JP6220663B2 - Expandable styrene resin particles imparted with flame retardancy and process for producing the same - Google Patents

Expandable styrene resin particles imparted with flame retardancy and process for producing the same Download PDF

Info

Publication number
JP6220663B2
JP6220663B2 JP2013260588A JP2013260588A JP6220663B2 JP 6220663 B2 JP6220663 B2 JP 6220663B2 JP 2013260588 A JP2013260588 A JP 2013260588A JP 2013260588 A JP2013260588 A JP 2013260588A JP 6220663 B2 JP6220663 B2 JP 6220663B2
Authority
JP
Japan
Prior art keywords
styrene
resin particles
polystyrene resin
weight
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013260588A
Other languages
Japanese (ja)
Other versions
JP2015117282A (en
Inventor
忍 落越
忍 落越
利明 杉田
利明 杉田
龍哉 逸見
龍哉 逸見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2013260588A priority Critical patent/JP6220663B2/en
Publication of JP2015117282A publication Critical patent/JP2015117282A/en
Application granted granted Critical
Publication of JP6220663B2 publication Critical patent/JP6220663B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Description

本発明は、難燃性能を有し、かつ、残存スチレン量のすくない発泡性ポリスチレン系樹脂粒子およびポリスチレン系樹脂発泡成形体に関するものである。   The present invention relates to an expandable polystyrene resin particle and a polystyrene resin foam molded article having flame retardancy and a low residual styrene content.

建築や土木用途にポリスチレン系樹脂発泡体が多用されているが、住宅関連資材等に使用する場合に難燃性能を要求される場合が多く、難燃剤等を含有した発泡性ポリスチレン系樹脂発泡体が使用されることが多い。   Polystyrene resin foam is widely used for construction and civil engineering applications, but it is often required to have flame retardant performance when used for housing-related materials, etc., and expandable polystyrene resin foam containing flame retardant etc. Is often used.

また、近年、環境問題が重要視され、プラスティック製品中に含まれる揮発性有機物を低減させる検討が数多く見受けられる。特に、シックハウス問題等から住宅関連資材等に使用される樹脂成形品に対しては種々の規制も設けられはじめており、部材を構成する原料樹脂中に存在する揮発性有機物を低減させることは非常に重要になって来ている。   In recent years, environmental issues have been emphasized, and many studies have been made to reduce volatile organic substances contained in plastic products. In particular, various regulations have begun to be set for resin molded products used for housing-related materials due to the sick house problem, etc., and it is very important to reduce the volatile organic substances present in the raw material resin constituting the member. It is getting important.

また、スチレン単量体の製造過程で副産物として生成するフェニルアセチレンは、スチレンの重合において、重合阻害物質として働き、フェニルアセチレンが多いと、最終製品中の残存スチレン量が多くなる。すくない揮発性有機物が要求される部材には、残存スチレン量を低減させるために、低濃度のフェニルアセチレンであるスチレン単量体が原料として使用されている。   In addition, phenylacetylene produced as a by-product in the process of producing a styrene monomer acts as a polymerization inhibitor in the polymerization of styrene, and if the amount of phenylacetylene is large, the amount of residual styrene in the final product increases. In a member that requires light volatile organic matter, a styrene monomer that is a low concentration of phenylacetylene is used as a raw material in order to reduce the amount of residual styrene.

発泡性スチレン系樹脂粒子についても、建材、食品トレー、容器等々を中心に、樹脂粒子中の残存スチレン量を下げる検討が進められている。例えば特許文献1、特許文献2においては、可塑剤を不揮発性のものに代えると共に発泡性スチレン系樹脂粒子中に含まれる残存スチレン量を減少させるような発泡性スチレン系樹脂粒子について記され、重合温度を高くする、あるいは重合時間を長くすることにより、その目的が達成される。しかし、炭化水素系発泡剤を用いる重合系、あるいは、難燃性付与のため、例えばハロゲン系難燃剤を用いる重合系においては、開始剤の一次ラジカルが炭化水素系発泡剤、もしくはハロゲン系難燃剤に対して水素引き抜き反応を行うので、一般的な方法である高温度、長時間重合を実施した場合においても残存スチレン量は減少しにくい。   As for expandable styrene resin particles, studies are underway to reduce the amount of residual styrene in resin particles, mainly in building materials, food trays, containers and the like. For example, Patent Document 1 and Patent Document 2 describe expandable styrene resin particles that change the plasticizer to a non-volatile one and reduce the amount of residual styrene contained in the expandable styrene resin particles. The purpose is achieved by increasing the temperature or increasing the polymerization time. However, in a polymerization system using a hydrocarbon-based blowing agent or a polymerization system using a halogen-based flame retardant for imparting flame retardancy, for example, the primary radical of the initiator is a hydrocarbon-based blowing agent or a halogen-based flame retardant. In contrast, since the hydrogen abstraction reaction is performed, the amount of residual styrene is difficult to decrease even when polymerization is performed at a high temperature for a long time, which is a general method.

また、特許文献3においては残存スチレン量を300ppm以下にする方法が記されているが、発泡剤であるブタン添加後、120℃で6時間反応させるなど、極めて生産効率の悪い手段を用いて解決している。   Patent Document 3 describes a method for reducing the amount of residual styrene to 300 ppm or less. However, after adding butane as a foaming agent, the reaction is carried out at 120 ° C. for 6 hours. doing.

特許文献4では10時間半減期温度が50℃から80℃の低温型重合開始剤とn−ブチル−4,4−ビス(t−ブチルパーオキシ)バレレートを使用することで、水漏れ防止性に優れた発泡性スチレン系樹脂粒子の製造方法が開示されている。しかし、残存スチレン量に関する記載はなく、特に難燃剤を含んだ系では、特許文献で開示される方法では残存スチレン量は十分に低下しにくいという問題があった。   Patent Document 4 uses a low-temperature polymerization initiator having a 10-hour half-life temperature of 50 ° C. to 80 ° C. and n-butyl-4,4-bis (t-butylperoxy) valerate to prevent water leakage. A method for producing excellent expandable styrenic resin particles is disclosed. However, there is no description regarding the amount of residual styrene, and particularly in a system containing a flame retardant, there is a problem that the amount of residual styrene is not sufficiently lowered by the method disclosed in the patent literature.

特許文献5、特許文献6では、1,1−ビス(t−アミルパーオキシ)−3,3,5−トリメチルシクロヘキサン等のケタール構造を有し、10時間半減期温度が100℃以上110℃以下である開始剤を併用することによって、発泡性スチレン系樹脂粒子中の残存スチレン量を大幅に減少させる製造方法が開示されている。しかし、フェニルアセチレン量が50ppm以上存在するスチレン単量体を用いた場合、当該方法では、残存スチレン量を十分に低下しにくいといった問題がある。   Patent Documents 5 and 6 have a ketal structure such as 1,1-bis (t-amylperoxy) -3,3,5-trimethylcyclohexane, and a 10-hour half-life temperature of 100 ° C. or higher and 110 ° C. or lower. A production method is disclosed in which the amount of residual styrene in the expandable styrenic resin particles is significantly reduced by using together the initiator. However, when a styrene monomer having a phenylacetylene content of 50 ppm or more is used, this method has a problem that the residual styrene content is not easily lowered.

特許文献7では、難燃剤として、臭素化ブタジエン・ビニル芳香族共重合体を用いることが開示されているが、スチレン系樹脂とのブレンドによる押出発泡であり、残存スチレンの記載はない。   Patent Document 7 discloses that a brominated butadiene / vinyl aromatic copolymer is used as a flame retardant, but it is extrusion foaming by blending with a styrene resin, and there is no description of residual styrene.

特開2002−356575号公報JP 2002-356575 A 特開平10−17698号公報Japanese Patent Laid-Open No. 10-17698 特開平11−106548号公報JP-A-11-106548 特許第3597109号公報Japanese Patent No. 3597109 特許第4494074号公報Japanese Patent No. 4494074 特許第5109227号公報Japanese Patent No. 5109227 特開2013−116958JP2013-116958A

本発明の目的は、フェニルアセチレン量が80ppm以上含有しているスチレン系単量体を用いて、ハロゲン系難燃剤を含んだ発泡性スチレン系樹脂粒子中の残存モノマー量を300ppm以下にする難燃性能を有する発泡性スチレン系樹脂粒子の製造方法を提供することにある。   An object of the present invention is to use a styrene monomer having a phenylacetylene content of 80 ppm or more and to make the residual monomer content in the expandable styrene resin particles containing a halogen flame retardant 300 ppm or less. It is providing the manufacturing method of the expandable styrene-type resin particle which has performance.

本発明者らは、鋭意検討の結果、特定の難燃化剤、更に特定の重合開始剤を採用することで、生産性を低下させることなく難燃性能を付与した発泡性ポリスチレン系樹脂粒子を得ることが出来、且つ、残存するスチレン系単量体量を効率良く低減することが出来ることを見出し本発明の完成に至った。すなわち、本発明は、以下のとおりである。   As a result of intensive investigations, the present inventors have adopted expandable polystyrene resin particles imparted with flame retardancy without reducing productivity by adopting a specific flame retardant and further a specific polymerization initiator. It has been found that the amount of the remaining styrene monomer can be efficiently reduced, and the present invention has been completed. That is, the present invention is as follows.

[1]フェニルアセチレン量が80ppm以上含有しているスチレン系単量体100重量部に対して、臭素化ポリマーを0.5重量部以上5.0重量部以下含み、一般式(1)に示される化合物0.05重量部以上0.6重量部以下を重合開始剤として、スチレン系単量体を重合させてなり、該重合の途中あるいは重合後に、発泡剤としてプロパン、イソブタン、ノルマルブタン、イソペンタン、ノルマルペンタンおよびネオペンタンよりなる群から選ばれる少なくとも1種を含浸させることにより得られる発泡性ポリスチレン系樹脂粒子であって、残存スチレン系単量体量が300ppm以下であることを特徴とする発泡性ポリスチレン系樹脂粒子。   [1] Containing 0.5 parts by weight or more and 5.0 parts by weight or less of a brominated polymer with respect to 100 parts by weight of a styrene monomer having an amount of phenylacetylene of 80 ppm or more, and represented by the general formula (1) A styrene monomer is polymerized using 0.05 to 0.6 parts by weight of a compound as a polymerization initiator, and propane, isobutane, normal butane, isopentane as a foaming agent during or after the polymerization , Foamable polystyrene resin particles obtained by impregnating at least one selected from the group consisting of normal pentane and neopentane, wherein the residual styrene monomer content is 300 ppm or less Polystyrene resin particles.

Figure 0006220663
Figure 0006220663

(式中のRは、アルキル基、Rは分岐鎖又は直鎖のアルキル基を表す。)
[2]臭素化ポリマーが、臭素化ブタジエン・ビニル芳香族共重合体であることを特徴とする[1]に記載の発泡性ポリスチレン系樹脂粒子。
(In the formula, R 1 represents an alkyl group, and R 2 represents a branched or straight chain alkyl group.)
[2] The expandable polystyrene resin particles according to [1], wherein the brominated polymer is a brominated butadiene / vinyl aromatic copolymer.

[3]一般式(1)のR構造がメチル基あるいはエチル基であり、R構造がエチルヘキシル基、イソプロピル基であることを特徴とする[1]または[2]に記載の発泡性ポリスチレン系樹脂粒子。 [3] The expandable polystyrene according to [1] or [2], wherein the R 1 structure of the general formula (1) is a methyl group or an ethyl group, and the R 2 structure is an ethylhexyl group or an isopropyl group Resin particles.

[4]一般式(1)に示される化合物の10時間半減期温度が96℃以上110℃以下であることを特徴とする[1]〜[3]のいずれかに記載の発泡性ポリスチレン系樹脂粒子。   [4] The expandable polystyrene resin according to any one of [1] to [3], wherein the compound represented by the general formula (1) has a 10-hour half-life temperature of 96 ° C to 110 ° C. particle.

[5]発泡剤を110℃以上120℃以下の温度で含浸させることを特徴とする[1]〜[4]のいずれかに記載の発泡性ポリスチレン系樹脂粒子。   [5] The expandable polystyrene resin particles according to any one of [1] to [4], wherein the foaming agent is impregnated at a temperature of 110 ° C. to 120 ° C.

[6][1]〜[5]のいずれかに記載の発泡性ポリスチレン系樹脂粒子を発泡させて得られるポリスチレン系樹脂発泡成形体。   [6] A polystyrene resin foam molded article obtained by foaming the expandable polystyrene resin particles according to any one of [1] to [5].

[7][1]〜[5]のいずれかに記載の発泡性ポリスチレン系樹脂粒子の製造方法。   [7] The method for producing expandable polystyrene resin particles according to any one of [1] to [5].

本発明によれば、生産性を低下させることなく、難燃性を有する発泡性ポリスチレン系樹脂粒子を得ることが出来、且つ、該発泡性ポリスチレン系樹脂粒子中に残存するスチレン系単量体量を効率良く低減することができる。   According to the present invention, expandable polystyrene resin particles having flame retardancy can be obtained without reducing productivity, and the amount of styrene monomer remaining in the expandable polystyrene resin particles Can be efficiently reduced.

以下,本発明の実施の形態をより詳細に説明する。   Hereinafter, embodiments of the present invention will be described in more detail.

本発明における発泡性ポリスチレン系重合体粒子は、フェニルアセチレン量が80ppm以上含有しているスチレン系単量体100重量部に対して、臭素化ポリマーを0.5重量部以上5.0重量部以下含み、一般式(1)に示される化合物0.05重量部以上0.6重量部以下を重合開始剤として、スチレン系単量体を重合させてなり、該重合の途中あるいは重合後に、発泡剤としてプロパン、イソブタン、ノルマルブタン、イソペンタン、ノルマルペンタンおよびネオペンタンよりなる群から選ばれる少なくとも1種を含浸させることにより得られる発泡性ポリスチレン系樹脂粒子であって、残存スチレン系単量体量が300ppm以下であることを特徴とする発泡性ポリスチレン系樹脂粒子である。   The expandable polystyrene polymer particles in the present invention are 0.5 parts by weight or more and 5.0 parts by weight or less of a brominated polymer with respect to 100 parts by weight of a styrene monomer having a phenylacetylene content of 80 ppm or more. A styrenic monomer is polymerized using 0.05 to 0.6 parts by weight of a compound represented by the general formula (1) as a polymerization initiator, and during or after the polymerization, a foaming agent Expandable polystyrene resin particles obtained by impregnating at least one selected from the group consisting of propane, isobutane, normal butane, isopentane, normal pentane and neopentane, and the residual styrene monomer content is 300 ppm or less It is an expandable polystyrene resin particle characterized by being.

Figure 0006220663
Figure 0006220663

(式中のRは、アルキル基、Rは分岐鎖又は直鎖のアルキル基を表す。)
本発明に用いるスチレン系単量体としては、スチレン、及び、α−メチルスチレン、パラメチルスチレン、t−ブチルスチレン、クロルスチレンなどのスチレン系誘導体が挙げられ、さらにスチレンと共重合が可能な成分、例えばメチルアクリレート、ブチルアクリレート、メチルメタクリレート、エチルメタクリレート、セチルメタクリレートなどのアクリル酸及びメタクリル酸のエステル、あるいはアクリロニトリル、ジメチルフマレート、エチルフマレートなどの各種単量体、ジビニルベンゼン、アルキレングリコールジメタクリレートなどの2官能性単量体も包含する。これら共重合が可能な成分を1種又は2種以上使用し共重合に供しても良い。
(In the formula, R 1 represents an alkyl group, and R 2 represents a branched or straight chain alkyl group.)
Examples of the styrene monomer used in the present invention include styrene and styrene derivatives such as α-methyl styrene, paramethyl styrene, t-butyl styrene, chlorostyrene, and components capable of copolymerization with styrene. For example, esters of acrylic acid and methacrylic acid such as methyl acrylate, butyl acrylate, methyl methacrylate, ethyl methacrylate, cetyl methacrylate, or various monomers such as acrylonitrile, dimethyl fumarate, ethyl fumarate, divinylbenzene, alkylene glycol dimethacrylate Bifunctional monomers such as are also included. One or more of these copolymerizable components may be used for copolymerization.

スチレン単量体の製造過程で副生産物として生成するフェニルアセチレンは、重合阻害物質として働き、フェニルアセチレン量が80ppm以上含有すると、最終製品の発泡性スチレン系樹脂粒子中の残存スチレン量が高くなる。一方、フェニルアセチレン量が80ppm未満では、最終製品の発泡性ポリスチレン系樹脂粒子の残存スチレン量が少なくなるが、フェニルアセチレンを除去する工程が必要となり、スチレン単量体自体のコストが高くなる。フェニルアセチレン量の上限は、汎用と呼ばれるスチレンで、400ppmである。   Phenylacetylene produced as a by-product in the production process of styrene monomer acts as a polymerization inhibitor. When the amount of phenylacetylene is 80 ppm or more, the amount of residual styrene in the foamable styrene resin particles of the final product increases. . On the other hand, when the amount of phenylacetylene is less than 80 ppm, the amount of residual styrene in the foamable polystyrene resin particles of the final product decreases, but a step of removing phenylacetylene is required, and the cost of the styrene monomer itself increases. The upper limit of the amount of phenylacetylene is 400 ppm with styrene called general purpose.

本発明で使用する分散剤としては、一般的に懸濁重合に用いられている分散剤、例えば、燐酸カルシウム、ハイドロキシアパタイト、ピロリン酸マグネシウムなどの難水溶性無機塩が挙げられる。これら、難水溶性無機塩を用いる場合には、α−オレフィンスルフォン酸ソーダ、ドデシルベンゼンスルフォン酸ソーダなどのアニオン性界面活性剤を併用すると、分散安定性が増すので効果的である。また、難溶性無機塩は得られる発泡性スチレン系樹脂粒子の粒子径を調節するために、重合中に1回以上追加することもある。   Examples of the dispersant used in the present invention include dispersants generally used for suspension polymerization, such as poorly water-soluble inorganic salts such as calcium phosphate, hydroxyapatite, and magnesium pyrophosphate. When these poorly water-soluble inorganic salts are used, the use of an anionic surfactant such as α-olefin sodium sulfonate or dodecylbenzene sodium sulfonate is effective because the dispersion stability increases. Further, the hardly soluble inorganic salt may be added one or more times during the polymerization in order to adjust the particle diameter of the resulting expandable styrene resin particles.

本発明で使用する重合開始剤は、一般式(1)で示される化合物であり、Rはアルキル基、Rは分岐鎖又は直鎖のアルキル基構造をもつものであり、具体的には、t−ブチルパーオキシ−2−エチルヘキシルモノカーボネート、t−アミルパーオキシ−2−エチルヘキシルモノカーボネート、t−ヘキシルパーオキシイソプロピルモノカーボネート、t−ブチルパーオキシイソプロピルモノカーボネート等があげられる。 The polymerization initiator used in the present invention is a compound represented by the general formula (1), R 1 is an alkyl group, R 2 has a branched or straight chain alkyl group structure, and specifically, T-butylperoxy-2-ethylhexyl monocarbonate, t-amylperoxy-2-ethylhexyl monocarbonate, t-hexylperoxyisopropyl monocarbonate, t-butylperoxyisopropyl monocarbonate, and the like.

Figure 0006220663
Figure 0006220663

(式中のRは、アルキル基、Rは分岐鎖又は直鎖のアルキル基を表す。)
特に、一般式(1)の化合物の中で、R構造がメチル基あるいはエチル基であり、R構造がエチルヘキシル基、イソプロピル基であり、10時間半減期温度が96℃以上110℃以下である化合物が、最終製品である発泡スチレン系樹脂粒子の残存スチレン量を低減することができるため好ましい。例えば、t−ブチルパーオキシ−2−エチルヘキシルモノカーボネート(10時間半減期温度99℃)、t−アミルパーオキシ−2−エチルヘキシルモノカーボネート(98.5℃)などが挙げられる。
(In the formula, R 1 represents an alkyl group, and R 2 represents a branched or straight chain alkyl group.)
In particular, among the compounds of the general formula (1), the R 1 structure is a methyl group or an ethyl group, the R 2 structure is an ethylhexyl group or an isopropyl group, and the 10-hour half-life temperature is 96 ° C. or higher and 110 ° C. or lower. A certain compound is preferable because it can reduce the amount of residual styrene in the expanded styrene resin particles as the final product. Examples thereof include t-butyl peroxy-2-ethylhexyl monocarbonate (10 hour half-life temperature 99 ° C.), t-amyl peroxy-2-ethylhexyl monocarbonate (98.5 ° C.), and the like.

前記一般式(1)に示す化合物の使用量は、求める発泡性スチレン系樹脂粒子の分子量により異なるが、スチレン系単量体100重量部に対して、0.05重量部以上0.6重量部以下であり、好ましくは0.1重量部以上0.5重量部以下、さらに好ましくは、0.2重量部以上で0.4重量部以下である。一般式(1)に示す化合物の使用量が、当該範囲内であると、適度な分子量の樹脂が得られ、かつ、残存スチレン量を低減させることが出来る。 0.05重量部未満でも残スチレン量の低減効果を発揮するが、長い反応時間を要する場合がある。また、上限は0.6重量部であるが、残存スチレン系単量体量を低減させる効果は変わらないが、樹脂の分子量が低下する傾向があり、コストが高くなる。   The amount of the compound represented by the general formula (1) varies depending on the molecular weight of the foamable styrene resin particles to be obtained, but is 0.05 parts by weight or more and 0.6 parts by weight with respect to 100 parts by weight of the styrene monomer. Or less, preferably 0.1 parts by weight or more and 0.5 parts by weight or less, more preferably 0.2 parts by weight or more and 0.4 parts by weight or less. When the amount of the compound represented by the general formula (1) is within the above range, a resin having an appropriate molecular weight can be obtained and the amount of residual styrene can be reduced. Even if it is less than 0.05 parts by weight, the effect of reducing the amount of residual styrene is exhibited, but a long reaction time may be required. Moreover, although an upper limit is 0.6 weight part, the effect of reducing the amount of residual styrene-type monomers does not change, but there exists a tendency for the molecular weight of resin to fall and cost becomes high.

本発明においては、前記一般式(1)の中で、10時間半減期温度が96℃以上110℃以下である化合物を使用すると、分子量の低下を抑制しつつ、残存スチレン量をさらに低下させる事が可能になる。この化合物については10時間半減期温度が96℃以上110℃以下である事が重要であり、この範囲であれば重合中の開裂量を極力抑制し、熱処理、あるいは発泡剤含浸工程中に効率よく残存スチレン量を減少させる事ができる。10時間半減期温度が95℃未満の場合、重合中の開裂量が増加し、樹脂の分子量を低下させるため好ましくない。この問題の解決方法として、重合温度を下げることも可能であるが、その場合重合時間が延びるため、工業生産上好ましくない。また、逆に10時間半減期温度が110℃を超える場合、熱処理、あるいは発泡剤含浸中に開裂する開始剤の量が不足し、十分に残存スチレン量を減少させることができない。   In the present invention, when a compound having a 10-hour half-life temperature of 96 ° C. or higher and 110 ° C. or lower is used in the general formula (1), the amount of residual styrene can be further reduced while suppressing a decrease in molecular weight. Is possible. For this compound, it is important that the 10-hour half-life temperature is 96 ° C. or higher and 110 ° C. or lower. If it is within this range, the amount of cleavage during polymerization is suppressed as much as possible, and the heat treatment or the blowing agent impregnation step is efficiently performed. The amount of residual styrene can be reduced. A 10-hour half-life temperature of less than 95 ° C. is not preferable because the amount of cleavage during polymerization increases and the molecular weight of the resin decreases. As a solution to this problem, it is possible to lower the polymerization temperature. However, in this case, the polymerization time is extended, which is not preferable for industrial production. Conversely, when the 10-hour half-life temperature exceeds 110 ° C., the amount of initiator that cleaves during heat treatment or foaming agent impregnation is insufficient, and the amount of residual styrene cannot be reduced sufficiently.

発泡性スチレン系樹脂粒子の製造において、一般的には、主に樹脂を形成するための開始剤と主に残存スチレン量を低下させるための開始剤を併用させることが通常行われている。そして、これらの開始剤の選定は重合温度、重合時間、および必要とする樹脂の分子量を勘案して適宜決められる。よって、本発明においても、一般式(1)に示される化合物に、一般に用いられる他の重合開始剤を1種或いは2種以上併用することにより、重合温度、重合時間、樹脂の分子量等の選択幅をより広げた上で、残存スチレン量を低減した良好な製品を得ることができるので、併用することは極めて好ましい実施態様である。ここに、一般に用いられる他の重合開始剤としては、過酸化ベンゾイル、t−ブチルパーオキシベンゾエート、イソプロピル−t−ブチルパーオキシカーボネート、過安息香酸ブチルのような有機化酸化物やアゾビスイソブチロニトリル等のアゾ化合物などが例示される。   In the production of expandable styrenic resin particles, generally, an initiator mainly for forming a resin and an initiator mainly for reducing the amount of residual styrene are generally used in combination. The selection of these initiators is appropriately determined in consideration of the polymerization temperature, the polymerization time, and the required molecular weight of the resin. Therefore, also in the present invention, the polymerization temperature, the polymerization time, the molecular weight of the resin, etc. can be selected by using one or more commonly used other polymerization initiators in combination with the compound represented by the general formula (1). Since it is possible to obtain a good product in which the amount of residual styrene is reduced while further widening the width, it is a very preferable embodiment to use in combination. Examples of other commonly used polymerization initiators include organic oxides such as benzoyl peroxide, t-butyl peroxybenzoate, isopropyl t-butyl peroxycarbonate, butyl perbenzoate, and azobisisobutyrate. Examples include azo compounds such as ronitrile.

本発明で用いる難燃剤は、臭素化ポリマーである。臭素化スチレン、臭素化ブタジエン・ビニル芳香族共重合体、臭素化ノボラック樹脂アリルエーテル、臭素化ポリ(1,3?シクロアルカジエン)及び臭素化ポリ(4?ビニルフェノールアリルエーテル)があげられる。   The flame retardant used in the present invention is a brominated polymer. Brominated styrene, brominated butadiene-vinyl aromatic copolymer, brominated novolak resin allyl ether, brominated poly (1,3-cycloalkadiene) and brominated poly (4-vinylphenol allyl ether).

その中でも、臭素化ブタジエン・ビニル芳香族共重合体が難燃性を得やすいことから好ましい。臭素化ブタジエン・ビニル芳香族共重合体の中でも、臭素化ブタジエン・スチレン共重合体が高い難燃性が得やすいことから、更に好ましい。臭素化前のスチレン・ブタジエン共重合体は、ジブロック共重合体(例えばスチレン・ブタジエンブロック共重合体)、トリブロック共重合体(例えばスチレン・ブタジエン・スチレンブロック共重合体)、テトラブロック共重合体(例えばスチレン・ブタジエン・スチレン・ブタジエンブロック共重合体)又はマルチブロック共重合体(例えばスチレン・ブタジエン・スチレン・ブタジエン・スチレンブロック共重合体)のいずれであってもよい。スチレン・ブタジエン共重合体は、ランダム重合を含む既知のいずれの方法によって調製したものでも良いが、連続するアニオン重合又はカップリング反応によって調製したものが好ましい。これらの中でも臭素化スチレン・ブタジエン・スチレンブロック共重合体のような臭素化トリブロック共重合体が特に好ましい。   Of these, a brominated butadiene / vinyl aromatic copolymer is preferred because it is easy to obtain flame retardancy. Among brominated butadiene / vinyl aromatic copolymers, brominated butadiene / styrene copolymers are more preferable because high flame retardancy is easily obtained. The styrene-butadiene copolymer before bromination is diblock copolymer (for example, styrene / butadiene block copolymer), triblock copolymer (for example, styrene / butadiene / styrene block copolymer), tetrablock copolymer The polymer may be a polymer (for example, styrene / butadiene / styrene / butadiene block copolymer) or a multi-block copolymer (for example, styrene / butadiene / styrene / butadiene / styrene block copolymer). The styrene / butadiene copolymer may be prepared by any known method including random polymerization, but is preferably prepared by continuous anionic polymerization or a coupling reaction. Of these, brominated triblock copolymers such as brominated styrene / butadiene / styrene block copolymers are particularly preferred.

その他の難燃剤として、ポリグリセリンジブロモプロピルエーテル、テトラブロモビスフェノールA、テトラブロモビスフェノール−A−ビス(2,3−ジブロモ−2−メチルプロピルエーテル)等々の低分子化合物もあげられるが、これらの難燃剤を使用しても、最終製品の発泡性ポリスチレン系樹脂粒子の残スチレン量を低くする効果がえられるが、スチレン系単量体の重合効率の低下により、分子量が低くなってしまう。   Other flame retardants include low molecular weight compounds such as polyglycerin dibromopropyl ether, tetrabromobisphenol A, tetrabromobisphenol-A-bis (2,3-dibromo-2-methylpropyl ether) and the like. Even if a flame retardant is used, the effect of lowering the amount of residual styrene in the expandable polystyrene resin particles of the final product can be obtained, but the molecular weight is lowered due to a decrease in the polymerization efficiency of the styrene monomer.

本発明における難燃剤の添加量は、スチレン系単量体100重量部に対して0.5重量部以上5重量部以下で、更に好ましくは、0.7重量部以上3重量部以下である。0.5重量部未満であると充分な難燃性能が得られない。また、5.0重量部を超えると得られる発泡性ポリスチレン系樹脂粒子の成形加工性、成形体物性の悪化を引き起こし好ましくなく、スチレン重合時の安定性を損なう。   The addition amount of the flame retardant in the present invention is 0.5 to 5 parts by weight, more preferably 0.7 to 3 parts by weight, with respect to 100 parts by weight of the styrene monomer. If the amount is less than 0.5 parts by weight, sufficient flame retardancy cannot be obtained. On the other hand, when the amount exceeds 5.0 parts by weight, the resulting foamable polystyrene resin particles may be deteriorated in molding processability and physical properties of the molded article, which is not preferable, and stability during styrene polymerization is impaired.

本発明において使用する発泡剤としては、プロパン、イソブタン、ノルマルブタン、イソペンタン、ノルマルペンタン、ネオペンタンなど炭素数3以上5以下の炭化水素等の脂肪族炭化水素類、およびジフルオロエタン、テトラフルオロエタンなどのオゾン破壊係数がゼロであるフッ化炭化水素類などの揮発性発泡剤が挙げられる。また、これらの発泡剤を併用することもできる。使用量としてはスチレン系樹脂粒子100重量部に対して、好ましくは3重量部以上12重量部以下、更に好ましくは5重量部以上9重量部以下である。   Examples of the blowing agent used in the present invention include aliphatic hydrocarbons such as propane, isobutane, normal butane, isopentane, normal pentane, neopentane and other hydrocarbons having 3 to 5 carbon atoms, and ozone such as difluoroethane and tetrafluoroethane. Examples thereof include volatile blowing agents such as fluorinated hydrocarbons having a destruction coefficient of zero. Moreover, these foaming agents can also be used together. The amount used is preferably 3 parts by weight or more and 12 parts by weight or less, more preferably 5 parts by weight or more and 9 parts by weight or less, with respect to 100 parts by weight of the styrene resin particles.

本発明において使用する添加剤としては、目的に応じて可塑剤、気泡調整剤、難燃助剤等が使用できる。可塑剤としては、例えば、ステアリン酸トリグリセライド、パルミチン酸トリグリセライド、ラウリン酸トリグリセライド、ステアリン酸ジグリセライド、ステアリン酸モノグリセライド等の脂肪酸グリセライド、ヤシ油、パーム油、パーム核油等の植物油、ジオクチルアジペート、ジブチルセバケート等の脂肪族エステル、流動パラフィン、シクロヘキサン等の有機炭化水素等があげられ、これらは併用しても何ら差し支えない。気泡調整剤としては、例えば、メチレンビスステアリン酸アマイド、エチレンビスステアリン酸アマイド等の脂肪族ビスアマイド、ポリエチレンワックス等が挙げられる。難燃助剤としては、例えば、クメンパーオキサイド、ジクミルパーオキサイド、t−ブチルハイドロパーオキサイド、2,3−ジメチルー2,3−ジフェニルブタン等の高温分解型の有機物があげられる。   As the additive used in the present invention, a plasticizer, a bubble regulator, a flame retardant aid and the like can be used depending on the purpose. Examples of the plasticizer include stearic acid triglyceride, palmitic acid triglyceride, lauric acid triglyceride, stearic acid diglyceride, stearic acid monoglyceride and other fatty acid glycerides, palm oil, palm oil, palm kernel oil and other vegetable oils, dioctyl adipate, dibutyl sebacate And the like, and aliphatic hydrocarbons such as liquid paraffin, and organic hydrocarbons such as cyclohexane. These may be used in combination. Examples of the air conditioner include aliphatic bisamides such as methylene bis stearic acid amide and ethylene bis stearic acid amide, polyethylene wax, and the like. Examples of the flame retardant aid include high-temperature decomposition type organic substances such as cumene peroxide, dicumyl peroxide, t-butyl hydroperoxide, and 2,3-dimethyl-2,3-diphenylbutane.

本発明の発泡性ポリスチレン系樹脂粒子は、例えば以下のようにして製造することが出来る。所定量の水性懸濁媒体中に、ポリスチレンの重合に使用される一般の重合開始剤に加え、一般式(1)に示す化合物と共に、スチレン系単量体、臭素化ブタジエン・ビニル芳香族共重合体、その他添加剤を添加し、所定の温度、好ましくは90℃以上100℃未満で一定時間重合し、スチレン系単量体の転化率が80%以上95%以下に達した時点で重合工程を完了させる。該重合工程の後、発泡剤を添加し、所定温度、好ましくは110℃以上120℃以下で一定時間発泡剤含浸工程を実施する。実施後冷却をすると発泡性スチレン系樹脂粒子が得られる。   The expandable polystyrene resin particles of the present invention can be produced, for example, as follows. In a predetermined amount of aqueous suspension medium, in addition to the general polymerization initiator used for the polymerization of polystyrene, together with the compound represented by the general formula (1), a styrene monomer, brominated butadiene / vinyl aromatic copolymer Polymerization and other additives are added, and polymerization is performed at a predetermined temperature, preferably 90 ° C. or more and less than 100 ° C. for a certain period of time, and the polymerization process is performed when the conversion of the styrene monomer reaches 80% or more and 95% or less. Complete. After the polymerization step, a foaming agent is added, and the foaming agent impregnation step is performed at a predetermined temperature, preferably 110 ° C. or higher and 120 ° C. or lower for a predetermined time. After cooling, foamable styrene resin particles are obtained.

発泡剤含浸工程の温度が110℃以上120℃以下の場合、特に、前記一般式(1)の10時間半減期温度が96℃以上110℃以下である化合物を使用する為、効率よく、スチレン単量体の安定に重合が進行する。しかし、110℃未満の場合、一般式(1)の化合物のラジカル発生が少なくなり、生産性が低下し、120℃を超えると、重合機の内圧が高くなり、重装備の耐圧を有する重合機が必要となる。   When the temperature of the blowing agent impregnation step is 110 ° C. or more and 120 ° C. or less, in particular, since a compound having a 10-hour half-life temperature of the general formula (1) of 96 ° C. or more and 110 ° C. or less is used efficiently, Polymerization proceeds in a stable manner. However, when the temperature is less than 110 ° C., radical generation of the compound of the general formula (1) is reduced, and the productivity is lowered. When the temperature exceeds 120 ° C., the internal pressure of the polymerization machine is increased, and the polymerization machine having the pressure resistance of heavy equipment. Is required.

重合転化率が80%未満の場合、発泡剤の添加後に、110℃以上120以下の発泡剤含浸工程で重合系が不安定となったり、最終製品の発泡粒子のセル構造が変わり、発泡性が異なったりすることがあり、重合転化率が95%を超えると、重合時間が長くなり生産性が低下する。   When the polymerization conversion rate is less than 80%, after adding the foaming agent, the polymerization system becomes unstable in the foaming agent impregnation step of 110 ° C. or more and 120 or less, the cell structure of the foamed particles of the final product changes, and the foaming property When the polymerization conversion rate exceeds 95%, the polymerization time becomes longer and the productivity is lowered.

以上のようにして得られた本発明の発泡性ポリスチレン系樹脂粒子は、残存スチレン系単量体量が300ppm以下であり、好ましくは250pm以下である。下限は、実用的には0ppmになり難いので敢えて表示するなら1ppm以上である。   The expandable polystyrene resin particles of the present invention obtained as described above have a residual styrene monomer amount of 300 ppm or less, preferably 250 pm or less. The lower limit is practically less than 0 ppm, so it is 1 ppm or more if dare to display.

本発明の発泡性ポリスチレン系樹脂粒子は、公知の方法で発泡させて、ポリスチレン系樹脂発泡成形体を得ることが出来る。例えば、一旦予備発泡粒子を作製し、その後型に該予備発泡粒子を充填し成形する方法や、発泡性ポリスチレン系樹脂粒子を直接型に充填し発泡成型する方法等が挙げられる。発泡成形体の製造方法の例としては下記のような方法が挙げられる。本発明の発泡性スチレン系樹脂粒子を回転攪拌式予備発泡装置で、水蒸気を用いて80〜110℃程度で加熱することにより、嵩倍率が30〜100ml/g程度の予備発泡粒を得、得られた予備発泡粒子を所望の形状の金型内に充填し、水蒸気などを用いて130〜145℃程度で加熱することによりポリスチレン系樹脂発泡成形体とすることができる。 このようにして得られた、本発明のポリスチレン系樹脂発泡成形体は、難燃性を有し、且つ残存スチレン系単量体量も少ないものとなる。   The expandable polystyrene resin particles of the present invention can be foamed by a known method to obtain a polystyrene resin foam molded article. For example, a method of once preparing pre-expanded particles and then filling the mold with the pre-expanded particles and then molding, or a method of directly filling the mold with expandable polystyrene resin particles and foam-molding can be used. The following method is mentioned as an example of the manufacturing method of a foaming molding. By heating the expandable styrene resin particles of the present invention at a temperature of about 80 to 110 ° C. using water vapor with a rotary stirring type prefoaming device, a prefoamed particle having a bulk ratio of about 30 to 100 ml / g is obtained and obtained. The obtained pre-expanded particles are filled in a mold having a desired shape, and heated at about 130 to 145 ° C. with water vapor or the like, whereby a polystyrene-based resin foam molded article can be obtained. The thus obtained polystyrene resin foam molded article of the present invention has flame retardancy and a small amount of residual styrene monomer.

ポリスチレン系樹脂発泡成形体は、生鮮物の保管用容器をはじめ、建築や土木用の断熱資材、自動車用の緩衝資材として、幅広く使用される。   Polystyrene-based resin foam moldings are widely used as containers for storing fresh food, heat insulating materials for construction and civil engineering, and buffer materials for automobiles.

以下に実施例、及び比較例を挙げるが、本発明はこれによって限定されるものではない。なお、実施例、及び比較例中の樹脂の分子量、及び樹脂中の残存スチレン量、スチレン単量体中のフェニルアセチレン量、難燃性の評価については以下の方法で測定した。なお、「部」「%」は特に断りのない限り重量基準である。   Examples and Comparative Examples are given below, but the present invention is not limited thereby. In addition, about the molecular weight of resin in an Example and a comparative example, the amount of residual styrene in resin, the amount of phenyl acetylene in a styrene monomer, and evaluation of a flame retardance, it measured with the following method. “Parts” and “%” are based on weight unless otherwise specified.

(分子量測定法)
発泡性スチレン系樹脂粒子をテトラヒドロフランに溶解し、GPC(東ソー(株)製HLC−8020、カラム:TSKgel Super HZM−H、カラム温度:40℃、流速:0.35ml/1min.)にて測定した。
(Molecular weight measurement method)
Expandable styrene resin particles were dissolved in tetrahydrofuran and measured by GPC (HLC-8020 manufactured by Tosoh Corporation, column: TSKgel Super HZM-H, column temperature: 40 ° C., flow rate: 0.35 ml / 1 min.). .

(残存スチレン測定法)
発泡性スチレン系樹脂粒子を塩化メチレン(内部標準シクロペンタノール)に溶解し、(株)島津製作所製ガスクロマトグラフィーGC−2014(キャピラリーカラム:GLサイエンス製Rtx−1、カラム温度条件:50→80℃(3℃/min)後、80→180℃昇温(10℃/min)、キャリアガス:ヘリウム)を用いて、発泡性スチレン系樹脂粒子中に含まれる残存スチレン量(ppm)を定量した。
(Residual styrene measurement method)
Expandable styrenic resin particles are dissolved in methylene chloride (internal standard cyclopentanol), and gas chromatography GC-2014 (capillary column: Rtx-1, manufactured by GL Sciences, Inc.), column temperature condition: 50 → 80 ° C. After (3 ° C./min), the amount of residual styrene (ppm) contained in the expandable styrene resin particles was quantified using 80 → 180 ° C. temperature rise (10 ° C./min), carrier gas: helium.

(スチレン単量体中のフェニルアセチレン測定法)
フェニルアセチレン量0ppmのスチレンを用いて、フェニルアセチレン量とシクロペンタノール量の比から導いたフェニルアセチレン量の検量線を作成した。
(Measurement method of phenylacetylene in styrene monomer)
A calibration curve for the amount of phenylacetylene derived from the ratio of the amount of phenylacetylene and the amount of cyclopentanol was prepared using styrene having an amount of phenylacetylene of 0 ppm.

スチレンに、内部標準シクロペンタノールを溶解し、(株)島津製作所製ガスクロマトグラフィーGC−2014(キャピラリーカラム:GLサイエンス製Rtx−1、カラム温度条件:50→70℃(3℃/min)へ昇温し、70℃で30分保持後。70→170℃(10℃/min)へ昇温、キャリアガス:ヘリウム)を用いて、スチレン中のフェニルアセチレン量(ppm)を定量した。   The internal standard cyclopentanol is dissolved in styrene, and gas chromatography GC-2014 manufactured by Shimadzu Corporation (capillary column: Rtx-1 manufactured by GL Sciences, column temperature condition: 50 → 70 ° C. (3 ° C./min) After heating and holding at 70 ° C. for 30 minutes, the temperature was raised from 70 to 170 ° C. (10 ° C./min), and the amount of phenylacetylene (ppm) in styrene was quantified using a carrier gas: helium.

(難燃性の評価)
発泡性ポリスチレン系樹脂粒子を加圧式予備発泡機(大開工業社製)で水蒸気により加熱し、嵩倍率が55ml/gの予備発泡粒を得る。次に、この予備発泡粒を室温で1日養生させた後、ダイセン工業社製のKR−57成形機にて平板状発泡体を成形した。 得られたポリスチレン系樹脂発泡成形体の燃焼性の評価は、JIS A 9511(5.13燃焼性)に記載の測定方法Aに従って行い、消炎時間が3秒以内で残じんが無く燃焼限界指示線を超えて燃焼しない場合を合格、それ以外の場合を不合格とした。
(Evaluation of flame retardancy)
The expandable polystyrene resin particles are heated with water vapor in a pressure type prefoaming machine (manufactured by Daikai Kogyo Co., Ltd.) to obtain prefoamed granules having a bulk magnification of 55 ml / g. Next, after this pre-foamed grain was cured at room temperature for 1 day, a flat foam was formed with a KR-57 molding machine manufactured by Daisen Industries. Evaluation of the flammability of the obtained polystyrene-based resin foam molded article was performed according to measurement method A described in JIS A 9511 (5.13 flammability), and the flame extinction time was within 3 seconds and there was no residue and the combustion limit indicator line. The case where it did not burn beyond this was passed, and the case other than that was made unacceptable.

(実施例1)
スチレン中のフェニルアセチレン量を測定し、100ppmになるように、フェニルアセチレン量を調整した。
Example 1
The amount of phenylacetylene in styrene was measured, and the amount of phenylacetylene was adjusted to 100 ppm.

撹拌機付き6Lオートクレーブに水96重量部、第3リン酸カルシウム0.14重量部、α−オレインスルフォン酸ソーダ0.003重量部、臭素化ブタジエン・スチレン共重合体(ケムチュラ社製「EMERALD 3000」 臭素含有量64%)1部、過酸化ベンゾイル0.1部、t−ブチルパーオキシ−2−エチルヘキシルモノカーボネート(10時間半減期温度99℃)0.25部、難燃助剤としてジクミルパーオキサイド0.2部、添加剤として、やし油1.0部を仕込んだ後、フェニルアセチレン量を100ppmに調整したスチレン100重量部を仕込み、昇温し、98℃で5時間重合を行った。ノルマルリッチブタン(ノルマル/イソ=70/30)を8部仕込み、117℃へ昇温し、4時間発泡剤含浸重合をおこなった。その後、40℃まで冷却し、発泡性スチレン系樹脂粒子を取り出し、乾燥した。   In a 6L autoclave with a stirrer, 96 parts by weight of water, 0.14 part by weight of tribasic calcium phosphate, 0.003 part by weight of sodium α-olein sulfonate, brominated butadiene / styrene copolymer ("EMERALD 3000" manufactured by Chemtura Co., Ltd.) containing bromine 64%) 1 part, benzoyl peroxide 0.1 part, t-butylperoxy-2-ethylhexyl monocarbonate (10 hour half-life temperature 99 ° C.) 0.25 part, dicumyl peroxide 0 as flame retardant aid .2 parts, 1.0 part of coconut oil was added as an additive, and then 100 parts by weight of styrene with the phenylacetylene amount adjusted to 100 ppm was added, the temperature was raised, and polymerization was carried out at 98 ° C. for 5 hours. 8 parts of normal rich butane (normal / iso = 70/30) was charged, and the temperature was raised to 117 ° C., followed by 4 hour foaming agent impregnation polymerization. Then, it cooled to 40 degreeC, taken out the expandable styrene-type resin particle, and dried.

得られた発泡性スチレン系樹脂粒子の分子量をGPCで測定すると28.5万、残存スチレン量をガスクロマトグラフィーにて測定すると250ppmであった。難燃性は、消炎時間が2.5秒で、燃焼限界指示線を超えて燃焼せず合格であった。結果を表1に示す。   When the molecular weight of the obtained expandable styrene resin particles was measured by GPC, it was 285,000, and when the residual styrene content was measured by gas chromatography, it was 250 ppm. The flame retardancy was a flame extinguishing time of 2.5 seconds and passed without exceeding the combustion limit indicator line. The results are shown in Table 1.

(実施例2)
t−ブチルパーオキシ−2−エチルヘキシルモノカーボネート(10時間半減期温度99℃)量を0.4部に変更した以外は実施例1と同様に行った。得られた結果を表1に示す。
(Example 2)
The same procedure as in Example 1 was carried out except that the amount of t-butylperoxy-2-ethylhexyl monocarbonate (10-hour half-life temperature 99 ° C.) was changed to 0.4 parts. The obtained results are shown in Table 1.

(実施例3)
t−ブチルパーオキシ−2−エチルヘキシルモノカーボネート(10時間半減期温度99℃)を、t−アミルパーオキシ−2−エチルヘキシルモノカーボネート(10時間半減期温度98.5℃)に変更した以外は実施例1と同様に行った。得られた結果を表1に示す。
( 実施例4)
t−アミルパーオキシ−2−エチルヘキシルモノカーボネート(10時間半減期温度98.5℃)量0.4部変更した以外は実施例3と同様に行った。得られた結果を表1に示す。
(Example 3)
Implemented except that t-butylperoxy-2-ethylhexyl monocarbonate (10-hour half-life temperature 99 ° C.) was changed to t-amyl peroxy-2-ethylhexyl monocarbonate (10-hour half-life temperature 98.5 ° C.) Performed as in Example 1. The obtained results are shown in Table 1.
(Example 4)
The same procedure as in Example 3 was repeated except that 0.4 part of t-amylperoxy-2-ethylhexyl monocarbonate (10 hour half-life temperature 98.5 ° C.) was changed. The obtained results are shown in Table 1.

(実施例5)
t−ブチルパーオキシ−2−エチルヘキシルモノカーボネート(10時間半減期温度99℃)を、t−ブチルパーオキシ−イソプロピルモノカーボネート(10時間半減期温度95℃)に変更した以外は、実施例1と同様に行った。得られた結果を表1に示す。
(Example 5)
Example 1 except that t-butylperoxy-2-ethylhexyl monocarbonate (10-hour half-life temperature 99 ° C.) was changed to t-butyl peroxy-isopropyl monocarbonate (10-hour half-life temperature 95 ° C.) The same was done. The obtained results are shown in Table 1.

(実施例6)
臭素化ブタジエン・スチレン共重合体(ケムチュラ社製「EMERALD 3000」 臭素含有量64%)を3部に変更した以外は実施例1と同様に行った。得られた結果を表1に示す。
(Example 6)
The same procedure as in Example 1 was carried out except that the brominated butadiene / styrene copolymer (“EMERALD 3000” bromine content 64%, manufactured by Chemtura) was changed to 3 parts. The obtained results are shown in Table 1.

(実施例7)
フェニルアセチレン量を200ppmに調整したスチレンを用いた以外は実施例1と同様に行った。得られた結果を表1に示す。
(Example 7)
The same procedure as in Example 1 was performed except that styrene having an amount of phenylacetylene adjusted to 200 ppm was used. The obtained results are shown in Table 1.

(比較例1)
t−ブチルパーオキシ−2−エチルヘキシルモノカーボネート(10時間半減期温度99℃)を、1,1-ビス(t−アミルパーオキシ)−3,3,5−トリメチルシクロヘキサン(10時間半減期温度92℃)に変更した以外は、実施例1と同様に行った。得られた結果を表1に示す。
(Comparative Example 1)
t-Butylperoxy-2-ethylhexyl monocarbonate (10-hour half-life temperature 99 ° C.) was converted to 1,1-bis (t-amylperoxy) -3,3,5-trimethylcyclohexane (10-hour half-life temperature 92 The procedure was the same as in Example 1 except that the temperature was changed to [° C.]. The obtained results are shown in Table 1.

(比較例2)
t−ブチルパーオキシ−2−エチルヘキシルモノカーボネート(10時間半減期温度99℃)を、1,1-ビス(t−ブチルパーオキシ)−3,3,5−トリメチルシクロヘキサン(10時間半減期温度97℃)に変更した以外は、実施例1と同様に行った。得られた結果を表1に示す。
(Comparative Example 2)
t-Butylperoxy-2-ethylhexyl monocarbonate (10-hour half-life temperature 99 ° C.) was converted to 1,1-bis (t-butylperoxy) -3,3,5-trimethylcyclohexane (10-hour half-life temperature 97 The procedure was the same as in Example 1 except that the temperature was changed to [° C.]. The obtained results are shown in Table 1.

(比較例3)
臭素化ブタジエン・スチレン共重合体(ケムチュラ社製「EMERALD 3000」 臭素含有量64%)を0.2部に変更した以外は、実施例1と同様に行った。得られた結果を表1に示す。
(Comparative Example 3)
The same procedure as in Example 1 was performed except that the brominated butadiene / styrene copolymer ("EMERALD 3000" bromine content 64%, manufactured by Chemtura) was changed to 0.2 parts. The obtained results are shown in Table 1.

(比較例4)
臭素化ブタジエン・スチレン共重合体(ケムチュラ社製「EMERALD 3000」 臭素含有量64%)を、テトラブロモビスフェノール−A−ビス(2,3−ジブロモ−2−メチルプロピルエーテル)(第一工業製薬製,商品名「ピロガードSR130」)に変更した以外は、実施例1と同様に行った。得られた結果を表1に示す。
(Comparative Example 4)
Brominated butadiene / styrene copolymer ("EMERALD 3000" produced by Chemtura Inc., bromine content 64%) was converted to tetrabromobisphenol-A-bis (2,3-dibromo-2-methylpropyl ether) (Daiichi Kogyo Seiyaku Co., Ltd.) The product name was changed to the product name “Pyroguard SR130”). The obtained results are shown in Table 1.

(比較例5)
フェニルアセチレン量が0ppmのスチレンを使用した以外は、実施例1と同様に行った。得られた結果を表1に示す。
(Comparative Example 5)
The same procedure as in Example 1 was performed except that styrene having a phenylacetylene content of 0 ppm was used. The obtained results are shown in Table 1.

(比較例6)
発泡剤含浸重合での温度を105℃以外は、実施例1と同様に行った。得られた結果を表1に示す。
(Comparative Example 6)
The same procedure as in Example 1 was performed except that the temperature in the foaming agent impregnation polymerization was 105 ° C. The obtained results are shown in Table 1.

(比較例7)
発泡剤含浸重合での温度を125℃以外は、実施例1と同様に行った。発泡剤を添加後、125℃へ昇温すると、重合機内圧が1.8MPaを超え、中止した。
(Comparative Example 7)
The same procedure as in Example 1 was performed except that the temperature in the foaming agent impregnation polymerization was 125 ° C. When the temperature was raised to 125 ° C. after adding the blowing agent, the internal pressure of the polymerization machine exceeded 1.8 MPa, and the operation was stopped.

Figure 0006220663
Figure 0006220663

Claims (7)

フェニルアセチレン量が80ppm以上含有しているスチレン系単量体100重量部に対して、臭素化ポリマーを0.5重量部以上5.0重量部以下含み、一般式(1)に示される化合物0.2重量部以上0.6重量部以下を重合開始剤として、スチレン系単量体を重合させてなり、該重合の途中あるいは重合後に、発泡剤としてプロパン、イソブタン、ノルマルブタン、イソペンタン、ノルマルペンタンおよびネオペンタンよりなる群から選ばれる少なくとも1種を含浸させることにより得られる発泡性ポリスチレン系樹脂粒子であって、残存スチレン系単量体量が300ppm以下であることを特徴とする発泡性ポリスチレン系樹脂粒子。
Figure 0006220663
(式中のRは、アルキル基、Rは分岐鎖又は直鎖のアルキル基を表す。)
Compound 0 represented by the general formula (1) containing 0.5 to 5.0 parts by weight of a brominated polymer with respect to 100 parts by weight of a styrene monomer having a phenylacetylene content of 80 ppm or more .2 parts by weight or more and 0.6 parts by weight or less is used as a polymerization initiator to polymerize a styrene monomer, and propane, isobutane, normal butane, isopentane, normal pentane as a foaming agent during or after the polymerization And expandable polystyrene resin particles obtained by impregnating at least one selected from the group consisting of neopentane and having a residual styrene monomer content of 300 ppm or less particle.
Figure 0006220663
(In the formula, R 1 represents an alkyl group, and R 2 represents a branched or straight chain alkyl group.)
臭素化ポリマーが、臭素化ブタジエン・ビニル芳香族共重合体であることを特徴とする請求項1に記載の発泡性ポリスチレン系樹脂粒子。   2. The expandable polystyrene resin particles according to claim 1, wherein the brominated polymer is a brominated butadiene / vinyl aromatic copolymer. 一般式(1)のR構造がメチル基あるいはエチル基であり、R構造が2−エチルヘキシル基、イソプロピル基であることを特徴とする請求項1または2に記載の発泡性ポリスチレン系樹脂粒子。 The expandable polystyrene resin particle according to claim 1 or 2, wherein the R 1 structure of the general formula (1) is a methyl group or an ethyl group, and the R 2 structure is a 2-ethylhexyl group or an isopropyl group. . 一般式(1)に示される化合物の10時間半減期温度が96℃以上110℃以下であることを特徴とする請求項1〜3のいずれかに記載の発泡性ポリスチレン系樹脂粒子。   The expandable polystyrene resin particles according to any one of claims 1 to 3, wherein the compound represented by the general formula (1) has a 10-hour half-life temperature of 96 ° C to 110 ° C. 発泡剤を110℃以上120℃以下の温度で含浸させることを特徴とする請求項1〜4のいずれかに記載の発泡性ポリスチレン系樹脂粒子。   The expandable polystyrene resin particles according to any one of claims 1 to 4, wherein the foaming agent is impregnated at a temperature of 110 ° C to 120 ° C. 請求項1〜5のいずれかに記載の発泡性ポリスチレン系樹脂粒子を発泡させて得られるポリスチレン系樹脂発泡成形体。   A polystyrene resin foam molded article obtained by foaming the expandable polystyrene resin particles according to any one of claims 1 to 5. 請求項1〜5のいずれかに記載の発泡性ポリスチレン系樹脂粒子の製造方法。   The manufacturing method of the expandable polystyrene-type resin particle in any one of Claims 1-5.
JP2013260588A 2013-12-17 2013-12-17 Expandable styrene resin particles imparted with flame retardancy and process for producing the same Active JP6220663B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013260588A JP6220663B2 (en) 2013-12-17 2013-12-17 Expandable styrene resin particles imparted with flame retardancy and process for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013260588A JP6220663B2 (en) 2013-12-17 2013-12-17 Expandable styrene resin particles imparted with flame retardancy and process for producing the same

Publications (2)

Publication Number Publication Date
JP2015117282A JP2015117282A (en) 2015-06-25
JP6220663B2 true JP6220663B2 (en) 2017-10-25

Family

ID=53530327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013260588A Active JP6220663B2 (en) 2013-12-17 2013-12-17 Expandable styrene resin particles imparted with flame retardancy and process for producing the same

Country Status (1)

Country Link
JP (1) JP6220663B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6205278B2 (en) * 2014-01-27 2017-09-27 株式会社カネカ Expandable styrene resin particles and method for producing the same
JP6645227B2 (en) * 2016-02-05 2020-02-14 株式会社ジェイエスピー Expanded particle molded article and method for producing the same
JP6775371B2 (en) * 2016-09-30 2020-10-28 株式会社カネカ Manufacturing method of foamable styrene resin particles
JP7073144B2 (en) * 2018-03-08 2022-05-23 株式会社カネカ Method for manufacturing foamable polystyrene resin particles

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5841302B2 (en) * 1980-12-29 1983-09-10 アキレス株式会社 Expandable polystyrene resin composition with flame retardancy
JP4282000B2 (en) * 2003-10-22 2009-06-17 株式会社ジェイエスピー Expandable styrene resin particles, styrene resin foam particles, and styrene resin foam particles
CA2627253C (en) * 2005-11-12 2013-11-19 Dow Global Technologies Inc. Brominated butadiene/vinyl aromatic copolymers, blends of such copolymers with a vinyl aromatic polymer, and polymeric foams formed from such blends
JP4917511B2 (en) * 2006-10-26 2012-04-18 積水化成品工業株式会社 Expandable polystyrene resin particles and method for producing the same, pre-expanded particles, and expanded molded body
CN102257021B (en) * 2008-12-17 2013-07-17 电气化学工业株式会社 Molded object for optical use, and lightguide plate and light diffuser both comprising same
JP5371036B2 (en) * 2009-02-25 2013-12-18 株式会社ジェイエスピー Expandable styrene resin particles and method for producing the same
JP5460115B2 (en) * 2009-04-28 2014-04-02 第一工業製薬株式会社 Flame retardant expanded styrene resin particles and method for producing the same
DE102009059781A1 (en) * 2009-12-18 2011-06-22 Basf Se, 67063 Flame retardant polymer foams

Also Published As

Publication number Publication date
JP2015117282A (en) 2015-06-25

Similar Documents

Publication Publication Date Title
JP5080226B2 (en) Expandable resin particles, method for producing the same, and foam molded article
TWI445748B (en) Flame-retarded, foam-producing styrene-based resin beads
JP6410642B2 (en) Expandable resin particles and method for producing the same
JP6220663B2 (en) Expandable styrene resin particles imparted with flame retardancy and process for producing the same
JP6205278B2 (en) Expandable styrene resin particles and method for producing the same
JP6249814B2 (en) Expandable resin particles, production method, pre-expanded particles, and expanded molded body
JP6514928B2 (en) Expandable polystyrene-based resin particles, polystyrene-based pre-expanded particles and expanded molded articles
JP6542623B2 (en) Method for producing expandable polystyrene resin particles
JP2007246566A (en) Foamable thermoplastic resin particle and foamed molded article obtained from the same
JP6775371B2 (en) Manufacturing method of foamable styrene resin particles
JP5109227B2 (en) Process for producing expandable styrene resin particles and expandable styrene resin particles obtained from the process
WO2020032178A1 (en) Foamable resin particles and method of producing same, and foamed molded body
JP2020094186A (en) Foamable thermoplastic resin particle, thermoplastic pre-foamed particle, thermoplastic foamed molded body and production methods thereof
JP6697862B2 (en) Method for producing expandable styrenic resin particles having flame retardancy
JP6539436B2 (en) Expandable polystyrene resin particles
WO2019026972A1 (en) Expandable polystyrene resin particles, polystyrene pre-expanded particles, and foam molded body
JP4494074B2 (en) Expandable polystyrene resin particles
JP7341681B2 (en) Method for manufacturing expandable styrenic resin particles
JP6677974B2 (en) Method for producing expandable styrene resin particles
JP6410545B2 (en) Expandable styrene resin particles for extrusion foaming
JP2018154787A (en) Styrenic resin particle and method for producing the same
JP6679390B2 (en) Expandable styrene resin particles
JP5377917B2 (en) Flame retardant expandable polystyrene resin particles
JP2018193460A (en) Manufacturing method of expandable polystyrene resin particle, manufacturing method of polystyrene pre-expanded particle, and manufacturing method of foam molded body
JP2023094384A (en) Method for producing foamable styrenic resin particle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161021

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170627

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20170711

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170814

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171002

R150 Certificate of patent or registration of utility model

Ref document number: 6220663

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250