JP2017089011A - Copper alloy sheet excellent in conductivity and flexure deflection coefficient - Google Patents
Copper alloy sheet excellent in conductivity and flexure deflection coefficient Download PDFInfo
- Publication number
- JP2017089011A JP2017089011A JP2016254146A JP2016254146A JP2017089011A JP 2017089011 A JP2017089011 A JP 2017089011A JP 2016254146 A JP2016254146 A JP 2016254146A JP 2016254146 A JP2016254146 A JP 2016254146A JP 2017089011 A JP2017089011 A JP 2017089011A
- Authority
- JP
- Japan
- Prior art keywords
- mass
- less
- copper alloy
- mpa
- tensile strength
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/62—Hybrid vehicles
Landscapes
- Non-Insulated Conductors (AREA)
- Conductive Materials (AREA)
Abstract
Description
本発明は銅合金板及び通電用又は放熱用電子部品に関し、特に、電機・電子機器、自動車等に搭載される端子、コネクタ、リレー、スイッチ、ソケット、バスバー、リードフレーム、放熱板等の電子部品の素材として使用される銅合金板、及び該銅合金板を用いた電子部品に関する。中でも、電気自動車、ハイブリッド自動車等で用いられる大電流用コネクタや端子等の大電流用電子部品の用途、又はスマートフォンやタブレットPCで用いられる液晶フレーム等の放熱用電子部品の用途に好適な銅合金板及び該銅合金板を用いた電子部品に関するものである。 TECHNICAL FIELD The present invention relates to a copper alloy plate and electronic parts for energization or heat dissipation, and in particular, electronic parts such as terminals, connectors, relays, switches, sockets, bus bars, lead frames, heat sinks, etc. mounted on electric machines / electronic devices, automobiles and the like. The present invention relates to a copper alloy plate used as a material for the above and an electronic component using the copper alloy plate. Among these, copper alloys suitable for use in high current electronic parts such as high current connectors and terminals used in electric vehicles, hybrid cars, etc., or in heat dissipation electronic parts such as liquid crystal frames used in smartphones and tablet PCs. The present invention relates to a plate and an electronic component using the copper alloy plate.
電機・電子機器、自動車等には、端子、コネクタ、スイッチ、ソケット、リレー、バスバー、リードフレーム、放熱板等の電気又は熱を伝えるための部品が組み込まれており、これら部品には銅合金が用いられている。ここで、電気伝導性と熱伝導性は比例関係にある。 Electrical and electronic equipment, automobiles, etc. have built-in parts for conducting electricity or heat, such as terminals, connectors, switches, sockets, relays, bus bars, lead frames, heat sinks, etc. These parts are made of copper alloy. It is used. Here, electrical conductivity and thermal conductivity are in a proportional relationship.
近年、電子部品の小型化に伴い、曲げたわみ係数を高めることが求められている。コネクタ等が小型化すると、板ばねの変位を大きくとることが難しくなる。このため、小さな変位で高い接触力を得ることが必要になり、より高い曲げたわみ係数が求められるのである。 In recent years, with the miniaturization of electronic components, it is required to increase the bending deflection coefficient. If the connector or the like is downsized, it becomes difficult to increase the displacement of the leaf spring. For this reason, it is necessary to obtain a high contact force with a small displacement, and a higher bending deflection coefficient is required.
また、曲げたわみ係数が高いと曲げ加工の際のスプリングバックが小さくなり、プレス成形加工が容易になる。厚肉材が使用される大電流コネクタ等では、特にこのメリットは大きい。 Further, when the bending deflection coefficient is high, the spring back during bending becomes small, and press forming becomes easy. This advantage is particularly great in a high-current connector or the like in which a thick material is used.
さらに、スマートフォンやタブレットPCの液晶には、液晶フレームと呼ばれる放熱部品が用いられているが、このような放熱用途の銅合金板においても、より高い曲げたわみ係数が求められる。曲げたわみ係数を高めると外力が加わった際の放熱板の変形が軽減され、放熱板周りに配置される液晶部品、ICチップ等に対する保護性が改善されるためである。 Furthermore, although the heat dissipation component called a liquid crystal frame is used for the liquid crystal of a smart phone or a tablet PC, a higher bending deflection coefficient is required even in such a copper alloy plate for heat dissipation. This is because when the bending deflection coefficient is increased, deformation of the heat sink when an external force is applied is reduced, and the protection against liquid crystal components, IC chips and the like disposed around the heat sink is improved.
ここで、コネクタ等の板ばね部は、通常、その長手方向が圧延方向と直交する方向(曲げ変形の際の曲げ軸が圧延方向と平行)に採取される。以下、この方向を板幅方向(TD)と称する。したがって、曲げたわみ係数の上昇は、TDにおいて特に重要である。 Here, the leaf spring portion of the connector or the like is usually collected in a direction in which the longitudinal direction is orthogonal to the rolling direction (the bending axis at the time of bending deformation is parallel to the rolling direction). Hereinafter, this direction is referred to as a plate width direction (TD). Therefore, an increase in the bending deflection coefficient is particularly important in TD.
一方、電子部品の小型化に伴い、通電部における銅合金の断面積が小さくなる傾向にある。断面積が小さくなると、通電した際の銅合金からの発熱が増大する。また、成長著しい電気自動車やハイブリッド電気自動車で用いられる電子部品には、バッテリー部のコネクタ等の著しく高い電流が流される部品があり、通電時の銅合金の発熱が問題になっている。発熱が過大になると、銅合金は高温環境に晒されることになる。 On the other hand, with the miniaturization of electronic components, the cross-sectional area of the copper alloy in the current-carrying part tends to be small. When the cross-sectional area becomes small, heat generation from the copper alloy when energized increases. In addition, electronic parts used in fast-growing electric vehicles and hybrid electric vehicles include parts through which a remarkably high current flows, such as a connector of a battery unit, and heat generation of a copper alloy during energization is a problem. When the heat generation becomes excessive, the copper alloy is exposed to a high temperature environment.
コネクタ等の電子部品の電気接点では、銅合金板にたわみが与えられ、このたわみで発生する応力により、接点での接触力を得ている。たわみを与えた銅合金を高温下に長時間保持すると、応力緩和現象により、応力すなわち接触力が低下し、接触電気抵抗の増大を招く。この問題に対処するため銅合金には、発熱量が減ずるよう導電性により優れることが求められ、また発熱しても接触力が低下しないよう応力緩和特性により優れることも求められている。同様に放熱用途の銅合金板においても、外力による放熱板のクリープ変形を抑制する点から、応力緩和特性に優れることが望まれている。 In an electrical contact of an electronic component such as a connector, a deflection is given to the copper alloy plate, and a contact force at the contact is obtained by a stress generated by the deflection. When a bent copper alloy is held at a high temperature for a long time, the stress, that is, the contact force is lowered due to the stress relaxation phenomenon, and the contact electric resistance is increased. In order to cope with this problem, the copper alloy is required to be more excellent in conductivity so that the amount of heat generation is reduced, and is also required to be superior in stress relaxation characteristics so that the contact force does not decrease even if heat is generated. Similarly, a copper alloy plate for heat dissipation is also desired to have excellent stress relaxation characteristics from the viewpoint of suppressing creep deformation of the heat dissipation plate due to external force.
例えば、特許文献1では、銅合金板の(111)面の法線がTDと成す角度が20度以下である結晶の面積率を50%超に調整することにより、TDの曲げたわみ係数を改善している。 For example, in Patent Document 1, the bending deflection coefficient of TD is improved by adjusting the area ratio of a crystal whose angle formed by the normal of the (111) plane of the copper alloy plate to TD is 20 degrees or less to more than 50%. doing.
しかしながら、従来の銅合金は、高い導電率と強度を有するものの、そのTDの曲げたわみ係数は大電流を流す部品の用途又は大熱量を放散する部品の用途として満足できるレベルではなかった。また、従来の銅合金は比較的良好な応力緩和特性を有するものの、その応力緩和特性のレベルは大電流を流す部品の用途又は大熱量を放散する部品の用途として必ずしも十分とはいえなかった。 However, although conventional copper alloys have high electrical conductivity and strength, the bending deflection coefficient of TD is not at a level that is satisfactory for the use of parts that carry a large current or the parts that dissipate a large amount of heat. Further, although the conventional copper alloys have relatively good stress relaxation characteristics, the level of the stress relaxation characteristics is not always sufficient for the use of parts that carry a large current or the use of parts that dissipate a large amount of heat.
例えば、特許文献1の実施例によれば、曲げたわみ係数を改善した銅合金板の応力緩和特性は必ずしも良好とはいえない。また、特許文献1では、曲げたわみ係数を改善するために通常の熱間圧延の後に第二種高温圧延と称する特殊な工程を付加しており、これは製造コストの著しい増大を招く。 For example, according to the Example of patent document 1, the stress relaxation characteristic of the copper alloy plate which improved the bending deflection coefficient is not necessarily favorable. Moreover, in patent document 1, in order to improve a bending deflection coefficient, the special process called 2nd type high temperature rolling is added after normal hot rolling, and this causes the remarkable increase in manufacturing cost.
そこで、本発明は、高強度、高導電性、高い曲げたわみ係数および優れた応力緩和特性を兼ね備えた銅合金板及び大電流用途又は放熱用途に好適な電子部品を提供することを目的とする。 Therefore, an object of the present invention is to provide a copper alloy plate having high strength, high conductivity, a high bending deflection coefficient, and excellent stress relaxation characteristics, and an electronic component suitable for large current use or heat radiation use.
本発明者は鋭意検討を重ねた結果、銅合金板のTDと直交する断面における(122)面と(133)面の面積率を制御することにより、TDの曲げたわみ係数が向上することを見出した。さらに、この結晶方位制御に加え、TDのばね限界値を適正範囲に調整することにより応力緩和特性が著しく向上することをも見出した。 As a result of intensive studies, the present inventor has found that the bending deflection coefficient of TD is improved by controlling the area ratio of the (122) plane and the (133) plane in the cross section orthogonal to the TD of the copper alloy plate. It was. Furthermore, in addition to this crystal orientation control, it has also been found that the stress relaxation characteristic is remarkably improved by adjusting the spring limit value of TD to an appropriate range.
以上の知見を基礎として完成した本発明は一側面において、Ag、B、Co、Cr、Fe、Mg、Mn、Ni、P、Si、Sn、Ti、ZnおよびZrのうちの一種以上を合計で0〜20質量%含有し、残部が銅およびその不可避的不純物からなり、30%IACS以上の導電率および300MPa以上の引張強さを有し、圧延材の板幅方向(TD)と直交する断面においてEBSD測定を行った際に、(122)面の法線がTDと成す角度が10度以下である結晶の面積率と、(133)面の法線がTDと成す角度が10度以下である結晶の面積率との合計が10%以上である銅合金板である。 The present invention completed on the basis of the above knowledge is, in one aspect, a total of one or more of Ag, B, Co, Cr, Fe, Mg, Mn, Ni, P, Si, Sn, Ti, Zn, and Zr. A cross section perpendicular to the sheet width direction (TD) of the rolled material, containing 0 to 20% by mass, the balance being made of copper and its inevitable impurities, having a conductivity of 30% IACS or more and a tensile strength of 300 MPa or more When the EBSD measurement is performed in FIG. 5, the area ratio of the crystal whose (122) plane normal and TD form an angle of 10 degrees or less, and the (133) plane normal and TD forms an angle of 10 degrees or less. It is a copper alloy plate whose total with the area ratio of a certain crystal is 10% or more.
本発明に係る銅合金板は一実施態様において、TDのばね限界値(Kb)と引張強さ(σ)との差(σ−Kb)が250MPa以下に調整されている。 In one embodiment of the copper alloy plate according to the present invention, the difference (σ−Kb) between the spring limit value (Kb) of TD and the tensile strength (σ) is adjusted to 250 MPa or less.
本発明に係る銅合金板は別の一実施態様において、Ag、P、Sn、FeおよびNiの一種以上を合計で0.005〜1質量%含有し、残部が銅およびその不可避的不純物からなり、80〜102%IACSの導電率を有する。 In another embodiment, the copper alloy plate according to the present invention contains 0.005 to 1% by mass in total of one or more of Ag, P, Sn, Fe and Ni, and the balance is made of copper and its inevitable impurities. , 80-102% IACS conductivity.
本発明に係る銅合金板は更に別の一実施態様において、Crを0.1〜0.5質量%、Snを0.1〜0.5質量%、Znを0.1〜0.5質量%、Ag、B、Co、Fe、Mg、Mn、Ni、P、Si、TiおよびZrのうちの一種以上を合計で0〜0.2質量%含有し、残部が銅およびその不可避的不純物からなり、70〜90%IACSの導電率を有する。 In another embodiment, the copper alloy plate according to the present invention is 0.1 to 0.5% by mass of Cr, 0.1 to 0.5% by mass of Sn, and 0.1 to 0.5% by mass of Zn. %, Ag, B, Co, Fe, Mg, Mn, Ni, P, Si, Ti and Zr are contained in a total of 0 to 0.2% by mass, with the balance being made of copper and its inevitable impurities And has a conductivity of 70-90% IACS.
本発明に係る銅合金板は更に別の一実施態様において、Feを1〜3質量%、Pを0.01〜0.2質量%、Znを0.05〜0.5質量%、Ag、B、Co、Cr、Mg、Mn、Ni、Si、Sn、TiおよびZrのうちの一種以上を合計で0〜0.2質量%含有し、残部が銅およびその不可避的不純物からなり、60〜80%IACSの導電率を有する。 In another embodiment, the copper alloy plate according to the present invention is 1 to 3% by mass of Fe, 0.01 to 0.2% by mass of P, 0.05 to 0.5% by mass of Zn, Ag, B, Co, Cr, Mg, Mn, Ni, Si, Sn, Ti and Zr are contained in a total of 0 to 0.2% by mass, with the balance being copper and its inevitable impurities, It has a conductivity of 80% IACS.
本発明に係る銅合金板は更に別の一実施態様において、Niを0.5〜3質量%、Snを0.2〜2質量%、Pを0.02〜0.2質量%、Ag、B、Co、Cr、Fe、Mg、Mn、Si、Ti、ZnおよびZrのうちの一種以上を合計で0〜0.2質量%含有し、残部が銅およびその不可避的不純物からなり、30〜60%IACSの導電率を有する。 In still another embodiment, the copper alloy plate according to the present invention is 0.5 to 3% by mass of Ni, 0.2 to 2% by mass of Sn, 0.02 to 0.2% by mass of P, Ag, B, Co, Cr, Fe, Mg, Mn, Si, Ti, Zn and Zr are contained in a total of 0 to 0.2% by mass, with the balance consisting of copper and its inevitable impurities, 30 to It has a conductivity of 60% IACS.
本発明に係る銅合金板は更に別の一実施態様において、Mgを0.2〜1質量%、Pを0.001〜0.1質量%、Ag、B、Co、Cr、Fe、Mn、Ni、Si、Sn、Ti、ZnおよびZrのうちの一種以上を合計で0〜0.2質量%含有し、残部が銅およびその不可避的不純物からなり、50〜70%IACSの導電率を有する。 In yet another embodiment, the copper alloy plate according to the present invention is 0.2 to 1% by mass of Mg, 0.001 to 0.1% by mass of P, Ag, B, Co, Cr, Fe, Mn, One or more of Ni, Si, Sn, Ti, Zn and Zr are contained in a total amount of 0 to 0.2% by mass, the balance is made of copper and its inevitable impurities, and has a conductivity of 50 to 70% IACS. .
本発明に係る銅合金板は更に別の一実施態様において、Znを1〜15質量%、Ag、B、Co、Cr、Fe、Mg、Mn、Ni、P、Si、Sn、TiおよびZrのうちの一種以上を合計で0〜0.5質量%含有し、残部が銅およびその不可避的不純物からなり、30〜70%IACSの導電率を有する。 In yet another embodiment, the copper alloy plate according to the present invention includes Zn in an amount of 1 to 15% by mass, Ag, B, Co, Cr, Fe, Mg, Mn, Ni, P, Si, Sn, Ti, and Zr. One or more of them are contained in a total amount of 0 to 0.5% by mass, the balance is made of copper and its inevitable impurities, and has a conductivity of 30 to 70% IACS.
本発明に係る銅合金板は更に別の一実施態様において、Niを0.1〜5質量%、Pを0.01〜0.3質量%、Feを0.01〜0.3質量%、Ag、B、Co、Cr、Mg、Mn、Si、Sn、Ti、ZnおよびZrのうちの一種以上を合計で0〜0.2質量%含有し、残部が銅およびその不可避的不純物からなり、50〜90%IACSの導電率を有する。 In yet another embodiment, the copper alloy plate according to the present invention is 0.1 to 5% by mass of Ni, 0.01 to 0.3% by mass of P, 0.01 to 0.3% by mass of Fe, Containing at least one of Ag, B, Co, Cr, Mg, Mn, Si, Sn, Ti, Zn and Zr in a total amount of 0 to 0.2% by mass, with the balance consisting of copper and its inevitable impurities, It has a conductivity of 50-90% IACS.
本発明に係る銅合金板は更に別の一実施態様において、板幅方向の曲げたわみ係数が115GPa以上である。 In yet another embodiment of the copper alloy plate according to the present invention, the bending deflection coefficient in the plate width direction is 115 GPa or more.
本発明に係る銅合金板は更に別の一実施態様において、板幅方向の曲げたわみ係数が115GPa以上、150℃で1000時間保持後の板幅方向の応力緩和率が50%以下である。 In yet another embodiment of the copper alloy plate according to the present invention, the bending deflection coefficient in the plate width direction is 115 GPa or more and the stress relaxation rate in the plate width direction after holding at 150 ° C. for 1000 hours is 50% or less.
本発明は別の一側面において、上記銅合金板を用いた大電流用電子部品である。 Another aspect of the present invention is an electronic component for large current using the copper alloy plate.
本発明は別の一側面において、上記銅合金板を用いた放熱用電子部品である。 In another aspect, the present invention is a heat dissipating electronic component using the copper alloy plate.
本発明によれば、高強度、高導電性、高い曲げたわみ係数および優れた応力緩和特性を兼ね備えた銅合金板及び大電流用途又は放熱用途に好適な電子部品を提供することが可能である。この銅合金板は、端子、コネクタ、スイッチ、ソケット、リレー、バスバー、リードフレーム、放熱板等の電子部品の素材として好適に使用することができ、特に大電流を通電する電子部品の素材又は大熱量を放散する電子部品の素材として有用である。 ADVANTAGE OF THE INVENTION According to this invention, it is possible to provide the copper alloy board which has high intensity | strength, high electroconductivity, a high bending deflection coefficient, and the outstanding stress relaxation characteristic, and an electronic component suitable for a large current use or a heat dissipation use. This copper alloy plate can be suitably used as a material for electronic parts such as terminals, connectors, switches, sockets, relays, bus bars, lead frames, heat sinks, etc. It is useful as a material for electronic parts that dissipate heat.
以下、本発明について説明する。
(目標特性)
本発明の実施の形態に係る銅合金板は、30%IACS以上の導電率を有し、且つ300MPa以上の引張強さを有する。導電率が30%IACS以上であれば、通電時の発熱量が抑制される。また、引張強さが300MPa以上であれば、大電流を通電する部品の素材又は大熱量を放散する部品の素材として必要な強度を有しているといえる。
The present invention will be described below.
(Target characteristics)
The copper alloy plate according to the embodiment of the present invention has a conductivity of 30% IACS or more and a tensile strength of 300 MPa or more. If the electrical conductivity is 30% IACS or higher, the amount of heat generated during energization is suppressed. Further, if the tensile strength is 300 MPa or more, it can be said that the material has a strength necessary for a material for a component that conducts a large current or a material for a component that dissipates a large amount of heat.
本発明の実施の形態に係る銅合金板のTDの曲げたわみ係数は115GPa以上、より好ましくは120GPa以上である。ばねたわみ係数とは、片持ち梁に弾性限界を超えない範囲で荷重をかけ、その時のたわみ量から算出される値である。弾性係数の指標としては引張試験により求めるヤング率もあるが、ばねたわみ係数の方がコネクタ等の板ばね接点における接触力とより良好な相関を示す。銅合金板の曲げたわみ係数を115GPa以上に調整することで、コネクタ等に加工した後に明らかに接触力が向上し、また、放熱板等に加工した後に外力に対して明らかに弾性変形しにくくなる。 The bending deflection coefficient of TD of the copper alloy plate according to the embodiment of the present invention is 115 GPa or more, more preferably 120 GPa or more. The spring deflection coefficient is a value calculated from the amount of deflection at the time when a load is applied to the cantilever beam within a range not exceeding the elastic limit. As an index of the elastic modulus, there is a Young's modulus obtained by a tensile test, but the spring deflection coefficient shows a better correlation with the contact force at a leaf spring contact such as a connector. By adjusting the bending deflection coefficient of the copper alloy plate to 115 GPa or more, the contact force is clearly improved after being processed into a connector or the like, and after being processed into a heat radiating plate or the like, it is clearly not easily elastically deformed against an external force. .
本発明の実施の形態に係る銅合金板の応力緩和特性については、TDに0.2%耐力の80%の応力を付加し150℃で1000時間保持した時の応力緩和率(以下、単に応力緩和率と記す)が50%以下であり、好ましくは40%以下、より好ましくは30%以下、さらに好ましくは20%以下である。応力緩和率を50%以下にすることで、コネクタに加工した後に大電流を通電しても接触力低下に伴う接触電気抵抗の増加が生じ難くなり、また放熱板に加工した後に熱と外力が同時に加わってもクリープ変形が生じ難くなる。 Regarding the stress relaxation characteristics of the copper alloy sheet according to the embodiment of the present invention, the stress relaxation rate (hereinafter simply referred to as stress) when 80% stress of 0.2% proof stress is applied to TD and held at 150 ° C. for 1000 hours. (Denoted as relaxation rate) is 50% or less, preferably 40% or less, more preferably 30% or less, and still more preferably 20% or less. By reducing the stress relaxation rate to 50% or less, even if a large current is applied after being processed into a connector, it is difficult for the contact electrical resistance to increase due to a decrease in contact force, and heat and external force are reduced after processing into a heat sink. Even if they are added at the same time, creep deformation hardly occurs.
(合金成分)
本発明の作用効果は、Ag、B、Co、Cr、Fe、Mg、Mn、Ni、P、Si、Sn、Ti、ZnおよびZrのうちの一種以上を合計で0〜20質量%含有し、残部が銅およびその不可避的不純物からなる銅合金において良好に発揮され、また、例えば下記のA〜Fの銅合金において特に高い効果が発揮される。
(Alloy components)
The effects of the present invention include one or more of Ag, B, Co, Cr, Fe, Mg, Mn, Ni, P, Si, Sn, Ti, Zn and Zr in a total amount of 0 to 20% by mass, The balance is satisfactorily exhibited in a copper alloy composed of copper and its inevitable impurities, and particularly high effects are exhibited in, for example, the following A to F copper alloys.
(合金A)
Ag、P、Sn、FeおよびNiの一種以上を合計で0.005〜1質量%含有し、残部が銅およびその不可避的不純物からなる銅合金である。この銅合金の導電率は80〜102%IACSである。より好ましい成分は、Ag、P、Sn、FeおよびNiの一種以上を合計で0.01〜0.2質量%含有し、残部が銅およびその不可避的不純物からなる銅合金であり、このときの導電率は83〜97%IACSである。
(Alloy A)
It is a copper alloy containing 0.005 to 1% by mass in total of one or more of Ag, P, Sn, Fe and Ni, with the balance being copper and its inevitable impurities. The conductivity of this copper alloy is 80 to 102% IACS. A more preferred component is a copper alloy containing 0.01 to 0.2% by mass in total of one or more of Ag, P, Sn, Fe and Ni, with the balance being copper and unavoidable impurities thereof. The conductivity is 83-97% IACS.
(合金B)
Crを0.1〜0.5質量%、Snを0.1〜0.5質量%、Znを0.1〜0.5質量%、Ag、B、Co、Fe、Mg、Mn、Ni、P、Si、TiおよびZrのうちの一種以上を合計で0〜0.2質量%含有し、残部が銅およびその不可避的不純物からなる銅合金である。この銅合金の導電率は70〜90%IACSである。より好ましい成分は、Crを0.2〜0.4質量%、Snを0.2〜0.3質量%、Znを0.2〜0.3質量%、Ag、B、Co、Fe、Mg、Mn、Ni、P、Si、TiおよびZrのうちの一種以上を合計で0〜0.2質量%含有し、残部が銅およびその不可避的不純物からなる銅合金であり、この銅合金の導電率は70〜80%IACSである。
(Alloy B)
Cr is 0.1 to 0.5% by mass, Sn is 0.1 to 0.5% by mass, Zn is 0.1 to 0.5% by mass, Ag, B, Co, Fe, Mg, Mn, Ni, It is a copper alloy containing at least one of P, Si, Ti and Zr in a total of 0 to 0.2 mass%, with the balance being copper and its inevitable impurities. The conductivity of this copper alloy is 70-90% IACS. More preferable components are 0.2 to 0.4% by mass of Cr, 0.2 to 0.3% by mass of Sn, 0.2 to 0.3% by mass of Zn, Ag, B, Co, Fe, Mg , Mn, Ni, P, Si, Ti and Zr in a total of 0 to 0.2% by mass, with the balance being copper and its inevitable impurities, a copper alloy, the conductivity of this copper alloy The rate is 70-80% IACS.
(合金C)
Feを1〜3質量%、Pを0.01〜0.2質量%、Znを0.05〜0.5質量%、Ag、B、Co、Cr、Mg、Mn、Ni、Si、Sn、TiおよびZrのうちの一種以上を合計で0〜0.2質量%含有し、残部が銅およびその不可避的不純物からなる銅合金である。この銅合金の導電率は60〜80%IACSである。より好ましい成分は、Feを2〜2.5質量%、Pを0.02〜0.15質量%、Znを0.1〜0.2質量%、Ag、B、Co、Cr、Mg、Mn、Ni、Si、Sn、TiおよびZrのうちの一種以上を合計で0〜0.2質量%含有し、残部が銅およびその不可避的不純物からなる銅合金であり、この銅合金の導電率は60〜75%IACSである。
(Alloy C)
Fe 1 to 3 mass%, P 0.01 to 0.2 mass%, Zn 0.05 to 0.5 mass%, Ag, B, Co, Cr, Mg, Mn, Ni, Si, Sn, It is a copper alloy containing at least one of Ti and Zr in a total amount of 0 to 0.2 mass%, with the balance being copper and its inevitable impurities. The conductivity of this copper alloy is 60-80% IACS. More preferable components are Fe to 2 to 2.5% by mass, P to 0.02 to 0.15% by mass, Zn to 0.1 to 0.2% by mass, Ag, B, Co, Cr, Mg, Mn , Ni, Si, Sn, Ti and Zr in a total of 0 to 0.2% by mass, the balance is copper alloy consisting of copper and its inevitable impurities, the conductivity of this copper alloy is 60-75% IACS.
(合金D)
Niを0.5〜3質量%、Snを0.2〜2質量%、Pを0.02〜0.2質量%、Ag、B、Co、Cr、Fe、Mg、Mn、Si、Ti、ZnおよびZrのうちの一種以上を合計で0〜0.2質量%含有する銅合金である。この銅合金の導電率は30〜60%IACSである。より好ましい成分範囲は、Niを0.8〜1.2質量%、Snを0.4〜0.6質量%、Pを0.05〜0.15質量%、Ag、B、Co、Cr、Fe、Mg、Mn、Si、Ti、ZnおよびZrのうちの一種以上を合計で0〜0.2質量%含有し、残部が銅およびその不可避的不純物からなる銅合金、およびNiを0.8〜1.2質量%、Snを0.8〜1.0質量%、Pを0.05〜0.15質量%、Ag、B、Co、Cr、Fe、Mg、Mn、Si、Ti、ZnおよびZrの一種以上を合計で0〜0.2質量%含有し、残部が銅およびその不可避的不純物からなる銅合金であり、それぞれの銅合金の導電率は45〜55%IACSおよび35〜45%IACSである。
(Alloy D)
Ni: 0.5-3 mass%, Sn: 0.2-2 mass%, P: 0.02-0.2 mass%, Ag, B, Co, Cr, Fe, Mg, Mn, Si, Ti, It is a copper alloy containing 0 to 0.2 mass% in total of one or more of Zn and Zr. The conductivity of this copper alloy is 30-60% IACS. More preferable component ranges are 0.8 to 1.2% by mass of Ni, 0.4 to 0.6% by mass of Sn, 0.05 to 0.15% by mass of P, Ag, B, Co, Cr, A copper alloy containing at least one of Fe, Mg, Mn, Si, Ti, Zn and Zr in a total amount of 0 to 0.2% by mass, the balance being copper and its inevitable impurities, and Ni of 0.8 -1.2 mass%, Sn 0.8-1.0 mass%, P 0.05-0.15 mass%, Ag, B, Co, Cr, Fe, Mg, Mn, Si, Ti, Zn And one or more of Zr in a total of 0 to 0.2% by mass, the balance being copper alloy consisting of copper and its inevitable impurities, and the conductivity of each copper alloy is 45 to 55% IACS and 35 to 45 % IACS.
(合金E)
Mgを0.2〜1質量%、Pを0.001〜0.1質量%、Ag、B、Co、Cr、Fe、Mn、Ni、Si、Sn、Ti、ZnおよびZrのうちの一種以上を合計で0〜0.2質量%含有し残部が銅およびその不可避的不純物からなる銅合金である。この銅合金の導電率は50〜70%IACSである。より好ましい成分は、Mgを0.5〜0.9質量%、Pを0.001〜0.02質量%、Ag、B、Co、Cr、Fe、Mn、Ni、Si、Sn、Ti、ZnおよびZrのうちの一種以上を合計で0〜0.2質量%含有し、残部が銅およびその不可避的不純物からなる銅合金であり、この銅合金の導電率は50〜65%IACSである。
(Alloy E)
0.2 to 1% by mass of Mg, 0.001 to 0.1% by mass of P, one or more of Ag, B, Co, Cr, Fe, Mn, Ni, Si, Sn, Ti, Zn and Zr Is a copper alloy containing 0 to 0.2% by mass in total with the balance being copper and its inevitable impurities. The conductivity of this copper alloy is 50-70% IACS. More preferable components are 0.5 to 0.9% by mass of Mg, 0.001 to 0.02% by mass of P, Ag, B, Co, Cr, Fe, Mn, Ni, Si, Sn, Ti, Zn One or more of Zr and Zr are contained in a total of 0 to 0.2% by mass, and the balance is copper and its inevitable impurities. The copper alloy has a conductivity of 50 to 65% IACS.
(合金F)
Znを1〜15質量%、Ag、B、Co、Cr、Fe、Mg、Mn、Ni、P、Si、Sn、TiおよびZrのうちの一種以上を合計で0〜0.5質量%含有し、残部が銅およびその不可避的不純物からなる銅合金である。この銅合金の導電率は30〜70%IACSである。より好ましい成分は、Znを7〜9質量%、Snを0.2〜0.4質量%、Ag、B、Co、Cr、Fe、Mg、Mn、Ni、P、Si、TiおよびZrのうちの一種以上を合計で0〜0.2質量%含有し、残部が銅およびその不可避的不純物からなる銅合金、およびZnを2〜4質量%、Snを0.1〜0.3質量%、Ag、B、Co、Cr、Fe、Mg、Mn、Ni、P、Si、TiおよびZrのうちの一種以上を合計で0〜0.2質量%含有し、残部が銅およびその不可避的不純物からなる銅合金であり、それぞれの銅合金の導電率は35〜45%IACSおよび55〜65%IACSである。
(Alloy F)
1 to 15% by mass of Zn, 0 to 0.5% by mass in total of one or more of Ag, B, Co, Cr, Fe, Mg, Mn, Ni, P, Si, Sn, Ti and Zr The balance is a copper alloy composed of copper and its inevitable impurities. The conductivity of this copper alloy is 30-70% IACS. More preferable components are 7-9 mass% of Zn, 0.2-0.4 mass% of Sn, Ag, B, Co, Cr, Fe, Mg, Mn, Ni, P, Si, Ti and Zr. 1 to 0.2% by mass in total, the balance being copper and copper inevitable impurities, and 2 to 4% by mass of Zn, 0.1 to 0.3% by mass of Sn, Ag-, B-, Co-, Cr-, Fe-, Mg-, Mn-, Ni-, P-, Si-, Ti- and Zr-containing one or more in total, 0 to 0.2% by mass, with the remainder from copper and its inevitable impurities Each copper alloy has a conductivity of 35 to 45% IACS and 55 to 65% IACS.
(合金G)
Niを0.1〜5質量%、Pを0.01〜0.3質量%、Feを0.01〜0.3質量%、Znを0.01〜0.3質量%、Ag、B、Co、Cr、Mg、Mn、Si、Sn、Ti、ZnおよびZrのうちの一種以上を合計で0〜0.2質量%含有し残部が銅およびその不可避的不純物からなる銅合金である。この銅合金の導電率は50〜90%IACSである。より好ましい成分範囲は、Niを0.5〜0.9質量%、Pを0.02〜0.2質量%、Feを0.05〜0.15質量%、Znを0.03〜0.2質量%、Ag、B、Co、Cr、Mg、Mn、Si、Sn、TiおよびZrのうちの一種以上を合計で0〜0.2質量%含有し、残部が銅およびその不可避的不純物からなる銅合金であり、この銅合金の導電率は60〜80%IACSである。
(Alloy G)
0.1 to 5% by mass of Ni, 0.01 to 0.3% by mass of P, 0.01 to 0.3% by mass of Fe, 0.01 to 0.3% by mass of Zn, Ag, B, It is a copper alloy containing one or more of Co, Cr, Mg, Mn, Si, Sn, Ti, Zn, and Zr in a total amount of 0 to 0.2% by mass, and the balance being copper and its inevitable impurities. The conductivity of this copper alloy is 50-90% IACS. More preferable component ranges are 0.5 to 0.9 mass% for Ni, 0.02 to 0.2 mass% for P, 0.05 to 0.15 mass% for Fe, and 0.03 to 0.3 mass for Zn. 2% by mass, Ag, B, Co, Cr, Mg, Mn, Si, Sn, Ti and Zr are contained in a total of 0 to 0.2% by mass, with the balance being made of copper and its inevitable impurities The copper alloy has a conductivity of 60 to 80% IACS.
合金成分の濃度が高くなるに従い、引張強さが上昇する半面、導電率が低下する。 As the concentration of the alloy component increases, the electrical conductivity decreases while the tensile strength increases.
(結晶方位)
本発明の実施の形態に係る銅合金板は、(122)面の法線がTDと成す角度が10度以下である結晶の面積率と、(133)面の法線がTDと成す角度が10度以下である結晶の面積率との面積率合計(以下、A値とする)を10%以上、より好ましくは15%以上に調整する。
(Crystal orientation)
The copper alloy plate according to the embodiment of the present invention has an area ratio of a crystal whose angle of (122) plane normal to TD is 10 degrees or less and an angle of (133) plane normal to TD. The total area ratio (hereinafter referred to as A value) with the area ratio of the crystal of 10 degrees or less is adjusted to 10% or more, more preferably 15% or more.
A値は、圧延材のTDと直交する断面において、EBSD(Electron Back Scatter Diffraction:電子後方散乱回折)法により求める。ここでEBSDとは、SEM(Scanning Electron Microscope:走査電子顕微鏡)内で試料に電子線を照射したときに生じる反射電子菊池線回折(菊池パターン)を利用して結晶方位を解析する技術である。 The A value is obtained by an EBSD (Electron Back Scatter Diffraction) method in a cross section orthogonal to the TD of the rolled material. Here, EBSD is a technique for analyzing crystal orientation using reflected electron Kikuchi line diffraction (Kikuchi pattern) generated when a sample is irradiated with an electron beam in a SEM (Scanning Electron Microscope).
A値を10%以上に調整すると、TDの曲げたわみ係数が115GPa以上になり、同時に応力緩和特性も向上する。A値の上限値はTDの曲げたわみ係数の点から制限されるものではないが、A値は60%以下の値をとることが多い。 When the A value is adjusted to 10% or more, the bending deflection coefficient of TD becomes 115 GPa or more, and at the same time, the stress relaxation characteristics are improved. The upper limit value of the A value is not limited in terms of the bending deflection coefficient of the TD, but the A value often takes a value of 60% or less.
TDのばね限界値(Kb)、圧延方向の引張強さを(σ)とした場合に、「σ−Kb」を250MPa以下に調整することが好ましく、200MPa以上に調整することがさらに好ましい。A値を10%以上に調整することに加え、「σ−Kb」を250MPa以下に調整することにより、応力緩和率が50%以下となる。「σ−Kb」の上限値については、銅合金板の特性の点からは制限されないが、「σ−Kb」が0以上の値になることは少ない。 When the spring limit value (Kb) of TD and the tensile strength in the rolling direction are (σ), “σ−Kb” is preferably adjusted to 250 MPa or less, and more preferably 200 MPa or more. In addition to adjusting the A value to 10% or more, by adjusting “σ−Kb” to 250 MPa or less, the stress relaxation rate becomes 50% or less. The upper limit value of “σ−Kb” is not limited in terms of the characteristics of the copper alloy sheet, but “σ−Kb” is rarely a value of 0 or more.
(厚み)
製品の厚みは0.1〜2.0mmであることが好ましい。厚みが薄すぎると、通電部断面積が小さくなり通電時の発熱が増加するため大電流を流すコネクタ等の素材として不適であり、また、わずかな外力で変形するようになるため放熱板等の素材としても不適である。一方で、厚みが厚すぎると、曲げ加工が困難になる。このような観点から、より好ましい厚みは0.2〜1.5mmである。厚みが上記範囲となることにより、通電時の発熱を抑えつつ、曲げ加工性を良好なものとすることができる。
(Thickness)
The thickness of the product is preferably 0.1 to 2.0 mm. If the thickness is too thin, the cross-sectional area of the current-carrying part will decrease and heat generation will increase during energization, making it unsuitable as a material for connectors that carry large currents. It is also unsuitable as a material. On the other hand, if the thickness is too thick, bending becomes difficult. From such a viewpoint, a more preferable thickness is 0.2 to 1.5 mm. When the thickness is in the above range, the bending workability can be improved while suppressing heat generation during energization.
(用途)
本発明の実施の形態に係る銅合金板は、電機・電子機器、自動車等で用いられる端子、コネクタ、リレー、スイッチ、ソケット、バスバー、リードフレーム、放熱板等の電子部品の用途に好適に使用することができ、特に、電気自動車、ハイブリッド自動車等で用いられる大電流用コネクタや端子等の大電流用電子部品の用途、又はスマートフォンやタブレットPCで用いられる液晶フレーム等の放熱用電子部品の用途に有用である。
(Use)
The copper alloy plate according to the embodiment of the present invention is suitably used for applications of electronic parts such as terminals, connectors, relays, switches, sockets, bus bars, lead frames, heat sinks, etc. used in electric / electronic devices, automobiles, etc. In particular, applications of high-current electronic components such as connectors and terminals for large currents used in electric vehicles, hybrid vehicles, etc., or uses of electronic components for heat dissipation such as liquid crystal frames used in smartphones and tablet PCs Useful for.
(製造方法)
純銅原料として電気銅等を溶解し、合金元素を添加し、厚み30〜300mm程度のインゴットに鋳造する。このインゴットを熱間圧延により厚み3〜30mm程度の板とした後、冷間圧延と再結晶焼鈍とを繰り返し、最終の冷間圧延で所定の製品厚みに仕上げ、最後に歪取り焼鈍を施す。A値を10%以上に調整する方法は特定の方法に限定されないが、例えば熱間圧延条件の制御により可能となる。
(Production method)
As a pure copper material, electrolytic copper or the like is melted, an alloy element is added, and cast into an ingot having a thickness of about 30 to 300 mm. After this ingot is made into a plate having a thickness of about 3 to 30 mm by hot rolling, cold rolling and recrystallization annealing are repeated to finish to a predetermined product thickness by final cold rolling, and finally strain relief annealing is performed. The method of adjusting the A value to 10% or more is not limited to a specific method, but can be achieved by controlling the hot rolling conditions, for example.
本発明の熱間圧延では、850〜1000℃に加熱したインゴットを一対の圧延ロール間に繰り返し通過させ、目標の板厚に仕上げてゆく。A値には1パスあたりの加工度が影響を及ぼす。ここで、1パスあたりの加工度R(%)とは、圧延ロールを1回通過したときの板厚減少率であり、R=(T0−T)/T0×100(T0:圧延ロール通過前の厚み、T:圧延ロール通過後の厚み)で与えられる。 In the hot rolling of the present invention, an ingot heated to 850 to 1000 ° C. is repeatedly passed between a pair of rolling rolls to finish the target plate thickness. The degree of processing per pass affects the A value. Here, the processing degree R (%) per pass is a sheet thickness reduction rate when the rolling roll passes once, and R = (T 0 −T) / T 0 × 100 (T 0 : rolling) Thickness before passing through roll, T: Thickness after passing through rolling roll).
このRについて、全パスのうちの最大値(Rmax)を25%以下にし、全パスの平均値(Rave)を20%以下にすることが好ましい。これら両条件を満足することで、A値が10%以上になる。より好ましくはRaveを19%以下とする。 Regarding R, it is preferable that the maximum value (Rmax) of all paths is 25% or less and the average value (Rave) of all paths is 20% or less. By satisfying both of these conditions, the A value becomes 10% or more. More preferably, Rave is set to 19% or less.
再結晶焼鈍では、圧延組織の一部又は全てを再結晶化させる。最終冷間圧延前の再結晶焼鈍(最終再結晶焼鈍)では、銅合金板の平均結晶粒径を50μm以下に調整する。平均結晶粒径が大きすぎると、引張強さ300MPa以上に調整することが難しくなる。 In recrystallization annealing, part or all of the rolling structure is recrystallized. In recrystallization annealing (final recrystallization annealing) before final cold rolling, the average crystal grain size of the copper alloy sheet is adjusted to 50 μm or less. If the average crystal grain size is too large, it becomes difficult to adjust the tensile strength to 300 MPa or more.
最終再結晶焼鈍の条件は、目標とする焼鈍後の結晶粒径に基づき決定する。具体的には、バッチ炉又は連続焼鈍炉を用い、炉内温度を250〜800℃として焼鈍を行えばよい。バッチ炉では250〜600℃の炉内温度において30分から30時間の範囲で加熱時間を適宜調整すればよい。連続焼鈍炉では450〜800℃の炉内温度において5秒から10分の範囲で加熱時間を適宜調整すればよい。 The conditions for final recrystallization annealing are determined based on the target crystal grain size after annealing. Specifically, annealing may be performed by using a batch furnace or a continuous annealing furnace and setting the furnace temperature to 250 to 800 ° C. In a batch furnace, the heating time may be appropriately adjusted within the range of 30 minutes to 30 hours at a furnace temperature of 250 to 600 ° C. In a continuous annealing furnace, the heating time may be appropriately adjusted within a range of 5 seconds to 10 minutes at a furnace temperature of 450 to 800 ° C.
最終冷間圧延では、一対の圧延ロール間に材料を繰り返し通過させ、目標の板厚に仕上げていく。最終冷間圧延の加工度は10〜99%とするのが好ましい。ここで加工度r(%)は、r=(t0−t)/t0×100(t0:圧延前の板厚、t:圧延後の板厚)で与えられる。rが小さすぎると、引張強さを300MPa以上に調整することが難しくなる。rが大きすぎると、圧延材のエッジが割れることがある。 In the final cold rolling, the material is repeatedly passed between a pair of rolling rolls to finish the target plate thickness. The workability of the final cold rolling is preferably 10 to 99%. Here, the working degree r (%) is given by r = (t 0 −t) / t 0 × 100 (t 0 : plate thickness before rolling, t: plate thickness after rolling). If r is too small, it becomes difficult to adjust the tensile strength to 300 MPa or more. If r is too large, the edge of the rolled material may be broken.
熱間圧延条件制御によるA値の調整に加え、製品の「σ−Kb」を250MPa以下に調整することにより、応力緩和率が50%以下となる。「σ−Kb」を250MPa以下に調整する方法は、特定の方法に限定されないが、例えば最終冷間圧延後に適切な条件で歪取焼鈍を行うことにより可能となる。 In addition to adjusting the A value by controlling the hot rolling conditions, the stress relaxation rate is 50% or less by adjusting the “σ-Kb” of the product to 250 MPa or less. The method of adjusting “σ−Kb” to 250 MPa or less is not limited to a specific method, but it can be performed, for example, by performing strain relief annealing under appropriate conditions after the final cold rolling.
すなわち、歪取焼鈍後の引張強さを歪取焼鈍前(最終圧延上がり)の引張強さに対し、10〜100MPa低い値、好ましくは20〜80MPa低い値に調整することにより、「σ−Kb」が250MPa以下となる。引張強さの低下量が小さすぎると、「σ−Kb」を250MPaに調整することが難しくなる。引張強さの低下量が大きすぎると製品の引張強さが300MPa未満になることがある。 That is, by adjusting the tensile strength after strain relief annealing to a value that is 10 to 100 MPa lower, preferably 20 to 80 MPa lower than the tensile strength before strain relief annealing (after final rolling), “σ-Kb”. Is 250 MPa or less. If the amount of decrease in tensile strength is too small, it is difficult to adjust “σ−Kb” to 250 MPa. If the amount of decrease in tensile strength is too large, the tensile strength of the product may be less than 300 MPa.
具体的には、バッチ炉を用いる場合には100〜500℃の炉内温度において30分から30時間の範囲で加熱時間を適宜調整することにより、また連続焼鈍炉を用いる場合には300〜700℃の炉内温度において5秒から10分の範囲で加熱時間を適宜調整することにより、引張強さの低下量を上記範囲に調整すればよい。 Specifically, when a batch furnace is used, the heating time is appropriately adjusted in the range of 30 minutes to 30 hours at a furnace temperature of 100 to 500 ° C., and when a continuous annealing furnace is used, 300 to 700 ° C. What is necessary is just to adjust the fall amount of tensile strength to the said range by adjusting a heating time suitably in the range for 5 second to 10 minutes in the furnace temperature of this.
以下に本発明の実施例を比較例と共に示すが、これらの実施例は本発明及びその利点をよりよく理解するために提供するものであり、発明が限定されることを意図するものではない。 Examples of the present invention will be described below together with comparative examples, but these examples are provided for better understanding of the present invention and its advantages, and are not intended to limit the invention.
溶銅に合金元素を添加した後、厚みが200mmのインゴットに鋳造した。インゴットを950℃で3時間加熱し、熱間圧延により厚み15mmの板にした。熱間圧延後の板表面の酸化スケールを研削、除去した後、焼鈍と冷間圧延を繰り返し、最終の冷間圧延で所定の製品厚みに仕上げた。最後に歪取焼鈍を行った。 After adding the alloy element to the molten copper, it was cast into an ingot having a thickness of 200 mm. The ingot was heated at 950 ° C. for 3 hours and formed into a plate having a thickness of 15 mm by hot rolling. After grinding and removing the oxide scale on the surface of the plate after hot rolling, annealing and cold rolling were repeated and finished to a predetermined product thickness by final cold rolling. Finally, strain relief annealing was performed.
熱間圧延では、1パスあたりの加工度の最大値(Rmax)および平均値を(Rave)を種々変化させた。 In hot rolling, the maximum value (Rmax) and average value (Rave) of the degree of processing per pass were variously changed.
最終冷間圧延前の焼鈍(最終再結晶焼鈍)は、バッチ炉を用い、加熱時間を5時間とし炉内温度を250〜700℃の範囲で調整し、焼鈍後の結晶粒径を5〜20μmの範囲に調整した。ここでいう結晶粒径とは、圧延方向と直交する断面において、JIS H 0501(1999年)の切断法に従い測定された平均結晶粒径である。 For annealing before final cold rolling (final recrystallization annealing), a batch furnace is used, the heating time is 5 hours, the furnace temperature is adjusted in the range of 250 to 700 ° C., and the crystal grain size after annealing is 5 to 20 μm. The range was adjusted. The crystal grain size here is an average crystal grain size measured according to the cutting method of JIS H 0501 (1999) in a cross section orthogonal to the rolling direction.
最終冷間圧延では、加工度(r)を種々変化させた。歪取り焼鈍では、連続焼鈍炉を用い、炉内温度を500℃として加熱時間を1秒から10分の間で調整し、引張強さの低下量を種々変化させた。なお、一部の実施例では歪取り焼鈍を行わなかった。 In the final cold rolling, the degree of work (r) was varied. In strain relief annealing, a continuous annealing furnace was used, the furnace temperature was 500 ° C., the heating time was adjusted between 1 second and 10 minutes, and the amount of decrease in tensile strength was variously changed. In some examples, strain relief annealing was not performed.
製造途中の材料および歪取焼鈍後(歪取焼鈍を行ってない実施例では最終冷間圧延後)の材料(製品)につき、次の測定を行った。
(成分)
歪取焼鈍後の材料の合金元素濃度をICP−質量分析法で分析した。
The following measurements were performed on materials during manufacture and materials (products) after strain relief annealing (after the final cold rolling in Examples where strain relief annealing was not performed).
(component)
The alloy element concentration of the material after strain relief annealing was analyzed by ICP-mass spectrometry.
(製品の結晶方位)
歪取焼鈍後の材料につき、TDと直交する断面(厚み方向と圧延方向にそれぞれ平行な断面)に電子線を照射しEBSD測定を行った。測定面積は0.1mm2とし、2μmのステップでスキャンし、方位を解析した。そして、(122)面の法線がTDと成す角度が10度以下である結晶の面積率および(133)面の法線がTDと成す角度が10度以下である結晶の面積率を求め、両面積率の合計(A値)を算出した。
(Crystal orientation of the product)
About the material after strain relief annealing, the electron beam was irradiated to the cross section (cross section parallel to a thickness direction and a rolling direction) orthogonal to TD, and the EBSD measurement was performed. The measurement area was 0.1 mm 2, and scanning was performed in 2 μm steps to analyze the orientation. Then, an area ratio of the crystal whose angle formed by the normal of the (122) plane and TD is 10 degrees or less and an area ratio of the crystal whose angle formed by the normal of the (133) plane and TD are 10 degrees or less are obtained, The total (A value) of both area ratios was calculated.
(引張強さ)
歪取焼鈍後の材料につき、JIS Z2241に規定する13B号試験片を引張方向が圧延方向と平行になるように採取し、JIS Z2241に準拠して圧延方向と平行に引張試験を行い、圧延方向の引張強さ求めた。
(Tensile strength)
With regard to the material after strain relief annealing, a specimen No. 13B specified in JIS Z2241 was taken so that the tensile direction was parallel to the rolling direction, and a tensile test was performed in parallel with the rolling direction in accordance with JIS Z2241, and the rolling direction Tensile strength was determined.
(ばね限界値)
歪取焼鈍後の材料から、幅が10mmの短冊形状の試験片を、試験片の長手方向が圧延方向と直交するように採取し、JIS H3130に規定されているモーメント式試験により、TDのばね限界値を測定した。
(Spring limit value)
A strip-shaped specimen having a width of 10 mm was taken from the material after strain relief annealing so that the longitudinal direction of the specimen was perpendicular to the rolling direction, and a TD spring was obtained by a moment type test specified in JIS H3130. The limit value was measured.
(導電率)
歪取焼鈍後の材料から、試験片の長手方向が圧延方向と平行になるように試験片を採取し、JIS H0505に準拠し四端子法により20℃での導電率を測定した。
(conductivity)
A test piece was taken from the material after strain relief annealing so that the longitudinal direction of the test piece was parallel to the rolling direction, and the conductivity at 20 ° C. was measured by a four-terminal method in accordance with JIS H0505.
(曲げたわみ係数)
歪取焼鈍後の材料につき、TDの曲げたわみ係数を日本伸銅協会(JACBA)技術標準「銅及び銅合金板条の片持ち梁による曲げたわみ係数測定方法」に準じて測定した。
板厚t、幅w(=10mm)の短冊形状の試験片を、試験片の長手方向が圧延方向と直交するように採取した。この試料の片端を固定し、固定端からL(=100t)の位置にP(=0.15N)の荷重を加え、このときのたわみdから、次式を用い曲げたわみ係数Bを求めた。
B=4・P・(L/t)3/(w・d)
(Bending deflection coefficient)
For the material after strain relief annealing, the bending deflection coefficient of TD was measured according to the Japan Copper and Brass Association (JACBA) technical standard “Method of measuring bending deflection coefficient by cantilever of copper and copper alloy strip”.
A strip-shaped test piece having a thickness t and a width w (= 10 mm) was taken so that the longitudinal direction of the test piece was orthogonal to the rolling direction. One end of this sample was fixed, a load of P (= 0.15 N) was applied to a position L (= 100 t) from the fixed end, and a bending deflection coefficient B was obtained from the deflection d at this time using the following equation.
B = 4 · P · (L / t) 3 / (w · d)
(応力緩和率)
歪取焼鈍後の材料から、幅10mm、長さ100mmの短冊形状の試験片を、試験片の長手方向が圧延方向と直交するように採取した。図1のように、l=50mmの位置を作用点として、試験片にy0のたわみを与え、TDの0.2%耐力(JIS Z2241に準拠して測定)の80%に相当する応力(s)を負荷した。y0は次式により求めた。
y0=(2/3)・l2・s / (E・t)
ここで、EはTDの曲げたわみ係数であり、tは試料の厚みである。150℃にて1000時間加熱後に除荷し、図2のように永久変形量(高さ)yを測定し、応力緩和率{[y(mm)/y0(mm)]×100(%)}を算出した。
(Stress relaxation rate)
A strip-shaped test piece having a width of 10 mm and a length of 100 mm was collected from the material after strain relief annealing so that the longitudinal direction of the test piece was orthogonal to the rolling direction. As shown in FIG. 1, a stress corresponding to 80% of the 0.2% proof stress (measured in accordance with JIS Z2241) of TD is given to the test piece with a deflection of y 0 with the position of l = 50 mm as the working point. s) was loaded. y0 was determined by the following equation.
y 0 = (2/3) · l 2 · s / (E · t)
Here, E is the bending deflection coefficient of TD, and t is the thickness of the sample. Unloading after heating at 150 ° C. for 1000 hours, and measuring the amount of permanent deformation (height) y as shown in FIG. 2, stress relaxation rate {[y (mm) / y 0 (mm)] × 100 (%) } Was calculated.
表1、2、3、4、5、6および7は、それぞれ合金A、合金B、合金C、合金D、合金E、合金Fおよび合金Gに関する実施例である。表8には、表1〜6に記載した以外の合金の発明例を示した。また、表9には、熱間圧延の各パスにおける材料の仕上げ厚みおよび1パスあたりの加工度として、表1〜7の発明例1、発明例4、比較例1および比較例2のものを例示した。 Tables 1, 2, 3, 4, 5, 6 and 7 are examples relating to Alloy A, Alloy B, Alloy C, Alloy D, Alloy E, Alloy F and Alloy G, respectively. Table 8 shows examples of alloys other than those described in Tables 1-6. Moreover, in Table 9, the thing of the invention example 1, invention example 4, the comparative example 1, and the comparative example 2 of Tables 1-7 are shown as finishing thickness of each material in each pass of hot rolling, and the workability per pass. Illustrated.
表1〜7における発明例1〜9及び表8における発明例1〜19の銅合金板では、熱間圧延においてRmaxを25%以下、Raveを20%以下としたため、A値が10%以上となり、115GPa以上の曲げたわみ係数が得られた。 In the copper alloy sheets of Invention Examples 1 to 9 in Tables 1 to 7 and Invention Examples 1 to 19 in Table 8, Rmax was 25% or less and Rave was 20% or less in hot rolling, so the A value was 10% or more. A bending deflection coefficient of 115 GPa or more was obtained.
さらに、表1〜7の発明例1〜7及び表8における発明例1〜19の銅合金板では、最終圧延後の歪取焼鈍において引張強さを10〜100MPa低下させたため、「σ−Kb」を250MPa以下となり、その結果50%以下の応力緩和率も得られた。一方、表1〜7の発明例9は歪取焼鈍での引張強さ低下量が10MPaに満たなかったため、また、表1〜7の発明例8は歪取焼鈍を実施しなかったため、「σ−Kb」が250MPaを超え、その結果応力緩和率が50%を超えた。 Furthermore, in the copper alloy sheets of Invention Examples 1 to 7 in Tables 1 to 7 and Invention Examples 1 to 19 in Table 8, the tensile strength was reduced by 10 to 100 MPa in the strain relief annealing after the final rolling, so that “σ-Kb ”Was 250 MPa or less, and as a result, a stress relaxation rate of 50% or less was also obtained. On the other hand, Invention Example 9 in Tables 1 to 7 had a tensile strength reduction amount of less than 10 MPa in strain relief annealing, and Invention Example 8 in Tables 1 to 7 did not perform strain relief annealing. -Kb "exceeded 250 MPa, and as a result, the stress relaxation rate exceeded 50%.
表1〜7の比較例1〜3では、Rmax又はRaveが本発明の規定から外れたため、A値が10%未満になった。その結果、曲げたわみ係数が115GPaに満たなかった。さらに、引張強さを10〜100MPa低下させる条件で歪取焼鈍を行うことにより「σ−Kb」を250MPa以下に調整したにもかかわらず、応力緩和率が50%を超えた。 In Comparative Examples 1 to 3 in Tables 1 to 7, Rmax or Rave deviated from the definition of the present invention, so the A value was less than 10%. As a result, the bending deflection coefficient was less than 115 GPa. Furthermore, despite the fact that “σ-Kb” was adjusted to 250 MPa or less by performing strain relief annealing under conditions where the tensile strength was reduced by 10 to 100 MPa, the stress relaxation rate exceeded 50%.
Claims (11)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016254146A JP2017089011A (en) | 2016-12-27 | 2016-12-27 | Copper alloy sheet excellent in conductivity and flexure deflection coefficient |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016254146A JP2017089011A (en) | 2016-12-27 | 2016-12-27 | Copper alloy sheet excellent in conductivity and flexure deflection coefficient |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013182214A Division JP6296728B2 (en) | 2013-09-03 | 2013-09-03 | Copper alloy sheet with excellent conductivity and bending deflection coefficient |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2017089011A true JP2017089011A (en) | 2017-05-25 |
Family
ID=58770415
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016254146A Pending JP2017089011A (en) | 2016-12-27 | 2016-12-27 | Copper alloy sheet excellent in conductivity and flexure deflection coefficient |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2017089011A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109735738A (en) * | 2019-03-07 | 2019-05-10 | 山东融金粉末科技股份有限公司 | A kind of low-temperature high-toughness soft copper alloy material and preparation method thereof |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012026610A1 (en) * | 2010-08-27 | 2012-03-01 | 古河電気工業株式会社 | Copper alloy sheet and manufacturing method for same |
-
2016
- 2016-12-27 JP JP2016254146A patent/JP2017089011A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012026610A1 (en) * | 2010-08-27 | 2012-03-01 | 古河電気工業株式会社 | Copper alloy sheet and manufacturing method for same |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109735738A (en) * | 2019-03-07 | 2019-05-10 | 山东融金粉末科技股份有限公司 | A kind of low-temperature high-toughness soft copper alloy material and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5847787B2 (en) | Copper alloy sheet with excellent conductivity and stress relaxation properties | |
JP6296728B2 (en) | Copper alloy sheet with excellent conductivity and bending deflection coefficient | |
JP6223057B2 (en) | Copper alloy sheet with excellent conductivity and bending deflection coefficient | |
JP5427971B1 (en) | Copper alloy sheet with excellent conductivity and bending deflection coefficient | |
JP6270417B2 (en) | Copper alloy sheet with excellent conductivity and stress relaxation properties | |
JP5380621B1 (en) | Copper alloy sheet with excellent conductivity and stress relaxation properties | |
JP5470483B1 (en) | Copper alloy sheet with excellent conductivity and stress relaxation properties | |
JP6296727B2 (en) | Copper alloy sheet with excellent conductivity and bending deflection coefficient | |
JP6328380B2 (en) | Copper alloy sheet with excellent conductivity and bending deflection coefficient | |
JP2014077192A (en) | Copper alloy and connector terminal material for high current | |
JP6246502B2 (en) | Copper alloy sheet with excellent conductivity and bending deflection coefficient | |
JP2017002407A (en) | Copper alloy sheet excellent in conductivity and stress relaxation characteristic | |
JP2017155340A (en) | Copper alloy sheet excellent in conductivity and stress relaxation characteristic | |
JP5453565B1 (en) | Copper alloy sheet with excellent conductivity and bending deflection coefficient | |
JP5449595B1 (en) | Copper alloy sheet with excellent conductivity and bending deflection coefficient | |
JP6047466B2 (en) | Copper alloy sheet with excellent conductivity and bending deflection coefficient | |
JP2017066532A (en) | Copper alloy sheet having excellent conductivity and stress relaxation properties | |
JP5352750B1 (en) | Copper alloy sheet with excellent conductivity and bending deflection coefficient | |
JP5620025B2 (en) | Copper alloy sheet with excellent conductivity and stress relaxation properties | |
JP2017082335A (en) | Copper alloy sheet excellent in conductivity and bending deflection coefficient | |
JP2017089011A (en) | Copper alloy sheet excellent in conductivity and flexure deflection coefficient | |
JP2017082338A (en) | Copper alloy sheet excellent in conductivity and bending deflection coefficient | |
JP2017115249A (en) | Copper alloy sheet excellent in conductivity and bending deflection coefficient | |
JP2014205864A (en) | Copper alloy sheet excellent in conductivity and stress relaxation property |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20180109 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20180724 |