JPS62150746A - Wiring formation of semiconductor device - Google Patents

Wiring formation of semiconductor device

Info

Publication number
JPS62150746A
JPS62150746A JP29634585A JP29634585A JPS62150746A JP S62150746 A JPS62150746 A JP S62150746A JP 29634585 A JP29634585 A JP 29634585A JP 29634585 A JP29634585 A JP 29634585A JP S62150746 A JPS62150746 A JP S62150746A
Authority
JP
Japan
Prior art keywords
wiring
conductivity type
region
type region
exposed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29634585A
Other languages
Japanese (ja)
Inventor
Kazufumi Mitsumoto
三本 和文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm Co Ltd
Original Assignee
Rohm Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co Ltd filed Critical Rohm Co Ltd
Priority to JP29634585A priority Critical patent/JPS62150746A/en
Publication of JPS62150746A publication Critical patent/JPS62150746A/en
Pending legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To facilitate precision control of the spacing between wirings with an order of angstrom by a method wherein 1st conductivity region and 1st wiring are covered with an insulating layer and the insulating layer is etched by anisotropic etching as far as the 1st conductivity type region is exposed and side walls with predetermined width are formed on the end surfaces of the 1st wiring. CONSTITUTION:After an oxide film 12 is formed by hot oxidation, the surface of a semiconductor substrate 11 is selectively etched and a P-type impurity is introduced into the surface of the exposed semiconductor substrate 11 to form a base region 13. After high melting point metal 14 is applied to the surfaces of the base region 13 and the oxide film 12, the high melting point metal is covered with silicon nitride 15 and, by etching the silicon nitride 15 and the high melting point metal 14 selectively, a base electrode 16 is patterned and a region for emitter forming is exposed. Then the region for emitter forming and the silicon nitride 15 are covered with silicon dioxide film 17. If the silicon nitride film 17 is removed by anisotropic etching as far as the region for emitter forming is exposed again, silicon dioxide is left on the end surfaces of the base electrode 16 to form side walls 18.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は半導体装置の配線形成方法に係わり、特に、半
導体基板に形成される半導体素子の微細化に適した半導
体装置の配線形成方法に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method for forming wiring in a semiconductor device, and particularly to a method for forming wiring in a semiconductor device suitable for miniaturization of semiconductor elements formed on a semiconductor substrate.

〈従来の技術〉 第2図は従来の典型的なバイポーラトランジスタを示す
断面図であり、図において、1は半導体基板を、2はベ
ース領域を、3はエミッタ領域をそれぞれ示している。
<Prior Art> FIG. 2 is a sectional view showing a typical conventional bipolar transistor. In the figure, 1 indicates a semiconductor substrate, 2 indicates a base region, and 3 indicates an emitter region.

ベース領域2にはベース電極4がコンタクト孔を介して
電気的に接続されており、一方、エミッタ領域3にはエ
ミッタ電極5がコンタクト孔を介して接触している。か
かる従来のバイポーラトランジスタは、ベース電極4と
エミッタ電極5とのコンタクト孔7,8をそれぞれ穿設
するリソグラフィ工程と、ベース電極4とエミッタ電極
5を形成するりソゲラフイエ程とが別々であるので、電
極形成時のりソゲラフイエ程で使用するマスクには、各
リングラフィ工程におけるマスク合せの誤差等を見込ん
だパターンが形1 成されている。その結果、ベース電
極4とエミッタ電極5との間隔が大きくなり、ベース領
域2の占有面積が広くなっていた。かかるベース領域2
の面積増加は、集積密度の向上に不適なばかりか、ベー
ス・コレクタ接合容量の増加、さらにはベース電極4と
エミッタ電極5との間隔が大きいことによるベース抵抗
の増加となり、バイポーラトランジスタの高周波特性を
悪化させる原因となっていた。
A base electrode 4 is electrically connected to the base region 2 through a contact hole, while an emitter electrode 5 is in contact with the emitter region 3 through the contact hole. In such a conventional bipolar transistor, the lithography process for forming the contact holes 7 and 8 for the base electrode 4 and the emitter electrode 5, respectively, and the step for forming the base electrode 4 and the emitter electrode 5 are separate. The mask used in the lithographic process during electrode formation is formed with a pattern that takes into account errors in mask alignment in each phosphorography process. As a result, the distance between the base electrode 4 and the emitter electrode 5 has increased, and the area occupied by the base region 2 has increased. Such base area 2
An increase in the area of is not only inappropriate for improving the integration density, but also increases the base-collector junction capacitance and increases the base resistance due to the large distance between the base electrode 4 and the emitter electrode 5, which impairs the high frequency characteristics of the bipolar transistor. This was causing the deterioration of the condition.

かかる従来のバイポーラトランジスタの欠点に鑑み、本
願出願人は1本願と同日出願に係わる特許出願において
、半導体基板表面部の第1導電型領域を露出し該第1導
電型領域に第1配線を電気的に接続する工程と、前記第
1導電型領域と第1配線とを絶縁層で被い該絶縁層に孔
を穿設して第1導電型領域の一部を露出させる工程と、
前記絶縁層に穿設された孔から不純物を第1導電型領域
の一部に導入し第2導電型領域を形成する工程と、前記
孔を介して第2導電型領域に電気的に接続された第2配
線を形成する工程とを含む半導体装置の配線形成方法を
提案した。
In view of the shortcomings of conventional bipolar transistors, the applicant of the present invention, in a patent application filed on the same day as the present application, exposes a first conductivity type region on the surface of a semiconductor substrate and connects a first wiring to the first conductivity type region. a step of covering the first conductivity type region and the first wiring with an insulating layer and drilling a hole in the insulating layer to expose a part of the first conductivity type region;
introducing an impurity into a part of the first conductivity type region through a hole drilled in the insulating layer to form a second conductivity type region; The present invention proposed a method for forming wiring for a semiconductor device, which includes a step of forming a second wiring.

〈発明の解決しようとする問題点〉 上記本願と同日出願に係わる半導体装置の配線形成方法
にあっては、第1配線と第2配線との間隔を第1配線を
パターン形成するためのマスクと第2導電型領域を形成
するための孔を穿設するマスクとのマスク合せ誤差のみ
をマージンとしておけばよく、第2導電型領域に電気的
に接続される第2配線と第1配線との間隔を従来例に比
べ大幅に減少させることができた。
<Problems to be Solved by the Invention> In the wiring formation method for a semiconductor device related to the application filed on the same day as the above-mentioned present application, the distance between the first wiring and the second wiring is determined by using a mask for patterning the first wiring. Only the mask alignment error with the mask for forming the hole for forming the second conductivity type region is required as a margin, and the difference between the second wiring and the first wiring electrically connected to the second conductivity type region is sufficient. The distance could be significantly reduced compared to the conventional example.

しかしながら、上記配線形成方法にあっても、第1配線
と第2配線との間隔は依然としてマスク合せの誤差を含
めて設定しなければならず、μmのオーダー(典型的に
は2μm)のマージンが必要であり、マージンをマスク
合せの誤差より小さくすることができないという問題点
があった。
However, even with the above wiring formation method, the distance between the first wiring and the second wiring still has to be set including mask alignment errors, and the margin is on the order of μm (typically 2 μm). However, there was a problem in that the margin could not be made smaller than the mask alignment error.

従って、本発明は配線間の間隔をオングストロームのオ
ーダーで精密に制御可能な半導体装置の配線形成方法を
提供することを目的としている。
Accordingly, an object of the present invention is to provide a method for forming interconnects in a semiconductor device that allows the spacing between interconnects to be precisely controlled on the order of angstroms.

〈問題点を解決するための手段〉 本発明は、半導体基板表面部の第1導電型領域を露出し
第1配線材をパターン形成した第1配線を前記第1導電
型領域に電気的に接続する工程と、前記第1導電型領域
と第1配線とを絶縁層で被い該絶縁層を前記第1導電型
領域が露出するまで異方性エツチングし第1配線の端面
に所定幅のサイドウオールを形成する工程と、該サイド
ウオールで規定される孔を介して露出された第1導電型
領域の一部に不純物を導入し第2導電型領域を形成する
工程と、前記孔を介して第2導電型領域に電気的に接続
された第2配線を形成する工程とを含むことを要旨とす
る。
<Means for Solving the Problems> The present invention provides a method for electrically connecting a first wiring patterned with a first wiring material by exposing a first conductivity type region on the surface of a semiconductor substrate to the first conductivity type region. covering the first conductivity type region and the first wiring with an insulating layer; anisotropically etching the insulating layer until the first conductivity type region is exposed; a step of forming a wall, a step of introducing an impurity into a part of the first conductivity type region exposed through the hole defined by the side wall to form a second conductivity type region, and a step of forming a second conductivity type region through the hole. The method includes a step of forming a second wiring electrically connected to the second conductivity type region.

〈実施例〉 第1図(a)乃至(f)は本発明の一実施例の各工程を
示す断面図であり、この−実施例は本発明をバイポーラ
トランジスタの製造工程に適用したものである。図にお
いて、11はn型の半導体基板を示しており、この半導
体基板11の表面は熱酸化による酸化膜12が成長され
た後選択的にエツチングされ、露出された半導体基板1
1の表面にp型の不純物が導入されてベース領域13が
形成される(第1図(a))。
<Example> Figures 1(a) to (f) are cross-sectional views showing each process of an embodiment of the present invention, and this embodiment is an application of the present invention to the manufacturing process of a bipolar transistor. . In the figure, reference numeral 11 indicates an n-type semiconductor substrate, and after an oxide film 12 is grown by thermal oxidation on the surface of the semiconductor substrate 11, it is selectively etched to expose the semiconductor substrate 1.
A p-type impurity is introduced into the surface of the base region 13 to form a base region 13 (FIG. 1(a)).

続いて、ベース領域13と酸化膜12との表面に高融点
金属14、例えばチタン、モリブデン、タングステン等
をスパッタリングにより被着させた後、この高融点金属
を窒化シリコン15で被い(第1図(b))、窒化シリ
コン15と高融点金属14とを選択的にそれぞれエツチ
ングしてベース電極16をパターン形成するとともに、
エミッタ形成予定領域を露出させる。この後、エミッタ
形成予定領域と窒化シリコン15とを二酸化シリコン膜
17で被い(第1図(C))、この二酸化シリコン膜1
7を異方性エツチング、例えば反応性イオンエツチング
でエミッタ形成予定領域が再び露出するまで除去する(
第1図(d))。その結果、ベース電極16の端面には
二酸化シリコンが残留し、サイドウオール18が形成さ
れる(第1図(d))。
Subsequently, a high melting point metal 14, such as titanium, molybdenum, tungsten, etc., is deposited on the surfaces of the base region 13 and the oxide film 12 by sputtering, and then this high melting point metal is covered with silicon nitride 15 (FIG. 1). (b)), selectively etching the silicon nitride 15 and the high melting point metal 14 to form a pattern of the base electrode 16;
Expose the area where the emitter is to be formed. Thereafter, the area where the emitter is to be formed and the silicon nitride 15 are covered with a silicon dioxide film 17 (FIG. 1(C)).
7 is removed by anisotropic etching, such as reactive ion etching, until the area where the emitter is to be formed is exposed again (
Figure 1(d)). As a result, silicon dioxide remains on the end face of the base electrode 16, forming a sidewall 18 (FIG. 1(d)).

この後、エミッタ形成予定領域とサイドウオール18と
窒化シリコン15とをn型不純物を含むポリシリコン膜
19で被い、このポリシリコン膜19を不純物源として
拡散によりエミッタ領域20を形成する(第1図(e)
)。続いて、アルミニウムを全面に被着し、これをパタ
ーン形成することにより、エミッタ電極21を完成する
(第1図(f))。従って、ベース電極16とエミッタ
電極21との間隔は、二酸化シリコン1!117の厚さ
と略等しくなり、二酸化シリコン膜17の厚さはオング
ストロームのオーダーで制御できるので、ベース電極1
6とエミッタ電極21との間隔は、マスク合せの誤差を
含めて設定しなければならない場合に比べ飛躍的に減少
させることができる。
Thereafter, the emitter formation region, sidewall 18, and silicon nitride 15 are covered with a polysilicon film 19 containing n-type impurities, and an emitter region 20 is formed by diffusion using this polysilicon film 19 as an impurity source (first Figure (e)
). Subsequently, aluminum is deposited on the entire surface and patterned to complete the emitter electrode 21 (FIG. 1(f)). Therefore, the distance between the base electrode 16 and the emitter electrode 21 is approximately equal to the thickness of the silicon dioxide film 1!117, and the thickness of the silicon dioxide film 17 can be controlled on the order of angstroms.
The distance between the emitter electrode 6 and the emitter electrode 21 can be dramatically reduced compared to the case where it has to be set including mask alignment errors.

その結果、ベース領域13の一層の面積減少を図ること
ができ、集積度の向上とベース・エミッタ接合容量の減
少およびベース抵抗を減少させることができる。
As a result, the area of the base region 13 can be further reduced, the degree of integration can be improved, the base-emitter junction capacitance can be reduced, and the base resistance can be reduced.

く効果〉 以上説明してきたように、本発明によれば、第1導電型
領域と第1配線とを絶縁層で被い該絶縁層を前記第1導
電型領域が霧出するまで異方性エツチングし第1配線の
端面に所定幅のサイドウオールを形成するようにしたの
で、第1配線と第2配線との間隔をサイドウオールの幅
、すなわち絶縁層の厚さで制御できるようになり、リソ
グラフィ工程におけるマスク合せ精度に無関係に微細化
が可能となるうえ、第1導電型領域の面積を減少させる
ことができた。その結果、集積度の向上と、第1導電型
領域に沿って生じる接合面に起因する素子の特性悪化を
低下させることができるという効果が得られる。
As described above, according to the present invention, a first conductivity type region and a first wiring are covered with an insulating layer, and the insulating layer is anisotropically coated until the first conductivity type region is atomized. Since a sidewall of a predetermined width is formed on the end face of the first wiring by etching, the distance between the first wiring and the second wiring can be controlled by the width of the sidewall, that is, the thickness of the insulating layer. It is possible to miniaturize the structure regardless of mask alignment accuracy in the lithography process, and also to reduce the area of the first conductivity type region. As a result, it is possible to improve the degree of integration and to reduce the deterioration of the characteristics of the device caused by the bonding surface that occurs along the first conductivity type region.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)乃至(f)は本発明の一実施例の各工程を
示す断面図、第2図は従来例により形成された半導体装
置の断面図である。 11・・・・・・・半導体基板、 13・・・・・・・第1導電型領域、 16・・・・・・・第1配線、 17・・・・・・・絶縁膜、 18・・・・・・・サイドウオール、 20・・・・・・・第2導電型領域、 21・・・・・・・第2配線。 特許出願人      ローム株式会社代理人   弁
理士  桑 井 清 −第1図
1(a) to 1(f) are cross-sectional views showing each step of an embodiment of the present invention, and FIG. 2 is a cross-sectional view of a semiconductor device formed according to a conventional example. 11... Semiconductor substrate, 13... First conductivity type region, 16... First wiring, 17... Insulating film, 18. ...Side wall, 20...Second conductivity type region, 21...Second wiring. Patent Applicant: ROHM Co., Ltd. Representative, Patent Attorney: Kiyoshi Kuwai - Figure 1

Claims (1)

【特許請求の範囲】[Claims] 半導体基板表面部の互いに導電型の異なる領域に配線を
それぞれ接続する半導体装置の配線形成方法において、
半導体基板表面部の第1導電型領域を露出し第1配線材
をパターン形成した第1配線を前記第1導電型領域に電
気的に接続する工程と、前記第1導電型領域と第1配線
とを絶縁層で被い該絶縁層を前記第1導電型領域が露出
するまで異方性エッチングし第1配線の端面に所定幅の
サイドウォールを形成する工程と、該サイドウォールで
規定される孔を介して露出された第1導電型領域の一部
に不純物を導入し第2導電型領域を形成する工程と、前
記孔を介して第2導電型領域に電気的に接続された第2
配線を形成する工程とを含むことを特徴とする半導体装
置の配線形成方法。
In a wiring formation method for a semiconductor device in which wiring is connected to regions of mutually different conductivity types on the surface of a semiconductor substrate,
a step of exposing a first conductivity type region on a surface portion of the semiconductor substrate and electrically connecting a first wiring patterned with a first wiring material to the first conductivity type region, and connecting the first conductivity type region and the first wiring. covering with an insulating layer and anisotropically etching the insulating layer until the first conductivity type region is exposed to form a sidewall of a predetermined width on the end face of the first wiring; introducing an impurity into a part of the first conductivity type region exposed through the hole to form a second conductivity type region; and a second conductivity type region electrically connected to the second conductivity type region through the hole.
1. A method for forming wiring in a semiconductor device, the method comprising the step of forming wiring.
JP29634585A 1985-12-24 1985-12-24 Wiring formation of semiconductor device Pending JPS62150746A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29634585A JPS62150746A (en) 1985-12-24 1985-12-24 Wiring formation of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29634585A JPS62150746A (en) 1985-12-24 1985-12-24 Wiring formation of semiconductor device

Publications (1)

Publication Number Publication Date
JPS62150746A true JPS62150746A (en) 1987-07-04

Family

ID=17832344

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29634585A Pending JPS62150746A (en) 1985-12-24 1985-12-24 Wiring formation of semiconductor device

Country Status (1)

Country Link
JP (1) JPS62150746A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63207154A (en) * 1987-02-23 1988-08-26 Nec Corp Manufacture of semiconductor device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60175452A (en) * 1984-02-20 1985-09-09 Matsushita Electronics Corp Manufacture of transistor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60175452A (en) * 1984-02-20 1985-09-09 Matsushita Electronics Corp Manufacture of transistor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63207154A (en) * 1987-02-23 1988-08-26 Nec Corp Manufacture of semiconductor device

Similar Documents

Publication Publication Date Title
JP3175188B2 (en) Method of forming alignment mark
JPS6134972A (en) Bipolar transistor structure
JPS62150746A (en) Wiring formation of semiconductor device
JP2754202B2 (en) Method for manufacturing semiconductor device
JP2516429B2 (en) Method for manufacturing semiconductor device
JPH01208831A (en) Manufacture of semiconductor device
JP3147843B2 (en) Method for manufacturing field effect semiconductor device
JPH0326538B2 (en)
JPH01117342A (en) Formation of contact hole
JPH08236608A (en) Fabrication of semiconductor device
JPH05275456A (en) Semiconductor device and its manufacture
JPS63229747A (en) Manufacture of semiconductor device
JPS643068B2 (en)
JPS62150748A (en) Wiring formation of semiconductor device
JPS60128633A (en) Semiconductor device and manufacture thereof
JPH0834219B2 (en) Method for manufacturing semiconductor device
JPS6159664B2 (en)
JPH03184361A (en) Manufacture of semiconductor device
JPS6212663B2 (en)
JPH03132021A (en) Manufacture of semiconductor device
JPH03268334A (en) Manufacture of semiconductor device
JPH05114713A (en) Semiconductor device and manufacture thereof
JPS6194369A (en) Manufacture of semiconductor device
JPS63232465A (en) Manufacture of semiconductor device
JPS62150747A (en) Semiconductor device