JPH0434058A - Production of nonwoven fabric of ultrafine short fiber - Google Patents

Production of nonwoven fabric of ultrafine short fiber

Info

Publication number
JPH0434058A
JPH0434058A JP2141008A JP14100890A JPH0434058A JP H0434058 A JPH0434058 A JP H0434058A JP 2141008 A JP2141008 A JP 2141008A JP 14100890 A JP14100890 A JP 14100890A JP H0434058 A JPH0434058 A JP H0434058A
Authority
JP
Japan
Prior art keywords
component
short fibers
polymer component
fibers
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2141008A
Other languages
Japanese (ja)
Inventor
Masatoshi Morita
森田 正敏
Yukio Kawakami
幸男 川上
Mitsuharu Shinoki
篠木 光治
Tomoyuki Izumi
智之 和泉
Eiji Ichihashi
市橋 瑛司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Ester Co Ltd
Original Assignee
Nippon Ester Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Ester Co Ltd filed Critical Nippon Ester Co Ltd
Priority to JP2141008A priority Critical patent/JPH0434058A/en
Publication of JPH0434058A publication Critical patent/JPH0434058A/en
Pending legal-status Critical Current

Links

Landscapes

  • Nonwoven Fabrics (AREA)

Abstract

PURPOSE:To obtain the subject nonwoven fabric having high strength and soft feeling and suitable as a material for medical and hygienic use in high efficiency at a low cost by treating a conjugate fiber composed of a polyolefin polymer component and a specific polymer component with a specific treating method. CONSTITUTION:A binary conjugate fiber composed of (A) a polyolefin polymer component and (B) a polymer component incompatible with the component A and having a melting point higher than that of the component A by >=20 deg.C is produced by composite melt-spinning and is drawn and collected. The obtained undrawn fiber bundle is drawn, crimped by mechanical crimping and cut into short fibers. A web made of the short fibers is treated with a high-pressure liquid jet stream to release at least a part of the segment composed of the component B from the above short fiber to form a split short fiber having a single fiber fineness of <=0.7 denier and, at the same time, three-dimensional entanglements are introduced between the short fibers to integrate the fibers. Finally, the obtained web is heat-treated at a temperature above the melting point of the component A to bond the short fibers with the short fiber of the component A.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、不織布の製造方法に関し、さらに詳しくは、
柔軟な風合いを有し、医療衛生材用に好適に使用するこ
とができる極細短繊維不織布の製造方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for producing a nonwoven fabric, and more specifically,
The present invention relates to a method for producing an ultrafine short fiber nonwoven fabric that has a soft texture and can be suitably used for medical hygiene materials.

(従来の技術) 近年、医療衛生材、特に紙おむつや生理用ナプキン等の
用途に短繊維不織布が使用されている。
(Prior Art) In recent years, short fiber nonwoven fabrics have been used for medical sanitary materials, particularly for disposable diapers, sanitary napkins, and the like.

これらの短繊維不織布は9通常、単糸繊度が1.5デニ
一ル程度の短繊維から構成されるため、風合いが劣ると
いう問題、すなわち使用時に肌触りが硬く感じるという
問題を有している。風合いを向上させることを目的に、
単糸繊度が0.5デニ一ル程度の極細短繊維からなる不
織布を得る試みがなされてきた。例えば、特開昭62−
133164号公報には。
Since these short fiber nonwoven fabrics are usually composed of short fibers having a single filament fineness of about 1.5 denier, they have a problem of poor texture, that is, they feel hard to the touch when used. In order to improve the texture,
Attempts have been made to obtain a nonwoven fabric made of ultrafine short fibers having a single filament fineness of about 0.5 denier. For example, JP-A-62-
In Publication No. 133164.

複合短繊維を高圧液体流で処理して分割フィブリル化す
ることにより極細短繊維から構成される不織布を得る方
法が開示されている。しかしながら。
A method is disclosed for obtaining a nonwoven fabric composed of ultrafine staple fibers by treating composite staple fibers with a high-pressure liquid stream to split and fibrillate them. however.

この不織布の製造方法は、単糸繊度が0.5デニ一ル程
度の極細短繊維を用いるため開繊性が向上せず。
This nonwoven fabric manufacturing method uses ultrafine staple fibers with a single filament fineness of about 0.5 denier, so opening properties are not improved.

開繊速度を上げることが困難であり、したがって生産性
が著しく低下する。生産コストが上昇するという問題を
有している。また、得られた不織布は、高圧液体流の処
理により短繊維間に絡合が形成され、柔軟な肌触りを有
するものの、短繊維間が熱接着されていないため1強力
が低いという問題を有している。
It is difficult to increase the opening speed, and therefore productivity is significantly reduced. This has the problem of increased production costs. In addition, although the obtained nonwoven fabric has a soft feel due to the formation of entanglements between the short fibers due to the high-pressure liquid flow treatment, it has a problem of low tenacity because the short fibers are not thermally bonded. ing.

(発明が解決しようとする課題) 本発明は、前記問題を解決し、柔軟な風合いを有し、医
療衛生材用に好適に使用することができる極細短繊維不
織布を効率よく製造することができる方法を提供しよう
とするものである。
(Problems to be Solved by the Invention) The present invention solves the above problems and makes it possible to efficiently produce an ultrafine short fiber nonwoven fabric that has a flexible texture and can be suitably used for medical sanitary materials. It is intended to provide a method.

(課題を解決するための手段) 本発明者らは、前記問題を解決すべく鋭意検討の結果1
本発明に到達した。すなわち1本発明は。
(Means for Solving the Problems) As a result of intensive studies to solve the above problems, the inventors have found
We have arrived at the present invention. In other words, one aspect of the present invention is.

ポリオレフィン系重合体成分Aと、前記ポリオレフィン
系重合体成分Aに対し非相溶性で、かつ前記重合体成分
Aの融点より少なくとも20℃高い融点を有する重合体
成分Bからなる2成分複合繊維を溶融複合紡出し、紡出
された前記2成分複合繊維の未延伸繊維糸条を引取った
後集束して未延伸繊維糸条束とし1次いで得られた前記
未延伸繊維糸条束を延伸して機械捲縮を付与した後、所
定繊維長に切断して2成分複合短繊維とし、前記2成分
複合短繊維を用いてウェブを作成し、得られたウェブを
高圧液体柱状流で処理することによって前記高融点の重
合体成分Bからなるセグメントを前記複合短繊維から少
なくとも一部剥離させて単糸繊度が0.7デニール以下
の割繊短繊維とするとともに短繊維間に3次元的絡合を
施して一体化させ9次いで前記低融点の重合体成分への
融点以上の温度で熱処理をすることによって前記低融点
の重合体成分Aからなる短繊維により短繊維間を少なく
とも部分的に接着することを特徴とする不織布の製造方
法、を要旨とするものである。
Melting a bicomponent composite fiber consisting of a polyolefin polymer component A and a polymer component B that is incompatible with the polyolefin polymer component A and has a melting point at least 20° C. higher than the melting point of the polymer component A. After composite spinning, the undrawn fiber yarns of the spun bicomponent composite fibers are collected and bundled to form an undrawn fiber yarn bundle.1.The obtained undrawn fiber yarn bundle is then stretched. After applying mechanical crimping, the fibers are cut into a predetermined fiber length to obtain two-component composite staple fibers, a web is created using the two-component composite staple fibers, and the resulting web is treated with a high-pressure liquid columnar flow. At least a portion of the segment made of the polymer component B having a high melting point is exfoliated from the composite staple fiber to produce a split staple fiber having a single filament fineness of 0.7 denier or less, and three-dimensional entanglement is caused between the staple fibers. 9. Next, the short fibers made of the low melting point polymer component A are at least partially bonded together by heat treatment at a temperature higher than the melting point of the low melting point polymer component A. The gist of the present invention is a method for producing a nonwoven fabric characterized by the following.

次に1本発明の詳細な説明する。Next, one aspect of the present invention will be explained in detail.

本発明でいう2成分複合短繊維の一構成成分であるポリ
オレフィン系重合体成分Aとは、繊維形成能を有し9通
常の溶融紡糸装置を使用して溶融紡出可能なものであり
1例えば、低密度ポリエチレン(LDPB)、直鎮低密
度ポリエチレン(LL[1PB)、高密度ポリエチレン
(HDPB)、ポリプロピレン、エチレン又はプロピレ
ンにアクリル酸等の不飽和カルボン酸等を共重合した変
成ポリエチレン又は変成ポリプロピレン等が挙げられる
。一方、他の構成成分である重合体成分Bとは、前8己
ポリオレフィン系重合体成分Aに対し非相溶性のポリエ
ステル系重合体あるいはポリアミド系重合体で、いずれ
も繊維形成能を有し1通常の溶融紡糸装置を使用して溶
融紡出可能なものであり1例えば、ポリエステル系重合
体としては、ポリエチレンテレフタレート、ポリブチレ
ンテレフタレートあるいはそれらを主成分とする共重合
ポリエステル等のポリエステルが挙げられる。共重合ポ
リエステルの酸成分としては、イソフタル酸、アジピン
酸等のカルボン酸が、グリコール成分としては、ネオペ
ンチルグリコール等のグリコールが挙げられる。また、
ポリアミド系重合体としては、ナイロン6゜ナイロン4
6.ナイロン66、ナイロン610.すイロン12ある
いはそれらを主成分とする共重合ナイロン等のポリアミ
ドが挙げられる。また1重合体酸分A及びB共1画成分
間で非相溶性を示すものであれば、前記化合物の単体あ
るいは2種以上の混合物のいずれであってもよい。なお
9重合体酸分A及びBには、各々1通常の艶消剤、熱安
定剤、顔料あるいは重合体の結晶化促進剤等の添加剤を
添加してもよい。
The polyolefin polymer component A, which is one component of the two-component composite staple fiber in the present invention, has fiber-forming ability and can be melt-spun using a normal melt-spinning device. , low-density polyethylene (LDPB), direct-set low-density polyethylene (LL[1PB), high-density polyethylene (HDPB), polypropylene, modified polyethylene or modified polypropylene made by copolymerizing ethylene or propylene with unsaturated carboxylic acid such as acrylic acid, etc. etc. On the other hand, polymer component B, which is another component, is a polyester polymer or polyamide polymer that is incompatible with the former 8-polyolefin polymer component A, and both have fiber-forming ability and 1 The polyester polymer can be melt-spun using an ordinary melt-spinning device. Examples of the polyester polymer include polyesters such as polyethylene terephthalate, polybutylene terephthalate, and copolyesters containing these as main components. Examples of the acid component of the copolymerized polyester include carboxylic acids such as isophthalic acid and adipic acid, and examples of the glycol component include glycols such as neopentyl glycol. Also,
Polyamide polymers include nylon 6° and nylon 4.
6. Nylon 66, nylon 610. Examples include polyamides such as Suyron 12 and copolymerized nylons containing these as main components. Further, as long as monopolymer acid components A and B exhibit incompatibility between the components of one fraction, the above-mentioned compounds may be used alone or in a mixture of two or more thereof. Note that each of the polymer acid components A and B may contain one or more conventional additives such as a matting agent, a heat stabilizer, a pigment, or a polymer crystallization accelerator.

本発明でいう2成分複合短繊維の一構成成分である重合
体成分Bは、他の構成成分である重合体成分Aの融点よ
り少なくとも20℃高い融点を有することが必要である
。本発明でいう重合体の融点とは、パーキンエルマ社製
示差熱量計DSC−2型を使用し、同装置のマニュアル
に従い、試料量を約5 mg、走査速度を20℃/分と
して測定して得られるDSC曲線から求めたものである
。重合体成分Bと重合体成分Aとの融点差が20℃未満
であると1画成分の熱変形温度領域が重なり、ウェブを
熱処理装置で熱処理するときに高融点の重合体成分Bが
変形あるいは溶融し、得られる不織布の強度や風合いが
低下する等の問題が生じるので好ましくない。
Polymer component B, which is one component of the two-component composite short fiber in the present invention, needs to have a melting point that is at least 20° C. higher than the melting point of polymer component A, which is another component. The melting point of a polymer as used in the present invention is measured using a differential calorimeter DSC-2 manufactured by PerkinElmer, according to the manual of the device, with a sample amount of approximately 5 mg and a scanning speed of 20°C/min. It was determined from the obtained DSC curve. If the melting point difference between polymer component B and polymer component A is less than 20°C, the heat deformation temperature ranges of one component will overlap, and when the web is heat treated with a heat treatment device, polymer component B with a high melting point will be deformed or This is not preferable because problems such as melting and deterioration of the strength and texture of the obtained nonwoven fabric occur.

本発明でいう2成分複合短繊維は、前記重合体成分Aと
重合体成分Bとからなるものである。第1図は1本発明
でいう2成分複合短繊維の例を示す横断面図で、第1図
(a)及び(社)は1重合体酸分Aの周囲に重合体成分
Bが花弁状に各々4個及び3個付加された例、第1図(
C)は9重合体酸分A及びBが放射状に円周上に交互に
配置された例、第1図(d)は1重合体酸分A及びBが
放射状に円周上に交互に配置され、かつ中空部を有する
例である。
The two-component composite short fiber as used in the present invention is composed of the polymer component A and the polymer component B. Figure 1 is a cross-sectional view showing an example of the two-component composite short fiber referred to in the present invention. Figure 1 shows an example in which 4 and 3 pieces are added to , respectively (
C) is an example in which 9 polymer acid components A and B are arranged radially and alternately on the circumference, and Figure 1 (d) is an example in which 1 polymer acid components A and B are arranged radially and alternately on the circumference. This is an example in which a hollow part is provided.

本発明でいう2成分複合短繊維において1重合体酸分B
からなるセグメントの数は、2個以上、好ましくは4個
以上とする。このセグメントの数が1個であると、紡糸
条件あるいは延伸条件によっては複合短繊維に捲縮が生
じ、ウェブ化するときに繊維の開繊性が低下して均一な
ウェブを得ることができず、好ましくない。また、この
セグメントの数が多いと分割の利点が向上するが、多過
ぎると重合体成分Bのみから構成されるセグメント同士
が接着した横断面構造となり、後工程で割繊・剥離する
ことができなくなるという問題が生じるた約1通常、8
個程度までとするのがよい。
Monopolymer acid content B in the two-component composite short fibers referred to in the present invention
The number of segments is two or more, preferably four or more. If the number of this segment is one, crimping may occur in the composite short fibers depending on spinning conditions or drawing conditions, and when forming into a web, the spreadability of the fibers decreases, making it impossible to obtain a uniform web. , undesirable. In addition, if the number of segments is large, the advantage of splitting will be improved, but if there is too many segments, the cross-sectional structure will be such that segments made only of polymer component B are adhered to each other, making it difficult to split and peel them in the subsequent process. Usually about 1,8
It is best to limit it to about 100 pieces.

本発明の極細短繊維不織布の製造方法は、まず。The method for producing the ultrafine short fiber nonwoven fabric of the present invention is as follows.

前記重合体成分Aと、前記重合体成分Aに対し非相溶性
で、かつ前記重合体成分Aの融点より少なくとも20℃
高い融点を有する重合体成分Bからなる2成分複合繊維
を1通常の溶融複合紡糸製蓋を使用して溶融複合紡出し
、紡出された前記2成分複合繊維の未延伸繊維糸条を引
取りロール等の弓取り手段により引取った後集束して未
延伸繊維糸条束とする。次いで、得られた前記未延伸繊
維糸条束を延伸して機械捲縮を付与した後、所定繊維長
に切断して2成分複合短繊維とする。
The polymer component A is incompatible with the polymer component A and is at least 20° C. above the melting point of the polymer component A.
A bicomponent composite fiber made of polymer component B having a high melting point is melt-composite-spun using a conventional melt-composite spinning lid, and the undrawn fiber threads of the spun bicomponent composite fiber are collected. The fibers are pulled by a bowing means such as a roll and then bundled to form an undrawn fiber yarn bundle. Next, the obtained undrawn fiber yarn bundle is drawn and mechanically crimped, and then cut into a predetermined fiber length to obtain a two-component composite short fiber.

次に、前記2成分複合短繊維を用いてウェブを作成し、
得られたウェブを高圧液体柱状流で処理することによっ
て前記高融点の重合体成分Bからなるセグメントを前記
複合短繊維から少なくとも一部剥離させて単糸繊度が0
.7デニール以下の割繊短繊維とし、それと同時に、短
繊維間に3次元的絡合を施して一体化させる。ウェブ化
に際しては、前記溶融紡出された未延伸繊維糸条束を切
断した後、カード等の開繊手段で開繊し、得られたウェ
ブを移動するネットコンベア等の捕集面上に堆積させる
。高圧液体柱状流処理とは、ウェブ表面に高圧液体柱状
流を衝突させることにより、その剪断、伸長、圧縮等の
応力で2成分複合短繊維を割繊すると同時に、短繊維間
に3次元的絡合を施して一体化させるものである。使用
する液体としては、常温の水あるいは温水が挙げられる
。液体柱状流を噴射するた約のノズルとしては、孔径が
0.05〜1.0世、好ましくは0.1〜0.4順のも
のを使用するのがよい。噴射圧力としては、5〜150
kg/cn! G 、好ましくは10〜100kg/c
I]!Gとするのがよい。
Next, a web is created using the two-component composite short fibers,
By treating the obtained web with a high-pressure liquid columnar flow, at least a portion of the segments made of the polymer component B having a high melting point are exfoliated from the composite short fibers, and the single fiber fineness is reduced to 0.
.. The split short fibers are 7 denier or less, and at the same time, the short fibers are three-dimensionally entangled and integrated. When forming a web, after cutting the melt-spun undrawn fiber yarn bundle, the fibers are spread by a spreading means such as a card, and the resulting web is deposited on a collecting surface of a moving net conveyor, etc. let High-pressure liquid columnar flow treatment is a process in which a high-pressure liquid columnar flow collides with the web surface to split the two-component composite short fibers using stresses such as shearing, elongation, and compression, and at the same time create three-dimensional entanglements between the short fibers. They are integrated by combining them. The liquid used may be water at room temperature or warm water. As a nozzle for injecting a columnar flow of liquid, it is preferable to use a nozzle having a hole diameter of 0.05 to 1.0, preferably 0.1 to 0.4. The injection pressure is 5 to 150
kg/cm! G, preferably 10 to 100 kg/c
I]! It is better to set it as G.

この噴射圧力が5kg/Cr1G未満であると、前記重
合体成分Bからなるセグメントを十分剥離することがで
きず、好ましくない。ノズルとウェブ間の間隔は、1〜
15cm、好ましくは3〜13cmとするのがよく、こ
の間隔が大きくなると液体柱状流に空気が混入して3次
元的絡合を施す効果が低下するため、好ましくない。
If the injection pressure is less than 5 kg/Cr1G, the segments made of the polymer component B cannot be sufficiently exfoliated, which is not preferable. The distance between the nozzle and the web is 1~
The distance is preferably 15 cm, preferably 3 to 13 cm. If this distance becomes too large, air will be mixed into the liquid columnar flow, reducing the effect of three-dimensional entanglement, which is not preferred.

次いで、前記低融点の重合体成分Aの融点以上の温度で
熱処理をすることによって前記低融点の重合体成分Aか
らなる短繊維により短繊維間を少なくとも部分的に接着
して不織布を得る。なお。
Next, heat treatment is performed at a temperature equal to or higher than the melting point of the low melting point polymer component A to at least partially bond the short fibers together using the short fibers made of the low melting point polymer component A to obtain a nonwoven fabric. In addition.

得られた不織布に、不織布の柔軟性を向上させるための
柔軟加工を施してもよい。熱処理に際しては、ウェブ内
部まで十分加熱することができる装置を使用するのが好
ましく9例えば熱風循環乾燥機、赤外線加熱機等を使用
することができる。第2図は1本発明の製造方法の例を
示す工程図で。
The obtained nonwoven fabric may be subjected to a softening process to improve the flexibility of the nonwoven fabric. In the heat treatment, it is preferable to use a device that can sufficiently heat the inside of the web; for example, a hot air circulation dryer, an infrared heating device, etc. can be used. FIG. 2 is a process diagram showing an example of the manufacturing method of the present invention.

1はウェブ、2はネットコンベア、3は液体柱状流の噴
射ノズル、4はサクションボックス、5は乾燥機、6は
熱処理機、7は不織布である。
1 is a web, 2 is a net conveyor, 3 is a liquid columnar flow jet nozzle, 4 is a suction box, 5 is a dryer, 6 is a heat treatment machine, and 7 is a nonwoven fabric.

次に1本発明の製造方法により得られる極細短繊維不織
布に関して、説明する。
Next, the ultrafine short fiber nonwoven fabric obtained by the manufacturing method of the present invention will be explained.

本発明の製造方法により得られる極細短繊維不織布は、
(イ)重合体成分Aと前記重合体成分Aに対し非相溶性
の重合体成分Bからなる2成分複合短繊維と、(ロ)前
記2成分複合短繊維から重合体成分Bからなるセグメン
トが一部剥離した2成分複合短繊維と、(ハ)前記2成
分複合短繊維の分割により発現した前記重合体成分Aの
みからなる割繊短繊維と、(ニ)前記重合体成分Bのみ
からなる割繊短繊維とから構成されるものである。
The ultrafine short fiber nonwoven fabric obtained by the production method of the present invention is
(a) a bicomponent composite short fiber made of a polymer component A and a polymer component B that is incompatible with the polymer component A; and (b) a segment made of a polymer component B from the bicomponent composite staple fiber. Partially exfoliated two-component composite short fibers; (c) Split short fibers consisting only of the polymer component A developed by splitting the two-component composite short fibers; (d) Consisting only of the polymer component B. It is composed of split short fibers.

本発明の製造方法により得られる極細短繊維不織布は、
前記重合体成分Bからなるセグメントの割繊割合が少な
くとも80%のものである。この割繊割合とは、(イ)
2成分複合短繊維と、(ロ)前記2成分複合短繊維から
重合体成分Bからなるセグメントが一部剥離した2成分
複合短繊維と、(ハ)前記2成分複合短繊維の分割によ
り発現した前記重合体成分Aのみからなる割繊短繊維と
、(ニ)前記重合体成分Bのみからなる割繊短繊維とか
ら構成される不織布の任意の10個所を選び、不織布の
断面を拡大して断面写真を撮影し9次いで、断面写真中
The ultrafine short fiber nonwoven fabric obtained by the production method of the present invention is
The splitting ratio of the segments made of the polymer component B is at least 80%. This splitting ratio is (a)
A two-component composite short fiber, (b) a two-component composite short fiber in which a segment made of polymer component B is partially exfoliated from the two-component composite short fiber, and (c) a two-component composite short fiber developed by splitting the two-component composite short fiber. Ten arbitrary locations of the nonwoven fabric composed of split short fibers made only of the polymer component A and (d) split short fibers made only of the polymer component B are selected, and the cross section of the nonwoven fabric is enlarged. Take a cross-sectional photograph and then take a cross-sectional photograph.

複合短繊維から剥離している重合体成分Bのセグメント
総数と存在する重合体成分Bのセグメント総数とを求め
、算出されるもので、存在する重合体成分Bのセグメン
ト総数に対する剥離している重合体成分Bのセグメント
総数の比(%)を表すものである。本発明の製造方法に
より得られる極細短繊維不織布は、柔軟な風合いを有す
るものであることから、前記割繊割合は少なくとも80
%であることが好ましく、この割繊割合が80%未満で
あると、不織布としたとき柔軟性が劣るので好ましくな
い。
It is calculated by determining the total number of segments of polymer component B that are exfoliated from the composite short fibers and the total number of segments of polymer component B that are present. It represents the ratio (%) of the total number of segments of combined component B. Since the ultrafine short fiber nonwoven fabric obtained by the production method of the present invention has a soft texture, the fiber splitting ratio is at least 80%.
%, and if the fiber splitting ratio is less than 80%, the flexibility will be poor when made into a nonwoven fabric, which is not preferable.

また、前記複合短繊維の分割により発現した前記重合体
成分Bのみから構成される割繊短繊維は。
Further, the split short fibers are composed only of the polymer component B developed by splitting the composite short fibers.

単糸繊度が0.7デニール以下、好ましくは0.5デニ
ール以下のものであることが好ましい。前記割繊割合が
80%以上であっても1重合体成分Bからなる前記割繊
短繊維の単糸繊度が0.7デニールを超えると、柔軟な
風合いを有する不織布を得ることができず、好ましくな
い。
It is preferable that the single yarn fineness is 0.7 denier or less, preferably 0.5 denier or less. Even if the splitting ratio is 80% or more, if the single fiber fineness of the splitting short fibers made of one polymer component B exceeds 0.7 denier, a nonwoven fabric with a flexible texture cannot be obtained, Undesirable.

(実施例) 次に、実施例に基づいて本発明を具体的に説明する。な
お、実施例における各種特性は1次の方法により測定し
た。
(Example) Next, the present invention will be specifically described based on Examples. In addition, various characteristics in the examples were measured by the primary method.

相対粘度:ポリエステル系重合体の相対粘度は。Relative viscosity: What is the relative viscosity of polyester polymers?

フェノールと四塩化エタンの等重量混合溶液を溶媒とし
、試料濃度0.5 g / 100mf、温度20℃の
条件で測定した。
Using a mixed solution of equal weights of phenol and tetrachloroethane as a solvent, the measurement was performed at a sample concentration of 0.5 g/100 mf and a temperature of 20°C.

相対粘度:ポリアミド系重合体の相対粘度は。Relative viscosity: What is the relative viscosity of polyamide polymers?

濃度96重量%の硫酸を溶媒とし、試料濃度0.5g1
50−1温度25℃の条件で測定した。
Using sulfuric acid with a concentration of 96% by weight as a solvent, the sample concentration was 0.5g1
50-1 Measured at a temperature of 25°C.

メルトフローレート: ASTM D I238 L法
により測定した。
Melt flow rate: Measured by ASTM DI238L method.

融点:バーキンエルマ社製示差走査熱量計DSC−2型
を使用し、試料量を約5mg、走査速度20℃/分で測
定して得られたDSC曲線から求めた。
Melting point: Determined from a DSC curve obtained by measuring a sample amount of about 5 mg at a scanning speed of 20° C./min using a differential scanning calorimeter model DSC-2 manufactured by Birkin Elma.

不織布のタテ方向引張強カニ幅が25mm、長さが10
0■の測定試料片を作成し、JIS L−1096に記
載のストリップ法により測定した。
Tensile strength in vertical direction of non-woven fabric Width is 25mm, length is 10mm
A measurement sample piece of 0.0 cm was prepared and measured by the strip method described in JIS L-1096.

圧縮剛軟度二部が50mm、長さが100mmの測定試
料片を作成し、この試料片を高さが50mm、円周が1
00=の円筒状として平板式ロードセル上に載置し。
A measurement sample piece with a compressive bending strength of 50 mm and a length of 100 mm was prepared, and this sample piece was sized with a height of 50 mm and a circumference of 1.
00 = cylindrical shape and placed on a flat plate type load cell.

速度を50順/分として円筒状試料片を圧縮し、最大荷
重を求め、得られた値を圧縮剛軟度とした。
The cylindrical sample piece was compressed at a speed of 50 cycles per minute, the maximum load was determined, and the obtained value was taken as the compression stiffness.

目付け: JIS P−8142に記載の方法により測
定した。
Fabric weight: Measured by the method described in JIS P-8142.

実施例1 融点が130℃、メルトフローレート値が20 g /
 10分のポリエチレン重合体を重合体成分A、融点が
260℃、相対粘度が1.38のポリエチレンテレフタ
レート重合体を重合体成分Bとし、複合紡糸孔を319
孔有する紡糸口金を通して紡糸温度270℃で2成分複
合繊維を溶融紡出した。溶融紡糸に際し9重合体酸分A
の単孔吐出量を0.125g/分9重合体成分Bの単孔
吐出量を0.404g/分〔成分Aと成分Bの比(体積
比)は1対2〕とした。紡出された複合繊維糸条を冷却
した後9周速度が1000m /分の引取りロールで引
取り、未延伸繊維糸条のパッケージを得た。得られた前
記パッケージを集約集束して10万デニールのトウとし
、延伸温度を75℃として延伸倍率2.8で延伸し9次
いで押込み式クリンパで機械捲縮を付与した後、長さ5
1mmに切断して2成分複合短繊維を得た。この短繊維
は、単糸繊度が2デニールで、かつ第1図(a)に示し
たように。
Example 1 Melting point: 130°C, melt flow rate: 20 g/
A 10-minute polyethylene polymer was used as polymer component A, a polyethylene terephthalate polymer with a melting point of 260°C and a relative viscosity of 1.38 was used as polymer component B, and the composite spinning hole was 319.
The bicomponent composite fibers were melt spun through a spinneret with holes at a spinning temperature of 270°C. Nine polymer acid content A during melt spinning
The single hole discharge rate of the polymer component B was set to 0.125 g/min. After the spun composite fiber yarn was cooled, it was taken up by a take-up roll having a circumferential speed of 1000 m 2 /min to obtain a package of undrawn fiber yarn. The obtained package was bundled into a tow of 100,000 denier, stretched at a stretching temperature of 75°C and a stretching ratio of 2.8, and then mechanically crimped with a push-in crimper to a length of 5.
Two-component composite short fibers were obtained by cutting into 1 mm pieces. The short fibers had a single fiber fineness of 2 denier and were as shown in FIG. 1(a).

重合体成分Aと9重合体酸分Aの周囲に4個の重合体成
分Bが花弁状に付加された横断面形状を有するものであ
った。
It had a cross-sectional shape in which four polymer components B were added in a petal shape around polymer component A and nine polymer acid components A.

次に、前記2成分複合短繊維をローラーカードを用いて
速度50m/分で開繊して目付けが40g/ゴのウェブ
を作成した後、第2図に示したように。
Next, the two-component composite short fibers were opened at a speed of 50 m/min using a roller card to create a web with a basis weight of 40 g/g, as shown in FIG.

得られたウェブを速度が10m/分の移動するネットコ
ンベア面上に堆積させ、高圧水柱状流で2回連続して処
理した。この処理条件は、噴射ノズル孔径を0.15m
m、ノズル孔配設間隔を1.Omm、ノズル孔列数を2
.第1列目ノズル孔の圧力を20kg/rtx“G、第
2列目ノズル孔の圧力を40kg/m″G、ノズルとウ
ェブ間の間隔を100mmとし、ウェブ側から噴射処理
した。なお、この処理をするに際し、噴射使用済の水を
、サクションボックスで回収除去した。
The resulting web was deposited on the surface of a moving net conveyor at a speed of 10 m/min and treated with two successive high-pressure water columns. This processing condition is such that the injection nozzle hole diameter is 0.15m.
m, and the nozzle hole arrangement interval is 1. Omm, the number of nozzle hole rows is 2
.. The pressure in the first row of nozzle holes was 20 kg/rtx"G, the pressure in the second row of nozzle holes was 40 kg/m"G, and the distance between the nozzle and the web was 100 mm, and the injection treatment was performed from the web side. In addition, when performing this treatment, the water used for spraying was collected and removed using a suction box.

前記高圧水柱状流の処理に連続して、乾燥機を用いてウ
ェブに熱処理を施した。この処理条件は。
Continuing with the high-pressure water column flow treatment, the web was subjected to heat treatment using a dryer. What are the processing conditions?

処理温度を150℃、処理時間を1分間とした。The treatment temperature was 150° C. and the treatment time was 1 minute.

得られた不織布は、目付けが45g/m’、タテ方向引
張強力が9.2kg / 3 cm、圧縮剛軟度が7.
3gであった。不織布の任意の10個所を選び、不織布
の断面を拡大して断面面写真を撮影し1次いで、10枚
の断面写真中、複合短繊維から剥離している重合体成分
Bのセグメント総数と存在する重合体成分Bのセグメン
ト総数とを求め1割繊割合を求めたところ1割繊割合は
97%であった。この不織布には、(ニ)前記重合体成
分Bのみから構成される割繊短繊維の他に、(イ)重合
体成分Bからなるセグメントが全く剥離していない2成
分複合短繊維と。
The obtained nonwoven fabric had a basis weight of 45 g/m', a longitudinal tensile strength of 9.2 kg/3 cm, and a compression stiffness of 7.
It was 3g. Select 10 arbitrary locations on the nonwoven fabric, enlarge the cross section of the nonwoven fabric, and take cross-sectional photographs. Next, in the 10 cross-sectional photographs, determine the total number of segments of polymer component B that have peeled off from the composite short fibers. When the total number of segments of polymer component B was determined and the 10% fiber ratio was determined, the 100% fiber ratio was 97%. This nonwoven fabric includes (d) split staple fibers made only of the polymer component B, and (i) two-component composite short fibers in which segments made of the polymer component B have not been peeled at all.

(ロ)前記2成分複合短繊維から重合体成分Bからなる
セグメントが一部剥離した2成分複合短繊維と、(ハ)
前記2成分複合短繊維の分割により発現した前記重合体
成分Aのみから構成される割繊短繊維とが認められた。
(b) two-component composite short fibers in which segments made of polymer component B are partially exfoliated from the two-component composite short fibers; and (c)
Split short fibers composed only of the polymer component A developed by splitting the two-component composite short fibers were observed.

また、前記複合短繊維の分割により発現した重合体成分
Bのみから構成される割繊短繊維の単糸繊度を求めたと
ころ、0.37デニールと極めて細いものであった。そ
して、この不織布は、柔軟な肌触りを有するものであっ
た。
Further, when the single fiber fineness of the split short fibers composed only of the polymer component B developed by splitting the composite short fibers was determined, it was found to be extremely fine at 0.37 denier. This nonwoven fabric had a soft touch.

比較例1 熱処理を施さない以外は、実施例1と同様にして、2成
分複合短繊維を得、ローラーカードを用いて開繊して目
付けが40g/m″のウェブを作成した後、得られたウ
ェブを高圧水柱状流で2回連続して処理し、不織布を得
た。
Comparative Example 1 Two-component composite short fibers were obtained in the same manner as in Example 1, except that no heat treatment was performed, and the fibers were opened using a roller card to create a web with a basis weight of 40 g/m''. The resulting web was treated with a high-pressure water column twice in succession to obtain a nonwoven fabric.

得られた不織布は、目付けが38g/m″、タテ方向引
張強力が6.3kg/ 3 cm、圧縮剛軟度が6.5
gであり、柔軟性に優れるものの、短繊維間が接着され
ていないた緬強力が低いものであった。
The obtained nonwoven fabric has a basis weight of 38 g/m'', a longitudinal tensile strength of 6.3 kg/3 cm, and a compression stiffness of 6.5.
g, and although it had excellent flexibility, it had low strength due to the fact that the short fibers were not bonded together.

実施例2 融点が170℃、メルトフローレート値が50g/10
分のポリプロピレン重合体を重合体成分Aとし。
Example 2 Melting point is 170°C, melt flow rate value is 50g/10
Polypropylene polymer of 100% was used as polymer component A.

その溶融温度を270℃とした以外は実施例1と同様に
して、2成分複合長繊維を溶融紡出し、引取りロールで
引取って未延伸繊維糸条のパッケージを得、得られた前
記パッケージを集め集束して10万デニールのトウとし
、延伸温度を75℃として延伸倍率2.9で延伸し9次
いで押込み式クリンパで機械捲縮を付与した後、長さ5
1mmに切断して2成分複合短繊維を得た。この短繊維
は、単糸繊度が2デニールで、かつ第1図(a)に示し
たように9重合体成分Aと1重合体酸分Aの周囲に4個
の重合体成分Bが花弁状に付加された横断面形状を有す
るものであった。
The two-component composite filament was melt-spun in the same manner as in Example 1 except that the melting temperature was 270°C, and the undrawn fiber yarn package was obtained by taking it off with a take-up roll. were collected and bundled to form a 100,000 denier tow, stretched at a stretching temperature of 75°C and a stretching ratio of 2.9, and then mechanically crimped with a push-in crimper to a length of 5.
Two-component composite short fibers were obtained by cutting into 1 mm pieces. This short fiber has a single filament fineness of 2 denier, and as shown in Figure 1(a), four polymer components B are arranged around nine polymer components A and one polymer acid component A in a petal shape. It had an additional cross-sectional shape.

次に、実施例1と同様にして、前記2成分複合短繊維を
ローラーカードを用いて開繊して目付けが40g/m″
のウェブを作成した後、得られたウェブを速度が10m
/分の移動するネットコンベア面上に堆積させ、高圧水
柱状流で2回連続して処理した。
Next, in the same manner as in Example 1, the two-component composite short fibers were opened using a roller card to obtain a basis weight of 40 g/m''.
After creating a web of
It was deposited on the surface of a net conveyor moving at a speed of 1/2 min and treated with two consecutive high-pressure water column flows.

前記高圧水柱状流の処理に連続して、乾燥機を用いてウ
ェブに熱処理を施した。この処理条件は。
Continuing with the high-pressure water column flow treatment, the web was subjected to heat treatment using a dryer. What are the processing conditions?

処理温度を170℃、処理時間を1分間とした。The treatment temperature was 170° C. and the treatment time was 1 minute.

得られた不織布は、目付けが43g/rn”、タテ方向
引張強力が9−5kg/ 3 cm、圧縮剛軟度が7.
3gであった。不織布の任意の10個所を選び1割繊割
合を求めたところ4割繊割合は95%であった。この不
織布には、(ニ)前記重合体成分Bのみから構成される
割繊短繊維の他に、(イ)重合体成分Bからなるセグメ
ントが全く剥離していない2成分複合短繊維と、(ロ)
前記2成分複合短繊維から重合体成分Bからなるセグメ
ントが一部剥離した2成分複合短繊維と、(ハ)前記2
成分複合短繊維の分割により発現した前記重合体成分A
のみから構成される割繊短繊維とが認められた。また、
前記複合短繊維の分割により発現した重合体成分Bのみ
から構成される割繊短繊維の単糸繊度を求めたところ、
OJ5デニールと極めて細いものであった。そして、こ
の不織布は、柔軟な肌触りを有するものであった。
The obtained nonwoven fabric has a basis weight of 43 g/rn'', a longitudinal tensile strength of 9-5 kg/3 cm, and a compression stiffness of 7.
It was 3g. When 10 arbitrary points of the nonwoven fabric were selected and the 10% fiber ratio was determined, the 40% fiber ratio was 95%. This nonwoven fabric includes (d) split staple fibers made only of the polymer component B, (b) two-component composite short fibers with no exfoliated segments made of the polymer component B, and ( B)
(c) a two-component conjugate short fiber in which a segment made of polymer component B is partially exfoliated from the two-component conjugate short fiber;
The polymer component A expressed by splitting component composite short fibers
It was recognized that split short fibers were composed only of Also,
When the single fiber fineness of split short fibers composed only of polymer component B developed by splitting the composite short fibers was determined,
It was extremely thin with an OJ5 denier. This nonwoven fabric had a soft touch.

比較例2 熱処理を施さない以外は、実施例2と同様にして、2成
分複合短繊維を得、ローラーカードを用いて開繊して目
付けが40g/m”のウェブを作成した後、得られたウ
ェブを高圧水柱状流で2回連続して処理し、不織布を得
た。
Comparative Example 2 Two-component composite short fibers were obtained in the same manner as in Example 2, except that no heat treatment was performed, and the fibers were opened using a roller card to create a web with a basis weight of 40 g/m. The resulting web was treated with a high-pressure water column twice in succession to obtain a nonwoven fabric.

得られた不織布は、目付けが38g/m”、タテ方向引
張強力が6.8kg/ 3 cm、圧縮剛軟度が6.9
gであり、柔軟性に優れるものの、短繊維間が接着され
ていないため強力が低いものであった。
The obtained nonwoven fabric has a basis weight of 38 g/m'', a longitudinal tensile strength of 6.8 kg/3 cm, and a compression stiffness of 6.9.
g, and although it had excellent flexibility, it had low strength because the short fibers were not bonded.

実施例3 融点が217℃、相対粘度が3.09のナイロン6重合
体(ユニチカ株式会社製、商品名A 1030B RF
 )を重合体成分B、溶融温度を265℃とした以外は
実施例1と同様にして、2成分複合長繊維を溶融紡出し
、引取りロールで引取って未延伸繊維糸条のパッケージ
を得、得られた前記パッケージを集め集束して10万デ
ニールのトウとし、延伸温度を75℃として延伸倍率2
.6で延伸し9次いで押込み式クリンパで機械捲縮を付
与した後、長さ51mmに切断して2成分複合短繊維を
得た。この短繊維は、単糸繊度が2デニールで、かつ第
1図(a)に示したように1重合体酸分Aと9重合体酸
分Aの周囲に4個の重合体成分Bが花弁状に付加された
横断面形状を有するものであった。
Example 3 Nylon hexapolymer with a melting point of 217°C and a relative viscosity of 3.09 (manufactured by Unitika Co., Ltd., trade name A 1030B RF)
) was used as polymer component B and the melting temperature was 265°C, but in the same manner as in Example 1, the two-component composite filament was melt-spun and taken off with a take-up roll to obtain a package of undrawn fiber yarn. The obtained packages were collected and bundled into a 100,000 denier tow, and the stretching temperature was set to 75°C and the stretching ratio was 2.
.. After stretching at step 6 and mechanically crimp using a push-in crimper at step 9, the fibers were cut into a length of 51 mm to obtain a two-component composite short fiber. This short fiber has a single fiber fineness of 2 denier, and as shown in Figure 1(a), four polymer components B are arranged around one polymer acid component A and nine polymer acid components A. It had a cross-sectional shape added to the shape.

次に、実施例1と同様にして、前記2成分複合短繊維を
ローラーカードを用いて開繊して目付けが40 g /
 m’のウェブを作成した後、得られたウェブを速度が
10m/分の移動するネットコンベア面上に堆積させ、
高圧水柱状流で2回連続して処理した。
Next, in the same manner as in Example 1, the two-component composite short fibers were opened using a roller card to give a basis weight of 40 g/
After creating a web of m', the resulting web is deposited on the surface of a moving net conveyor at a speed of 10 m/min,
Two consecutive treatments were carried out with high pressure water column flow.

前記高圧水柱状流の処理に連続して、乾燥機を用いてウ
ェブに熱処理を施した。この処理条件は。
Continuing with the high-pressure water column flow treatment, the web was subjected to heat treatment using a dryer. What are the processing conditions?

処理温度を150℃、処理時間を1分間とした。The treatment temperature was 150° C. and the treatment time was 1 minute.

得られた不織布は、目付けが47g/m”、タテ方向引
張強力が8.9kg/ 3 cm、圧縮剛軟度が4.8
gであった。不織布の任意の10個所を選び1割繊割合
を求めたところ9割繊割合は90%であった。また。
The obtained nonwoven fabric has a basis weight of 47 g/m'', a longitudinal tensile strength of 8.9 kg/3 cm, and a compression stiffness of 4.8.
It was g. When 10 arbitrary points of the nonwoven fabric were selected and the 10% fiber ratio was determined, the 90% fiber ratio was 90%. Also.

前記複合短繊維の分割により発現した重合体成分Bのみ
から構成される割繊短繊維の単糸繊度を求めたところ、
、OJ9デニールと極めて細いものであった。そして、
この不織布は、極めて柔軟な肌触りを有するものであっ
た。
When the single fiber fineness of split short fibers composed only of polymer component B developed by splitting the composite short fibers was determined,
, OJ9 denier and extremely thin. and,
This nonwoven fabric was extremely soft to the touch.

実施例4 実施例1で得られた2成分複合短繊維と、融点が110
℃のバインダ繊維(ユニチカ株式会社製、商品名メルテ
イ)を10重量%混綿したものを用いてウェブを作成し
た以外は、実施例1と同様にして。
Example 4 The two-component composite short fiber obtained in Example 1 and the melting point of 110
Example 1 was carried out in the same manner as in Example 1, except that the web was created using a mixture of 10% by weight of binder fiber (manufactured by Unitika Co., Ltd., trade name: Meltei) at 10°C.

不織布を作成した。A non-woven fabric was created.

得られた不織布は、目付けが45g/m’、タテ方向引
張強力が15.3kg/ 3 cm、圧縮剛軟度が9.
2gであり、高強力で、かつ柔軟な肌触りを有するもの
であった。
The obtained nonwoven fabric has a basis weight of 45 g/m', a longitudinal tensile strength of 15.3 kg/3 cm, and a compression stiffness of 9.
It had a weight of 2g, high strength, and a soft touch.

実施例5 バインダ繊維(ユニチカ株式会社製、商品名メルテイ)
の混綿率を20重量%とした以外は、実施例1と同様に
して、不織布を作成した。
Example 5 Binder fiber (manufactured by Unitika Co., Ltd., trade name Meltei)
A nonwoven fabric was produced in the same manner as in Example 1, except that the cotton blend ratio was 20% by weight.

得られた不織布は、目付けが48g/m’、タテ方向引
張強力が17.8kg/ 3 cm、圧縮剛軟度が12
.5gであり、高強力で、かつ柔軟な肌触りを有するも
のであった。
The obtained nonwoven fabric has a basis weight of 48 g/m', a longitudinal tensile strength of 17.8 kg/3 cm, and a compression stiffness of 12.
.. It had a weight of 5 g, high strength, and a soft touch.

比較例3 バインダ繊維(ユニチカ株式会社製、商品名メルテイ)
の混綿率を40重量%とした以外は、実施例4と同様に
して、不織布を作成した。
Comparative Example 3 Binder fiber (manufactured by Unitika Co., Ltd., trade name Meltei)
A nonwoven fabric was produced in the same manner as in Example 4, except that the cotton blend ratio was 40% by weight.

得られた不織布は、目付けが51g/m”、タテ方向引
張強力が24.0kg/ 3 cm、圧縮剛軟度が33
.0gであり、極めて高強力であるものの、短繊維間の
接着が強固すぎるため柔軟性が低いものであった。
The obtained nonwoven fabric has a basis weight of 51 g/m'', a longitudinal tensile strength of 24.0 kg/3 cm, and a compression stiffness of 33.
.. 0g, and although it had extremely high strength, the adhesion between the short fibers was too strong, resulting in low flexibility.

(発明の効果) 本発明の極細短繊維不織布の製造方法によれば。(Effect of the invention) According to the method for producing an ultrafine short fiber nonwoven fabric of the present invention.

2成分複合短繊維と、前記2成分複合短繊維の分割によ
り発現した割繊短繊維とから構成され、低融点の重合体
成分からなる短繊維により短繊維間が少なくとも部分的
に接着されるため強力に優れ。
It is composed of two-component composite short fibers and split short fibers developed by splitting the two-component composite short fibers, and the short fibers are at least partially adhered by the short fibers made of a low melting point polymer component. Strong and excellent.

しかも柔軟な風合いを有する不織布を低コストで効率よ
く製造することができる。
Moreover, a nonwoven fabric having a soft texture can be efficiently produced at low cost.

そして、得られた不織布は、医療衛生材用素材として好
適に使用することができる。
The obtained nonwoven fabric can be suitably used as a material for medical hygiene materials.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は9本発明でいう2成分複合短繊維の例を示す横
断面図、第2図は1本発明の製造方法の例を示す工程図
である。 1:ウエブ、2:ネットコンベア、3:液体柱状流噴射
ノズル、5:乾燥機、6:熱処理機。 7:不織布 特許出願人  日本エステル株式会社
FIG. 1 is a cross-sectional view showing an example of the two-component composite short fiber according to the present invention, and FIG. 2 is a process diagram showing an example of the manufacturing method according to the present invention. 1: Web, 2: Net conveyor, 3: Liquid columnar flow jet nozzle, 5: Dryer, 6: Heat treatment machine. 7: Nonwoven fabric patent applicant Nippon Ester Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] (1)ポリオレフイン系重合体成分Aと,前記ポリオレ
フイン系重合体成分Aに対し非相溶性で,かつ前記重合
体成分Aの融点より少なくとも20℃高い融点を有する
重合体成分Bからなる2成分複合繊維を溶融複合紡出し
,紡出された前記2成分複合繊維の未延伸繊維糸条を引
取った後集束して未延伸繊維糸条束とし,次いで得られ
た前記未延伸繊維糸条束を延伸して機械捲縮を付与した
後,所定繊維長に切断して2成分複合短繊維とし,前記
2成分複合短繊維を用いてウエブを作成し,得られたウ
エブを高圧液体柱状流で処理することによって前記高融
点の重合体成分Bからなるセグメントを前記複合短繊維
から少なくとも一部剥離させて単糸繊度が0.7デニー
ル以下の割繊短繊維とするとともに短繊維間に3次元的
絡合を施して一体化させ,次いで前記低融点の重合体成
分Aの融点以上の温度で熱処理をすることによって前記
低融点の重合体成分Aからなる短繊維により短繊維間を
少なくとも部分的に接着することを特徴とする極細短繊
維不織布の製造方法。
(1) A two-component composite consisting of a polyolefin polymer component A and a polymer component B that is incompatible with the polyolefin polymer component A and has a melting point at least 20°C higher than the melting point of the polymer component A. The fibers are melt-composite-spun, the undrawn fiber yarns of the spun bicomponent composite fibers are collected and bundled into undrawn fiber yarn bundles, and then the obtained undrawn fiber yarn bundles are collected. After being stretched and mechanically crimped, the fibers are cut into a predetermined fiber length to obtain two-component composite short fibers, a web is created using the two-component composite short fibers, and the obtained web is treated with a high-pressure liquid columnar flow. By doing so, at least a portion of the segment made of the polymer component B having a high melting point is exfoliated from the composite short fibers to obtain split short fibers having a single filament fineness of 0.7 denier or less, and a three-dimensional structure is formed between the short fibers. By entanglement and integration, and then heat treatment at a temperature higher than the melting point of the low melting point polymer component A, the short fibers made of the low melting point polymer component A are used to at least partially connect the short fibers. A method for producing an ultrafine short fiber nonwoven fabric characterized by adhesion.
(2)2成分複合短繊維を構成するポリオレフイン系重
合体成分Aがポリエチレン系重合体あるいはポリプロピ
レン系重合体,重合体成分Bがポリエステル系重合体あ
るいはポリアミド系重合体である請求項1記載の極細短
繊維不織布の製造方法。
(2) The ultrafine according to claim 1, wherein the polyolefin polymer component A constituting the two-component composite staple fiber is a polyethylene polymer or a polypropylene polymer, and the polymer component B is a polyester polymer or a polyamide polymer. A method for producing short fiber nonwoven fabric.
(3)2成分複合短繊維の分割により発現した高融点の
重合体成分Bのみから構成される割繊短繊維の単糸繊度
が0.5デニール以下の極細短繊維である請求項1又は
2記載の極細短繊維不織布の製造方法。
(3) Claim 1 or 2, wherein the split short fibers are ultrafine short fibers having a single filament fineness of 0.5 denier or less, which is composed only of the high melting point polymer component B developed by splitting the bicomponent composite short fibers. The method for producing the ultrafine short fiber nonwoven fabric described above.
(4)2成分複合短繊維に対し,前記2成分複合短繊維
を構成する重合体成分Aの融点より低い融点を有するバ
インダ繊維を30重量%以下混綿することを特徴とする
請求項1,2又は3記載の極細短繊維不織布の製造方法
(4) 30% by weight or less of binder fibers having a melting point lower than the melting point of the polymer component A constituting the two-component composite short fibers are blended with the two-component composite staple fibers. Or the method for producing an ultrafine short fiber nonwoven fabric according to 3.
JP2141008A 1990-05-30 1990-05-30 Production of nonwoven fabric of ultrafine short fiber Pending JPH0434058A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2141008A JPH0434058A (en) 1990-05-30 1990-05-30 Production of nonwoven fabric of ultrafine short fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2141008A JPH0434058A (en) 1990-05-30 1990-05-30 Production of nonwoven fabric of ultrafine short fiber

Publications (1)

Publication Number Publication Date
JPH0434058A true JPH0434058A (en) 1992-02-05

Family

ID=15282045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2141008A Pending JPH0434058A (en) 1990-05-30 1990-05-30 Production of nonwoven fabric of ultrafine short fiber

Country Status (1)

Country Link
JP (1) JPH0434058A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5355565A (en) * 1993-04-22 1994-10-18 Freudenberg Spunweb S.A. Process for the production of a non-woven cloth constituted of continuous interconnected filaments and cloth thus obtained
EP0756935A2 (en) * 1995-08-02 1997-02-05 Canon Kabushiki Kaisha Absorber mounted in an ink tank and process for manufacturing this tank
KR100673596B1 (en) * 2004-12-29 2007-01-24 주식회사 삼양사 Monofilament suture and preparation method thereof
CN102656262A (en) * 2009-12-17 2012-09-05 麒麟协和食品株式会社 Arginine-rich yeast extract and process for production thereof
CN105908370A (en) * 2016-06-28 2016-08-31 河南亚都实业有限公司 Allergy-free and fully-degradable nonwoven material for medical treatment and health care

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5355565A (en) * 1993-04-22 1994-10-18 Freudenberg Spunweb S.A. Process for the production of a non-woven cloth constituted of continuous interconnected filaments and cloth thus obtained
FR2705698A1 (en) * 1993-04-22 1994-12-02 Freudenberg Spunweb Sa A method of manufacturing a nonwoven web consisting of continuous filaments bonded together and web thus obtained.
EP0694644A1 (en) * 1993-04-22 1996-01-31 Freudenberg Spunweb S.A. Method of producing a non woven sheet comprising continuous filaments bonded together and sheet thus obtained
EP0756935A2 (en) * 1995-08-02 1997-02-05 Canon Kabushiki Kaisha Absorber mounted in an ink tank and process for manufacturing this tank
EP0756935A3 (en) * 1995-08-02 1998-07-01 Canon Kabushiki Kaisha Absorber mounted in an ink tank and process for manufacturing this tank
US6334674B1 (en) 1995-08-02 2002-01-01 Canon Kabushiki Kaisha Absorber mounted in an ink tank and process for manufacturing this tank
KR100673596B1 (en) * 2004-12-29 2007-01-24 주식회사 삼양사 Monofilament suture and preparation method thereof
CN102656262A (en) * 2009-12-17 2012-09-05 麒麟协和食品株式会社 Arginine-rich yeast extract and process for production thereof
CN105908370A (en) * 2016-06-28 2016-08-31 河南亚都实业有限公司 Allergy-free and fully-degradable nonwoven material for medical treatment and health care

Similar Documents

Publication Publication Date Title
US6048808A (en) Nonwoven fabric and method of making the same
JP4486816B2 (en) Stretchable nonwoven web and method therefor
RU2436878C2 (en) Fissionable conjugated fibre, its aggregate and fibrous form made of fissionable conjugated fibre
JP2004532939A (en) Stretchable fibers and nonwovens made from large denier splittable fibers
JPH09316765A (en) Unidirectionally stretchable nonwoven fabric and its production
JP2016507012A (en) A bat made of crimped bicomponent or multicomponent fibers
JPH06207323A (en) Biodegradable latent-crimping conjugate filament and nonwoven fabric made of the filament
JPH1086256A (en) Composite nonwoven fabric and absorbent article using the same
JPH0434058A (en) Production of nonwoven fabric of ultrafine short fiber
JPH08260323A (en) Biodegradable filament nonwoven fabric and its production
JP3055288B2 (en) Stretchable long-fiber nonwoven fabric and method for producing the same
JPH05263344A (en) Stretchable nonwoven fabric of filament and its production
JP3247177B2 (en) Biodegradable latently crimpable composite short fiber and nonwoven fabric thereof
JPH02169723A (en) Thermally splitting type conjugate fiber and nonwoven fabric thereof
JPH0457950A (en) Production of superfine staple fiber nonwoven fabric
JP4453179B2 (en) Split fiber and fiber molded body using the same
JPH0995850A (en) Nonwoven fabric of polylactate-based filament and its production
JPH02169720A (en) Thermal splitting type conjugate fiber and nonwoven fabric thereof
JP4026279B2 (en) Split type composite fiber and fiber molded body using the same
JP2000129538A (en) Divided type conjugate fiber, and nonwoven fabric composed of the same
JP2002115163A (en) Method for producing filament nonwoven fabric
JPH0314694A (en) Wet-process nonwoven fabric having excellent dimensional stability and its production
JPH0147585B2 (en)
JP4213054B2 (en) Method for producing ultra-thin fiber nonwoven fabric
JPH02169719A (en) Thermal splitting type conjugate fiber and nonwoven fabric thereof