密
な構造を有する不織布を得ることができる。
In addition, split filaments composed solely of the polymer component B developed by splitting the composite filaments have a single-fiber fineness.
It is preferably 0.8 denier or less. Even if the splitting ratio is 30% or more, it is difficult to obtain a nonwoven fabric having a delicate surface and a dense structure if the single-filament fineness of the splitting filament made of the polymer component B exceeds 0.8 denier. The smaller the single-fiber fineness, the more a nonwoven fabric having a delicate surface and a dense structure can be obtained.

本発明にいう2成分複合長繊維において,重合体成分
Bからなる凸レンズ状横断面を有するセグメント数は,2
個以上であることが必要である。このセグメントの数が
1個であると,紡糸条件あるいは延伸条件によっては複
合長繊維に捲縮が生じ,ウエブ化するときに繊維の開繊
性が低下して均一なウエブを得ることができない。
In the bicomponent bicomponent fiber according to the present invention, the number of segments having a convex lens-shaped cross section composed of the polymer component B is 2
It is necessary to have at least one. If the number of the segments is one, crimping occurs in the conjugate long fiber depending on spinning conditions or drawing conditions, and when the web is formed, the openability of the fiber is reduced and a uniform web cannot be obtained.

本発明の方法においては,組み合わせる重合体の種
類,重合体の複合化,紡糸条件,延伸条件,剥離割繊条
件,接着条件あるいは柔軟加工等の後加工条件を種々選
択することにより,使用目的に応じた極細長繊維不織布
を製造することができる。
In the method of the present invention, various kinds of post-processing conditions such as kinds of polymers to be combined, composite of polymers, spinning conditions, drawing conditions, peeling splitting conditions, bonding conditions, and flexible processing can be selected to achieve the intended purpose. It is possible to produce a corresponding ultrafine long-fiber nonwoven fabric.

(実施例) 次に,実施例に基づいて本発明を具体的に説明する。
なお,実施例における各種特性は次の方法により測定し
た。
(Example) Next, the present invention will be specifically described based on examples.
Various characteristics in the examples were measured by the following methods.

固有粘度:フエノールと四塩化エタンの等重量混合溶
液を溶液とし,温度20℃で測定した。
Intrinsic viscosity: Measured at a temperature of 20 ° C using a solution of an equal weight mixture of phenol and ethane tetrachloride as a solution.

メルトインデツクス:ASTM D 1238 E法により測定し
た。
Melt index: Measured by ASTM D 1238 E method.

融点:パーキンエルマ社製示差走査熱量計DSC−2型
を使用し,試料量を約5mg,走査速度20℃/分で測定して
得られたDSC曲線から求めた。
Melting point: Determined from a DSC curve obtained by measuring the amount of a sample at about 5 mg at a scanning rate of 20 ° C./min using a differential scanning calorimeter DSC-2 manufactured by Perkin Elmer.

不織布のタテ及びヨコ方向の引張強力:幅が3cm,長さ
が10cmの測定試料片を準備し,JIS L−1096に記載のスト
リツプ法により測定した。
Tensile strength in the vertical and horizontal directions of the nonwoven fabric: A test specimen having a width of 3 cm and a length of 10 cm was prepared and measured by the stripping method described in JIS L-1096.

実施例1 融点が128℃,メルトインデツクス値が80g/10分のポ
リエチレン重合体を重合体成分A,融点が258℃,固有粘
度が0.70のポリエチレンテレフタレート重合体を重合体
成分Bとし,複合紡糸孔を200孔有する紡糸口金を通し
て2成分複合長繊維を溶融紡出した。溶融紡糸に際し,
重合体成分Aの溶融温度を230℃,単孔吐出量を0.60g/
分,重合体成分Bの溶融温度を285℃,単孔吐出量を0.6
0g/分〔成分Aと成分Bの比(重量比)は1対1〕とし
た。紡出された長繊維糸条を冷却した後,紡糸口金下12
0cmの位置に配設された8個のエアーサツカにフイラメ
ント25本ずつ通して吸引・延伸し,3100m/分の速度で引
取り,帯電装置により強制的に帯電させて繊維を開繊
し,移動するウエブコンベア面上に堆積させ,ウエブを
得た。
Example 1 Composite spinning using a polyethylene polymer having a melting point of 128 ° C. and a melt index value of 80 g / 10 min as a polymer component A, and a polyethylene terephthalate polymer having a melting point of 258 ° C. and an intrinsic viscosity of 0.70 as a polymer component B The bicomponent composite filament was melt-spun through a spinneret having 200 holes. In melt spinning,
Polymer component A has a melting temperature of 230 ° C and a single hole discharge rate of 0.60 g /
The melting temperature of the polymer component B is 285 ° C, and the single hole discharge amount is 0.6
0 g / min (the ratio (weight ratio) of component A to component B is 1 to 1). After cooling the spun long fiber yarn, it is placed under the spinneret.
25 filaments are sucked and drawn through each of eight air satskas arranged at a position of 0 cm, drawn, drawn at a speed of 3100 m / min, and forcibly charged by a charging device to open and move the fibers. The web was obtained by depositing on the web conveyor surface.

得られた2成分複合長繊維の横断面形状は,第3図に
示したように,重合体成分Aと,重合体成分Bからなる
6個の凸レンズ状横断面を有するセグメントとから構成
されるものであった。繊維断面を1000倍に拡大して撮影
した断面写真を基にし,前記6個の円弧の90%以上が包
含されるような仮想円弧を想定し,R0,R1,L0及びL1を求
め,R1/R0及びL1/L0を算出したところ,R1/R0は0.3,L1/L0
は1.6であった。また,この複合長繊維は割繊しておら
ず,ウエブは均一なものであった。
As shown in FIG. 3, the cross-sectional shape of the obtained bicomponent composite long fiber is composed of a polymer component A and a segment having six convex lens-shaped cross sections composed of a polymer component B. Was something. Based on the cross-sectional photograph taken by magnifying the fiber cross section by 1000 times, assuming a virtual arc including 90% or more of the six arcs, R 0 , R 1 , L 0, and L 1 are defined. R 1 / R 0 and L 1 / L 0 were calculated, R 1 / R 0 was 0.3, L 1 / L 0
Was 1.6. The composite filament was not split, and the web was uniform.

次に,得られたウエブに加熱された表面平滑な多段式
6個のロールからなるロール群を使用して割繊・熱接着
処理を2回施して不織布を得た。この処理条件は,加熱
ロール群の表面温度を115℃,線圧力を200kg/cmとし
た。
Next, the obtained web was subjected to split and heat bonding twice using a roll group consisting of six rolls of a multi-stage type having a smooth surface and heated to obtain a nonwoven fabric. The processing conditions were as follows: the surface temperature of the heating roll group was 115 ° C., and the linear pressure was 200 kg / cm.

得られた不織布は,目付けが50g/m2,タテ方向の引張
強力が5.2kg/3cm,ヨコ方向の引張強力が3.8kg/3cmであ
った。不織布の任意の10個所を選び,不織布の断面を10
0倍に拡大して断面写真を撮影し,次いで,10枚の断面写
真中,複合長繊維から剥離している重合体成分Bのセグ
メント総数と存在する重合体成分Bのセグメント総数と
を求め,割繊割合を求めたところ,割繊割合は80%であ
った。この不織布には,前記重合体成分Bのみから構成
される割繊長繊維の他に,重合体成分Bからなるセグメ
ントが全く剥離していない2成分複合長繊維と,前記2
成分複合長繊維から重合体成分Bからなるセグメントが
一部剥離した2成分複合長繊維と,前記2成分複合長繊
維の分割により発現した前記重合体成分Aのみから構成
される割繊長繊維とが認められた。また,前記複合長繊
維の分割により発現した重合体成分Bのみから構成され
る割繊長繊維の繊度を求めたところ,0.31デニールと極
めて細いものであった。そして,この不織布は,繊細な
表面形態と緻密な構造を有するものであった。
The obtained nonwoven fabric had a basis weight of 50 g / m 2 , a tensile strength in the vertical direction of 5.2 kg / 3 cm, and a tensile strength in the horizontal direction of 3.8 kg / 3 cm. Select any 10 places of the nonwoven fabric and set the cross section of the nonwoven fabric to 10
A cross-sectional photograph was taken by magnifying 0 times, and then, in the ten cross-sectional photographs, the total number of segments of the polymer component B and the total number of the existing segments of the polymer component B separated from the composite filament were obtained. When the split ratio was determined, the split ratio was 80%. This nonwoven fabric includes, in addition to split filaments composed only of the polymer component B, bicomponent composite filaments in which the segment composed of the polymer component B is not peeled off at all,
A bicomponent bicomponent fiber in which a segment composed of the polymer component B is partially exfoliated from the bicomponent bicomponent fiber, and a split fiber composed solely of the polymer component A developed by dividing the bicomponent bicomponent fiber. Was observed. The fineness of the split long fiber composed only of the polymer component B developed by splitting the composite long fiber was determined, and was found to be extremely fine, 0.31 denier. The nonwoven fabric had a delicate surface morphology and a dense structure.

比較例1 融点が125℃,メルトインデツクス値が100g/10分のポ
リエチレン重合体を重合体成分Aとした以外は実施例1
と同様にして,分割型2成分複合長繊維を溶融紡出し,
冷却した後,エアーサツカにフイラメントを通して吸引
・延伸し,3100m/分の速度で引取り,帯電装置により強
制的に帯電させて繊維を開繊し,移動するウエブコンベ
ア面上に堆積させ,ウエブを得た。
Comparative Example 1 Example 1 except that a polyethylene polymer having a melting point of 125 ° C. and a melt index value of 100 g / 10 min was used as the polymer component A.
In the same manner as above, the split type bicomponent composite filament is melt-spun,
After cooling, it is drawn and drawn through a filament through an air filter, taken up at a speed of 3100 m / min, forcibly charged by a charging device to spread the fibers, and deposited on a moving web conveyor surface to obtain a web. Was.

得られた2成分複合長繊維の横断面形状は,第6図に
示したように,重合体成分Aと,重合体成分Bからなる
6個の凸レンズ状横断面を有するセグメントとから構成
されたものであった。繊維断面を撮影した断面写真を基
にし,前記6個の円弧の90%以上が包含されるような仮
想円弧を想定し,R0,R1,L0及びL1を求め,R1/R0及びL1/L0
を算出したところ,R1/R0は0.3,L1/L0は3.2であった。ま
た,この複合長繊維は割繊しておらず,ウエブは均一な
ものであった。
As shown in FIG. 6, the cross-sectional shape of the obtained bicomponent conjugate long fiber was composed of a polymer component A and a segment having six convex lens-shaped cross sections composed of a polymer component B. Was something. Based on the cross-sectional photograph of the fiber cross section, assuming an imaginary arc including 90% or more of the six arcs, R 0 , R 1 , L 0 and L 1 are obtained, and R 1 / R 0 and L 1 / L 0
As a result, R 1 / R 0 was 0.3 and L 1 / L 0 was 3.2. The composite filament was not split, and the web was uniform.

次に,実施例1と同様にして,得られたウエブに加熱
された表面平滑なロール群を使用して割繊・熱接着処理
を2回施して不織布を得た。
Next, in the same manner as in Example 1, the obtained web was subjected to splitting and heat bonding twice using a group of heated flat rolls to obtain a nonwoven fabric.

得られた不織布は,その割繊割合が11%と極めて低
く,繊細な表面形態と緻密な構造を有しないものであっ
た。
The obtained nonwoven fabric had an extremely low splitting ratio of 11%, and did not have a delicate surface morphology and a dense structure.

実施例2 融点が128℃,メルトインデツクス値が80g/10分のポ
リエチレン重合体を重合体成分A,融点が258℃,固有粘
度が0.70のポリエチレンテレフタレート重合体を重合体
成分Bとし,複合紡糸孔を625孔有する紡糸口金を通し
て2成分複合長繊維を溶融紡出した。溶融紡糸に際し,
重合体成分Aの溶融温度を230℃,単孔吐出量を0.20g/
分,重合体成分Bの溶融温度を285℃,単孔吐出量を0.2
0g/分〔成分Aと成分Bの比(重量比)は1対1〕とし
た。紡出された長繊維糸条を冷却した後,表面温度が75
℃の加熱ローラ群により250m/分の速度で引取り,この
加熱ローラ群と表面温度が90℃の加熱ローラ群との間で
倍率を4.0として延伸した。延伸繊維糸条を25個のエア
ーサツカにフイラメント25本ずつ通して吸引し,帯電装
置により強制的に帯電させて繊維を開繊し,移動するウ
エブコンベア面上に堆積させ,ウエブを得た。
Example 2 Composite spinning using a polyethylene polymer having a melting point of 128 ° C. and a melt index value of 80 g / 10 min as a polymer component A, and a polyethylene terephthalate polymer having a melting point of 258 ° C. and an intrinsic viscosity of 0.70 as a polymer component B The bicomponent composite filament was melt-spun through a spinneret having 625 holes. In melt spinning,
Polymer component A has a melting temperature of 230 ° C and a single hole discharge rate of 0.20 g /
The melting temperature of the polymer component B is 285 ° C and the single hole discharge rate is 0.2
0 g / min (the ratio (weight ratio) of component A to component B is 1 to 1). After cooling the spun filament yarn, the surface temperature becomes 75
The film was drawn at a speed of 250 m / min by a heating roller group at a temperature of 250 ° C., and stretched at a magnification of 4.0 between the heating roller group and the heating roller group having a surface temperature of 90 ° C. The drawn fiber yarns were suctioned by passing through 25 filaments through 25 air-suckers, forcibly charged by a charging device to spread the fibers, and deposited on a moving web conveyor surface to obtain a web.

得られた2成分複合長繊維の横断面形状は,第4図に
示したようなものであった。繊維断面を1000倍に拡大し
て撮影した断面写真を基にし,R1/R0及びL1/L0を求めた
ところ,R1/R0は0.3,L1/L0は1.7であった。また,この複
合長繊維は割繊しておらず,ウエブは均一なものであっ
た。
The cross-sectional shape of the obtained bicomponent composite filament was as shown in FIG. The fiber cross section based on a cross-section photograph taken magnified 1000 times, was determined the R 1 / R 0 and L 1 / L 0, R 1 / R 0 is 0.3, L 1 / L 0 1.7 met Was. The composite filament was not split, and the web was uniform.

次に,得られたウエブに加熱された表面平滑な多段式
6個のロールからなるロール群を使用して割繊・熱接着
処理を2回施して不織布を得た。この処理条件は,加熱
ロール群の表面温度を115℃,線圧力を200kg/cmとし
た。
Next, the obtained web was subjected to split and heat bonding twice using a roll group consisting of six rolls of a multi-stage type having a smooth surface and heated to obtain a nonwoven fabric. The processing conditions were such that the surface temperature of the heating roll group was 115 ° C. and the linear pressure was 200 kg / cm.

得られた不織布は,目付けが50g/m2,タテ方向の引張
強力が7.0kg/3cm,ヨコ方向の引張強度が5.2kg/3cmであ
った。不織布の任意の10個所を選び,不織布の断面を10
0倍に拡大して断面写真を撮影し,割繊割合を求めたと
ころ,割繊割合は90%であった。この不織布には,実施
例1と同様に,前記重合体成分Bのみから構成される割
繊長繊維の他に,重合体成分Bからなるセグメントが全
く剥離していない2成分複合長繊維と,前記2成分複合
長繊維から重合体成分Bからなるセグメントが一部剥離
した2成分複合長繊維と,前記2成分複合長繊維の分割
により発現した前記重合体成分Aのみから構成される割
繊長繊維とが認められた。また,重合体成分Bのみから
構成される割繊長繊維の繊度を求めたところ,0.23デニ
ールと極めて細いものであった。そして、この不織布
は,繊細な表面形態と緻密な構造を有するものであっ
た。
The obtained nonwoven fabric had a basis weight of 50 g / m 2 , a tensile strength in the vertical direction of 7.0 kg / 3 cm, and a tensile strength in the horizontal direction of 5.2 kg / 3 cm. Select any 10 places of the nonwoven fabric and set the cross section of the nonwoven fabric to 10
A cross section photograph was taken at a magnification of 0 times, and the split fiber ratio was determined. The split fiber ratio was 90%. As in Example 1, in addition to the split filaments composed only of the polymer component B, the nonwoven fabric includes a bicomponent bicomponent fiber in which the segment composed of the polymer component B is not peeled off at all. A split length composed solely of the bicomponent conjugate long fiber in which a segment composed of the polymer component B is partially removed from the bicomponent conjugate long fiber, and the polymer component A developed by dividing the bicomponent conjugate long fiber Fiber was observed. The fineness of the split long fiber composed only of the polymer component B was determined to be 0.23 denier, which was extremely fine. This nonwoven fabric had a delicate surface morphology and a dense structure.

比較例2 融点が132℃,メルトインデツクス値が40g/10分のポ
リエチレン重合体を重合体成分A,その溶融温度を232℃
とした以外は実施例2と同様にして,2成分複合長繊維を
溶融紡出し,冷却した後,加熱ローラ群により250m/分
の速度で引取り,延伸し,エアーサツカにフイラメント
を通して吸引し,帯電装置により強制的に帯電させて繊
維を開繊し,移動するウエブコンベア面上に堆積させ,
ウエブを得た。
Comparative Example 2 A polyethylene polymer having a melting point of 132 ° C. and a melt index value of 40 g / 10 minutes was polymer component A, and its melting temperature was 232 ° C.
In the same manner as in Example 2, the two-component composite filament was melt-spun and cooled, then taken up by a heating roller group at a speed of 250 m / min, stretched, suctioned through an air sack through a filament, and charged. The fibers are forcibly charged by the device to open the fibers, and are deposited on the moving web conveyor surface.
I got the web.

延伸するに際し,延伸ローラ上で複合長繊維が剥離割
繊し,この割繊長繊維が延伸ローラに巻付くというトラ
ブルが生じた。そして,得られたウエブは,均一性に劣
るものであった。
During stretching, the composite filaments were separated and split on the stretching roller, and the split filaments were wound around the stretching roller. And the obtained web was poor in uniformity.

得られた2成分複合長繊維の横断面形状は,第7図に
示したようなものであった。繊維断面を1000倍に拡大し
て撮影した断面写真を基にし,R1/R0及びL1/L0を求めた
ところ,R1/R0は1.2,L1/L0は0.8であった。また,この複
合長繊維は割繊しておらず,ウエブは均一なものであっ
た。
The cross-sectional shape of the obtained bicomponent composite filament was as shown in FIG. The fiber cross section based on a cross-section photograph taken magnified 1000 times, was determined the R 1 / R 0 and L 1 / L 0, R 1 / R 0 is 1.2, L 1 / L 0 0.8 met Was. The composite filament was not split, and the web was uniform.

次に,実施例2と同様にして,得られたウエブに加熱
された表面平滑なロール群を使用して割繊・熱接着処理
を2回施して不織布を得た。
Next, in the same manner as in Example 2, the obtained web was subjected to splitting and heat bonding twice using a heated group of rolls having a smooth surface to obtain a nonwoven fabric.

得られた不織布は,その割繊割合が95%と高く,繊細
な表面形態を有するものの,均一性が劣り,しかも目付
け斑を有するものであった。
The obtained non-woven fabric had a high splitting ratio of 95% and had a delicate surface morphology, but was inferior in uniformity and had spots on the basis.

実施例3 実施例2で得られた不織布に加熱されたエンボスロー
ルを使用してエンボス処理を施した。この処理条件は,
加熱エンボスロールの表面温度を120℃,線圧力を30kg/
cmとした。
Example 3 The nonwoven fabric obtained in Example 2 was subjected to an embossing treatment using a heated embossing roll. This processing condition is
The surface temperature of the heated embossing roll is 120 ° C and the linear pressure is 30kg /
cm.

得られた不織布は,目付けが55g/m2,タテ方向のの引
張強力が10.7kg/3cm,ヨコ方向の引張強力が7.9kg/3cm
で,繊細な表面形態と緻密な構造を有するものであっ
た。
The obtained nonwoven fabric has a basis weight of 55 g / m 2 , a tensile strength in the vertical direction of 10.7 kg / 3 cm, and a tensile strength in the horizontal direction of 7.9 kg / 3 cm.
It had a delicate surface morphology and a dense structure.

比較例3 実施例1で得られたウエブに加熱された表面平滑な1
対のロールを使用して割繊・熱接着処理を2回施した。
この処理条件は,加熱ロール対の表面温度を115℃,線
圧力を10kg/cmとした。
Comparative Example 3 Heated smooth surface 1 was applied to the web obtained in Example 1.
Splitting and heat bonding were performed twice using a pair of rolls.
The processing conditions were as follows: the surface temperature of the heating roll pair was 115 ° C, and the linear pressure was 10 kg / cm.

得られた不織布は,その割繊割合が5.3%と極めて低
く,繊細な表面形態と緻密な構造を有しないものであっ
た。
The nonwoven fabric obtained had an extremely low splitting ratio of 5.3%, and did not have a delicate surface morphology and a dense structure.

(発明の効果) 本発明の極細長繊維不織布の製造方法によれば,2成分
複合長繊維と,前記2成分複合長繊維の分割により発現
した割繊長繊維とから構成され,強力に優れ,極めて均
一性が高く,しかも繊細な表面形態と緻密な構造を有す
る不織布を低コストで効率よく製造することができる。
(Effect of the Invention) According to the method for producing a nonwoven fabric of ultrafine long fibers of the present invention, it is composed of bicomponent conjugate filaments and split filaments developed by dividing the bicomponent conjugate filaments, and has excellent strength. A nonwoven fabric having extremely high uniformity and a delicate surface morphology and a dense structure can be efficiently manufactured at low cost.

そして,得られた不織布は,バツグや封筒用素材とし
て好適に使用することができる。
And the obtained nonwoven fabric can be suitably used as a material for a bag or an envelope.

【図面の簡単な説明】[Brief description of the drawings]

第1図は,本発明における2成分複合長繊維の構造を説
明するための横断面図,第2,3,4及び5図は,本発明の
構成要件を満足する2成分複合長繊維の例を示す横断面
図,第6及び7図は,本発明の構成要件を満足しない2
成分複合長繊維の例を示す横断面図である。
FIG. 1 is a cross-sectional view for explaining the structure of a bicomponent conjugate filament according to the present invention. FIGS. 2, 3, 4 and 5 are examples of bicomponent conjugate filaments satisfying the constitutional requirements of the present invention. FIGS. 6 and 7 show cross-sections not satisfying the requirements of the present invention.
It is a cross-sectional view which shows the example of a component composite long fiber.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) D04H 1/00 - 18/00──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int. Cl. 6 , DB name) D04H 1/00-18/00

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】重合体成分Aと,前記重合体成分Aに対し
非相溶性で,かつ前記重合体成分Aの融点より30〜150
℃高い融点を有する重合体成分Bからなる2個以上の凸
レンズ状横断面を有するセグメントとから構成され,繊
維軸に垂直な横断面における重合体成分Bによる凸レン
ズ状部分での曲率半径R0及びR1,円弧の弧長L0及びL1
下記及び式を満足する2成分複合長繊維を溶融複合
紡出し,紡出された前記2成分複合長繊維をエアーサツ
カからなる引取り手段により引取り,ウエブコンベア等
の捕集面上に堆積させてウエブとし,ウエブを2個以上
のロールからなる高線圧力のロール群で処理することに
よって前記高融点の重合体成分Bからなる繊維を前記複
合長繊維から少なくとも一部剥離させて割繊長繊維と
し,前記低融点の重合体成分Aからなる繊維により繊維
間を少なくとも部分的に接着することを特徴とする極細
長繊維不織布の製造方法。 R1/R0<1 …… 1<L1/L0≦3 …… 〔R0:重合体成分Aと接していない円弧の曲率半径,R1:
重合体成分Aと接している円弧の曲率半径,L0:重合体成
分Aと接していない円弧の弧長,L1:重合体成分Aと接し
ている円弧の弧長〕
1. A polymer component A, which is incompatible with the polymer component A and has a melting point of from 30 to 150 ° C. from the melting point of the polymer component A.
And a segment having at least two convex lens-shaped cross-sections made of a polymer component B having a high melting point and a radius of curvature R 0 at a convex lens-shaped portion of the polymer component B in a cross-section perpendicular to the fiber axis. R 1 , melt composite spinning of bicomponent conjugate filaments having arc lengths L 0 and L 1 satisfying the following and formulas, and the spun bicomponent conjugate filaments are taken up by a take-up means comprising an air sucker. , A web composed of a high melting point polymer component B is deposited on a collecting surface of a web conveyor or the like to form a web, and the web is treated with a high linear pressure roll group consisting of two or more rolls. A method for producing a nonwoven fabric of ultrafine long-fiber non-woven fabric, comprising separating at least part of the long fiber from the long fiber into split-split fiber, and at least partially bonding the fibers with the fiber comprising the polymer component A having a low melting point. R 1 / R 0 <1 ... 1 <L 1 / L 0 ≤3 ... [R 0 : radius of curvature of an arc not in contact with polymer component A, R 1 :
Radius of curvature of an arc in contact with polymer component A, L 0 : arc length of an arc not in contact with polymer component A, L 1 : arc length of an arc in contact with polymer component A]
【請求項2】2成分複合長繊維の分割により発現した高
融点の重合体成分Bのみから構成される割繊長繊維が,
単糸繊度が0.8デニール以下の極細長繊維である請求項
1記載の極細長繊維不織布の製造方法。
2. A split fiber composed solely of a high-melting polymer component B developed by splitting a bicomponent composite filament,
2. The method for producing a nonwoven fabric of ultrafine long fibers according to claim 1, wherein the nonwoven fabric is ultrafine fibers having a single yarn fineness of 0.8 denier or less.
JP799190A 1990-01-16 1990-01-16 Method for producing ultrafine long-fiber nonwoven fabric Expired - Fee Related JP2866131B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP799190A JP2866131B2 (en) 1990-01-16 1990-01-16 Method for producing ultrafine long-fiber nonwoven fabric

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP799190A JP2866131B2 (en) 1990-01-16 1990-01-16 Method for producing ultrafine long-fiber nonwoven fabric

Publications (2)

Publication Number Publication Date
JPH03213554A JPH03213554A (en) 1991-09-18
JP2866131B2 true JP2866131B2 (en) 1999-03-08

Family

ID=11680876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP799190A Expired - Fee Related JP2866131B2 (en) 1990-01-16 1990-01-16 Method for producing ultrafine long-fiber nonwoven fabric

Country Status (1)

Country Link
JP (1) JP2866131B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69626303T2 (en) * 1995-11-30 2003-12-11 Kimberly-Clark Worldwide, Inc. VERY THIN MICROFIBRE FLEECE
WO2002022352A1 (en) 2000-09-15 2002-03-21 Ahlstrom Dexter Llc Disposable nonwoven wiping fabric and method of production
WO2010066142A1 (en) * 2008-12-09 2010-06-17 Sun Xianlin Anti-counterfeit fiber and anti-counterfeit paper containing the same

Also Published As

Publication number Publication date
JPH03213554A (en) 1991-09-18

Similar Documents

Publication Publication Date Title
JP2825514B2 (en) Oriented melt-sprayed fiber, method for producing the same and web thereof
JP2002522653A (en) Elastic nonwoven fabric made from bicomponent filaments
JPH1088460A (en) Nonwoven fabric of conjugated filament and its production
KR100335729B1 (en) High Crimp Composite Fiber and Nonwoven Web Made therefrom
JP3110566B2 (en) Method for producing polypropylene-based nonwoven fabric
JP2866131B2 (en) Method for producing ultrafine long-fiber nonwoven fabric
JPH08260323A (en) Biodegradable filament nonwoven fabric and its production
JPH10266056A (en) Conjugate polyolefin filament nonwoven fabric and its production
JP2741123B2 (en) Stretchable long-fiber nonwoven fabric and method for producing the same
JP3055288B2 (en) Stretchable long-fiber nonwoven fabric and method for producing the same
JP2791159B2 (en) Extra-fine long-fiber non-woven fabric
JP3101414B2 (en) Stretchable polyester-based elastic nonwoven fabric and method for producing the same
JPH11140766A (en) Polyolefin conjugated continuous filament nonwoven fabric
JPH03269154A (en) Production of bulky long-fiber nonwoven fabric
JP2941012B2 (en) Method for producing ultrafine long-fiber nonwoven fabric
JPH0726310B2 (en) Extra-fine long-fiber non-woven fabric
JPH0726454A (en) Production of ultra-fine fiber web
JP3581712B2 (en) Stretched melt-blown fibers, methods for making such fibers, and webs made from such fibers
JPH07207566A (en) Laminated nonwoven fabric and its production
JPH03213555A (en) Ultrafine filament nonwoven cloth and its production
JPH09273060A (en) Conjugate long fiber nonwoven fabric and its production
JPH11286862A (en) Spun-bonded nonwoven fabric for clothes and its production
JPH0434058A (en) Production of nonwoven fabric of ultrafine short fiber
JPH1143856A (en) Non-woven fabric of conjugate, continuous fiber
JPH04174753A (en) Nonwoven filament cloth

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20071218

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20081218

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20091218

LAPS Cancellation because of no payment of annual fees