JP2016164213A - Foamable resin particle and manufacturing method therefor - Google Patents

Foamable resin particle and manufacturing method therefor Download PDF

Info

Publication number
JP2016164213A
JP2016164213A JP2015044520A JP2015044520A JP2016164213A JP 2016164213 A JP2016164213 A JP 2016164213A JP 2015044520 A JP2015044520 A JP 2015044520A JP 2015044520 A JP2015044520 A JP 2015044520A JP 2016164213 A JP2016164213 A JP 2016164213A
Authority
JP
Japan
Prior art keywords
weight
less
monomer
resin particles
styrene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015044520A
Other languages
Japanese (ja)
Other versions
JP6410642B2 (en
Inventor
忍 落越
Shinobu Ochikoshi
忍 落越
利明 杉田
Toshiaki Sugita
利明 杉田
龍哉 逸見
Tatsuya Henmi
龍哉 逸見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2015044520A priority Critical patent/JP6410642B2/en
Publication of JP2016164213A publication Critical patent/JP2016164213A/en
Application granted granted Critical
Publication of JP6410642B2 publication Critical patent/JP6410642B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a foam molded body excellent in fire resistance, heat resistance and thermal insulation property and small in the content of a volatile organic compound by using a styrenic monomer containing a phenylacetylene amount of 50 ppm or more.SOLUTION: There is provided a foamable resin particle containing a foaming agent in a copolymer containing 60 wt.% or more and 75 wt.% or less of a styrene monomer containing a phenylacetylene amount of 50 ppm or more, 21 wt.% or more and 27 wt.% or less of an acrylonitrile monomer and 3 wt.% or more and 15 wt.% or less of an alpha methylstyrene monomer and a fire retardant of 1.5 pts.wt. or more and 3.0 pts.wt. or less based on 100 pts.wt. of the foamable resin particle and having weight average molecular weight in terms of polystyrene of 150,000 or more and 250,000 or less.SELECTED DRAWING: None

Description

本発明は、フェニルアセチレン量を50ppm以上含有しているスチレン単量体を使用し、難燃性及び耐熱性に優れ、揮発性有機化合物の含有量が少ない発泡性樹脂粒子、製造方法、予備発泡粒子及び発泡成形体に関する。   The present invention uses a styrene monomer containing 50 ppm or more of phenylacetylene, is excellent in flame retardancy and heat resistance, and has a low content of volatile organic compounds, production method, pre-foaming The present invention relates to particles and a foamed molded product.

発泡性樹脂粒子として発泡性ポリスチレン樹脂粒子が良く知られている。発泡性ポリスチレン樹脂粒子は型内発泡成形により容易に成形体を得ることができ、安価であることから一般的に広く利用されている。発泡性ポリスチレン樹脂粒子は軽量性、断熱性能に優れる反面、ポリスチレンの耐熱性が低いために、配管の保温材、屋根用断熱材、自動車部材、ソーラーシステム用保温材、給湯器保温材などの比較的高温下での長期使用において、寸法安定性に問題があった。   Expandable polystyrene resin particles are well known as expandable resin particles. Expandable polystyrene resin particles are generally widely used because they can be easily obtained by in-mold foam molding and are inexpensive. Expandable polystyrene resin particles are excellent in light weight and heat insulation performance, but due to the low heat resistance of polystyrene, comparison of heat insulation materials for piping, heat insulation materials for roofs, automotive materials, solar system heat insulation materials, water heater insulation materials, etc. There was a problem with dimensional stability during long-term use under high temperatures.

上記課題を解決すべく、特許文献1、特許文献2において、アルファメチルスチレンとスチレンを共重合した耐熱性スチレン系樹脂粒子が記載されている。この耐熱性スチレン系樹脂粒子は耐熱性、難燃性に優れるものの、アルファメチルスチレンとスチレンの共重合では重合性の問題から残存スチレン系単量体を減らしづらく、高温での反応を実施する必要があった。   In order to solve the above problems, Patent Documents 1 and 2 describe heat-resistant styrene resin particles obtained by copolymerizing alphamethylstyrene and styrene. Although these heat-resistant styrene resin particles are excellent in heat resistance and flame retardancy, copolymerization of alphamethylstyrene and styrene makes it difficult to reduce residual styrenic monomers due to polymerization problems, and it is necessary to carry out reactions at high temperatures. was there.

特許文献3、4、5でスチレン/アクリロニトリル/アルファメチルスチレン系の耐熱性スチレン系樹脂粒子が紹介されている。この発明においては難燃性、耐熱性に優れ、残存スチレン系単量体も低減しているものの、難燃性を得るために難燃剤を大量に使用しており、残存モノマーの量と耐熱性が十分ではなかった。   Patent Documents 3, 4, and 5 introduce styrene / acrylonitrile / alpha-methylstyrene heat-resistant styrene resin particles. In this invention, the flame retardancy and heat resistance are excellent, and the residual styrene monomer is reduced, but a large amount of flame retardant is used to obtain flame retardancy. Was not enough.

一方で、スチレンの製造過程で副産物として生成するフェニルアセチレンは、スチレンの重合において、重合阻害物質として働き、フェニルアセチレンが多いと、最終製品中の残存スチレン量が多くなる。すくない揮発性有機物が要求される部材では、残存スチレン量を低減させるために、低濃度フェニルアセチレン量であるスチレンを原料として使用しているのが実情である。フェニルアセチレン量を50ppm以上含有するスチレンを用いた発泡性樹脂粒子に関しての記載はないが、残存スチレン量を低減する方法が種々開示されている。   On the other hand, phenylacetylene produced as a by-product in the production process of styrene acts as a polymerization inhibitor in the polymerization of styrene, and if there is a large amount of phenylacetylene, the amount of residual styrene in the final product increases. In a member that requires a light volatile organic substance, in order to reduce the amount of residual styrene, styrene having a low concentration of phenylacetylene is used as a raw material. Although there is no description about expandable resin particles using styrene containing a phenylacetylene amount of 50 ppm or more, various methods for reducing the residual styrene amount are disclosed.

例えば、特許文献6、特許文献7においては、可塑剤を不揮発性のものに代えると共に発泡性スチレン系樹脂粒子中に含まれる残存スチレン量を減少させるような発泡性スチレン系樹脂粒子について記され、重合温度を高くする、あるいは重合時間を長くすることにより、その目的が達成される。しかし、炭化水素系発泡剤を用いる重合系、あるいは、難燃性付与のため、例えばハロゲン系難燃剤を用いる重合系においては、開始剤の一次ラジカルが炭化水素系発泡剤、もしくはハロゲン系難燃剤に対して水素引き抜き反応を行うので、一般的な方法である高温度、長時間重合を実施した場合においても残存スチレン量は減少しにくい。   For example, Patent Document 6 and Patent Document 7 describe expandable styrene resin particles that change the plasticizer to a non-volatile one and reduce the amount of residual styrene contained in the expandable styrene resin particles. The purpose is achieved by increasing the polymerization temperature or extending the polymerization time. However, in a polymerization system using a hydrocarbon-based blowing agent or a polymerization system using a halogen-based flame retardant for imparting flame retardancy, for example, the primary radical of the initiator is a hydrocarbon-based blowing agent or a halogen-based flame retardant. In contrast, since the hydrogen abstraction reaction is performed, the amount of residual styrene is difficult to decrease even when polymerization is performed at a high temperature for a long time, which is a general method.

また、特許文献8においては残存スチレン量を300ppm以下にする方法が記されているが、発泡剤であるブタン添加後、120℃で6時間反応させるなど、極めて生産効率の悪い手段を用いて解決している。   Patent Document 8 describes a method for reducing the amount of residual styrene to 300 ppm or less. However, after adding butane as a foaming agent, the reaction is carried out at 120 ° C. for 6 hours. doing.

特許文献9では10時間半減期温度が50℃から80℃の低温型重合開始剤とn−ブチル−4,4−ビス(t−ブチルパーオキシ)バレレートを使用することで、水漏れ防止性に優れた発泡性スチレン系樹脂粒子の製造方法が開示されている。しかし、残存スチレン量に関する記載はなく、特に難燃剤を含んだ系では、特許文献で開示される方法では残存スチレン量は十分に低下しにくいという問題があった。   Patent Document 9 uses a low-temperature polymerization initiator having a 10-hour half-life temperature of 50 ° C. to 80 ° C. and n-butyl-4,4-bis (t-butylperoxy) valerate to prevent water leakage. A method for producing excellent expandable styrenic resin particles is disclosed. However, there is no description regarding the amount of residual styrene, and particularly in a system containing a flame retardant, there is a problem that the amount of residual styrene is not sufficiently lowered by the method disclosed in the patent literature.

特許文献10では、フェニルアセチレン含有量が200ppm以下のスチレンを用いて、塊状重合により、スチレン系樹脂粒子を製造する方法が開示されているが、水系懸濁重合で製造する発泡性スチレン系樹脂粒子とは使用分野が異なっている。   Patent Document 10 discloses a method for producing styrene resin particles by bulk polymerization using styrene having a phenylacetylene content of 200 ppm or less, but expandable styrene resin particles produced by aqueous suspension polymerization. The field of use is different.

特開2012−77149号公報JP 2012-77149 A 特許第5080226Patent No. 5080226 特開2007−246566号公報JP 2007-246666 A 特開2003−335891号公報JP 2003-335891 A 特開2001−181433号公報JP 2001-181433 A 特開2002−356575号公報JP 2002-356575 A 特開平10−17698号公報Japanese Patent Laid-Open No. 10-17698 特開平11−106548号公報JP-A-11-106548 特許第3597109号公報Japanese Patent No. 3597109 特開平5−222125号公報JP-A-5-222125

本発明の目的は、フェニルアセチレン量を50ppm以上含有しているスチレン単量体を用いて、難燃性、耐熱性、保温断熱性に優れ、揮発性有機化合物の含有量が少ない発泡成形体を提供することである。   The object of the present invention is to use a styrene monomer having a phenylacetylene content of 50 ppm or more, and to provide a foamed molded article having excellent flame retardancy, heat resistance and heat insulation properties, and having a low content of volatile organic compounds. Is to provide.

本発明者らは、鋭意検討の結果、本発明の完成に至った。すなわち、本発明は、以下のとおりである。   As a result of intensive studies, the present inventors have completed the present invention. That is, the present invention is as follows.

(1)フェニルアセチレン量が50ppm以上含有しているスチレン単量体60重量%以上75重量%以下、アクリロニトリル単量体21重量%以上27重量%以下、アルファメチルスチレン単量体3重量%以上15重量%以下からなる共重合体に、発泡剤を含んでなる発泡性樹脂粒子であって、発泡性樹脂粒子100重量部に対して、難燃剤を1.5重量部以上3.0重量部以下含有し、ポリスチレン換算の重量平均分子量が15万以上25万以下であることを特徴とする発泡性樹脂粒子。   (1) Styrene monomer having a phenylacetylene content of 50 ppm or more 60 wt% or more and 75 wt% or less, acrylonitrile monomer 21 wt% or more and 27 wt% or less, alphamethylstyrene monomer 3 wt% or more 15 A foaming resin particle comprising a foaming agent in a copolymer consisting of not more than wt%, wherein the flame retardant is 1.5 parts by weight or more and 3.0 parts by weight or less with respect to 100 parts by weight of the foaming resin particles. A foamable resin particle containing and having a polystyrene-equivalent weight average molecular weight of 150,000 to 250,000.

(2)難燃剤が、2,3−ジブロモ−2−アルキルプロビル基を有する含臭素有機化合物であることを特徴とする(1)記載の発泡性樹脂粒子。   (2) The expandable resin particle according to (1), wherein the flame retardant is a bromine-containing organic compound having a 2,3-dibromo-2-alkylpropyl group.

(3)2,3−ジブロモ−2−アルキルプロビル基を有する含臭素有機化合物がテトラブロモビスフェノールーA−ビス(2,3−ジブロモ−2−メチルプロピル)エーテルであることを特徴とする(1)または(2)記載の発泡性樹脂粒子。   (3) The bromine-containing organic compound having a 2,3-dibromo-2-alkylpropyl group is tetrabromobisphenol-A-bis (2,3-dibromo-2-methylpropyl) ether ( Expandable resin particles according to 1) or (2).

(4)残存スチレン単量体の含有量が300ppm以下であることを特徴とする(1)から(3)のいずれかに記載の発泡性樹脂粒子。   (4) The expandable resin particles according to any one of (1) to (3), wherein the content of residual styrene monomer is 300 ppm or less.

(5)アルキルパーエステル系二官能性重合開始剤を0.1重量部以上0.5重量部以下使用し、連鎖移動剤0.5重量部以上1.0重量部以下の存在下、85℃以上94℃以下で単量体を重合させ、単量体の転化率が90%以上99%以下に達した時点で、発泡剤を導入し、次いで、重合系の温度を106℃以上120℃以下で、発泡剤を含浸することを特徴とすることを特徴とする(1)から(4)のいずれかに記載の発泡性樹脂粒子の製造方法。   (5) An alkyl perester-based bifunctional polymerization initiator is used in an amount of 0.1 part by weight or more and 0.5 part by weight or less, and 85 ° C. in the presence of a chain transfer agent of 0.5 part by weight or more and 1.0 part by weight or less. When the monomer is polymerized at 94 ° C. or lower and the conversion rate of the monomer reaches 90% or higher and 99% or lower, a foaming agent is introduced, and then the temperature of the polymerization system is 106 ° C. or higher and 120 ° C. or lower. The method for producing expandable resin particles according to any one of (1) to (4), wherein the foaming agent is impregnated.

(6)アルキルパーエステル系二官能性重合開始剤が、ジ−t−ブチルパーオキシヘキサハイドロテレフタレート、連鎖移動剤がα−メチルスチレンダイマーであることを特徴とする(5)記載の発泡性樹脂粒子の製造方法。   (6) The expandable resin according to (5), wherein the alkyl perester-based bifunctional polymerization initiator is di-t-butylperoxyhexahydroterephthalate and the chain transfer agent is α-methylstyrene dimer. Particle production method.

(7)(1)から(6)のいずれかに記載の発泡性樹脂粒子を予備発泡してなることを特徴とする予備発泡粒子。   (7) Pre-expanded particles obtained by pre-expanding the expandable resin particles according to any one of (1) to (6).

(8)(7)に記載の予備発泡粒子を型内成形してなることを特徴とする発泡成形体。   (8) A foam-molded product obtained by molding the pre-expanded particles according to (7) in a mold.

本発明では、フェニルアセチレン量50ppm以上のスチレン単量体を用い、特定の難燃剤、製造方法で製造した発泡性スチレン系樹脂粒子を用いれば、少ない難燃剤でも優れた難燃性能を有し、耐熱性、断熱保温性に優れ、揮発性有機化合物の含有量が少ない発泡成形体を提供できる。   In the present invention, using a styrene monomer having an amount of phenylacetylene of 50 ppm or more, using a specific flame retardant, and an expandable styrene-based resin particle produced by a production method, the flame retardant has excellent flame retardancy even with a small amount of flame retardant. It is possible to provide a foamed molded article having excellent heat resistance and heat insulation heat retention and low content of volatile organic compounds.

以下,本発明の実施の形態をより詳細に説明する。   Hereinafter, embodiments of the present invention will be described in more detail.

本発明の発泡性樹脂粒子は、フェニルアセチレン量が50ppm以上含有しているスチレン単量体60重量%以上75重量%以下、アクリロニトリル単量体21重量%以上27重量%以下、アルファメチルスチレン単量体3重量%以上15重量%以下から選択された単量体を合計100重量%となるように共重合され、発泡剤を含んでなる発泡性樹脂粒子であって、発泡性樹脂粒子100重量部に対して臭素系難燃剤を1.5重量部以上3.0重量部以下含有し、ポリスチレン換算の重量平均分子量が15万以上25万以下であることを特徴とする。   The expandable resin particles of the present invention are composed of a styrene monomer having a phenylacetylene content of 50 ppm or more, 60 wt% or more and 75 wt% or less, an acrylonitrile monomer 21 wt% or more and 27 wt% or less, and an alpha methyl styrene monomer. Monomers selected from 3% by weight or more and 15% by weight or less of the body are copolymerized so that the total amount becomes 100% by weight, and the foaming resin particles include a foaming agent, and 100 parts by weight of the foamable resin particles In contrast, it is characterized by containing 1.5 to 3.0 parts by weight of a brominated flame retardant and having a polystyrene-equivalent weight average molecular weight of 150,000 to 250,000.

本発明に用いるスチレン単量体は、65重量%以上75重量%以下が好ましく、より好ましくは70重量%以上73重量%以下である。スチレン単量体成分が多いと耐熱性を得ることができず、少ないと成形性に劣る傾向がある。   The styrene monomer used in the present invention is preferably 65% by weight to 75% by weight, and more preferably 70% by weight to 73% by weight. When the styrene monomer component is large, heat resistance cannot be obtained, and when it is small, the moldability tends to be inferior.

又、フェニルアセチレン量が50ppm未満含有するスチレン単量体を用いた場合、最終製品の発泡性樹脂粒子の残存スチレン量が少なくなるが、スチレン単量体の製造過程で、フェニルアセチレンを除去する工程があり、スチレン単量体自体のコストが高くなる。汎用スチレンと呼ばれるスチレン単量体のフェニルアセチレン量は、50〜400ppmであり、本発明に用いるスチレン単量体は、フェニルアセチレンが50ppm以上含有するものである。   In addition, when a styrene monomer having a phenylacetylene content of less than 50 ppm is used, the residual styrene content in the foamable resin particles of the final product is reduced, but the process of removing phenylacetylene in the process of producing the styrene monomer This increases the cost of the styrene monomer itself. The amount of phenylacetylene of a styrene monomer called general-purpose styrene is 50 to 400 ppm, and the styrene monomer used in the present invention contains 50 ppm or more of phenylacetylene.

アクリロニトリル単量体は好ましくは23重量%以上25重量%以下が好ましい。アクリロニトリル単量体が多いと成形性が悪化し、多すぎると重合安定性が悪化する。アクリロニトリルが少ないと耐熱性が悪化し残存スチレン系単量体も低減しづらい傾向がある。   The acrylonitrile monomer is preferably 23% by weight or more and 25% by weight or less. When there are many acrylonitrile monomers, a moldability will deteriorate, and when too large, polymerization stability will deteriorate. If the amount of acrylonitrile is small, the heat resistance deteriorates and the residual styrene monomer tends to be difficult to reduce.

アルファメチルスチレン単量体は好ましくは4重量%以上10重量%以下であり、より好ましくは4重量部以上7重量部以下である。アルファメチルスチレン単量体が少ないと耐熱性を得ることができず、多いと難燃性が悪化し残存スチレン系単量体が残りやすい。   The alpha methyl styrene monomer is preferably 4% by weight or more and 10% by weight or less, and more preferably 4 parts by weight or more and 7 parts by weight or less. When the amount of alphamethylstyrene monomer is small, heat resistance cannot be obtained, and when it is large, flame retardancy deteriorates and residual styrene monomer tends to remain.

本発明の発泡性樹脂粒子は、難燃性を得るために、難燃剤としては特に制限はないが、2,3−ジブロモ−2−アルキルプロビル基を有する含臭素有機化合物であることが好ましい。難燃剤として臭素系有機化合物は1.5重量部以上3.0重量部以下含有されており、好ましくは1.8重量部以上2.5重量部以下である。臭素系難燃剤が少ないと十分な難燃性能を得ることができず、多いと残存モノマーが残りやすく成形性も悪化する。   In order to obtain flame retardancy, the expandable resin particles of the present invention are not particularly limited as a flame retardant, but are preferably bromine-containing organic compounds having a 2,3-dibromo-2-alkylpropyl group. . As a flame retardant, a bromine-based organic compound is contained in an amount of 1.5 to 3.0 parts by weight, preferably 1.8 to 2.5 parts by weight. When there are few brominated flame retardants, sufficient flame retardancy cannot be obtained, and when there are many brominated flame retardants, a residual monomer will remain easily and a moldability will also deteriorate.

2,3−ジブロモ−2−アルキルプロビル基を有する含臭素有機化合物としては、テトラブロモビスフェノールA−ビス(2,3−ジブロモ−2−メチルプロピル)エーテル、テトラブロモビスフェノールS−ビス(2,3−ジブロモ−2−メチルプロピル)エーテル、テトラブロモビスフェノールF−ビス(2,3−ジブロモ−2−メチルプロピル)エーテルなどがあげられ、中でも、テトラブロモビスフェノールA−ビス(2,3−ジブロモ−2−メチルプロピル)エーテルが、難燃性を効率よく発現することから好ましい。   Examples of bromine-containing organic compounds having a 2,3-dibromo-2-alkylpropyl group include tetrabromobisphenol A-bis (2,3-dibromo-2-methylpropyl) ether, tetrabromobisphenol S-bis (2, 3-dibromo-2-methylpropyl) ether, tetrabromobisphenol F-bis (2,3-dibromo-2-methylpropyl) ether, etc., among which tetrabromobisphenol A-bis (2,3-dibromo- 2-methylpropyl) ether is preferable because it effectively exhibits flame retardancy.

難燃剤は難燃助剤を併用しても良く、難燃助剤としては過酸化物などのラジカル発生剤が用いられ、ジクミルパーオキサイド、t−ブチルパーオキシベンゾエート、2,3−ジメチル−2,3−ジフェニルブタン、3,4−ジアルキル−3,4−ジフェニルヘキサンなどが挙げられ、なかでも重合への影響が小さく、かつ良好な難燃性能を得られるためには1時間半減期温度が130℃以上150℃以下の過酸化物が好ましく、ジクミルパーオキサイドが特に好ましい。難燃助剤の使用量は、発泡性樹脂粒子100重量部に対して0.3重量部以上1.5重量部以下含有するこが好ましい。難燃助剤が少ないと難燃性能が悪化し、多いと耐熱性が悪化する傾向にある。   As the flame retardant, a flame retardant aid may be used in combination. As the flame retardant aid, a radical generator such as peroxide is used, and dicumyl peroxide, t-butyl peroxybenzoate, 2,3-dimethyl- 2,3-diphenylbutane, 3,4-dialkyl-3,4-diphenylhexane, and the like. Among them, in order to obtain a good flame retardancy with little influence on polymerization, a one-hour half-life temperature Is preferably a peroxide of 130 ° C. or higher and 150 ° C. or lower, and particularly preferably dicumyl peroxide. The flame retardant aid is preferably used in an amount of 0.3 to 1.5 parts by weight based on 100 parts by weight of the expandable resin particles. When the amount of the flame retardant aid is small, the flame retardancy is deteriorated, and when the amount is large, the heat resistance tends to be deteriorated.

本発明で使用される重合開始剤は、一般的には、主に樹脂を形成する為(重合工程)の重合開始剤と、残存スチレン量を低下させる為(発泡剤含浸工程)の重合開始剤を併用させることが通常行われている。そして、これらの開始剤の選定は重合温度、重合時間、および必要とする樹脂の分子量を勘案して適宜決められる。   The polymerization initiator used in the present invention is generally a polymerization initiator mainly for forming a resin (polymerization step) and a polymerization initiator for reducing the amount of residual styrene (foaming agent impregnation step). It is usually performed to use together. The selection of these initiators is appropriately determined in consideration of the polymerization temperature, the polymerization time, and the required molecular weight of the resin.

主に樹脂を形成する(重合工程)為の重合開始剤としては、一般に熱可塑性重合体の製造に用いられるラジカル発生型重合開始剤を用いることができ、代表的なものとしては、例えば、過酸化ベンゾイル、ラウロイルパーオキサイド、t−ブチルパーオキシ−2−エチルヘキサノエート、t−ブチルパーピバレート、t−ブチルパーオキシイソプロピルカーボネート、ジ−t−ブチルパーオキシヘキサハイドロテレフタレート、1,1−ジ(t−ブチルパーオキシ)3,3,5−トリメチルシクロヘキサン、1,1−ジ(t−ブチルパーオキシ)シクロヘキサン、ジ−t−ブチルパーオキシヘキサハイドロテレフタレートなどの有機過酸化物や、アゾビスイソブチロニトリル、アゾビスジメチルバレロニトリルなどのアゾ化合物が挙げられる。これらの重合開始剤は、単独で使用してもよいし、2種以上を併用しても良い。中でも本発明の単量体組成においては10時間半減期温度が85℃以上94℃以下の開始剤を用い、85℃以上95℃以下で一段階目の重合を行うことが重合反応を制御する上で好ましく、中でも、アルキルパーエステル系二官能性重合開始剤が重合速度と分子量の調整を行いやすいため好ましい。特に、ジ−t−ブチルパーオキシヘキサハイドロテレフタレート(10時間半減期温度83℃)の使用が好ましい。一段階目の重合に用いられる重合開始剤の使用量としては、0.1重量部以上、0.5重量部以下が好ましく、0.2重量部0.4重量部以下がより好ましい。重合開始剤の量が少ないと重合が十分に進行しない可能性があり、多すぎる場合には重合反応が急速に進み重合の制御が難しい可能性がある。   As a polymerization initiator mainly for forming a resin (polymerization step), a radical-generating polymerization initiator generally used for the production of thermoplastic polymers can be used. Benzoyl oxide, lauroyl peroxide, t-butylperoxy-2-ethylhexanoate, t-butylperpivalate, t-butylperoxyisopropyl carbonate, di-t-butylperoxyhexahydroterephthalate, 1,1- Organic peroxides such as di (t-butylperoxy) 3,3,5-trimethylcyclohexane, 1,1-di (t-butylperoxy) cyclohexane, di-t-butylperoxyhexahydroterephthalate, azo Examples include azo compounds such as bisisobutyronitrile and azobisdimethylvaleronitrile.These polymerization initiators may be used alone or in combination of two or more. In particular, in the monomer composition of the present invention, using an initiator having a 10-hour half-life temperature of 85 ° C. or higher and 94 ° C. or lower, and performing the first stage polymerization at 85 ° C. or higher and 95 ° C. or lower controls the polymerization reaction. Among them, an alkyl perester-based bifunctional polymerization initiator is preferable because it is easy to adjust the polymerization rate and the molecular weight. In particular, it is preferable to use di-t-butylperoxyhexahydroterephthalate (10-hour half-life temperature 83 ° C.). The amount of the polymerization initiator used in the first stage polymerization is preferably 0.1 part by weight or more and 0.5 part by weight or less, and more preferably 0.2 part by weight or less 0.4 part by weight. If the amount of the polymerization initiator is small, the polymerization may not proceed sufficiently. If it is too large, the polymerization reaction may proceed rapidly and it may be difficult to control the polymerization.

又、残存スチレン量を低下させる(発泡剤含浸工程)ための重合開始剤としては、10時間半減期温度が90℃以上、100℃以下のものが好ましく、1,1−ビス(t−アミルパーオキシ)−3,3,5−トリメチルシクロヘキサン(10時間半減期温度92℃)、1,1−ビス(t−ブチルパーオキシ)シクロヘキサン(10時間半減期温度97℃)、t−ブチルパーオキシ−2−エチルヘキシルモノカーボネート(10時間半減期温度99℃)、t−アミルパーオキシ−2−エチルヘキシルモノカーボネート(10時間半減期温度98.5℃)などが挙げられる。   The polymerization initiator for reducing the amount of residual styrene (foaming agent impregnation step) is preferably one having a 10-hour half-life temperature of 90 ° C. or more and 100 ° C. or less, and 1,1-bis (t-amyl par Oxy) -3,3,5-trimethylcyclohexane (10-hour half-life temperature 92 ° C.), 1,1-bis (t-butylperoxy) cyclohexane (10-hour half-life temperature 97 ° C.), t-butyl peroxy- 2-ethylhexyl monocarbonate (10-hour half-life temperature 99 ° C), t-amylperoxy-2-ethylhexyl monocarbonate (10-hour half-life temperature 98.5 ° C), and the like.

これらの開始剤は、0.1重量部以上0.5重量部以下が好ましく、より好ましくは0.15重量部以上0.3重量部以下である。重合開始剤の量が少ない場合は、残存スチレン系単量体が残りやすく、多い場合には分子量の調整が難しくなる。   These initiators are preferably 0.1 parts by weight or more and 0.5 parts by weight or less, more preferably 0.15 parts by weight or more and 0.3 parts by weight or less. When the amount of the polymerization initiator is small, the residual styrene monomer tends to remain, and when it is large, it is difficult to adjust the molecular weight.

本発明で使用される連鎖移動剤としては、n−オクチルメルカプタン、n−ドデシルメルカプタン、t−ドデシルメルカプタン等メルカプタン系の連鎖移動剤やアクリロニトリル−スチレン系樹脂の重合に一般的に用いられるα−メチルスチレンダイマー等を重合調整剤として使用できる。使用量としては0.5重量部以上1.0重量部以下使用すると重合速度や分子量を調整しやすく、なかでもα−メチルスチレンダイマーを用いると発泡体の臭気が発生せず好ましい。   Examples of the chain transfer agent used in the present invention include α-methyl which is generally used for polymerization of mercaptan chain transfer agents such as n-octyl mercaptan, n-dodecyl mercaptan, t-dodecyl mercaptan, and acrylonitrile-styrene resins. Styrene dimer or the like can be used as a polymerization regulator. The amount used is preferably 0.5 parts by weight or more and 1.0 parts by weight or less, and the polymerization rate and molecular weight can be easily adjusted. Among them, the use of α-methylstyrene dimer is preferable because the odor of the foam does not occur.

本発明の発泡性樹脂粒子は上記重合開始剤や連鎖移動剤と重合条件を組み合わせることで分子量を調整できる。重量平均分子量は15万以上25万以下、好ましくは17万以上22万以下である。重量平均分子量15万以下では得られる発泡成形体の強度や難燃性が低くなる傾向にあり、25万以上では成形性が悪化する傾向にある。   The molecular weight of the expandable resin particles of the present invention can be adjusted by combining the polymerization initiator and chain transfer agent with polymerization conditions. The weight average molecular weight is 150,000 to 250,000, preferably 170,000 to 220,000. If the weight average molecular weight is 150,000 or less, the strength and flame retardancy of the obtained foamed molded product tend to be low, and if it is 250,000 or more, the moldability tends to deteriorate.

発明において使用する添加剤としては、目的に応じて可塑剤、気泡調整剤等が使用できる。可塑剤としては、沸点200℃以上の高沸点可塑剤が挙げられ、例えば、ステアリン酸トリグリセライド、パルミチン酸トリグリセライド、ラウリン酸トリグリセライド、ステアリン酸ジグリセライド、ステアリン酸モノグリセライド等の脂肪酸グリセライド、ヤシ油、パーム油、パーム核油等の植物油、ジオクチルアジペート、ジブチルセバケート等の脂肪族エステル、流動パラフィン、シクロヘキサン等の有機炭化水素等があげられるが、これらの使用により耐熱性が悪化する傾向にあるため、使用しないことが好ましい。   As the additive used in the invention, a plasticizer, a bubble regulator or the like can be used depending on the purpose. Examples of the plasticizer include high-boiling plasticizers having a boiling point of 200 ° C. or higher. Examples include vegetable oils such as palm kernel oil, aliphatic esters such as dioctyl adipate and dibutyl sebacate, and organic hydrocarbons such as liquid paraffin and cyclohexane, but they are not used because they tend to deteriorate the heat resistance. It is preferable.

気泡調整剤としては、例えば、メチレンビスステアリン酸アマイド、エチレンビスステアリン酸アマイド等の脂肪族ビスアマイド、ポリエチレンワックス等が挙げられる。   Examples of the air conditioner include aliphatic bisamides such as methylene bis stearic acid amide and ethylene bis stearic acid amide, polyethylene wax, and the like.

本発明の発泡性樹脂粒子の製造方法は、水系懸濁液中で行う懸濁重合法で行われ、(1)重合工程、(2)発泡剤仕込工程、(3)発泡剤含浸工程、(4)冷却・乾燥工程を経て、製造される。   The method for producing expandable resin particles of the present invention is carried out by a suspension polymerization method carried out in an aqueous suspension. (1) Polymerization step, (2) Foaming agent charging step, (3) Foaming agent impregnation step, ( 4) Manufactured through a cooling and drying process.

(1)重合工程
所定量の水性懸濁媒体中に、樹脂形成をする二官能性重合開始剤、残存スチレン量を低下させる重合開始剤と共に、スチレン単量体、アクリロニトリル単量体、αメチルスチレン単量体、連鎖移動剤、その他添加剤を添加し、所定の温度、好ましくは85℃以上94℃未満で一定時間重合し、スチレン系単量体の重合転化率が90%以上99%以下に達した時点で重合工程を完了させる。
(1) Polymerization step A bifunctional polymerization initiator for forming a resin in a predetermined amount of an aqueous suspension medium, a polymerization initiator for reducing the amount of residual styrene, a styrene monomer, an acrylonitrile monomer, α-methylstyrene A monomer, a chain transfer agent, and other additives are added, and polymerization is performed at a predetermined temperature, preferably 85 ° C. or more and less than 94 ° C. for a certain period of time, and the polymerization conversion rate of the styrene monomer is 90% or more and 99% or less. When reached, the polymerization process is completed.

発泡性スチレン系樹脂粒子の水系懸濁重合の分散剤としては、一般的に用いられている分散剤、例えば、燐酸カルシウム、ハイドロキシアパタイト、ピロリン酸マグネシウムなどの難水溶性無機塩が挙げられる。これら、難水溶性無機塩を用いる場合には、α−オレフィンスルフォン酸ソーダ、ドデシルベンゼンスルフォン酸ソーダなどのアニオン性界面活性剤を併用すると、分散安定性が増すので効果的である。また、難溶性無機塩は得られる押出発泡ボード用発泡性スチレン系樹脂粒子の粒子径を調節するために、重合中に1回以上追加することもある。   Examples of the dispersant for aqueous suspension polymerization of expandable styrene resin particles include commonly used dispersants such as poorly water-soluble inorganic salts such as calcium phosphate, hydroxyapatite, and magnesium pyrophosphate. When these poorly water-soluble inorganic salts are used, the use of an anionic surfactant such as α-olefin sodium sulfonate or dodecylbenzene sodium sulfonate is effective because the dispersion stability increases. Further, the hardly soluble inorganic salt may be added one or more times during the polymerization in order to adjust the particle diameter of the resulting expandable styrene resin particles for extruded foam board.

(2)発泡剤仕込工程
次いで、単量体の転化率が90%以上99%以下に達した時点で、重合工程の温度、好ましくは85℃以上94℃未満で、発泡剤を添加し、スチレン系樹脂粒子中に含浸させる。重合転化率が90%未満で発泡剤を添加すると、重合系内に存在しているラジカルが、発泡剤へ連鎖移動し、最終製品の残存スチレン量が多くなる傾向があり、重合転化率99%を超えると、残存スチレン量がすくなくなるものの、反応時間が長くなる。
(2) Foaming agent charging step Next, when the monomer conversion rate reaches 90% or more and 99% or less, a blowing agent is added at a temperature of the polymerization step, preferably 85 ° C or more and less than 94 ° C, and styrene. Impregnation into the system resin particles. When a foaming agent is added at a polymerization conversion rate of less than 90%, radicals present in the polymerization system are chain-transferred to the foaming agent, and the amount of residual styrene in the final product tends to increase, and the polymerization conversion rate is 99%. Exceeding the amount of residual styrene makes the reaction time longer.

本発明において使用する発泡剤としては、プロパン、イソブタン、ノルマルブタン、イソペンタン、ノルマルペンタン、ネオペンタンよりなる群から選ばれる少なくとも1種以上が使用される。使用量としては樹脂粒子100重量部に対して、好ましくは2重量部以上10重量部以下、更に好ましくは4重量部以上8重量部以下である。   As the blowing agent used in the present invention, at least one selected from the group consisting of propane, isobutane, normal butane, isopentane, normal pentane, and neopentane is used. The amount used is preferably 2 to 10 parts by weight, more preferably 4 to 8 parts by weight, with respect to 100 parts by weight of the resin particles.

(3)発泡剤含浸工程
発泡剤を添加した後、重合系内の温度を106℃以上120℃以下に上昇させ、一定時間、発泡剤を樹脂粒子中に含浸させる。発泡剤含浸温度が106℃以上120℃以下の場合、発泡剤の含浸が効率よく進み、更に、フェニルアセチレン量が50ppm以上のスチレンを用いても、スチレンの重合が進行し、最終製品の残存スチレン量が低減する。しかし、105℃未満の場合、残存スチレン量を低減する重合開始剤のラジカル発生が少なくなり、生産性が低下すると同時に、樹脂粒子への発泡剤の含浸度合が悪く、発泡粒子のセル構造が不均一となり、得られる発泡成形体表面にクボミ等の外観を損ねることになる。一方、120℃を超えると、発泡剤の含浸は良くなるが、重合機の内圧が高くなり、重装備の耐圧を有する重合機仕様が必要となる場合がある。
(3) Foaming agent impregnation step After adding the foaming agent, the temperature in the polymerization system is raised to 106 ° C or higher and 120 ° C or lower, and the foaming agent is impregnated into the resin particles for a certain period of time. When the foaming agent impregnation temperature is 106 ° C. or more and 120 ° C. or less, the impregnation of the foaming agent proceeds efficiently, and even when styrene having a phenylacetylene content of 50 ppm or more is used, the polymerization of styrene proceeds and the residual styrene of the final product The amount is reduced. However, when the temperature is lower than 105 ° C., radical generation of the polymerization initiator that reduces the amount of residual styrene is reduced, productivity is lowered, and at the same time, the degree of impregnation of the foaming agent into the resin particles is poor, and the cell structure of the foamed particles is poor. It becomes uniform, and the surface of the resulting foamed molded product is damaged in appearance such as burrs. On the other hand, when the temperature exceeds 120 ° C., the impregnation with the foaming agent is improved, but the internal pressure of the polymerization machine becomes high, and a polymerization machine specification having a pressure resistance of heavy equipment may be required.

(4)冷却・乾燥工程
発泡剤含浸の所定時間が終了したら、重合温度を冷却、乾燥を経て、本発明の押出発泡ボード用の発泡性ポリスチレン系樹脂粒子が得られる。最終製品の残存スチレン系単量体量が300ppm以下であり、好ましくは300pm以下である。下限は、実用的には0ppmになり難いので敢えて表示するなら1ppm以上である。
(4) Cooling / Drying Step When the predetermined time for impregnating the foaming agent is completed, the polymerization temperature is cooled and dried to obtain expandable polystyrene resin particles for the extruded foam board of the present invention. The amount of residual styrenic monomer in the final product is 300 ppm or less, preferably 300 pm or less. The lower limit is practically less than 0 ppm, so it is 1 ppm or more if dare to display.

得られた発泡性樹脂粒子は、一般的な予備発泡方法によって、予備発泡粒子とすることができる。具体的には攪拌機を具備した容器内に入れ水蒸気等の熱源により加熱することで、所望の発泡倍率までに予備発泡を行う。   The obtained expandable resin particles can be made into pre-expanded particles by a general pre-expand method. Specifically, it is placed in a container equipped with a stirrer and heated by a heat source such as water vapor to perform preliminary foaming up to a desired foaming ratio.

更に予備発泡粒子は、一般的な型内成形方法によって成形し、発泡成形体にすることができる。具体的には、閉鎖し得るが密閉しえない金型内に充填し、水蒸気により加熱融着することで発泡成形体とする。   Further, the pre-expanded particles can be molded by a general in-mold molding method to form a foam molded body. Specifically, it is filled in a mold that can be closed but cannot be sealed, and heat-sealed with water vapor to obtain a foamed molded article.

本発明の発泡成形体は発泡倍率50倍に予備発泡し、成形した場合の断熱材や自動車内装材に使用した場合に十分な難燃性能を発揮するために酸素指数が28以上であることが好ましい。   The foamed molded product of the present invention is pre-foamed at a foaming ratio of 50 times and has an oxygen index of 28 or more in order to exhibit sufficient flame retardancy when used as a heat insulating material or automobile interior material when molded. preferable.

本発明の発泡成形体を保温材に使用する際に好ましい耐熱性としては90℃以上で使用した際に変形が小さいことが好ましく、具体的には発泡倍率50倍に予備発泡し、成形した成形体の90℃、24時間における寸法変化率が0.5%以下であることが好ましい。   When the foamed molded product of the present invention is used as a heat insulating material, it is preferable that the heat resistance is small when it is used at 90 ° C. or more. Specifically, the molded product is prefoamed and molded at a foaming ratio of 50 times. The dimensional change rate of the body at 90 ° C. for 24 hours is preferably 0.5% or less.

以下に実施例、及び比較例を挙げるが、本発明はこれによって限定されるものではない。なお、実施例、及び比較例中の樹脂の分子量、及び樹脂中の残存スチレン量、スチレン単量体中のフェニルアセチレン量、難燃性の評価については以下の方法で測定した。なお、「部」「%」は特に断りのない限り重量基準である。   Examples and Comparative Examples are given below, but the present invention is not limited thereby. In addition, about the molecular weight of resin in an Example and a comparative example, the amount of residual styrene in resin, the amount of phenyl acetylene in a styrene monomer, and evaluation of a flame retardance, it measured with the following method. “Parts” and “%” are based on weight unless otherwise specified.

(スチレンのフェニルアセチレン測定法)
フェニルアセチレン量0ppmのスチレンを用いて、フェニルアセチレン量とシクロペンタノール量の比から導いたフェニルアセチレン量の検量線を作成した。
(Method for measuring phenylacetylene in styrene)
A calibration curve for the amount of phenylacetylene derived from the ratio of the amount of phenylacetylene and the amount of cyclopentanol was prepared using styrene having an amount of phenylacetylene of 0 ppm.

スチレンに、内部標準シクロペンタノールを溶解し、(株)島津製作所製ガスクロマトグラフィーGC−2014(キャピラリーカラム:GLサイエンス製Rtx−1、カラム温度条件:50→70℃(3℃/min)へ昇温し、70℃で30分保持後。70→170℃(10℃/min)へ昇温、キャリアガス:ヘリウム)を用いて、スチレン中のフェニルアセチレン量(ppm)を定量した。   The internal standard cyclopentanol is dissolved in styrene, and gas chromatography GC-2014 manufactured by Shimadzu Corporation (capillary column: Rtx-1 manufactured by GL Sciences, column temperature condition: 50 → 70 ° C. (3 ° C./min) After heating and holding at 70 ° C. for 30 minutes, the temperature was raised from 70 to 170 ° C. (10 ° C./min), and the amount of phenylacetylene (ppm) in styrene was quantified using a carrier gas: helium.

(重合工程終了時の重合転化率の測定)
重合工程終了時の懸濁スラリーを採取し、スラリーをろ過後、樹脂粒子を風乾した。得られた樹脂粒子0.25gを塩化メチレン20cc(内部標準シクロペンタノール)に溶解し、ガスクロマトグラフィー(島津製作所製 GC−14B、カラム:3m、充填剤:PEG−20M 25%、カラム温度:110℃、キャリアガス:ヘリウム)を用いて、樹脂粒子中に含まれる残存単量体量を検量線から定量し、重合転化率を測定した。
(Measurement of polymerization conversion rate at the end of the polymerization process)
The suspension slurry at the end of the polymerization step was collected, the slurry was filtered, and the resin particles were air-dried. 0.25 g of the obtained resin particles were dissolved in 20 cc of methylene chloride (internal standard cyclopentanol), and gas chromatography (GC-14B manufactured by Shimadzu Corporation, column: 3 m, filler: PEG-20M 25%, column temperature: 110 degreeC, carrier gas: helium), the amount of residual monomers contained in the resin particles was quantified from the calibration curve, and the polymerization conversion was measured.

(分子量測定法)
発泡性樹脂粒子0.02gをテトラヒドロフラン20ccに溶解し、GPC(東ソー(株)製HLC−8020、カラム:TSKgel Super HZM−H、カラム温度:40℃、流速:0.35ml/1min.)にて測定した。重量平均分子量は標準ポリスチレンの換算値として求めた。
(Molecular weight measurement method)
0.02 g of expandable resin particles were dissolved in 20 cc of tetrahydrofuran, and GPC (HLC-8020 manufactured by Tosoh Corporation, column: TSKgel Super HZM-H, column temperature: 40 ° C., flow rate: 0.35 ml / 1 min.) It was measured. The weight average molecular weight was determined as a converted value of standard polystyrene.

(残存スチレン単量体測定法)
発泡性樹脂粒子0.25gを塩化メチレン20cc(内部標準シクロペンタノール)に溶解し、ガスクロマトグラフィー(島津製作所製 GC−14B、カラム:3m、充填剤:PEG−20M 25%、カラム温度:110℃、キャリアガス:ヘリウム)を用いて、発泡性樹脂粒子中に含まれる残存スチレン単量体量を検量線から定量し、その合計値が発泡性樹脂粒子に対して0.03%以下で合格とした。検出下限を下回ったものはNDと表記した。
(Measurement of residual styrene monomer)
0.25 g of expandable resin particles were dissolved in 20 cc of methylene chloride (internal standard cyclopentanol), and gas chromatography (GC-14B, manufactured by Shimadzu Corporation), column: 3 m, packing agent: PEG-20M 25%, column temperature: 110 ℃, carrier gas: helium), the amount of residual styrene monomer contained in the expandable resin particles was quantified from the calibration curve, and the total value passed 0.03% or less of the expandable resin particles. It was. Those below the lower limit of detection were denoted as ND.

(予備発泡粒子の製造)
発泡性樹脂粒子を篩い分けして粒子径0.5〜1.4mmの発泡性樹脂粒子を分取した。
(Production of pre-expanded particles)
The expandable resin particles were sieved to obtain expandable resin particles having a particle diameter of 0.5 to 1.4 mm.

分取した発泡性樹脂粒子を、加圧式予備発泡機「大開工業製、BHP」を用いて、吹き込み蒸気圧0.09〜0.10MPaの条件でかさ倍率50倍への予備発泡し、その後、常温下で1日放置して嵩倍率50倍の予備発泡粒子を得た。   The fractionated expandable resin particles were prefoamed to a bulk magnification of 50 times under the condition of a blowing vapor pressure of 0.09 to 0.10 MPa using a pressure type prefoaming machine “Daikai Kogyo Co., Ltd., BHP”. This was left for 1 day to obtain pre-expanded particles having a bulk magnification of 50 times.

(発泡成形体の製造)
得られた予備発泡粒子を、成形機「ダイセン製、KR−57」を用いて吹き込み蒸気圧0.05MPaで型内成形を行うことで、厚み20mmで長さ400mm×幅350mmの平板状の発泡成形体を得た。
(Manufacture of foam moldings)
The obtained pre-expanded particles are blown into a mold using a molding machine “Daisen, KR-57” at a blown vapor pressure of 0.05 MPa, thereby forming a flat-plate foam having a thickness of 20 mm, a length of 400 mm and a width of 350 mm. A molded body was obtained.

(成形体の表面性)
発泡成形体の表面の状態を目視観察にて評価した。数値が大きいほうが粒子同士の隙間が少ない美麗な表面状態であり、5点満点で表現した3以上を合格とした。
5:隙間が見当たらない
4:部分的に隙間があるが、ほとんどわからない
3:ところどころ隙間があるが、全体としては許容できる
2:隙間が目立つ
1:隙間が多い
(Surface properties of molded products)
The state of the surface of the foamed molded product was evaluated by visual observation. The larger the numerical value, the more beautiful the surface state with few gaps between particles, and 3 or more expressed with a perfect score of 5 was regarded as acceptable.
5: Gaps are not found 4: There are some gaps, but I don't really know 3: There are some gaps, but it is acceptable as a whole 2: Gaps are conspicuous 1: There are many gaps

(酸素指数)
成形体倍率50倍の発泡成形体を60℃、12時間乾燥させた。その後、10×10×200mmに切り出したサンプル片を、JIS K7201(酸素指数による燃焼性の試験方法)に準拠して測定し、28以上を合格とした。
(Oxygen index)
A foamed molded product having a molded product magnification of 50 was dried at 60 ° C. for 12 hours. Then, the sample piece cut out to 10x10x200mm was measured based on JISK7201 (flammability test method by an oxygen index), and 28 or more was set as the pass.

(90℃寸法収縮率)
成形体倍率50倍の発泡成形体を60℃、24時間乾燥させた。その後、長さ150、幅150、厚み20(t)mmに成形体を切り出し、長さ方向と幅方向の寸法をそれぞれ3箇所ずつ測定することで初期の寸法(A)を求めた。その後、90℃の乾燥機内で168時間放置し、放置した後に同様の測定を行い、寸法(B)を求めた。以下の式により寸法収縮率を求め、0.5%以下を合格とした。
寸法収縮率(%)=((A)―(B))/(A)×100
(Dimension shrinkage at 90 ° C)
A foamed molded product having a molded product magnification of 50 was dried at 60 ° C. for 24 hours. Thereafter, the molded body was cut out to a length of 150, a width of 150, and a thickness of 20 (t) mm, and the initial dimension (A) was determined by measuring the length and width dimensions at three locations. Then, it was left to stand in a dryer at 90 ° C. for 168 hours, and after leaving it to stand, the same measurement was performed to determine the dimension (B). The dimensional shrinkage rate was calculated by the following formula, and 0.5% or less was accepted.
Dimensional shrinkage (%) = ((A)-(B)) / (A) × 100

(実施例1〜10、比較例1〜7)
撹拌機付き6Lオートクレーブに水110重量部、第3リン酸カルシウム0.105重量部、α−オレインスルフォン酸ソーダ0.0075重量部、及び、表1に記載の量の重合開始剤、連鎖移動剤、難燃剤、難燃助剤、可塑剤を仕込み、真空ポンプでゲージ圧−0.06MPaまで脱酸した。その後、攪拌機による攪拌を開始し、表1に記載の量のスチレン、アルファメチルスチレン、アクリロニトリルを仕込んで30分間攪拌を行った。尚、スチレンは、スチレン中のフェニルアセチレン量を測定し、フェニルアセチレン純品を添加し、量調整したものを使用した。その後、90℃まで昇温し、90℃で5時間30分保持することで第一の重合を完了した。その時の重合転化率は表1に記載する。
(Examples 1-10, Comparative Examples 1-7)
In a 6 L autoclave with a stirrer, 110 parts by weight of water, 0.105 part by weight of tricalcium phosphate, 0.0075 part by weight of sodium α-olein sulfonate, and a polymerization initiator, a chain transfer agent in the amounts shown in Table 1, difficulty A flame retardant, a flame retardant aid, and a plasticizer were charged and deoxidized with a vacuum pump to a gauge pressure of -0.06 MPa. Thereafter, stirring with a stirrer was started, and styrene, alphamethylstyrene, and acrylonitrile in amounts shown in Table 1 were charged, and stirring was performed for 30 minutes. In addition, the styrene used the thing which measured the amount of phenyl acetylene in styrene, added the phenyl acetylene pure goods, and adjusted the quantity. Thereafter, the temperature was raised to 90 ° C. and held at 90 ° C. for 5 hours and 30 minutes to complete the first polymerization. The polymerization conversion at that time is shown in Table 1.

次いで、ノルマルリッチブタン(ノルマル/イソ=70/30)を4.6重量部仕込んだ。発泡剤の含浸温度、含浸時間を表1に記載する。その後、40℃まで冷却し、脱水、乾燥することで発泡性樹脂粒子を取り出した。発泡性樹脂粒子について分子量、残存スチレン系単量体を測定した。結果は表1に記載した。   Next, 4.6 parts by weight of normal rich butane (normal / iso = 70/30) was charged. Table 1 shows the impregnation temperature and impregnation time of the blowing agent. Thereafter, the foamed resin particles were taken out by cooling to 40 ° C., dehydration and drying. The molecular weight and residual styrene monomer were measured for the expandable resin particles. The results are shown in Table 1.

得られた発泡性樹脂粒子を予備発泡することで嵩密度50倍の予備発泡粒子を得たのち、更に型内成形することで50倍の発泡成形体を得た。   The foamable resin particles obtained were prefoamed to obtain prefoamed particles having a bulk density of 50 times, and further molded in-mold to obtain a 50-fold foamed molded product.

得られた発泡成形体について、表面性、酸素指数、90℃寸法変化率の評価を行った。結果は表1に記載した。   About the obtained foaming molding, surface property, an oxygen index, and 90 degreeC dimensional-change rate were evaluated. The results are shown in Table 1.

本件発明の範囲である実施例1〜10のものは、残存スチレン系単量体、成形体の表面性、酸素指数、90℃寸法変化率を合格していたが、比較例1〜5のものは本件発明の要件から外れるため、いずれかが不合格であった。   Although the thing of Examples 1-10 which is the range of this invention passed the residual styrene-type monomer, the surface property of a molded object, an oxygen index, and 90 degreeC dimensional change rate, it is a thing of Comparative Examples 1-5 Is not acceptable because it deviates from the requirements of the present invention.

比較例6は、スチレン中のフェニルアセチレン量がNDであるが、スチレン単価が高価である。   In Comparative Example 6, the amount of phenylacetylene in styrene is ND, but the unit price of styrene is expensive.

Figure 2016164213
Figure 2016164213

Claims (8)

フェニルアセチレン量が50ppm以上含有しているスチレン単量体60重量%以上75重量%以下、アクリロニトリル単量体21重量%以上27重量%以下、アルファメチルスチレン単量体3重量%以上15重量%以下からなる共重合体に、発泡剤を含んでなる発泡性樹脂粒子であって、発泡性樹脂粒子100重量部に対して、難燃剤を1.5重量部以上3.0重量部以下含有し、ポリスチレン換算の重量平均分子量が15万以上25万以下であることを特徴とする発泡性樹脂粒子。 Styrene monomer having a phenylacetylene content of 50 ppm or more 60% to 75% by weight, acrylonitrile monomer 21% to 27% by weight, alphamethylstyrene monomer 3% to 15% by weight A foaming resin particle comprising a foaming agent in a copolymer comprising, containing 100 parts by weight of the foaming resin particle, 1.5 parts by weight or more and 3.0 parts by weight or less of a flame retardant, Expandable resin particles having a weight average molecular weight in terms of polystyrene of 150,000 to 250,000. 難燃剤が、2,3−ジブロモ−2−アルキルプロビル基を有する含臭素有機化合物であることを特徴とする請求項1記載の発泡性樹脂粒子。 2. The expandable resin particle according to claim 1, wherein the flame retardant is a bromine-containing organic compound having a 2,3-dibromo-2-alkylpropyl group. 2,3−ジブロモ−2−アルキルプロビル基を有する含臭素有機化合物がテトラブロモビスフェノールーA−ビス(2,3−ジブロモ−2−メチルプロピル)エーテルであることを特徴とする請求項1または2記載の発泡性樹脂粒子。 2. The bromine-containing organic compound having a 2,3-dibromo-2-alkylpropyl group is tetrabromobisphenol-A-bis (2,3-dibromo-2-methylpropyl) ether. 2. The expandable resin particle according to 2. 残存スチレン単量体の含有量が300ppm以下であることを特徴とする請求項1から3のいずれかに記載の発泡性樹脂粒子。 The expandable resin particle according to any one of claims 1 to 3, wherein the content of the residual styrene monomer is 300 ppm or less. アルキルパーエステル系二官能性重合開始剤を0.1重量部以上0.5重量部以下使用し、連鎖移動剤0.5重量部以上1.0重量部以下の存在下、85℃以上94℃以下で単量体を重合させ、単量体の転化率が90%以上99%以下に達した時点で、発泡剤を導入し、次いで、重合系の温度を106℃以上120℃以下で、発泡剤を含浸することを特徴とすることを特徴とする請求項1から4のいずれかに記載の発泡性樹脂粒子の製造方法。 An alkyl perester-based bifunctional polymerization initiator is used in an amount of 0.1 to 0.5 parts by weight, and in the presence of 0.5 to 1.0 parts by weight of a chain transfer agent, 85 ° C to 94 ° C. The monomer is polymerized below, and when the conversion rate of the monomer reaches 90% or more and 99% or less, a foaming agent is introduced, and then the temperature of the polymerization system is 106 ° C or more and 120 ° C or less and foaming is performed. The method for producing expandable resin particles according to any one of claims 1 to 4, wherein the agent is impregnated. アルキルパーエステル系二官能性重合開始剤が、ジ−t−ブチルパーオキシヘキサハイドロテレフタレート、連鎖移動剤がα−メチルスチレンダイマーであることを特徴とする請求項5記載の発泡性樹脂粒子の製造方法。 6. The production of expandable resin particles according to claim 5, wherein the alkyl perester-based bifunctional polymerization initiator is di-t-butylperoxyhexahydroterephthalate, and the chain transfer agent is α-methylstyrene dimer. Method. 請求項1から6のいずれかに記載の発泡性樹脂粒子を予備発泡してなることを特徴とする予備発泡粒子。 Pre-expanded particles obtained by pre-expanding the expandable resin particles according to any one of claims 1 to 6. 請求項7に記載の予備発泡粒子を型内成形してなることを特徴とする発泡成形体。 A foam-molded product obtained by molding the pre-expanded particles according to claim 7 in a mold.
JP2015044520A 2015-03-06 2015-03-06 Expandable resin particles and method for producing the same Active JP6410642B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015044520A JP6410642B2 (en) 2015-03-06 2015-03-06 Expandable resin particles and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015044520A JP6410642B2 (en) 2015-03-06 2015-03-06 Expandable resin particles and method for producing the same

Publications (2)

Publication Number Publication Date
JP2016164213A true JP2016164213A (en) 2016-09-08
JP6410642B2 JP6410642B2 (en) 2018-10-24

Family

ID=56876565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015044520A Active JP6410642B2 (en) 2015-03-06 2015-03-06 Expandable resin particles and method for producing the same

Country Status (1)

Country Link
JP (1) JP6410642B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019094472A (en) * 2017-11-28 2019-06-20 株式会社カネカ Styrene-based resin extrusion molding
JP2019156900A (en) * 2018-03-08 2019-09-19 株式会社カネカ Method for producing expandable polystyrene-based resin particle
JP2019218469A (en) * 2018-06-20 2019-12-26 株式会社カネカ Method for producing expandable styrenic resin particles
WO2020032178A1 (en) * 2018-08-09 2020-02-13 株式会社カネカ Foamable resin particles and method of producing same, and foamed molded body
CN113330061A (en) * 2019-03-12 2021-08-31 株式会社钟化 Expandable resin particles, pre-expanded particles, and expanded molded article
WO2021187142A1 (en) 2020-03-18 2021-09-23 株式会社カネカ Expandable resin particles, expanded particles, molded foam, and method for producing expandable resin particles

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60206845A (en) * 1984-03-30 1985-10-18 Kanegafuchi Chem Ind Co Ltd Expandable thermoplastic copolymer particle
JP2001181433A (en) * 1999-12-27 2001-07-03 Kanegafuchi Chem Ind Co Ltd Expandable thermoplastic copolymer particle
JP2007246566A (en) * 2006-03-13 2007-09-27 Kaneka Corp Foamable thermoplastic resin particle and foamed molded article obtained from the same
JP2008133449A (en) * 2006-10-26 2008-06-12 Sekisui Plastics Co Ltd Expandable polystyrenic resin particle and its production method, pre-expanded particle and expanded molded product
JP2010195936A (en) * 2009-02-25 2010-09-09 Jsp Corp Foamable styrenic resin particle and method for producing the same
JP2011093950A (en) * 2009-10-27 2011-05-12 Sekisui Plastics Co Ltd Foamable polystyrene resin particles for production of vehicle interior material and process for production thereof, prefoamed particles for production of vehicle interior material, and vehicle interior material
JP6249814B2 (en) * 2014-02-17 2017-12-20 株式会社カネカ Expandable resin particles, production method, pre-expanded particles, and expanded molded body

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60206845A (en) * 1984-03-30 1985-10-18 Kanegafuchi Chem Ind Co Ltd Expandable thermoplastic copolymer particle
JP2001181433A (en) * 1999-12-27 2001-07-03 Kanegafuchi Chem Ind Co Ltd Expandable thermoplastic copolymer particle
JP2007246566A (en) * 2006-03-13 2007-09-27 Kaneka Corp Foamable thermoplastic resin particle and foamed molded article obtained from the same
JP2008133449A (en) * 2006-10-26 2008-06-12 Sekisui Plastics Co Ltd Expandable polystyrenic resin particle and its production method, pre-expanded particle and expanded molded product
JP2010195936A (en) * 2009-02-25 2010-09-09 Jsp Corp Foamable styrenic resin particle and method for producing the same
JP2011093950A (en) * 2009-10-27 2011-05-12 Sekisui Plastics Co Ltd Foamable polystyrene resin particles for production of vehicle interior material and process for production thereof, prefoamed particles for production of vehicle interior material, and vehicle interior material
JP6249814B2 (en) * 2014-02-17 2017-12-20 株式会社カネカ Expandable resin particles, production method, pre-expanded particles, and expanded molded body

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7017381B2 (en) 2017-11-28 2022-02-08 株式会社カネカ Styrene resin extruded foam
JP2019094472A (en) * 2017-11-28 2019-06-20 株式会社カネカ Styrene-based resin extrusion molding
JP2019156900A (en) * 2018-03-08 2019-09-19 株式会社カネカ Method for producing expandable polystyrene-based resin particle
JP7073144B2 (en) 2018-03-08 2022-05-23 株式会社カネカ Method for manufacturing foamable polystyrene resin particles
JP2019218469A (en) * 2018-06-20 2019-12-26 株式会社カネカ Method for producing expandable styrenic resin particles
JP7175642B2 (en) 2018-06-20 2022-11-21 株式会社カネカ Method for producing expandable styrene resin particles
WO2020032178A1 (en) * 2018-08-09 2020-02-13 株式会社カネカ Foamable resin particles and method of producing same, and foamed molded body
JPWO2020032178A1 (en) * 2018-08-09 2021-08-12 株式会社カネカ Effervescent resin particles, their manufacturing method, and foamed molded article
CN112566967A (en) * 2018-08-09 2021-03-26 株式会社钟化 Expandable resin beads, process for producing the same, and molded foam
JP7247200B2 (en) 2018-08-09 2023-03-28 株式会社カネカ Expandable resin particles, method for producing the same, and expanded molded article
CN112566967B (en) * 2018-08-09 2023-12-08 株式会社钟化 Expandable resin particles, process for producing the same, and foam molded article
US11993669B2 (en) 2018-08-09 2024-05-28 Kaneka Corporation Foamable resin particles and method of producing same, and foamed molded body
CN113330061A (en) * 2019-03-12 2021-08-31 株式会社钟化 Expandable resin particles, pre-expanded particles, and expanded molded article
WO2021187142A1 (en) 2020-03-18 2021-09-23 株式会社カネカ Expandable resin particles, expanded particles, molded foam, and method for producing expandable resin particles

Also Published As

Publication number Publication date
JP6410642B2 (en) 2018-10-24

Similar Documents

Publication Publication Date Title
JP6410642B2 (en) Expandable resin particles and method for producing the same
JP6249814B2 (en) Expandable resin particles, production method, pre-expanded particles, and expanded molded body
JP5815934B2 (en) Method for producing composite resin expanded particles, and composite resin expanded particles
WO2016047490A1 (en) Expandable methyl methacrylate resin particles, pre-expanded particles, expansion molded article, and evaporative pattern
JP2015140370A (en) Expandable styrenic resin particle and method for producing the same
JP6220663B2 (en) Expandable styrene resin particles imparted with flame retardancy and process for producing the same
JP7247200B2 (en) Expandable resin particles, method for producing the same, and expanded molded article
JP2007246566A (en) Foamable thermoplastic resin particle and foamed molded article obtained from the same
JP2018203871A (en) Complex resin particle, complex resin foam particle, and complex resin foam particle molded body
JP6775371B2 (en) Manufacturing method of foamable styrene resin particles
JP2020094186A (en) Foamable thermoplastic resin particle, thermoplastic pre-foamed particle, thermoplastic foamed molded body and production methods thereof
JPWO2014157538A1 (en) Composite resin foam molding
JP5992349B2 (en) Expandable styrenic resin particles, method for producing the same, expanded particles, and expanded molded body
JP6697862B2 (en) Method for producing expandable styrenic resin particles having flame retardancy
JP5903395B2 (en) Styrene resin particles, expandable particles, expanded particles, and method for producing expanded molded body
JP2016060817A (en) Expandable polystyrene resin particle
JP6343485B2 (en) Polystyrene foamed molded product and method for producing the same
JP2014062191A (en) Foamable polystyrene-based resin particle, manufacturing method thereof, and polystyrene-based resin foamed molded product
JP6227955B2 (en) Foam molding
JP5785735B2 (en) Interior materials for railway vehicles
JP7341681B2 (en) Method for manufacturing expandable styrenic resin particles
JP2018141087A (en) Method for producing foamed particle and method for producing foam molded body
JP6679390B2 (en) Expandable styrene resin particles
JP6294040B2 (en) Styrenic resin particles, expandable particles, expanded particles and expanded molded articles
JP2023094384A (en) Method for producing foamable styrenic resin particle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180711

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180711

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20180730

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180828

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180925

R150 Certificate of patent or registration of utility model

Ref document number: 6410642

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250