JP2020519305A - 標的細胞の検出と単離のためのMicroFACS - Google Patents
標的細胞の検出と単離のためのMicroFACS Download PDFInfo
- Publication number
- JP2020519305A JP2020519305A JP2020504477A JP2020504477A JP2020519305A JP 2020519305 A JP2020519305 A JP 2020519305A JP 2020504477 A JP2020504477 A JP 2020504477A JP 2020504477 A JP2020504477 A JP 2020504477A JP 2020519305 A JP2020519305 A JP 2020519305A
- Authority
- JP
- Japan
- Prior art keywords
- cells
- microparticles
- droplets
- target cells
- module
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 32
- 238000002955 isolation Methods 0.000 title abstract description 7
- 239000011859 microparticle Substances 0.000 claims abstract description 56
- 238000000034 method Methods 0.000 claims abstract description 25
- 238000004581 coalescence Methods 0.000 claims abstract description 22
- 239000012530 fluid Substances 0.000 claims description 27
- 230000003287 optical effect Effects 0.000 claims description 27
- 230000005684 electric field Effects 0.000 claims description 21
- 239000008346 aqueous phase Substances 0.000 claims description 19
- 239000012071 phase Substances 0.000 claims description 18
- 239000004094 surface-active agent Substances 0.000 claims description 12
- 238000004458 analytical method Methods 0.000 claims description 11
- 238000005538 encapsulation Methods 0.000 claims description 10
- 238000000605 extraction Methods 0.000 claims description 8
- 239000000835 fiber Substances 0.000 claims description 5
- 238000009652 hydrodynamic focusing Methods 0.000 claims description 3
- 230000015572 biosynthetic process Effects 0.000 claims description 2
- 239000000284 extract Substances 0.000 claims description 2
- 239000012528 membrane Substances 0.000 claims description 2
- 230000006641 stabilisation Effects 0.000 claims description 2
- 238000011105 stabilization Methods 0.000 claims description 2
- 239000000203 mixture Substances 0.000 claims 2
- 238000012216 screening Methods 0.000 claims 1
- 230000010354 integration Effects 0.000 description 5
- 239000000523 sample Substances 0.000 description 5
- 238000000926 separation method Methods 0.000 description 5
- 238000011161 development Methods 0.000 description 4
- 238000011160 research Methods 0.000 description 3
- 230000004913 activation Effects 0.000 description 2
- 230000003833 cell viability Effects 0.000 description 2
- 238000000684 flow cytometry Methods 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 206010028980 Neoplasm Diseases 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000012472 biological sample Substances 0.000 description 1
- 230000005779 cell damage Effects 0.000 description 1
- 208000037887 cell injury Diseases 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 238000004720 dielectrophoresis Methods 0.000 description 1
- 230000004064 dysfunction Effects 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 238000001506 fluorescence spectroscopy Methods 0.000 description 1
- 238000002032 lab-on-a-chip Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L3/00—Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
- B01L3/50—Containers for the purpose of retaining a material to be analysed, e.g. test tubes
- B01L3/502—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
- B01L3/5027—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
- B01L3/502761—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip specially adapted for handling suspended solids or molecules independently from the bulk fluid flow, e.g. for trapping or sorting beads, for physically stretching molecules
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L3/00—Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
- B01L3/50—Containers for the purpose of retaining a material to be analysed, e.g. test tubes
- B01L3/502—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
- B01L3/5027—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
- B01L3/502769—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements
- B01L3/502784—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements specially adapted for droplet or plug flow, e.g. digital microfluidics
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/10—Investigating individual particles
- G01N15/14—Optical investigation techniques, e.g. flow cytometry
- G01N15/1404—Handling flow, e.g. hydrodynamic focusing
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/10—Investigating individual particles
- G01N15/14—Optical investigation techniques, e.g. flow cytometry
- G01N15/1456—Optical investigation techniques, e.g. flow cytometry without spatial resolution of the texture or inner structure of the particle, e.g. processing of pulse signals
- G01N15/1459—Optical investigation techniques, e.g. flow cytometry without spatial resolution of the texture or inner structure of the particle, e.g. processing of pulse signals the analysis being performed on a sample stream
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/10—Investigating individual particles
- G01N15/14—Optical investigation techniques, e.g. flow cytometry
- G01N15/1484—Optical investigation techniques, e.g. flow cytometry microstructural devices
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/5005—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
- G01N33/5008—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
- G01N33/5044—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics involving specific cell types
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2200/00—Solutions for specific problems relating to chemical or physical laboratory apparatus
- B01L2200/06—Fluid handling related problems
- B01L2200/0636—Focussing flows, e.g. to laminate flows
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2200/00—Solutions for specific problems relating to chemical or physical laboratory apparatus
- B01L2200/06—Fluid handling related problems
- B01L2200/0647—Handling flowable solids, e.g. microscopic beads, cells, particles
- B01L2200/0652—Sorting or classification of particles or molecules
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2200/00—Solutions for specific problems relating to chemical or physical laboratory apparatus
- B01L2200/06—Fluid handling related problems
- B01L2200/0673—Handling of plugs of fluid surrounded by immiscible fluid
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/06—Auxiliary integrated devices, integrated components
- B01L2300/0627—Sensor or part of a sensor is integrated
- B01L2300/0645—Electrodes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/06—Auxiliary integrated devices, integrated components
- B01L2300/0627—Sensor or part of a sensor is integrated
- B01L2300/0654—Lenses; Optical fibres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/08—Geometry, shape and general structure
- B01L2300/0809—Geometry, shape and general structure rectangular shaped
- B01L2300/0816—Cards, e.g. flat sample carriers usually with flow in two horizontal directions
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/10—Investigating individual particles
- G01N15/14—Optical investigation techniques, e.g. flow cytometry
- G01N15/149—Optical investigation techniques, e.g. flow cytometry specially adapted for sorting particles, e.g. by their size or optical properties
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N2015/0042—Investigating dispersion of solids
- G01N2015/0053—Investigating dispersion of solids in liquids, e.g. trouble
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/10—Investigating individual particles
- G01N2015/1006—Investigating individual particles for cytology
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/10—Investigating individual particles
- G01N15/14—Optical investigation techniques, e.g. flow cytometry
- G01N15/1404—Handling flow, e.g. hydrodynamic focusing
- G01N2015/1413—Hydrodynamic focussing
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N21/645—Specially adapted constructive features of fluorimeters
- G01N2021/6482—Sample cells, cuvettes
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Dispersion Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Analytical Chemistry (AREA)
- Immunology (AREA)
- Physics & Mathematics (AREA)
- Hematology (AREA)
- Pathology (AREA)
- Biochemistry (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Clinical Laboratory Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Molecular Biology (AREA)
- Urology & Nephrology (AREA)
- Cell Biology (AREA)
- Fluid Mechanics (AREA)
- Toxicology (AREA)
- Biotechnology (AREA)
- Microbiology (AREA)
- Tropical Medicine & Parasitology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Food Science & Technology (AREA)
- Medicinal Chemistry (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
- Investigating Or Analysing Biological Materials (AREA)
Abstract
本発明は、マイクロ流体工学および細胞選別技術(MicroFACS)に基づく標的細胞の検出および単離に関する。この方法では、生体細胞と微粒子が流体力学的に生成された液滴内にカプセル化され、蛍光および散乱信号に基づいた適切な光学系を使用して分析される。標的細胞が検出されると、光学系は電気合体をトリガーして、標的細胞を水性流中に選別する。
Description
本発明は、マイクロ流体技術の分野における進歩を用いることにより、医学的診断および生物学的研究で使用される細胞選別システムに関する。最も具体的には、細胞に損傷を与えることなく液滴から標的細胞を迅速に抽出することに関する。
蛍光活性化セルソーター(FACS)は、少量の流体を識別して、サンプル流体中に存在する生体細胞を検出および選別する機器である[J. S. Kim, et al., PAN Stanford Publishing, Singapore, 2010]。詳細な分析が可能なため、現在FACSは生体サンプル分析の最先端にある[R. B. L. Gwatkin., et al., Practical flow cytometry, 1994; Mol. Reprod. Dev., 1995]。FACSは、免疫学、単一細胞分析、分子生物学の生物医学研究を含む多くの用途を見出している。しかしながら、従来のFACSシステムは非常に高価であるため、中央の研究施設と主要なヘルスケアセンターでのみ利用可能である[R. B. L. Gwatkin., et al., Practical flow cytometry, 1994; Mol. Reprod. Dev., 1995]。
同様に、その複雑性のため、機械の操作、データの分析、レポートの作成には、定期的なメンテナンスと熟練した専門知識が必要である。さらに、いかなる機能障害の修正やトラブルシューティングには、熟練した技術者が必要である。これらの要因は、機械のメンテナンスにかなりのコストを追加し、従来のFACSを使用した診断のテストごとのコストを増加させる。ここ数年において、マイクロ流体技術分野での進歩を用いて、費用対効果の高いポータブルMicroFACSを設計するための研究が行われてきた。しかしながら、MicroFACSの開発における主な障害の1つは、マイクロチャネル内を流れる生体細胞の3次元集束と光学窓における細胞間の相互距離の制御に必要な複雑な技術である[P. K. Shivhare, et al., Microfluid. Nanofluidics, 2016]。
MicroFACSの開発におけるもう1つの課題は、検出後に標的細胞を下流で単離することである。文献では、流体力学[A. Wolff et al., Lab Chip, 2003]、誘電泳動[D. Holmes et al., Micro Total Anal. Syst, 2004]、光学[M. M. Wang et al., Nat. Biotechnol 2005]および圧電[A. Wolff et al., Lab Chip, 2003]などの標的細胞の単離を達成するための様々な技術が報告されている。しかしながら、かかる技術は、高電圧または高せん断を必要とするため、細胞の生存率と細胞特性に影響を与え、低スループットを招き、複雑な機器を用いるため、マイクロ流体ソーターの開発には適さない[S. H. Cho et al., Biomicrofluidics, 2010]。また、これらの技術はいずれも、単一細胞形式での標的細胞の抽出および単離には適していない。
多くの出版物は、微粒子抽出と液滴選別のために液滴の合体に電場が用いられていることを示している[K. Ahn C et al., Appl. Phys. Lett., 2006; L. M. Fidalgo et al., Angew. Chemie, 2008; L. Mazutis et al., Lab Chip, 2012; T. Szymborski et al., Appl. Phys. Lett, 2011; A. R. Thiam et al., Phys. Rev. Lett, 2009]。流れの方向に沿ったエマルジョンにおける液滴の合体が調査されている[Keunho Ahn et al., Appl. Phys. Lett, 2006]。流れの方向に垂直な方向における水性相の平行流と水性液滴との合体も調査されている[V. Chokkalingam et al., Lab Chip, 2014]。しかしながら、後者のデバイスは非常に高い電圧(数千ボルト)と電場(107V/m)とを必要とするため、細胞生存率の問題のため、生物学的用途には適していない。
したがって、本発明は、細胞が一列の流れに集束され、続いてチャネル合流部(junction)で液滴内にカプセル化される技術に関する。細胞をカプセル化した液滴は、非慣性揚力によりチャネルの中心に向かって自己整列し、一列として検出窓に移動するため、上記の課題を解決する。液滴でカプセル化した標的細胞が検出されると、電気合体を使用して、これらの細胞を液滴内に単一細胞形式でまたは下流の分析のために水性相に抽出する。
本発明は、マイクロ流体技術分野の進歩を用いることによる細胞選別システムに関する。最も具体的には、細胞に損傷を与えることなく液滴から標的細胞を迅速に抽出することに関する。
検出された液滴でカプセル化した標的細胞は、これらの細胞を液滴内の単一細胞形式で、または下流での分析のために水性相に抽出するために電気合体される。ここで、細胞を含む水性液滴は、電場領域に入る前に連続相と共流動水性相との間の界面と連続的に接触しているため、著しく低い電圧と電場とが必要である。このアプローチにより、細胞を損傷することなく、液滴から標的細胞と微粒子を水性相の共流動流中にまたは単一細胞形式に迅速に抽出できる。
一実施態様では、本発明は、標的細胞を単離するためのMicroFACSを開発し、MicroFACSは、様々な用途に独立して、生体細胞および微粒子の分析および選別に一緒に使用することができる3つの異なるモジュールを有する。3つの異なるモジュールは、(i)集束およびカプセル化モジュール、(ii)光学検出モジュール、および(iii)電気合体モジュールである。
他の実施態様では、本発明は、細胞が一列の流れに集束され、その後、チャネル合流部で液滴内にカプセル化される技術を提供する。カプセル化された液滴は、非慣性揚力によりチャネルの中心に向かって自己整列し、一列の流れとして検出窓に移動する。
他の実施態様では、本発明は、細胞が一列の流れに集束され、その後、チャネル合流部で液滴内にカプセル化される技術を提供する。カプセル化された液滴は、非慣性揚力によりチャネルの中心に向かって自己整列し、一列の流れとして検出窓に移動する。
さらに他の実施態様において、本発明は、カプセル化された液滴が、検出モジュールに向かって移動し、ラベル付けされた細胞およびラベル付けされていない細胞からそれぞれ受信される蛍光信号および散乱信号を使用して標的細胞が検出されることを示す。検出された液滴は、電気合体モジュールに向かって移動する。電気合体は、標的細胞を選別するために使用される。このモジュールは、2つの入口:1つは液滴(細胞または微粒子を含む)を含む不混和性の連続相(オイル)を導入するもの、もう1つは共流動水性流を導入するもの、を備えたマイクロチャネル、および交流電源に接続される1以上の電極対で構成されている。液滴を流体流中に合体するために、電気的な圧力が必要である。ここで、不混和性の連続相(オイル)を流れる液滴は、水性流の配置により界面と接触する。必要な電圧は25Vであるか、対応する電場(105V/m)は既存の方法と比較して少なくとも2桁小さくなる。
別の実施態様では、本発明は、別個の液滴から細胞および微粒子を抽出し、かかる細胞または微粒子を下流でさらに処理するために、標的細胞または微粒子を含む水性液滴を水性相と連続的またはオンデマンドで合体させる方法を提供する。細胞または微粒子を含む液滴または液滴(細胞または微粒子なし)の連続的な合体は、連続的な電場を使用して実現することができる。しかしながら、オンデマンドの電気合体では、光学検出モジュールで標的細胞、微粒子、または液滴が検出されたときにのみ電極を活性化する必要がある。
さらに別の実施態様では、本発明は、光学検出と電気合体モジュールとの統合によるMicroFACS方法を提供する。標的細胞または微粒子は光学的に検出され、これらの標的細胞または微粒子の共流動水性相流中への選別は、電気合体モジュールの電極をトリガーすることにより達成される。この方法は、標的流体を含む液滴または特定のサイズの液滴のオンデマンド合体に使用される。
図面を参照して、本発明の実施態様をさらに説明する。図面は必ずしも縮尺通りに描かれているわけではなく、場合によっては、図面は例示の目的のみのために誇張または簡略化されている。当業者は、本発明の可能性のある実施態様の以下の例に基づいて、本発明の多くの可能性のある用途および変形を理解するであろう。
以下の詳細な説明では、本明細書の一部を形成する添付図面が参照され、実施される特定の実施態様が例示として示されている。実施態様は、当業者が実施態様を実施できるように十分詳細に説明されており、実施態様の範囲から逸脱することなく、論理的、機械的、および他の変更を行うことができることを理解されたい。したがって、以下の詳細な説明は、限定的な意味で解釈されるべきではない。
提案された発明は、マイクロ流体技術の分野における進歩を用いることによる細胞選別システムに関する。最も具体的には、細胞に損傷を与えることなく液滴から標的細胞を迅速に抽出することに関する。本発明は、標的細胞を単離するためのMicroFACSを開発し、MicroFACSは、様々な用途に独立して、生体細胞および微粒子の分析および選別に一緒に使用することができる3つの異なるモジュールを有する。3つの異なるモジュールは、(i)集束およびカプセル化モジュール、(ii)光学検出モジュール、および(iii)電気合体モジュールである。
集束およびカプセル化モジュール
流体力学的集束およびカプセル化モジュール(図1)は、サンプル流体(細胞または微粒子を含む水性流体)を導入するための1つの入口、細胞または微粒子を一列の流れに集束するためのシース流体(水性流体)を導入するための第2の入口、および流れ集束またはT型合流部で安定した液滴を生成するための不混和性相(適合性界面活性剤を備えた生体適合性オイル)を導入するための第3の入口で構成されている。流体力学的集束では、シース対サンプルの流速比を調整して、液滴生成合流部の詰まりを防ぎ、単一の液滴に複数の細胞がカプセル化されないようにすることにより、2つの隣接する細胞または微粒子の間の必要な相互距離を確保する。
流体力学的集束およびカプセル化モジュール(図1)は、サンプル流体(細胞または微粒子を含む水性流体)を導入するための1つの入口、細胞または微粒子を一列の流れに集束するためのシース流体(水性流体)を導入するための第2の入口、および流れ集束またはT型合流部で安定した液滴を生成するための不混和性相(適合性界面活性剤を備えた生体適合性オイル)を導入するための第3の入口で構成されている。流体力学的集束では、シース対サンプルの流速比を調整して、液滴生成合流部の詰まりを防ぎ、単一の液滴に複数の細胞がカプセル化されないようにすることにより、2つの隣接する細胞または微粒子の間の必要な相互距離を確保する。
不連続相(discrete phase)(すなわち、サンプル+シース)と不混和性の連続相(生体適合性オイル)との流速比は、細胞または微粒子のサイズのオーダーに等しい液滴のサイズを制御するために調整される。サンプル、シース、連続相の流速は、細胞または微粒子の液滴接合部への到達速度が、液滴生成速度と一致するように調整されるため、空の液滴(細胞または微粒子を含まない)の数が減少する。
光学検出モジュール
光学検出モジュールは、流体チャネル、流体チャネルと所定の角度で配置された多数の光学溝、レーザー光源、ファイバー、フィルターおよび高速検出器で構成されている(図2)。マイクロチャネルは、集束されて自己整合方式で流れる細胞および微粒子をカプセル化する液滴を含む。細胞をカプセル化した液滴は、流体力(非慣性揚力を含む)と自己整列のためにチャネルの中心に向かって移動する。液滴内の細胞のカプセル化とそれらの自己整列により、MicroFACSの開発を制限することの多い複雑な3次元集束技術の必要性がなくなる。液滴内にカプセル化された細胞または微粒子を識別するには、レーザー(または他の適切な光源)を励起のために使用する。
光学検出モジュールは、流体チャネル、流体チャネルと所定の角度で配置された多数の光学溝、レーザー光源、ファイバー、フィルターおよび高速検出器で構成されている(図2)。マイクロチャネルは、集束されて自己整合方式で流れる細胞および微粒子をカプセル化する液滴を含む。細胞をカプセル化した液滴は、流体力(非慣性揚力を含む)と自己整列のためにチャネルの中心に向かって移動する。液滴内の細胞のカプセル化とそれらの自己整列により、MicroFACSの開発を制限することの多い複雑な3次元集束技術の必要性がなくなる。液滴内にカプセル化された細胞または微粒子を識別するには、レーザー(または他の適切な光源)を励起のために使用する。
ファイバーは、レーザー光源とデバイスの検出領域との間で光を結合する。レーザービームのスポットサイズは、必要なコリメーションに適した異なるサイズのファイバーを使用して制御される。細胞(または微粒子)をカプセル化した液滴がレーザービームを横切ると、光信号が生成され、受信ファイバーによって収集され、高速検出器(単一光子計数モジュール−SPCM、光電子増倍管−PMT)を使用して補足される。細胞または微粒子が適切な蛍光物質でラベル付けまたはタグ付けされている場合、蛍光信号は、カプセル化された細胞または微粒子の光学的特徴として検出器によって捕捉される。
細胞と蛍光物質に応じて、適切な光学フィルターが収集光学系と結合されて、蛍光信号を最大化する。蛍光信号に基づいて、異なる細胞または微粒子が検出される。細胞が蛍光物質でラベル付けまたはタグ付けされていない場合、散乱信号が受信される。検出器は、カプセル化された細胞または微粒子だけでなく、カプセル化した液滴の前方散乱信号も受信する。カプセル化された細胞または微粒子の散乱信号のみを取得するために、液滴の前方散乱信号が全散乱信号から差し引かれる。
前方散乱信号は、カプセル化された細胞または微粒子のサイズに関する情報を提供する。細胞または微粒子の内部構造を表す側方散乱信号は、収集され、検出のために細胞または微粒子を区別するために使用される。蛍光、前方散乱、および側方散乱の特徴の組み合わせを使用することにより、標的細胞または微粒子が検出される。
検出モジュールは、液滴内に含まれる流体の蛍光特徴に基づいて、目的の流体を含む標的液滴(細胞または微粒子なし)を検出することに使用することができる。
検出モジュールは、液滴内に含まれる流体の蛍光特徴に基づいて、目的の流体を含む標的液滴(細胞または微粒子なし)を検出することに使用することができる。
電気合体モジュール
電気合体モジュールは、2つの入口を備えたマイクロチャネルで構成されており、1つは液滴(細胞または微粒子を含む)を含む不混和性の連続相(オイル)を導入し、もう1つは共流動水性流を導入し、1以上の組の電極が交流(AC)電源に接続されている(図3)。
共流動水性流の流速の比率は、不混和性の連続相(オイル)を流れる液滴が界面と接触するように調整される。液滴のサイズにばらつきがある場合、最小の液滴でも接触し、より大きな液滴が自動的に界面に接触するように、界面の位置が調整される。
電気合体モジュールは、2つの入口を備えたマイクロチャネルで構成されており、1つは液滴(細胞または微粒子を含む)を含む不混和性の連続相(オイル)を導入し、もう1つは共流動水性流を導入し、1以上の組の電極が交流(AC)電源に接続されている(図3)。
共流動水性流の流速の比率は、不混和性の連続相(オイル)を流れる液滴が界面と接触するように調整される。液滴のサイズにばらつきがある場合、最小の液滴でも接触し、より大きな液滴が自動的に界面に接触するように、界面の位置が調整される。
この場合、水性液滴と水性相の流れは、液滴の安定化のために界面活性剤の非常に薄い膜によって分離され(図4)、システムは電場にさらされる。報告された文献では、同じ相(水性)の液滴と流体流とが第2相(界面活性剤を含まないオイル)によって分離されており、システムが電場にさらされるとき、結果として生じるマックスウェル応力が、競合する界面張力に対して液滴と流体流の界面を変形させる傾向がある。変形した液滴と流体流の界面が互いに接触するとすぐに、合体が起こる。しかしながら、この場合、液滴は界面活性剤(オイル相)によって安定化されるため、合体が起こる界面活性剤の存在により生じる分離圧力に打ち勝つための電気的な圧力が必要であり、必要とされる液滴または界面の変形はない。
液滴と流体流の界面が互いに接触しているとき、液滴を流体流中に合体するために必要な電気的な圧力は、安定化された液滴と流体流の界面がある程度離れているときよりもはるかに小さい。これは、後者の場合、電気的な圧力が最初に液滴と流体流の界面を変形させ、液滴と流体流を互いに接触させ、その後界面活性剤による分離圧力に打ち勝つ必要があるからである。本件では、水性流の配置により液滴がすでに界面に接触しているため、必要な電圧(25V)または対応する電場(105V/m)は、既存の方法(数千ボルト、107V/m)と比較して少なくとも2桁小さくなる[V. Chokkalingam, Y. et al., Lab Chip, 2014]。
界面活性剤によって液滴と平坦な界面が安定すると、図5に示すように互いに接触し、2つの液滴の界面活性剤分子が互いに反発するため、合体しない。液滴を合体させるには、最初に界面活性剤分子によって生じる反発的な分離圧力に打ち勝つ必要がある。
合体を実現するには、電場が液滴と平坦な界面を変形させ、界面間で接触させる必要がある。接触が確立されると、電場は界面活性剤分子によって生成される反発的な分離圧力に打ち勝たなければならない。液滴の変形に必要な電場強度は、分離圧力に打ち勝つために必要な電場強度と比較して非常に高い。そのため、他の界面と接触していない液滴を合体させるのに必要な電場(〜107V/m)は、他の界面と接触している液滴(〜105V/m)と比較して1〜2桁大きくなる[ Liu, Z, et al., Lab on a Chip, 2014] [V. Chokkalingam Y, et al., Lab Chip, 2014]。液滴が他の液滴または平坦な界面と接触している場合、より低い電場(〜105V/m)を印加することで簡単に合体することができる。細胞損傷の問題は、5×105V/m未満の電場強度で完全に回避される[Gascoyne P. R. C, et al., Cancers, 2014]。
ここで提案する方法は、個別の液滴から細胞および微粒子を抽出し、かかる細胞および微粒子をさらに下流で処理するために、標的細胞または微粒子を含む水性液滴と水性相との連続的またはオンデマンドの合体に使用することができる。この方法は、様々な用途において重要な液滴の解乳化または選別のために、水性相と不混和性の連続オイル相に存在する液滴(細胞または粒子なし)の連続的またはオンデマンドの合体に使用することができる。細胞または微粒子を含む液滴または液滴(細胞または微粒子なし)の連続的な合体は、連続的な電場を使用して達成することができる。しかしながら、オンデマンドの電気合体では、光学検出モジュールで標的細胞、微粒子、または液滴が検出されたときにのみ電極を活性化する必要がある。
光学検出と電気合体モジュールとの統合
MicroFACSを提供するために、光学検出と電気合体モジュールとが統合されている(図6)。標的細胞または微粒子が光学的に検出されると、これらの標的細胞または微粒子の共流動水性相流中の選別は、電気合体モジュールにおいて電極をトリガーすることにより達成される(図6a)。電気合体領域の電極のオン/オフの切り替えを制御するマイクロコントローラーを使用して、光学検出と電気合体ユニットとが同期される。標的細胞または微粒子が光学検出器で検出されるとすぐに、信号がマイクロコントローラー中に送られ、信号を処理して電極をトリガーする。
MicroFACSを提供するために、光学検出と電気合体モジュールとが統合されている(図6)。標的細胞または微粒子が光学的に検出されると、これらの標的細胞または微粒子の共流動水性相流中の選別は、電気合体モジュールにおいて電極をトリガーすることにより達成される(図6a)。電気合体領域の電極のオン/オフの切り替えを制御するマイクロコントローラーを使用して、光学検出と電気合体ユニットとが同期される。標的細胞または微粒子が光学検出器で検出されるとすぐに、信号がマイクロコントローラー中に送られ、信号を処理して電極をトリガーする。
マイクロチャネル内の液滴の速さは既知であるため、光学信号の捕捉と電極のトリガーとの間のタイムラグは、標的細胞または微粒子を含む液滴を正確に合体するように調整される。ここで提案する方法は、標的流体を含む液滴または特定のサイズの液滴のオンデマンド合体に使用することができる。かかる液滴が光学検出モジュールで検出されると、電極は、これらの標的液滴と共流動水流との電気合体のために活性化することができる。
同様に、単一細胞分析を必要とする用途では、単一細胞形式で液滴内にカプセル化された標的細胞をデバイスの出口で取得できる(図6b)。この場合、電場を連続的に印加することにより、細胞(標的細胞以外)を連続的に合体させることができる。標的細胞が検出されたとき、検出モジュールは電気合体モジュールに信号を送信して場をオフにすることで、標的細胞は合体せず、液滴内にカプセル化されて下流に流れ、単一細胞形式で出口に収集される。
本明細書の図面、実施例、および詳細な説明は、限定的な方法ではなく例示的なものと見なされるべきであることを当業者は理解することができる。
本明細書の図面、実施例、および詳細な説明は、限定的な方法ではなく例示的なものと見なされるべきであることを当業者は理解することができる。
Claims (10)
- a.集束およびカプセル化モジュール、
b.光学検出モジュール、
c.電気合体モジュール
を含む、複雑な混合物からの生体細胞および微粒子の分析、選別、および解乳化のためのマイクロ流体デバイスであって、
細胞に損傷を与えることなく、液滴から標的細胞または微粒子を水性相の共流動流にまたは単一細胞形式で迅速に抽出し、
流体力学的集束およびカプセル化モジュールは、サンプル流体を導入するための1つの入口、細胞または微粒子を一列の流れに集束するためのシース流体を導入するための第2の入口、および不混和性相を導入するための第3の入口で構成され、
サンプル、シースおよび連続相の流速は、液滴合流部への細胞または微粒子の到達速度が液滴生成速度と一致して空の液滴の数が減少するように、カプセル化モジュールにおいて調整され、
光学検出モジュールは、流体チャネル、流体チャネルと所定の角度で配置された多数の光学溝、レーザー光源、ファイバー、フィルターおよび高速検出器で構成され、
標的細胞または微粒子は、蛍光、前方散乱、および側方散乱の特徴の組み合わせを使用して検出され、
電気合体モジュールは、細胞を含む水性液滴が、電場領域に入る前に連続相と共流動水性相との間の界面と連続的に接触することで、非常に低い電圧および電場を必要とする、2つの入口を備えたマイクロチャネルで構成されている、
前記マイクロ流体デバイス。 - a.液滴でカプセル化した標的細胞を検出すること、
b.電気合体を使用した下流分析のために、液滴でカプセル化した標的細胞を液滴内に単一細胞形式でまたは水性相に抽出すること
を含む、複雑な混合物からの生体細胞および微粒子の分析、選別、および解乳化のための方法であって、
細胞を含む水性液滴は、電場に入る前に連続相と共流動水性相との間の界面と連続的に接触しており、
電気合体に必要な電圧が20〜25Vの範囲で低く、
前記方法は、標的細胞または微粒子を含む水性液滴と、別個の液滴から細胞および微粒子を抽出するための水性相とのオンデマンド合体であり、
電極は、標的細胞、微粒子、または液滴が光学検出モジュールで検出されたときにのみ活性化される、
前記方法。 - 細胞がカプセル化された液滴が、非慣性揚力によりチャネルの中心に向かって自己整列し、一列として検出モジュールに移動する、請求項2に記載の方法。
- 光学検出モジュールの前方散乱信号が、カプセル化された細胞または微粒子のサイズに関する情報を提供する、請求項1に記載のマイクロ流体デバイス。
- 細胞または微粒子の内部構造を表す光学検出モジュールにおける側方散乱信号が、収集され、検出のために細胞または微粒子の区別に使用される、請求項1に記載のマイクロ流体デバイス。
- 水性液滴と水性相の流れとが、液滴安定化のために界面活性剤の非常に薄い膜によって分離されている、請求項1に記載のマイクロ流体デバイス。
- カプセル化された液滴と水性流との合体が、非常に低い電圧、好ましくは25Vの電圧を印加することにより発生する、請求項2に記載の方法。
- 光学検出モジュールが、電気合体モジュールと統合されている、請求項2に記載の方法。
- 標的細胞または微粒子が、光学的に検出され、電気合体モジュールにおける電極をトリガーすることにより共流動水性相流中に選別される、請求項2に記載の方法。
- 細胞に損傷を与えることなく、単一細胞形式で標的細胞を単離するために使用される、請求項2に記載の方法。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
IN201741012180 | 2017-04-05 | ||
IN201741012180 | 2017-04-05 | ||
PCT/IN2018/050194 WO2018185781A1 (en) | 2017-04-05 | 2018-04-05 | Microfacs for detection and isolation of target cells |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2020519305A true JP2020519305A (ja) | 2020-07-02 |
Family
ID=63712076
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020504477A Pending JP2020519305A (ja) | 2017-04-05 | 2018-04-05 | 標的細胞の検出と単離のためのMicroFACS |
Country Status (7)
Country | Link |
---|---|
US (1) | US20210060560A1 (ja) |
EP (1) | EP3607317A4 (ja) |
JP (1) | JP2020519305A (ja) |
KR (1) | KR20190131572A (ja) |
EA (1) | EA201992355A1 (ja) |
WO (1) | WO2018185781A1 (ja) |
ZA (1) | ZA201906825B (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021071397A (ja) * | 2019-10-31 | 2021-05-06 | ソニー株式会社 | 微小粒子回収方法、微小粒子分取用マイクロチップ、微小粒子回収装置、エマルションの製造方法、及びエマルション |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115916409A (zh) * | 2020-06-24 | 2023-04-04 | 贝克顿·迪金森公司 | 流式细胞术液滴分配系统及使用该系统的方法 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010506136A (ja) * | 2006-05-11 | 2010-02-25 | レインダンス テクノロジーズ, インコーポレイテッド | 微小流体デバイス |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9267918B2 (en) * | 2007-10-16 | 2016-02-23 | Cambridge Enterprise Limited | Microfluidic systems |
GB0720202D0 (en) * | 2007-10-16 | 2007-11-28 | Cambridge Entpr Ltd | Microfluidic systems |
-
2018
- 2018-04-05 US US16/603,069 patent/US20210060560A1/en not_active Abandoned
- 2018-04-05 JP JP2020504477A patent/JP2020519305A/ja active Pending
- 2018-04-05 WO PCT/IN2018/050194 patent/WO2018185781A1/en unknown
- 2018-04-05 KR KR1020197032536A patent/KR20190131572A/ko not_active Application Discontinuation
- 2018-04-05 EA EA201992355A patent/EA201992355A1/ru unknown
- 2018-04-05 EP EP18781608.7A patent/EP3607317A4/en not_active Withdrawn
-
2019
- 2019-10-16 ZA ZA2019/06825A patent/ZA201906825B/en unknown
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010506136A (ja) * | 2006-05-11 | 2010-02-25 | レインダンス テクノロジーズ, インコーポレイテッド | 微小流体デバイス |
Non-Patent Citations (1)
Title |
---|
CHOKKALINGAM V.ET AL: "An electro-coalescence chip for effective emulsion breaking in droplet microfluidics", LAB ON THE CHIP (ACCEPTED MANUSCRIPT),2012,P.1-4, JPN6021000409, ISSN: 0004568553 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021071397A (ja) * | 2019-10-31 | 2021-05-06 | ソニー株式会社 | 微小粒子回収方法、微小粒子分取用マイクロチップ、微小粒子回収装置、エマルションの製造方法、及びエマルション |
JP7388131B2 (ja) | 2019-10-31 | 2023-11-29 | ソニーグループ株式会社 | 微小粒子回収方法、微小粒子分取用マイクロチップ、微小粒子回収装置、エマルションの製造方法、及びエマルション |
Also Published As
Publication number | Publication date |
---|---|
EA201992355A1 (ru) | 2020-02-20 |
ZA201906825B (en) | 2020-10-28 |
WO2018185781A1 (en) | 2018-10-11 |
EP3607317A1 (en) | 2020-02-12 |
EP3607317A4 (en) | 2021-01-06 |
US20210060560A1 (en) | 2021-03-04 |
KR20190131572A (ko) | 2019-11-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10712255B2 (en) | Method and system for microfluidic particle orientation and/or sorting | |
Landenberger et al. | Microfluidic sorting of arbitrary cells with dynamic optical tweezers | |
CN104877898B (zh) | 一种低成本、高效分离获取单细胞的系统和方法 | |
US9057676B2 (en) | Multiple flow channel particle analysis system | |
WO2018148194A1 (en) | Microfluidic system with combined electrical and optical detection for high accuracy particle sorting and methods thereof | |
JP4512686B2 (ja) | 微粒子の分別回収方法および回収装置 | |
JP2020519305A (ja) | 標的細胞の検出と単離のためのMicroFACS | |
Gaikwad et al. | An optomicrofluidic device for the detection and isolation of drop-encapsulated target cells in single-cell format | |
US11524294B2 (en) | Microfluidic sorting devices and methods | |
CN107297334B (zh) | 基于微电火花空化的细胞分选装置和方法 | |
US20230249182A1 (en) | Microfluidic chip device based on magnetic field-controlled fluorescently-labeled cell sorting method and use method | |
CN118661089A (zh) | 微粒分选装置及微粒分选方法 | |
JP2020008495A (ja) | 粒子分別装置 | |
CN114733586B (zh) | 一种微粒子流动聚焦装置及方法 | |
US20220388004A1 (en) | Systems and methods for multi-junction particle sorting in injection-molded articles | |
US20240238786A1 (en) | Droplet sortation | |
Gradl et al. | New Micro Devices for Single Cell Analysis, Cell Sorting and Cloning-on-a-Chip: The Cytocon TM Instrument | |
Müller et al. | High content selection of cells | |
CN115337967A (zh) | 分离芯片 | |
WO2020219800A1 (en) | Positionally assisted negative particle rejection (panr) to sort and enrich target cells of interest |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20191204 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200310 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210108 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20210811 |