JP2641856B2 - Method for manufacturing semiconductor device - Google Patents
Method for manufacturing semiconductor deviceInfo
- Publication number
- JP2641856B2 JP2641856B2 JP62040715A JP4071587A JP2641856B2 JP 2641856 B2 JP2641856 B2 JP 2641856B2 JP 62040715 A JP62040715 A JP 62040715A JP 4071587 A JP4071587 A JP 4071587A JP 2641856 B2 JP2641856 B2 JP 2641856B2
- Authority
- JP
- Japan
- Prior art keywords
- insulating film
- film
- conductive film
- forming
- semiconductor substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Electrodes Of Semiconductors (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置の製造方法に係わり、特に半導体
素子の電極配線で必要な開孔部の製造方法に関する。Description: BACKGROUND OF THE INVENTION The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a method for manufacturing a hole required for electrode wiring of a semiconductor element.
半導体集積回路装置、特に、シリコン半導体基板に搭
載した集積回路装置は、製造プロセス技術特に微細加工
技術の進展と共に大容量化,高密度化が急速に進んでき
た。2. Description of the Related Art A semiconductor integrated circuit device, particularly an integrated circuit device mounted on a silicon semiconductor substrate, has rapidly increased in capacity and density with the progress of manufacturing process technology, particularly fine processing technology.
しかしながら斯くなる微細加工技術の発展の中にあっ
て回路形成パターンの転写工程に付随した回路形成パタ
ーン間の目ズレを見込したパターンの面積的マージン
(余裕)が集積回路の高密度化の大きな阻害要因となっ
てきた。以下この点に関し詳細に説明を加える。However, in the development of such fine processing technology, the area margin of the pattern in view of the misalignment between the circuit formation patterns accompanying the step of transferring the circuit formation patterns greatly inhibits the high density of the integrated circuit. It has been a factor. Hereinafter, this point will be described in detail.
一般に半導体素子の製造には、半導体基板表面への回
路形成パターン転写のために、公知のホトレジスト工
程、及びこのホトレジストをマスクとして使用した半導
体表面の加工工程が含まれる。尚、ここで回路形成パタ
ーン転写には、幾重かのホトレジストマスクが必要とさ
れ、それに応じて数段階の加工工程が存在する。この各
段階の加工工程では、それぞれそれ以前の加工パターン
に整合する姿態に所望の加工パターンを形成する必要が
ある。しかしながら回路形成パターンの転写には目合せ
が必要であり、目合せズレによるパターンの整合ズレは
回避できない。この整合ズレはホトレジスト技術に大き
く依存するが現在、0.1〜0.3μm程度である。そこで、
この整合ズレを見込んで回路形成パターン間には、面積
的マージンを持たしている。この面積的マージンが、特
に高密度化が進められている絶縁ゲート電界効果トラン
ジスタを能動素子とした集積回路に於いて、高密度化の
阻害要因として顕在化してきた。このような中にあっ
て、集積回路の電極配線に必須な開孔部形成に付随する
回路形成パターン間のマージン面積が孔密度化に対する
特に強い阻害要因となっている。In general, the manufacture of a semiconductor device includes a known photoresist process for transferring a circuit formation pattern to the surface of a semiconductor substrate, and a process of processing the semiconductor surface using the photoresist as a mask. Here, the transfer of the circuit formation pattern requires several photoresist masks, and there are several stages of processing steps accordingly. In each of the processing steps, it is necessary to form a desired processing pattern in a form that matches the processing pattern before that. However, the transfer of the circuit forming pattern requires alignment, and the alignment deviation of the pattern due to the alignment deviation cannot be avoided. This misalignment largely depends on the photoresist technology, but is currently about 0.1 to 0.3 μm. Therefore,
An area margin is provided between the circuit forming patterns in anticipation of the misalignment. This area margin has become apparent as a factor inhibiting high density, particularly in an integrated circuit in which an insulated gate field effect transistor whose density is being advanced is an active element. In such a situation, a margin area between circuit formation patterns accompanying formation of a hole, which is indispensable for electrode wiring of an integrated circuit, is a particularly strong inhibiting factor for hole density.
従来のこの開孔部形成は、第3図に示すように、シリ
コン半導体基板301表面に選択的に形成した絶縁素子分
離領域302,絶縁ゲート電界効果トランジスタのゲート膜
303,ゲート電極304及びソース・ドレインの拡散領域305
を被覆するように層間絶縁膜306を形成した後、公知の
ホトレジストを用いたリソグラフィ技術,エッチング技
術を用い、この層間絶縁膜306に開孔を設けることで行
なう。斯くした後配線307を形成し、拡散領域305と電気
的に接続して能動素子を形成する。ここで保護膜308は
半導体素子を保護するために最終段階で被覆する。As shown in FIG. 3, the conventional opening is formed by selectively forming an insulating element isolation region 302 selectively formed on the surface of a silicon semiconductor substrate 301 and a gate film of an insulated gate field effect transistor.
303, gate electrode 304 and source / drain diffusion region 305
Is formed by forming a hole in the interlayer insulating film 306 by using a known lithography technique and an etching technique using a photoresist. After this, the wiring 307 is formed and electrically connected to the diffusion region 305 to form an active element. Here, the protective film 308 is coated in a final step to protect the semiconductor element.
このような形成方法では、前述したリソグラフィ技術
での目合せズレを考慮し、ゲート電極304又は、絶縁素
子分離域302と開孔部に充分面積的マージンをもたせる
ことが必要となる。このためこの面積が増加し、高密度
化が阻害されてくる。In such a forming method, it is necessary to provide a sufficient area margin between the gate electrode 304 or the insulating element isolation region 302 and the opening in consideration of the misalignment in the lithography technique described above. For this reason, this area increases, and high density is hindered.
上述した従来の開孔部形成法ではかかる集積回路素子
製造に於いて、電極取り出しに必要とされる開孔形成に
起因した上記回路形成パターン面積の増加が避けられ
ず、回路素子の高密度化が進まないという欠点を有して
いる。In the above-described conventional hole formation method, in the manufacture of such an integrated circuit element, the increase in the area of the circuit formation pattern due to the formation of the hole required for electrode extraction is inevitable, and the density of the circuit element is increased. Has the disadvantage that it does not proceed.
本発明による半導体装置の製造方法は、半導体基板上
に第1の絶縁膜を介して第1の導電性膜を選択的に形成
する工程と、この第1の導電性膜をマスクとして半導体
基板に不純物を選択的に導入して第1の導電性膜に自己
整合する不純物領域を形成する工程と、第2の絶縁膜の
形成および異方性エッチングにより第1の導電性膜の側
面に側壁絶縁膜を形成するとともに不純物領域の一部を
露出する工程と、不純物領域の当該一部に接触して側壁
絶縁膜上に延在する第2の導電性膜を形成する工程と、
全面に第3の絶縁膜を形成する工程と、第2の導電性膜
の一部を露出するコンタクト孔を第3の絶縁膜に選択的
に形成する工程と、第2の導電性膜の当該一部に接触し
て第3の絶縁膜上に延在する配線を形成する工程とを有
している。A method of manufacturing a semiconductor device according to the present invention includes the steps of selectively forming a first conductive film on a semiconductor substrate via a first insulating film, and forming the first conductive film on a semiconductor substrate using the first conductive film as a mask. A step of selectively introducing an impurity to form an impurity region which is self-aligned with the first conductive film; and forming a second insulating film and forming a side wall insulating film on the side surface of the first conductive film by anisotropic etching. Forming a film and exposing a part of the impurity region; and forming a second conductive film extending on the sidewall insulating film in contact with the part of the impurity region;
A step of forming a third insulating film over the entire surface, a step of selectively forming a contact hole exposing a part of the second conductive film in the third insulating film, Forming a wiring extending over the third insulating film in contact with a portion thereof.
次に本発明の実施例につき図面を参照して説明する
が、その前に、本発明に対し参考となる半導体装置の製
造方法につき第1−a図乃至第1−i図を用いて説明す
る。Next, an embodiment of the present invention will be described with reference to the drawings. Before that, a method of manufacturing a semiconductor device which is a reference to the present invention will be described with reference to FIGS. 1A to 1I. .
シリコン半導体基板101の表面に絶縁素子分離領域102
を形成し、絶縁ゲート電界効果トランジスタのゲート絶
縁膜103上に形成したゲート電極104上面を被覆するよう
に絶縁膜105を形成し(第1−b図)、次に砒素イオン
注入によりn+拡散領域109を形成し(第1−c〜第1−
d図)、次にゲート電極104の側面を被覆するように絶
縁膜106を形成する(第1−e〜第1−f図)。斯くし
た後絶縁膜105及び絶縁膜106と異なる絶縁膜107を窓開
けを設けて形成し(第1−g図,第1−h図)、配線10
8を形成する(第1−i図)。このようにして絶縁膜10
5,106,107を層間絶縁膜として、ソース・ドレインの拡
散領域109と配線108を電気的に接続する。最後に保護膜
110を被覆し、自己整合型開孔部を有する半導体素子が
構成される。第1の実施例では、絶縁素子分離領域102
とゲート電極104パターンに自己整合する姿態に開孔部
が構成される。An insulating element isolation region 102 is provided on the surface of a silicon semiconductor substrate 101.
Is formed, and an insulating film 105 is formed so as to cover the upper surface of the gate electrode 104 formed on the gate insulating film 103 of the insulated gate field effect transistor (FIG. 1-b), and then n + diffusion is performed by arsenic ion implantation. The region 109 is formed (from 1-c to 1-c
Next, an insulating film 106 is formed so as to cover the side surface of the gate electrode 104 (FIGS. 1-e to 1-f). After that, an insulating film 107 different from the insulating film 105 and the insulating film 106 is formed by providing a window (FIGS. 1-g and 1-h).
8 (FIG. 1-i). Thus, the insulating film 10
5, 106, 107 are used as interlayer insulating films to electrically connect the source / drain diffusion region 109 and the wiring 108. Finally protective film
A semiconductor element that covers 110 and has a self-aligned opening is formed. In the first embodiment, the insulating element isolation region 102
The opening is formed in a state of self-alignment with the pattern of the gate electrode 104.
第4図乃至第11図は本発明に対しさらに参考となる製
造工程を示す断面図である。FIG. 4 to FIG. 11 are cross-sectional views showing manufacturing steps which are further reference to the present invention.
第4図に示すようにP型シリコン基板401表面にゲー
ト膜用のシリコン酸化膜402を膜厚が100〜200Åとなる
よう熱酸化法にて形成した後、ポリシリコン,ポリサイ
ド,あるいは高融点金属等の導電性膜403を、スパッタ
ーあるいはCVD法にて堆積後更にシリコンオキシナイト
ライド等の絶縁膜404を膜厚2000〜4000Å程形成する。As shown in FIG. 4, after a silicon oxide film 402 for a gate film is formed on the surface of a P-type silicon substrate 401 by a thermal oxidation method so as to have a thickness of 100 to 200 °, polysilicon, polycide, or high melting point metal is used. After depositing a conductive film 403 such as by sputtering or CVD, an insulating film 404 such as silicon oxynitride is formed to a thickness of about 2000 to 4000 nm.
次に第5図に示すように公知のリソグラフィ技術でホ
トレジスト層405をマスクにして下層の絶縁膜404,導電
性膜403をドライエッチングした後、第6図に示すよう
にエッチングのマスクとして用いたホトレジスト層405
を除去した後、砒素のイオン406を注入エネルギー50〜1
00Kev,注入量1×1015イオン/cm2条件で注入しn+拡散領
域407を形成する。続いて第7図に示すように、絶縁膜4
08をステップカバレッジのよいCVD法にて膜厚2000〜500
0Å程堆積する。ここでこの絶縁膜408としては、絶縁膜
404と同材料のシリコンオキシナイトライドでもよい
し、その他の絶縁膜でもよい。Next, as shown in FIG. 5, the lower insulating film 404 and the conductive film 403 were dry-etched using the photoresist layer 405 as a mask by a known lithography technique, and then used as an etching mask as shown in FIG. Photoresist layer 405
After removing arsenic ions 406, implantation energy 50-1
Implantation is performed under the conditions of 00 Kev and an implantation amount of 1 × 10 15 ions / cm 2 to form an n + diffusion region 407. Subsequently, as shown in FIG.
08: 2000-500 film thickness by CVD method with good step coverage
Deposit about 0Å. Here, as the insulating film 408, an insulating film
Silicon oxynitride of the same material as 404 or another insulating film may be used.
このようにした後絶縁膜408を異方性の高いドライエ
ッチング法で、n+拡散領域407の中央部上の絶縁膜408が
除去されるまで、エッチングする。この高い異方性エッ
チングのため導電性膜403及び絶縁膜404の側壁に第8図
に示すように絶縁膜408が残留する。Thereafter, the insulating film 408 is etched by a highly anisotropic dry etching method until the insulating film 408 on the center of the n + diffusion region 407 is removed. Due to this high anisotropic etching, the insulating film 408 remains on the side walls of the conductive film 403 and the insulating film 404 as shown in FIG.
続いて第9図に示すように絶縁膜409をCVD法,あるい
は塗布法で膜厚4000A程度形成する。ここでこの絶縁膜4
09は、絶縁膜404,408とは別種のものにする必要があ
る。例えば、絶縁膜404,408がシリコンオキシナイトラ
イド膜で構成される場合には、シリコン酸化膜あるい
は、シリコン窒化膜で絶縁膜409を形成すればよい。Subsequently, as shown in FIG. 9, an insulating film 409 is formed to a thickness of about 4000 A by a CVD method or a coating method. Here this insulating film 4
09 needs to be different from the insulating films 404 and 408. For example, when the insulating films 404 and 408 are formed of a silicon oxynitride film, the insulating film 409 may be formed of a silicon oxide film or a silicon nitride film.
次に第10図に示すように絶縁膜409を選択的に除去す
るためにホトレジスト層410をマスクにしてエッチング
する。この窓開けはドライエッチでもウエットエッチン
グでもどちらでもよい。但し、絶縁膜404,408のエッチ
ングレートが低く、且つ絶縁膜409のエッチングレート
の高いものを使う必要がある。例えば、絶縁膜404,408
がシリコンオキシナイトライド,絶縁膜409がシリコン
酸化膜の場合には、ウエットエッチングの薬品として
は、弗化アンモニウム液を用いればよい。ここでドライ
エッチングの場合には、沃素あるいは臭素を含むハロゲ
ン化炭化水素ガスを用いればよい。この絶縁膜409に形
成される開口部は、絶縁膜408に囲まれる開口部を通し
てn+拡散領域407に接続をとるためのものであり、目合
わせには高精度が要求されることはない。このようにし
て開孔部の絶縁膜409を除去し、更に薄いゲート膜用の
シリコン酸化膜402の絶縁膜408に囲まれた部分も除去し
た後、第11図に示すようにアルミ等で配線411を形成す
る。Next, as shown in FIG. 10, etching is performed using the photoresist layer 410 as a mask in order to selectively remove the insulating film 409. This window opening may be either dry etching or wet etching. However, the insulating films 404 and 408 need to have a low etching rate and the insulating film 409 needs to have a high etching rate. For example, insulating films 404, 408
Is silicon oxynitride and the insulating film 409 is a silicon oxide film, an ammonium fluoride solution may be used as a wet etching chemical. Here, in the case of dry etching, a halogenated hydrocarbon gas containing iodine or bromine may be used. The opening formed in the insulating film 409 is for connecting to the n + diffusion region 407 through the opening surrounded by the insulating film 408, and high precision is not required for alignment. In this manner, the insulating film 409 at the opening is removed, and the portion of the silicon oxide film 402 for the thin gate film surrounded by the insulating film 408 is also removed. Then, as shown in FIG. 411 is formed.
このように、以前に転写された回路形成パターン即
ち、絶縁ゲート電界効果トランジスタのゲート電極とな
る導電性膜403パターンで自動的に形成された自己整合
型の開孔を通してn拡散領域407と配線411が電気的に接
続される。As described above, the n-diffusion region 407 and the wiring 411 are formed through the previously transferred circuit formation pattern, that is, the self-aligned opening automatically formed by the conductive film 403 pattern serving as the gate electrode of the insulated gate field effect transistor. Are electrically connected.
第2図は本発明の一実施例による方法により製造され
た半導体装置の断面図であり、第12図乃至第19図は本発
明の一実施例を示す主たる製造工程の断面図を示したも
のである。第2図に示すように第1図に示した第1の実
施例の場合と同様、シリコン半導体基板201表面に絶縁
素子分離域202,絶縁ゲート電界効果トランジスタのゲー
ト膜203,ゲート電極204,絶縁膜205,絶縁膜206を形成
し、薄い導電性膜を絶縁素子分離域202の一部及び絶縁
膜205,206の一部を被覆する姿態に形成する。絶縁膜20
5,206と異なる絶縁膜208を薄い導電性膜207上部に窓開
けを設けた姿態で形成し、配線209を設ける。斯くして
絶縁膜205,206,207を層間絶縁膜として、ソース・ドレ
インの拡散領域210と配線209を薄い導電性膜207を介し
て電気的に接続する。最後に保護膜211を被覆し、自己
整合型開孔部を有する半導体素子が構成される。FIG. 2 is a cross-sectional view of a semiconductor device manufactured by a method according to one embodiment of the present invention, and FIGS. 12 to 19 are cross-sectional views of main manufacturing steps showing one embodiment of the present invention. It is. As shown in FIG. 2, as in the case of the first embodiment shown in FIG. 1, the insulating element isolation region 202, the gate film 203 of the insulated gate field effect transistor, the gate electrode 204, the insulating A film 205 and an insulating film 206 are formed, and a thin conductive film is formed to cover a part of the insulating element isolation region 202 and a part of the insulating films 205 and 206. Insulating film 20
An insulating film 208 different from 5,206 is formed in a state where a window is provided above the thin conductive film 207, and a wiring 209 is provided. Thus, the source / drain diffusion region 210 and the wiring 209 are electrically connected via the thin conductive film 207, using the insulating films 205, 206, and 207 as interlayer insulating films. Finally, a semiconductor element having a self-aligned opening is formed by covering the protective film 211.
次に第12図乃至第19図に従って本発明の一実施例の製
法について述べる。Next, a manufacturing method of one embodiment of the present invention will be described with reference to FIGS.
第12図に示すように、P型シリコン基板201表面に選
択的に厚いシリコン酸化膜を熱酸化法にて形成し絶縁素
子分離領域202を形成した後ゲート用のシリコン酸化膜2
03,導電性膜204,絶縁膜205を形成する。ここでこれ等の
膜厚は第2の実施例の場合に述べた値と同じでよい。As shown in FIG. 12, a thick silicon oxide film is selectively formed on the surface of a P-type silicon substrate 201 by a thermal oxidation method to form an insulating element isolation region 202, and then a silicon oxide film 2 for a gate is formed.
03, a conductive film 204 and an insulating film 205 are formed. Here, these film thicknesses may be the same as the values described in the case of the second embodiment.
次に第13図に示すように公知のリソグラフィ技術でホ
トレジスト層506をマスクにして絶縁膜205,金属薄膜204
をエッチングした後、第14図に示すように、n+拡散領域
210及び絶縁膜206を前記第2の実施例の場合と同様に形
成する。Next, as shown in FIG. 13, the insulating film 205 and the metal thin film 204 are formed using the photoresist layer 506 as a mask by a known lithography technique.
The After etching, as shown in FIG. 14, n + diffusion region
The 210 and the insulating film 206 are formed in the same manner as in the second embodiment.
続いて第15図に示すように導電性膜204,絶縁膜205の
側壁に絶縁膜206が残るよう異方性のドライエッチング
を施す。かくしてn+拡散領域210表面を露出した後、第1
6図に示すように、n型の有効不純物を含む膜厚が500〜
1000Åのポリシリコン薄膜層あるいは、高融点金属含有
薄膜層等の薄い導電性膜207を露出したn+拡散領域210の
表面より、絶縁膜206及び絶縁膜205上、さらに絶縁素子
分離領域202上に延在するようにパターニングして形成
する。かくした後、第17図に示すように絶縁膜208を全
面に堆積又は塗布し、第18図に示すように、薄い導電性
膜207上の領域のみホトレジスト511をマスクにして選択
除去し窓開けを施した後、第19図に示すように配線209
を形成する。Subsequently, anisotropic dry etching is performed so that the insulating film 206 remains on the side walls of the conductive film 204 and the insulating film 205 as shown in FIG. Thus, after exposing the surface of the n + diffusion region 210, the first
As shown in FIG. 6, the film thickness including the n-type effective impurity is 500 to
From the surface of the n + diffusion region 210 exposing the thin conductive film 207 such as a 1000-mm-thick polysilicon thin film layer or a high-melting-point metal-containing thin film layer, the insulating film 206 and the insulating film 205 and the insulating element isolation region 202 It is formed by patterning so as to extend. After this, an insulating film 208 is deposited or applied on the entire surface as shown in FIG. 17, and as shown in FIG. 18, only the region on the thin conductive film 207 is selectively removed using the photoresist 511 as a mask to open a window. After the wiring 209 is applied as shown in FIG.
To form
本実施例においても、以前に転写された回路形成パタ
ーン即ち、絶縁素子分離領域202と、絶縁ゲート電界効
果トランジスタのゲート電極となる導電性膜204とのパ
ターンで自動的に形成された自己整合型の開孔を通して
n+拡散領域210と配線209が電気的に接続される。Also in the present embodiment, a self-aligned type automatically formed by a pattern of a previously formed circuit formation pattern, that is, a pattern of an insulating element isolation region 202 and a conductive film 204 serving as a gate electrode of an insulated gate field effect transistor. Through the opening of
N + diffusion region 210 and wiring 209 are electrically connected.
ここで薄い導電性膜207は、第18図に示した工程で第
3の絶縁膜208に窓開けを施す時、エッチングのバッフ
ァとしての役目を有し、下層の絶縁素子分離領域202及
び絶縁膜205及び絶縁膜206の表面が蝕刻されるのを防止
する働きをもっている。更には又、配線209にアルミニ
ウムを使用した場合に、配線209とn+拡散領域210が正常
に接続できるようにする働きも有している。Here, the thin conductive film 207 has a role as an etching buffer when the third insulating film 208 is opened in the step shown in FIG. 18, and the lower insulating element isolation region 202 and the insulating film It has a function of preventing the surfaces of 205 and the insulating film 206 from being etched. Furthermore, when aluminum is used for the wiring 209, the wiring 209 has a function of enabling normal connection between the wiring 209 and the n + diffusion region 210.
以上説明したように本発明は、電極取り出しに必要と
される開孔部の形成をそれ以前の工程で転写された回路
形成パターンで自動的に行える自己整合型開孔を容易に
形成できるため、整合ズレを見込した面積マージンが不
要となり、半導体集積回路装置の高集積度化を容易にす
る効果を有している。As described above, the present invention can easily form a self-aligned opening in which the formation of the opening required for electrode extraction can be easily performed automatically with the circuit formation pattern transferred in the previous process. This eliminates the need for an area margin in anticipation of misalignment, and has the effect of facilitating high integration of the semiconductor integrated circuit device.
第1−a図乃至第1−i図は参考となる半導体装置の断
面図とその製造工程を示す断面図、第2図は本発明の一
実施例による方法により製造された半導体装置の断面
図、第3図は従来の半導体装置の断面図、第4図乃至第
11図はさらに参考となる製造工程を示す断面図、第12図
乃至第19図は本発明の一実施例を示す製造工程の主たる
断面図である。 101,201,301……シリコン半導体基板, 102,202,302……絶縁素子分離領域, 103,203,303……ゲート膜, 104,204,304……ゲート電極, 105,205……絶縁膜,106,206……絶縁膜, 107,208……絶縁膜,207……薄い導電性膜, 108,209,307……配線, 109,210,305……拡散領域,306……層間絶縁膜, 110,211,308……保護膜, 401……P型シリコン基板, 402……シリコン酸化膜,403……導電性膜, 404……絶縁膜,405,506……ホトレジスト層, 406……砒素イオン,407……n+拡散領域, 408……絶縁膜,409……絶縁膜, 410,511……ホトレジスト層,411……配線。FIGS. 1-a to 1-i are cross-sectional views of a reference semiconductor device and a cross-sectional view showing a manufacturing process thereof. FIG. 2 is a cross-sectional view of a semiconductor device manufactured by a method according to an embodiment of the present invention. FIG. 3 is a sectional view of a conventional semiconductor device, and FIGS.
FIG. 11 is a cross-sectional view showing a manufacturing process for further reference, and FIGS. 12 to 19 are main cross-sectional views of the manufacturing process showing one embodiment of the present invention. 101, 201, 301 ... silicon semiconductor substrate, 102, 202, 302 ... insulating element isolation region, 103, 203, 303 ... gate film, 104, 204, 304 ... gate electrode, 105, 205 ... insulating film, 106, 206 ... insulating film, 107, 208 ... insulating film, 207 ... thin conductive Conductive film, 108, 209, 307, wiring, 109, 210, 305, diffusion region, 306, interlayer insulating film, 110, 211, 308, protective film, 401, P-type silicon substrate, 402, silicon oxide film, 403, conductive film, 404 ... insulating film, 405, 506 ... photoresist layer, 406 ... arsenic ion, 407 ... n + diffusion region, 408 ... insulating film, 409 ... insulating film, 410, 511 ... photoresist layer, 411 ... wiring.
Claims (3)
の導電性膜を形成することにより前記半導体基板の選択
された表面部分を区画する工程と、前記第1の導電性膜
をマスクとして前記半導体基板の前記選択された表面部
分に不純物を導入して前記第1の導電性膜に対し自己整
合する不純物領域を形成する工程と、第2の絶縁膜を形
成しこの絶縁膜に対して異方性エッチングを行って前記
第1の導電性膜の側面に側壁絶縁膜を形成するとともに
前記不純物領域の一部を露出する工程と、前記不純物領
域の前記一部と接触して前記側壁絶縁膜上に延在する第
2の導電性膜を形成する工程と、全面に第3の絶縁膜を
形成する工程と、前記第2の導電性膜の一部を露出する
コンタクト孔を前記第3の絶縁膜に選択的に形成する工
程と、前記第2の導電性膜の前記一部と接触して前記第
3の絶縁膜上に延在する配線層を形成する工程とを有す
ることを特徴とする半導体装置の製造方法。A first insulating film formed on the semiconductor substrate via a first insulating film;
Forming a conductive film of the semiconductor substrate to separate a selected surface portion of the semiconductor substrate, and introducing an impurity into the selected surface portion of the semiconductor substrate using the first conductive film as a mask. Forming an impurity region that is self-aligned with the first conductive film; forming a second insulating film and performing anisotropic etching on the insulating film to form a side surface of the first conductive film; Forming a sidewall insulating film on the substrate and exposing a part of the impurity region; and forming a second conductive film extending on the sidewall insulating film in contact with the part of the impurity region. Forming a third insulating film on the entire surface; selectively forming a contact hole exposing a part of the second conductive film in the third insulating film; The conductive film extends on the third insulating film in contact with the portion of the conductive film. The method of manufacturing a semiconductor device characterized by a step of forming a wiring layer.
は前記第1の導電性膜とともに前記半導体基板に部分的
に埋設して設けられた埋設絶縁膜により区画され、前記
第2の導電性膜の一部は前記埋設絶縁膜に延在形成され
ていることを特徴とする特許請求の範囲第1項記載の半
導体装置の製造方法。2. The semiconductor device according to claim 1, wherein said selected surface portion of said semiconductor substrate is defined by a buried insulating film provided so as to be partially buried in said semiconductor substrate together with said first conductive film. 2. The method according to claim 1, wherein a part of the film is formed to extend to the buried insulating film.
リコン薄膜層あるいは高融点金属含有薄膜層であること
を特徴とする特許請求の範囲第1項または第2項記載の
半導体装置の製造方法。3. The semiconductor device according to claim 1, wherein said second conductive film is a polysilicon thin film layer containing impurities or a high melting point metal containing thin film layer. Production method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62040715A JP2641856B2 (en) | 1987-02-23 | 1987-02-23 | Method for manufacturing semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62040715A JP2641856B2 (en) | 1987-02-23 | 1987-02-23 | Method for manufacturing semiconductor device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63207154A JPS63207154A (en) | 1988-08-26 |
JP2641856B2 true JP2641856B2 (en) | 1997-08-20 |
Family
ID=12588281
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62040715A Expired - Lifetime JP2641856B2 (en) | 1987-02-23 | 1987-02-23 | Method for manufacturing semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2641856B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2740050B2 (en) * | 1991-03-19 | 1998-04-15 | 株式会社東芝 | Groove embedded wiring formation method |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54154966A (en) * | 1978-05-29 | 1979-12-06 | Nippon Telegr & Teleph Corp <Ntt> | Semiconductor electron device |
JPS60175452A (en) * | 1984-02-20 | 1985-09-09 | Matsushita Electronics Corp | Manufacture of transistor |
JPS62150746A (en) * | 1985-12-24 | 1987-07-04 | Rohm Co Ltd | Wiring formation of semiconductor device |
-
1987
- 1987-02-23 JP JP62040715A patent/JP2641856B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS63207154A (en) | 1988-08-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5807779A (en) | Method of making tungsten local interconnect using a silicon nitride capped self-aligned contact process | |
US5432113A (en) | Method of making a semiconductor memory device | |
US5073510A (en) | Fabrication method of contact window in semiconductor device | |
JPH04229616A (en) | Method for boring an opening on semicon- ductor layer structure | |
JP2536413B2 (en) | Method for manufacturing semiconductor integrated circuit device | |
US6261882B1 (en) | Method for fabricating a semiconductor device | |
US6037247A (en) | Method of manufacturing semiconductor device having a self aligned contact | |
JP3215320B2 (en) | Method for manufacturing semiconductor device | |
JPH0810755B2 (en) | Method of manufacturing semiconductor memory | |
JP3321864B2 (en) | Semiconductor device and its manufacturing method. | |
JPH04348077A (en) | Thin-film transistor | |
US6833293B2 (en) | Semiconductor device and method for manufacturing the same | |
JPH05166835A (en) | Self-aligning polysilicon contact | |
US5939758A (en) | Semiconductor device with gate electrodes having conductive films | |
JP2641856B2 (en) | Method for manufacturing semiconductor device | |
JP2544937B2 (en) | Semiconductor device and manufacturing method thereof | |
JP3224916B2 (en) | Method for manufacturing semiconductor device | |
JPS60128642A (en) | Manufacture of semiconductor integrated circuit device | |
JP2550302B2 (en) | Method for manufacturing semiconductor device | |
JPH09213949A (en) | Semiconductor device manufacturing method | |
JP2604021B2 (en) | Method for manufacturing semiconductor device | |
JPS6154661A (en) | Manufacture of semiconductor device | |
JP2913681B2 (en) | Semiconductor integrated circuit device | |
JP2556155B2 (en) | Method for manufacturing semiconductor device | |
JPS59178765A (en) | Semiconductor device and manufacture thereof |