JP2015117176A - Admixture for hydraulic material and use thereof - Google Patents

Admixture for hydraulic material and use thereof Download PDF

Info

Publication number
JP2015117176A
JP2015117176A JP2013263506A JP2013263506A JP2015117176A JP 2015117176 A JP2015117176 A JP 2015117176A JP 2013263506 A JP2013263506 A JP 2013263506A JP 2013263506 A JP2013263506 A JP 2013263506A JP 2015117176 A JP2015117176 A JP 2015117176A
Authority
JP
Japan
Prior art keywords
resin
water
hydraulic material
hydraulic
cellulose ether
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013263506A
Other languages
Japanese (ja)
Other versions
JP6283215B2 (en
Inventor
和史 植村
Kazufumi Uemura
和史 植村
北野 健一
Kenichi Kitano
健一 北野
伊藤 茂樹
Shigeki Ito
茂樹 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Matsumoto Yushi Seiyaku Co Ltd
Original Assignee
Matsumoto Yushi Seiyaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsumoto Yushi Seiyaku Co Ltd filed Critical Matsumoto Yushi Seiyaku Co Ltd
Priority to JP2013263506A priority Critical patent/JP6283215B2/en
Publication of JP2015117176A publication Critical patent/JP2015117176A/en
Application granted granted Critical
Publication of JP6283215B2 publication Critical patent/JP6283215B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an admixture for hydraulic material excellent in water holding property, trowelability, trowel breakage resistance and re-adhesive inhibition property, a hydraulic material excellent in water holding property, trowelability, trowel breakage resistance and re-adhesive inhibition property and a molded article manufactured by curing the hydraulic material and good in surface appearance.SOLUTION: There is provided an admixture for hydraulic material containing water soluble cellulose ether (A) and water insoluble resin particle (B) as essential components and having an average particle diameter of the resin particle (B) of 1 to 50 μm, relative density of the resin particle (B) of 0.5 to 1.5 and weight percentage of the resin particle (B) of 5 to 200 pts.wt. based on 100 pts.wt. of the cellulose ether (A).

Description

本発明は、水硬性材料用混和剤およびその利用に関する。   The present invention relates to an admixture for hydraulic materials and use thereof.

建築材料、特に鏝(こて)で塗布する左官材等で使用される水硬性材料では、古くは天然物の『つのまた』等の海藻のりを混和剤として加えることにより、塗布時において良好な作業性等が確保されていた。その後、半合成高分子としてメチルセルロースに代表される水溶性セルロースエーテル(水溶性アルキルセルロース、水溶性ヒドロキシアルキルアルキルセルロース、水溶性ヒドロキシアルキルセルロース等)が開発され、現在では一般的に使用されている。
しかし、当該水溶性セルロースエーテルにより、ある程度の鏝塗り時の作業性が向上したものの、十分ではなかった。
そのため、水溶性セルロースエーテルに助剤を加え、保水性、作業性等の検討がされている。例えば、特許文献1にはポリアクリルアミドおよび/または一部アニオン化したポリアクリルアミド、特許文献2にはセピオライト、特許文献3にはヒドロキシアルキルスターチ、特許文献4にはウエランガムおよび/またはラムサンガム、特許文献5にはヒドロキシプロピル化澱粉および/またはガム若しくはその変性物、特許文献6にはカラギーナン、そして特許文献7には(ポリ)グリセリン部分脂肪酸エステル、特許文献8には糖および/またはその誘導体と、増粘剤および/または流動性向上剤、をそれぞれセルロースエーテルと組み合わせて、保水性、作業性等を向上させる取り組みが開示されている。
しかし、特許文献1〜6記載の助剤は、セルロースエーテルとは別に単独でも増粘効果を有するものであり、保水性はセルロースエーテルのみに依存している。これらの方法において保水性を満足させるために混和剤の配合量を調節した場合、助剤の増粘効果も同時に発現し過度に増粘することになる。一般的な左官材としては作業性が悪化し、鏝すべりの向上及び仕上げ後の再修正(概ね施工後の1時間以内)にも不適となる結果となる。
また特許文献7記載の助剤は、流動性を向上し粘性を低減する効果を有するものであるが、実際の鏝すべりや鏝切れは良くなく、うす塗り対応の為にはエマルジョン樹脂やセルロースエーテルの添加が必須となる、しかしその場合、結果としてモルタル中の接着剤成分が増加するため、仕上げ後の再修正が困難となる。
また特許文献8は特定組み合わせに於いて、保水性が極めて高くなる処方を開示したもので、鏝すべり鏝切れの向上及び仕上げ後の再修正への効果は無い。
For hydraulic materials used for building materials, especially plastering materials applied with trowels, the seaweed paste such as “Tsumata”, which is a natural product, was added as an admixture in the old days. Workability was ensured. Thereafter, water-soluble cellulose ethers typified by methyl cellulose (water-soluble alkyl cellulose, water-soluble hydroxyalkyl alkyl cellulose, water-soluble hydroxyalkyl cellulose, etc.) were developed as semi-synthetic polymers, and are now generally used.
However, although the water-soluble cellulose ether improved the workability at the time of glazing to some extent, it was not sufficient.
For this reason, an auxiliary agent is added to the water-soluble cellulose ether to study water retention and workability. For example, Patent Document 1 includes polyacrylamide and / or partially anionized polyacrylamide, Patent Document 2 includes sepiolite, Patent Document 3 includes hydroxyalkyl starch, Patent Document 4 includes welan gum and / or ramsan gum, Patent Document 5 Is a hydroxypropylated starch and / or gum or a modified product thereof, Patent Document 6 is carrageenan, Patent Document 7 is a (poly) glycerin partial fatty acid ester, Patent Document 8 is a sugar and / or derivative thereof, An approach for improving water retention, workability and the like by combining a sticky agent and / or a fluidity improver with cellulose ether is disclosed.
However, the auxiliary agents described in Patent Documents 1 to 6 have a thickening effect independently from the cellulose ether, and the water retention depends only on the cellulose ether. In these methods, when the blending amount of the admixture is adjusted in order to satisfy the water retention, the thickening effect of the auxiliary agent is also manifested and excessively thickened. As a general plastering material, workability deteriorates, and the result is that it is not suitable for improvement of sliding and re-correction after finishing (generally within one hour after construction).
The auxiliary agent described in Patent Document 7 has the effect of improving fluidity and reducing the viscosity, but the actual rub-off and cut-off are not good. However, in this case, since the adhesive component in the mortar increases as a result, re-correction after finishing becomes difficult.
Further, Patent Document 8 discloses a prescription in which water retention is extremely high in a specific combination, and has no effect on improvement of slidability and breakage and recorrection after finishing.

特開昭60−16849号公報JP 60-16849 A 特開昭60−122758号公報JP 60-122758 A 特開昭61−72663号公報JP 61-72663 A 特開平4−367549号公報JP-A-4-367549 特開平10−36162号公報Japanese Patent Laid-Open No. 10-36162 特開平11−349364号公報JP-A-11-349364 特開2003−104764号公報JP 2003-104764 A 特開2011−98851号公報JP2011-98851A

本発明の目的は、保水性、鏝すべり性、鏝切れ性及び再接着性防止に優れる水硬性材料用混和剤と、保水性、鏝すべり性、鏝切れ性及び再接着性防止に優れる水硬性材料と、該水硬性材料を硬化させてなり、表面の外観が良好な成型物とを提供することである。   The object of the present invention is an admixture for hydraulic materials that is excellent in water retention, slidability, severability and re-adhesion prevention, and hydraulic properties that are excellent in water retention, slidability, severability and re-adhesion prevention. It is to provide a material and a molded article having a good surface appearance by curing the hydraulic material.

本発明者らは、上記課題を解決するために鋭意検討した結果、水溶性セルロースエーテル及び特定の樹脂粒子を必須とする水硬性材料用混和剤、及びこれを含む水硬性材料であれば、上記目的を達成できることが確認できた。すなわち、本願発明は、水溶性セルロースエーテル(A)及び水不溶性樹脂粒子(B)を必須とする水硬性材料用混和剤であって、前記樹脂粒子(B)の平均粒子径が1〜50μmであり、前記樹脂粒子(B)の比重が0.5〜1.5であり、前記セルロースエーテル(A)100重量部に対する、前記樹脂粒子(B)の重量割合が5〜200重量部である、水硬性材料用混和剤である。   As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that the water-soluble cellulose ether and the admixture for a hydraulic material essential for specific resin particles, and the hydraulic material containing the admixture, It was confirmed that the objective could be achieved. That is, the present invention is an admixture for a hydraulic material essentially comprising a water-soluble cellulose ether (A) and water-insoluble resin particles (B), and the resin particles (B) have an average particle diameter of 1 to 50 μm. Yes, the specific gravity of the resin particles (B) is 0.5 to 1.5, and the weight ratio of the resin particles (B) to 100 parts by weight of the cellulose ether (A) is 5 to 200 parts by weight. It is an admixture for hydraulic materials.

前記セルロースエーテル(A)の2重量%の水溶液の20℃における粘度が50〜100,000mPa・sであると好ましい。
前記セルロースエーテル(A)が、水溶性アルキルセルロース、水溶性ヒドロキシアルキルアルキルセルロース及び水溶性ヒドロキシアルキルセルロースから選ばれる少なくとも1種であると好ましい。
前記樹脂粒子(B)が、(メタ)アクリル樹脂、ナイロン樹脂、ウレタン樹脂、ポリエチレン樹脂、ポリテトラフルオロエチレン樹脂、ポリスチレン樹脂、ポリイミド樹脂、フェノール樹脂、ユリア樹脂、メラミン樹脂、塩化ビニル樹脂及び塩化ビニリデン樹脂から選ばれる少なくとも1種から構成されると好ましい。
The viscosity at 20 ° C. of a 2% by weight aqueous solution of the cellulose ether (A) is preferably 50 to 100,000 mPa · s.
The cellulose ether (A) is preferably at least one selected from water-soluble alkylcellulose, water-soluble hydroxyalkylalkylcellulose and water-soluble hydroxyalkylcellulose.
The resin particles (B) are (meth) acrylic resin, nylon resin, urethane resin, polyethylene resin, polytetrafluoroethylene resin, polystyrene resin, polyimide resin, phenol resin, urea resin, melamine resin, vinyl chloride resin and vinylidene chloride. It is preferable to be composed of at least one selected from resins.

本発明の水硬性材料は、水溶性セルロースエーテル(A)、水不溶性樹脂粒子(B)、水硬性物質及び骨材を必須とする水硬性材料であって、前記樹脂粒子(B)の平均粒子径が1〜50μmであり、前記樹脂粒子(B)の比重が0.5〜1.5である、水硬性材料。
前記セルロースエーテル(A)100重量部に対する、前記樹脂粒子(B)の重量割合が5〜200重量部である。
前記セルロースエーテル(A)の2重量%の水溶液の20℃における粘度が50〜100,000mPa・sであると好ましい。
前記セルロースエーテルが、水溶性アルキルセルロース、水溶性ヒドロキシアルキルアルキルセルロースおよび水溶性ヒドロキシアルキルセルロースから選ばれる少なくとも1種であると好ましい。
前記樹脂粒子が、(メタ)アクリル樹脂、ナイロン樹脂、ウレタン樹脂、ポリエチレン樹脂、ポリテトラフルオロエチレン樹脂、ポリスチレン樹脂、ポリイミド樹脂、フェノール樹脂、ユリア樹脂、メラミン樹脂、塩化ビニル樹脂及び塩化ビニリデン樹脂から選ばれる少なくとも1種から構成されると好ましい。
なお、ポリテトラフルオロエチレン樹脂の市販品としては、テフロン(登録商標)がある。
水をさらに含むと好ましい。
The hydraulic material of the present invention is a hydraulic material essentially comprising a water-soluble cellulose ether (A), a water-insoluble resin particle (B), a hydraulic substance and an aggregate, and the average particle of the resin particles (B) A hydraulic material having a diameter of 1 to 50 μm and a specific gravity of the resin particles (B) of 0.5 to 1.5.
The weight ratio of the resin particles (B) with respect to 100 parts by weight of the cellulose ether (A) is 5 to 200 parts by weight.
The viscosity at 20 ° C. of a 2% by weight aqueous solution of the cellulose ether (A) is preferably 50 to 100,000 mPa · s.
The cellulose ether is preferably at least one selected from water-soluble alkyl cellulose, water-soluble hydroxyalkyl alkyl cellulose and water-soluble hydroxyalkyl cellulose.
The resin particles are selected from (meth) acrylic resin, nylon resin, urethane resin, polyethylene resin, polytetrafluoroethylene resin, polystyrene resin, polyimide resin, phenol resin, urea resin, melamine resin, vinyl chloride resin and vinylidene chloride resin. It is preferable to be composed of at least one selected from the above.
A commercially available polytetrafluoroethylene resin is Teflon (registered trademark).
It is preferable to further contain water.

本発明の成型物は、本発明の水硬性材料を硬化させてなる。   The molded product of the present invention is obtained by curing the hydraulic material of the present invention.

本発明の水硬性材料用混和剤は、保水性、鏝すべり性、鏝切れ性及び再接着性防止に優れる。本発明の水硬性材料は、保水性、鏝すべり性、鏝切れ性及び再接着性防止に優れる。本発明の成型物は、上記水硬性材料を硬化させて得られ、表面の外観が良好に仕上がる。   The admixture for hydraulic material of the present invention is excellent in water retention, slipperiness, tearability and re-adhesion prevention. The hydraulic material of the present invention is excellent in water retention, slipperiness, tearability and re-adhesion prevention. The molded product of the present invention is obtained by curing the hydraulic material, and the surface appearance is excellently finished.

〔水硬性材料用混和剤〕
本発明の水硬性材料用混和剤は、水溶性セルロースエーテル及び水不溶性樹脂粒子を必須に含有する。以下、各成分について説明する。
[Admixture for hydraulic materials]
The admixture for hydraulic material of the present invention essentially contains water-soluble cellulose ether and water-insoluble resin particles. Hereinafter, each component will be described.

〔水溶性セルロースエーテル(A)〕
水溶性セルロースエーテル(A)(以下、セルロースエーテル(A)ということがある。)は、単独でも保水性、作業性、材料不分離性に寄与し、粘性を調節し適度な作業性を付与する成分である。
前記セルロースエーテル(A)は、水溶性セルロースエーテルであれば、特に限定はないが、水溶性アルキルセルロース、水溶性ヒドロキシアルキルアルキルセルロース、水溶性ヒドロキシアルキルセルロースが好ましい。
前記アルキルセルロースとしては、特に限定はないが、たとえば、メチルセルロース等が挙げられる。水溶性ヒドロキシアルキルアルキルセルロースとしては、特に限定はないが、たとえば、ヒドロキシプロピルメチルセルロース、ヒドロキシエチルメチルセルロース等が挙げられる。水溶性ヒドロキシアルキルセルロースとしては、特に限定はないが、たとえば、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース等が挙げられる。上記水溶性セルロースエーテルの中でも、ヒドロキシプロピルメチルセルロース、ヒドロキシエチルメチルセルロース等の水溶性ヒドロキシアルキルアルキルセルロースがより好ましい。
[Water-soluble cellulose ether (A)]
Water-soluble cellulose ether (A) (hereinafter sometimes referred to as cellulose ether (A)) alone contributes to water retention, workability, and material non-separability, and adjusts viscosity to impart moderate workability. It is an ingredient.
The cellulose ether (A) is not particularly limited as long as it is a water-soluble cellulose ether, but water-soluble alkyl cellulose, water-soluble hydroxyalkyl alkyl cellulose, and water-soluble hydroxyalkyl cellulose are preferable.
The alkyl cellulose is not particularly limited, and examples thereof include methyl cellulose. The water-soluble hydroxyalkylalkylcellulose is not particularly limited, and examples thereof include hydroxypropylmethylcellulose and hydroxyethylmethylcellulose. The water-soluble hydroxyalkyl cellulose is not particularly limited, and examples thereof include hydroxyethyl cellulose and hydroxypropyl cellulose. Among the water-soluble cellulose ethers, water-soluble hydroxyalkylalkylcelluloses such as hydroxypropylmethylcellulose and hydroxyethylmethylcellulose are more preferable.

前記セルロースエーテル(A)は、水硬性材料用混和剤の中に少なくとも1種類を含有しておればよく、2種類以上のセルロースエーテルを含有していてもよい。市販のセルロースエーテルとしては、たとえば、メトローズSMタイプ(信越化学工業株式会社製)、マーポローズMタイプ(松本油脂製薬株式会社製)等のメチルセルロース;メトローズ60SHタイプ、65SHタイプ、90SHタイプ(信越化学工業株式会社製)、マーポローズ60MPタイプ、65MPタイプ、90MPタイプ(松本油脂製薬株式会社製)等のヒドロキシプロピルメチルセルロースや;メトローズSEBタイプ、SNBタイプ(信越化学工業株式会社製)、マーポローズMEタイプ(松本油脂製薬株式会社製)等の、ヒドロキシエチルメチルセルロースを挙げることができる。   The said cellulose ether (A) should just contain at least 1 type in the admixture for hydraulic materials, and may contain 2 or more types of cellulose ethers. Examples of commercially available cellulose ethers include, for example, methyl celluloses such as Metroles SM type (manufactured by Shin-Etsu Chemical Co., Ltd.) and Marporose M type (manufactured by Matsumoto Yushi Seiyaku Co., Ltd.); Company), Marprose 60MP type, 65MP type, 90MP type (Matsumoto Yushi Seiyaku Co., Ltd.) and other hydroxypropyl methylcellulose; Metroles SEB type, SNB type (Shin-Etsu Chemical Co., Ltd.), Marporose ME type (Matsumoto Yushi Seiyaku) Hydroxyethyl methylcellulose such as manufactured by Co., Ltd. can be mentioned.

前記セルロースエーテル(A)の粘度(20℃)は、水溶性セルロースエーテルを2重量%含有する水溶液とした場合に、好ましくは50〜100,000mPa・s、より好ましくは100〜98,000mPa・s、さらに好ましくは150〜95,000mPa・s、特に好ましくは200〜93,000mPa・s、最も好ましくは300〜88,000mPa・sである。
粘度が50mPa・sより低い場合は、十分な保水性、適度な増粘性を得るために、配合量を増やす必要があり、過度の凝結遅延が発生し易く、また比較的高価なセルロースエーテルの大量配合はコスト的に不利となる場合がある。
The viscosity (20 ° C.) of the cellulose ether (A) is preferably 50 to 100,000 mPa · s, more preferably 100 to 98,000 mPa · s, when an aqueous solution containing 2% by weight of water-soluble cellulose ether is used. More preferably, it is 150 to 95,000 mPa · s, particularly preferably 200 to 93,000 mPa · s, and most preferably 300 to 88,000 mPa · s.
When the viscosity is lower than 50 mPa · s, it is necessary to increase the blending amount in order to obtain sufficient water retention and moderate thickening, and excessive condensation delay is likely to occur, and a large amount of relatively expensive cellulose ether. Formulation can be costly.

一方、粘度が100,000mPa・sより高い場合は、大きな増粘性があり、保水性と作業性の両立が困難となる場合がある。さらに、現在の技術では、高粘度のセルロースエーテルを工業的に生産することが難しく、コストが非常に高くなり、経済的に有利ではない。
前記セルロースエーテル(A)が多種類から構成される場合、1種類の水溶性セルロースエーテルの粘度が50〜100,000mPa・sの範囲外であっても、別の水溶性セルロースエーテルと混合することにより、粘度を全体として50〜100,000mPa・sとしても良い。
本発明における粘度は、JIS Z 8803に従って測定され、実施例にその詳細を
記載する。
On the other hand, when the viscosity is higher than 100,000 mPa · s, there is a large viscosity increase, and it may be difficult to achieve both water retention and workability. Furthermore, with the current technology, it is difficult to industrially produce a high viscosity cellulose ether, which is very expensive and not economically advantageous.
When the cellulose ether (A) is composed of many types, even if the viscosity of one water-soluble cellulose ether is outside the range of 50 to 100,000 mPa · s, it should be mixed with another water-soluble cellulose ether. Thus, the viscosity may be 50 to 100,000 mPa · s as a whole.
The viscosity in the present invention is measured according to JIS Z 8803, and details thereof are described in Examples.

〔水不溶性樹脂粒子(B)〕
本発明に用いられる水不溶性樹脂粒子(B)は、水硬性物質粒子や骨材の流動性向上に寄与する成分であり、保水性や増粘性へは寄与しないが、水硬性材料の流動化作用を向上させ、鏝すべり及び鏝切れに多大な効果を示し、更に施工後の施工面を修正する際にも鏝への接着が少なく修正が容易に可能となる。
軽い鏝すべりや平易な鏝切れの為、当然作業者の疲労は低減し、施工面の修正も容易な為、作業性は大きく向上する。
[Water-insoluble resin particles (B)]
The water-insoluble resin particles (B) used in the present invention are components that contribute to improving the fluidity of hydraulic substance particles and aggregates, and do not contribute to water retention or viscosity increase, but fluidization action of hydraulic materials. In addition, it has a great effect on the sliding and cutting of the wrinkles. Further, when the construction surface after construction is corrected, there is little adhesion to the wrinkles and the correction can be easily performed.
Because of light sliding and easy cutting, the operator's fatigue is naturally reduced and the work surface can be easily modified, so the workability is greatly improved.

本発明に用いられる水不溶性樹脂粒子(B)は、水に対して実質的に溶解せず、及びエマルジョン様の分散をせず、静置後沈殿又は浮上が見られ、形状が変形しない樹脂粒子である。
前記樹脂粒子を含む水硬性材料成型物の断面観察の際の電子顕微鏡写真で、その粒子は変形等なく存在する事が確認できることから、施工後の施工面を修正する際にも鏝への接着が少なく修正が可能となる理由は、無機粒子であるセメント粒子や他の骨材粒子等に対する、前記水不溶性樹脂粒子(B)自体によるローリング効果と推察される。
The water-insoluble resin particles (B) used in the present invention are resin particles that do not substantially dissolve in water, do not disperse like an emulsion, are allowed to settle or float after standing, and do not deform in shape. It is.
The electron micrograph at the time of cross-sectional observation of the molded hydraulic material containing the resin particles can confirm that the particles are present without deformation, etc. The reason why the correction can be made with a small amount is presumably due to the rolling effect of the water-insoluble resin particles (B) themselves on cement particles, which are inorganic particles, and other aggregate particles.

前記水に対して実質的に溶解をしないとは、樹脂粒子を1%固形分となるように水に分散し、5C濾紙(JIS P 3801)で濾過(減圧濾過)した際に、濾紙上に残った樹脂粒子の質量が、99.0%以上であり、且つ、樹脂粒子に大過剰の20〜40℃の水を添加しても、水の添加の前後で粒子径が実質的に変化しないことを意味する。この場合粒子径の変化率が30%以下であるとより好ましく、20%以下であるとさらに好ましく、10%以下であると特に好ましい。   The fact that it does not substantially dissolve in water means that resin particles are dispersed in water so as to have a solid content of 1% and filtered (reduced pressure filtration) with 5C filter paper (JIS P 3801). The mass of the remaining resin particles is 99.0% or more, and even when a large excess of 20-40 ° C. water is added to the resin particles, the particle diameter does not change substantially before and after the addition of water. Means that. In this case, the change rate of the particle diameter is more preferably 30% or less, further preferably 20% or less, and particularly preferably 10% or less.

前記樹脂粒子(B)の平均粒子径は1〜50μmである。好ましくは1.1〜45μmであり、より好ましくは1.2〜40μmであり、さらに好ましくは1.3〜35μmであり、特に好ましくは1.6〜30μmであり、最も好ましくは1.8〜25μmである。1μm未満の場合は取扱性が極めて悪くなる事や、製造コストがかかり不適である。50μmを超える場合は流動化作用の低下がみられる為、不適である。
当該粒子径は、一般的にレーザー回折式の粒子径分布測定装置で容易に測定が可能である。(具体的には、日機装株式会社製レーザー回折式粒子径分布測定装置マイクロトラック、日本レーザー株式会社製 同 Helos&Rodos等があげられる。)
The resin particles (B) have an average particle diameter of 1 to 50 μm. Preferably it is 1.1-45 micrometers, More preferably, it is 1.2-40 micrometers, More preferably, it is 1.3-35 micrometers, Especially preferably, it is 1.6-30 micrometers, Most preferably, it is 1.8- 25 μm. If the thickness is less than 1 μm, the handleability is extremely deteriorated, and the production cost is unsuitable. If it exceeds 50 μm, the fluidizing action is reduced, which is not suitable.
The particle diameter can be easily measured with a laser diffraction type particle size distribution measuring apparatus. (Specific examples include Nikkiso Co., Ltd. Laser Diffraction Particle Size Distribution Measuring Device Microtrack, Nihon Laser Co., Ltd. Helos & Rodos, etc.)

なお、ここで言う平均粒子径とは、理論上の体積頻度50%の粒子径を表し、例えば平均粒子径が2μmとは、被測定体である粒子〜粉体状物を、目開き2μmの篩で篩った場合、理論上、篩下が50体積%、篩上が50体積%となることを意味する。   In addition, the average particle diameter mentioned here represents a particle diameter having a theoretical volume frequency of 50%. For example, an average particle diameter of 2 μm means that a particle to a powdery substance to be measured has a mesh size of 2 μm. When sieving with a sieve, it means that, theoretically, the volume under the sieve is 50% by volume, and the value above the sieve is 50% by volume.

前記樹脂粒子(B)のd90は60μm未満であると、表面のざらつきが低減し、鏝切れ性及び鏝すべり性がさらに向上するため、好ましい。より好ましくはd90<55μmであり、さらに好ましくは50μm未満であり、特に好ましくは45μm未満であり、最も好ましくは40μmである。d90が60μm以上になると流動化作用が低下する可能性がある。
なお、ここで言うd90とは、理論上の体積頻度90%の粒子径を表し、例えばd90=28μmとは、被測定体である粒子〜粉体状物を、目開き28μmの篩で篩った場合、理論上、篩下が90体積%、篩上が10体積%となることを意味する。
It is preferable that d90 of the resin particles (B) is less than 60 μm, because the surface roughness is reduced, and the breaking property and sliding property are further improved. More preferably, d90 <55 μm, still more preferably less than 50 μm, particularly preferably less than 45 μm, and most preferably 40 μm. If d90 is 60 μm or more, the fluidizing action may be reduced.
In addition, d90 said here represents the particle diameter of 90% of the theoretical volume frequency, for example, d90 = 28micrometer, sifts the particle | grains-powder which is a to-be-measured body with a sieve with an aperture of 28 micrometers. Theoretically, it means that 90% by volume under the sieve and 10% by volume over the sieve.

前記樹脂粒子(B)の比重は0.5〜1.5であり、好ましくは0.55〜1.45であり、より好ましくは0.6〜1.4であり、さらに好ましくは0.65〜1.35であり、特に好ましくは0.7〜1.3である。比重が0.5未満では、粒子自体の強度が低く変形するため、本願の効果が得られない。比重が1.5を超えると、流動化作用が低下し、本願の効果が得られない。   The specific gravity of the resin particles (B) is 0.5 to 1.5, preferably 0.55 to 1.45, more preferably 0.6 to 1.4, and still more preferably 0.65. -1.35, particularly preferably 0.7-1.3. When the specific gravity is less than 0.5, the strength of the particles themselves is deformed to be low, so the effects of the present application cannot be obtained. If the specific gravity exceeds 1.5, the fluidizing action is lowered and the effect of the present application cannot be obtained.

前記樹脂粒子(B)は架橋構造を有していると、アルカリ性である水硬性材料内において溶解しないため、増粘性を発現することはなく、また接着成分として作用せず、容易に変形しないため、好ましい。
前記樹脂粒子(B)は、水硬材料と容易に結合しないと好ましく、例えば、水硬材料と容易に結合しない樹脂としては、(メタ)アクリル樹脂、ナイロン樹脂、ウレタン樹脂、ポリエチレン樹脂、ポリテトラフルオロエチレン樹脂、ポリスチレン樹脂、ポリイミド樹脂、フェノール樹脂、ユリア樹脂、メラミン樹脂、塩化ビニル樹脂、塩化ビニリデン樹脂等が挙げられる。この中でも、施工後の施工面を修正する際にも鏝への接着が少なく修正が可能となる観点から、(メタ)アクリル樹脂、ナイロン樹脂、ウレタン樹脂、ポリエチレン樹脂、ポリテトラフルオロエチレン樹脂、ポリスチレン樹脂が好ましく、(メタ)アクリル樹脂、ナイロン樹脂、ウレタン樹脂がさらに好ましい。
なお、(メタ)アクリル樹脂とは、メタクリル樹脂およびアクリル樹脂のことをいい、ポリメチルメタクリレート樹脂(PMMA)やポリアクリロニトリル樹脂(PAN)もこれに含まれる。
これらの樹脂は、水硬材料と容易に結合しないという観点から、共重合であってもよく、好ましい共重合体としては、アクリル−メタアクリル樹脂、アクリル−スチレン樹脂、エチレン−酢酸ビニル樹脂が挙げられる。
If the resin particles (B) have a crosslinked structure, they do not dissolve in the alkaline hydraulic material, so that they do not develop thickening, do not act as adhesive components, and do not easily deform. ,preferable.
The resin particles (B) are preferably not easily bonded to a hydraulic material. Examples of resins that do not easily bond to a hydraulic material include (meth) acrylic resin, nylon resin, urethane resin, polyethylene resin, polytetra Examples include fluoroethylene resin, polystyrene resin, polyimide resin, phenol resin, urea resin, melamine resin, vinyl chloride resin, and vinylidene chloride resin. Among these, (meth) acrylic resin, nylon resin, urethane resin, polyethylene resin, polytetrafluoroethylene resin, polystyrene from the viewpoint that it can be corrected with less adhesion to the heel when correcting the construction surface after construction. Resin is preferable, and (meth) acrylic resin, nylon resin, and urethane resin are more preferable.
The (meth) acrylic resin refers to methacrylic resin and acrylic resin, and includes polymethylmethacrylate resin (PMMA) and polyacrylonitrile resin (PAN).
These resins may be copolymerized from the viewpoint that they are not easily bonded to a hydraulic material, and preferable copolymers include acrylic-methacrylic resins, acrylic-styrene resins, and ethylene-vinyl acetate resins. It is done.

前記水硬材料と容易に結合する樹脂としては、シリコーン樹脂が挙げられ、セメントの水硬作用が、水添加より直ぐに始まり、水硬材料と結合する事により、ローリング効果が不充分となり好ましくない場合がある。
水硬材料と容易に結合する粒子としては、Al、Si、Ca、Mg、等の水硬材料の主成分から構成される無機材質による球状粒子が挙げられ、セメントの水硬作用が、水添加より直ぐに始まり、水硬材料と結合する事により、本願の効果は得られない。
Examples of the resin that is easily bonded to the hydraulic material include a silicone resin, and the hydraulic action of the cement starts immediately after the addition of water, and is not preferable because the rolling effect is insufficient due to bonding with the hydraulic material. There is.
Examples of particles that easily bind to hydraulic materials include spherical particles made of inorganic materials composed of the main components of hydraulic materials such as Al, Si, Ca, Mg, etc. The effect of the present application cannot be obtained by combining with a hydraulic material that starts more quickly.

前記樹脂粒子(B)は真球状である事が望ましく、真球状の指標として一般的に円形度を用いて規定する事が可能である。
前記円形度は、各種電子顕微鏡またはレーザー顕微鏡で樹脂粒子の平面画像を、画像処理ソフト、(具体的には、三谷商事株式会社製 画像解析ソフト WinROOFや、日鉄住金テクノロジー株式会社製 画像解析ソフト 粒子解析等があげられる。)を使用することにより、容易に得ることが可能である。
前記樹脂粒子(B)の円形度Cとしては0.65以上が好ましい。円形度Cとは以下の一般式(1)で表されるものであり、
C=4πS/L (1)
(但し、Sは平面画像上の粒子の面積、Lは平面画像上の粒子の周囲長である。)
The resin particles (B) are preferably spherical, and can generally be defined using circularity as a spherical index.
The circularity can be determined by converting a planar image of resin particles with various electron microscopes or laser microscopes, image processing software (specifically, image analysis software WinROOF manufactured by Mitani Corporation, or image analysis software manufactured by Nippon Steel & Sumikin Technology Co., Ltd.) It is possible to obtain easily by using particle analysis etc.).
The circularity C of the resin particles (B) is preferably 0.65 or more. The circularity C is represented by the following general formula (1):
C = 4πS / L 2 (1)
(However, S is the area of the particle on the planar image, and L is the perimeter of the particle on the planar image.)

前記樹脂粒子(B)の円形度Cとしては0.65以上が好ましく、より好ましくは0.67以上であり、さらに好ましくは0.69以上であり、特に好ましくは0.71以上である。最も好ましくは0.73以上である。円形度Cの上限は1.0であり、好ましくは0.99であり、より好ましくは0.98である。
円形度Cが0.65未満では、施工後の施工面を再修正する際に再接着性防止に効果がない可能性がある。
The degree of circularity C of the resin particles (B) is preferably 0.65 or more, more preferably 0.67 or more, still more preferably 0.69 or more, and particularly preferably 0.71 or more. Most preferably, it is 0.73 or more. The upper limit of the circularity C is 1.0, preferably 0.99, and more preferably 0.98.
If the circularity C is less than 0.65, there is a possibility that there is no effect in preventing re-adhesion when re-correcting the construction surface after construction.

前記樹脂粒子(B)の具体例として、特に限定されないが、例えば、ポリメチルメタクリレート樹脂粒子として、マツモトマイクロスフェアーMシリーズ(松本油脂製薬株式会社製)、ポリアクリロニトリル樹脂粒子として、マツモトマイクロスフェアーFシリーズ(松本油脂製薬株式会社製)、エクスパンセルDUシリーズ(アクゾノーベル社製)、アクリル樹脂粒子として、ジュリマーシリーズ(日本純薬株式会社製)、メタアクリル酸エステル樹脂及びスチレン系樹脂粒子としてガンツパール(ガンツ化成工業株式会社製)、ナイロン樹脂粒子としてアミランSP(東レ株式会社製)等があげられる。
また粒子径が本発明範囲を逸脱した、市販の各種樹脂粒子でも、ミクロンセパレーター(ホソカワミクロン株式会社製)や気流分級機(日本ニューマチック工業株式会社製、東洋ハイテック株式会社製)やサイクロン式分級機等で、所定の粒子径に分級することによって、平均粒子径を1〜50μmとした樹脂粒子であれば問題なく使用することができる。
Although it does not specifically limit as a specific example of the said resin particle (B), For example, Matsumoto microsphere M series (made by Matsumoto Yushi Seiyaku Co., Ltd.) as a polymethylmethacrylate resin particle, Matsumoto microsphere as a polyacrylonitrile resin particle, for example F series (manufactured by Matsumoto Yushi Seiyaku Co., Ltd.), EXPANSEL DU series (manufactured by Akzo Nobel), Julimer series (manufactured by Nippon Seiyaku Co., Ltd.), methacrylic ester resin and styrene resin particles Examples include Gantz Pearl (manufactured by Gantz Kasei Kogyo Co., Ltd.), and nylon resin particles such as Amilan SP (manufactured by Toray Industries, Inc.).
In addition, various commercially available resin particles whose particle diameters deviated from the scope of the present invention are micron separators (manufactured by Hosokawa Micron Co., Ltd.), airflow classifiers (manufactured by Nippon Pneumatic Kogyo Co., Ltd., manufactured by Toyo Hitec Co., Ltd.) By classifying to a predetermined particle diameter, etc., resin particles having an average particle diameter of 1 to 50 μm can be used without problems.

流動化作用とは、添加することで水硬性材料の流動性を向上することができる作用である。セメント業界での減水剤と呼ばれている剤も水硬性材料の流動性を上げ、結果減水効果があるとされている。
セメント業界での減水剤は、後述する減水剤・AE減水剤として記載するが、特に有効な減水剤としてのポリカルボン酸系化合物として、無水マレイン酸、マレイン酸(塩)、マレイン酸エステル等のマレイン酸系化合物;アクリル酸(塩)、メタクリル酸(塩)、アクリル酸エステル、メタクリル酸エステル等の(メタ)アクリル酸系化合物;カルボキシル基を有する不飽和(ポリ)アルキレングリコールエーテル系単量体(塩)等の単量体の重合体が挙げられる。ポリカルボン酸系化合物は、一種の単量体の単独重合体でも、二種以上の単量体の共重合体でもよい。また、これらの単量体の一種または二種以上と、スチレンやカルボキシル基を有しない不飽和(ポリ)アルキレングリコールエーテル系単量体等他のビニル型単量体の一種または二種以上との共重合体でもよい。
The fluidizing action is an action that can improve the fluidity of the hydraulic material when added. An agent called a water reducing agent in the cement industry also increases the fluidity of hydraulic materials, resulting in a water reducing effect.
Water-reducing agents in the cement industry are described as water-reducing agents and AE water-reducing agents, which will be described later. As polycarboxylic acid-based compounds as particularly effective water-reducing agents, maleic anhydride, maleic acid (salt), maleic esters, etc. Maleic acid compound; (meth) acrylic acid compound such as acrylic acid (salt), methacrylic acid (salt), acrylic acid ester, methacrylic acid ester; unsaturated (poly) alkylene glycol ether monomer having carboxyl group Examples thereof include polymers of monomers such as (salt). The polycarboxylic acid-based compound may be a homopolymer of one kind of monomer or a copolymer of two or more kinds of monomers. In addition, one or more of these monomers and one or more of other vinyl monomers such as unsaturated (poly) alkylene glycol ether monomers having no styrene or carboxyl group A copolymer may be used.

これらの減水剤は、主に無機骨材粒子表面、水硬性物質粒子表面へ吸着し、静電反発、立体阻害等の作用により、水硬性材料に含まれる成分、特に水硬性物質の分散を効果的に引き起こし、水硬性材料を流動化させると言われている。つまり高分子分子鎖による静電反発、立体阻害等の作用であり、減水効果に対しては好ましいが、鏝すべりや鏝切れ向上への寄与は少ない。
前記水不溶性樹脂粒子(B)は、無機粒子であるセメント粒子や他の骨材粒子に対し、水に分散された球状粒子自体によるローリング効果で、特異な鏝すべり性や鏝切れ性を表す代わりに、減水作用への寄与はない。
These water reducing agents are mainly adsorbed on the surface of inorganic aggregate particles and hydraulic substance particles, and are effective in dispersing components contained in hydraulic materials, especially hydraulic substances, by electrostatic repulsion and steric hindrance. It is said that the hydraulic material is fluidized. That is, it is an action such as electrostatic repulsion and steric hindrance by the polymer molecular chain, and is preferable for the water-reducing effect, but has little contribution to the improvement of slidability and breaking.
The water-insoluble resin particles (B) have a rolling effect due to the spherical particles themselves dispersed in water with respect to cement particles and other aggregate particles which are inorganic particles, and exhibit a unique slipperiness and chopping property. However, there is no contribution to water reduction.

前記セルロースエーテル(A)100重量部に対する、前記樹脂粒子(B)の重量割合は5〜200重量部である。好ましくは6〜190重量部であり、より好ましくは7〜180重量部であり、さらに好ましくは8〜170重量部であり、特に好ましくは10〜160重量部である。5重量部未満では、再接着性防止効果が低下する。200重量部を超えると、保水性や増粘性、材料不分離性や接着強度が弱くなり、さらには凝結遅延性の調節が困難となる。   The weight ratio of the resin particles (B) with respect to 100 parts by weight of the cellulose ether (A) is 5 to 200 parts by weight. Preferably it is 6-190 weight part, More preferably, it is 7-180 weight part, More preferably, it is 8-170 weight part, Especially preferably, it is 10-160 weight part. If it is less than 5 parts by weight, the effect of preventing re-adhesion is reduced. When it exceeds 200 parts by weight, water retention, viscosity increase, material non-separability and adhesive strength are weakened, and further, it is difficult to adjust the setting delay.

本発明の水硬性材料用混和剤には、前記セルロースエーテル(A)及び前記樹脂粒子(B)以外に、後述のその他成分を配合してもよい。
水硬性材料用混和剤は、前記セルロースエーテル(A)、前記樹脂粒子(B)及び後述のその他成分を、たとえば、ナウタミキサー混合機(ホソカワミクロン株式会社製)やヘンシェルミキサー混合機(株式会社三井三池鉱業所製)、リボンミキサー混合機(株式会社ダルトン、他各社製)等を用いて混合することによって得られる。
In addition to the cellulose ether (A) and the resin particles (B), other components described below may be added to the hydraulic material admixture of the present invention.
Examples of the admixture for hydraulic materials include the cellulose ether (A), the resin particles (B), and other components described below, such as a Nauta mixer mixer (manufactured by Hosokawa Micron Corporation) and a Henschel mixer mixer (Mitsui Miike Corporation). It is obtained by mixing using a mining factory), a ribbon mixer mixer (Dalton Co., Ltd., other companies), or the like.

〔水硬性材料〕
本発明の水硬性材料は、水溶性セルロースエーテル(A)、水不溶性樹脂粒子(B)、水硬性物質及び骨材を必須に含む。本発明の水硬性材料は、上記水硬性材料用混和剤を構成する各成分を別々に水硬性物質と混合して得られるものも含まれる。水硬性物質としては、セメントおよび/または石膏が好ましい。
[Hydraulic material]
The hydraulic material of the present invention essentially contains a water-soluble cellulose ether (A), water-insoluble resin particles (B), a hydraulic substance and an aggregate. The hydraulic material of the present invention includes those obtained by separately mixing each component constituting the admixture for hydraulic material with a hydraulic substance. As the hydraulic substance, cement and / or gypsum are preferable.

セメントとしては、特に限定はないが、例えば、普通ポルトランドセメント、早強ポルトランドセメント、中庸熱ポルトランドセメント、耐硫酸塩ポルトランドセメント、低アルカリ形の上記ポルトランドセメント、高炉セメント、シリカセメント、フライアッシュセメント、白色ポルトランドセメント、超速硬セメント、超微粒子セメント、アルミナセメント、ジェットセメント等が挙げられる。
石膏としては、特に限定はないが、例えば、I型無水石膏、II型無水石膏、III型無水石膏、二水石膏、α型半水膏、β型半水石膏等が挙げられる。
The cement is not particularly limited. For example, ordinary portland cement, early-strength portland cement, moderately hot portland cement, sulfate-resistant portland cement, low alkali type portland cement, blast furnace cement, silica cement, fly ash cement, Examples include white Portland cement, ultra-high speed cement, ultra fine particle cement, alumina cement, and jet cement.
The gypsum is not particularly limited, and examples thereof include type I anhydrous gypsum, type II anhydrous gypsum, type III anhydrous gypsum, dihydrate gypsum, α type hemihydrate, β type hemihydrate gypsum, and the like.

骨材としては、無機骨材及び有機骨材があり、それぞれに篩い分けによって細骨材と粗骨材がある。前記細骨材は、10mm目開きフルイを全通し、且つ5mm目開きフルイ通過したものが85重量%以上からなる無機骨材である。5mm目開きフルイ通過しないものが85重量%を超える粗骨材は、鏝塗作業用の水硬材料としては適さないことがある。
また、無機骨材としては、たとえば、珪砂、珪石粉、高炉スラグ、シリカフューム、フライアッシュ、カオリン焼成物、石灰石粉等を挙げることができ、1種または2種以上を併用してもよい。
骨材は、細骨材よりも粗い粗骨材を含んでもよいが、粗骨材を含まないほうが、鏝塗による成型物の表面性が良好となるので好ましい。
As aggregates, there are inorganic aggregates and organic aggregates, and there are fine aggregates and coarse aggregates by sieving each. The fine aggregate is an inorganic aggregate composed of 85% by weight or more passing through a 10 mm opening sieve and passing through a 5 mm opening sieve. Coarse aggregates that exceed 85% by weight but do not pass through a 5 mm aperture sieve may not be suitable as a hydraulic material for the glazing operation.
Examples of the inorganic aggregate include silica sand, silica stone powder, blast furnace slag, silica fume, fly ash, kaolin fired product, limestone powder, and the like, and one or more kinds may be used in combination.
The aggregate may include a coarse aggregate that is coarser than the fine aggregate. However, it is preferable that the aggregate is not included since the surface property of the molded product is improved by glazing.

骨材中の粗骨材および細骨材の重量比(粗骨材/細骨材)については、特に限定はないが、好ましくは0.2以下、さらに好ましくは0.15以下、特に好ましくは0.13以下、最も好ましくは0.1以下である。粗骨材/細骨材が0.2超の場合は、鏝塗による成型物の表面性が悪化することがある。
水硬性物質と骨材の配合物は、用途に応じた最適な配合をするべきであるが、水硬性物質であるセメント(または石膏)および骨材の重量比(水硬性物質/骨材)は、後述する軽量骨材を使用又は併用する場合を除いては、好ましくは80/20〜20/80、さらに好ましくは75/25〜25/85、特に好ましくは70/30〜30/70である。水硬性物質/骨材が80/20を超えると、水硬前後の寸法変化が大きくなり過ぎ不適である。一方、水硬性物質/骨材が20/80より小さいと、得られるセメントまたは石膏成型物の硬化後の強度に問題が発生する場合がある。
The weight ratio of coarse aggregate and fine aggregate in the aggregate (coarse aggregate / fine aggregate) is not particularly limited, but is preferably 0.2 or less, more preferably 0.15 or less, particularly preferably. 0.13 or less, most preferably 0.1 or less. When the coarse aggregate / fine aggregate is more than 0.2, the surface property of the molded product by glazing may be deteriorated.
The combination of hydraulic substance and aggregate should be optimized according to the application, but the weight ratio of hydraulic substance to cement (or gypsum) and aggregate (hydraulic substance / aggregate) Except for the case where a lightweight aggregate described later is used or used in combination, it is preferably 80/20 to 20/80, more preferably 75/25 to 25/85, and particularly preferably 70/30 to 30/70. . If the hydraulic substance / aggregate exceeds 80/20, the dimensional change before and after hydraulic becomes too large, which is inappropriate. On the other hand, if the hydraulic substance / aggregate is smaller than 20/80, there may be a problem in the strength after hardening of the resulting cement or gypsum molding.

また軽量骨材を使用または併用する場合の、水硬性物質と骨材の配合物における水硬性物質/骨材の配合比は、重量比ではなく容量で比較するべきであり、その場合の水硬物質及び骨材の容量比(水硬性物質/骨材)は、好ましくは80/20〜20/80、さらに好ましくは75/25〜25/85、特に好ましくは70/30〜30/70である。水硬性物質/骨材が80/20を超えると、水硬前後の寸法変化が大きくなり過ぎ不適である。一方、水硬性物質/骨材が20/80より小さいと、得られるセメントまたは石膏成型物の硬化後の強度に問題が発生する場合がある。   In addition, when using lightweight aggregates, the combination ratio of hydraulic substance / aggregate in the combination of hydraulic substance and aggregate should be compared not by weight but by volume. The volume ratio of the substance and aggregate (hydraulic substance / aggregate) is preferably 80/20 to 20/80, more preferably 75/25 to 25/85, and particularly preferably 70/30 to 30/70. . If the hydraulic substance / aggregate exceeds 80/20, the dimensional change before and after hydraulic becomes too large, which is inappropriate. On the other hand, if the hydraulic substance / aggregate is smaller than 20/80, there may be a problem in the strength after hardening of the resulting cement or gypsum molding.

水硬性物質の配合量は、必要強度となるように配合すればよく、特に限定はない。また、水硬性材料に対する前記セルロースエーテル(A)及び前記樹脂粒子の重量割合は、0.02〜2.0重量%が好ましく、より好ましくは0.03〜1.9重量%、さらに好ましくは0.04〜1.8重量%、特に好ましくは0.05〜1.7重量%である。2.0重量%を超える場合は、配合量が多くコスト的に不利になる場合があり、0.02重量%未満の場合は、保水性又は作業性等の性能が満足できない場合がある。   The amount of the hydraulic substance to be blended is not particularly limited as long as the necessary strength is obtained. The weight ratio of the cellulose ether (A) and the resin particles to the hydraulic material is preferably 0.02 to 2.0% by weight, more preferably 0.03 to 1.9% by weight, and still more preferably 0. 0.04 to 1.8% by weight, particularly preferably 0.05 to 1.7% by weight. When the amount exceeds 2.0% by weight, the blending amount is large, which may be disadvantageous in cost. When the amount is less than 0.02% by weight, performance such as water retention or workability may not be satisfied.

〔その他の成分〕
上記で説明した水硬性材料には、下記に説明するその他の成分を、本発明によって得られる効果に大きな悪影響を及ぼさない範囲で、配合することができる。
なお、水硬性材料には、セメントや石膏といった水硬性物質が配合されており、この水硬性物質は水と会合する事で反応が開始してしまうので、施工現場(または付近)で水のみ添加しよく混練し、施工する事が広く行われており、その場合の水硬性材料は建材用プレミックス材料と呼ばれ広く使用されている。この場合の水硬性材料には水をあらかじめ配合されている事は好ましくない。
しかし施工現場(または付近)で水硬性物質と水が会合するようになされる場合の水硬性材料は、その限りではない。
[Other ingredients]
The hydraulic material described above can be blended with other components described below as long as the effects obtained by the present invention are not significantly adversely affected.
The hydraulic material contains a hydraulic substance such as cement or gypsum, and this hydraulic substance starts reaction when it associates with water, so only water is added at the construction site (or nearby area). Kneading and construction are widely carried out, and the hydraulic material in this case is called a premix material for building materials and is widely used. In this case, it is not preferable that the hydraulic material is premixed with water.
However, the hydraulic material is not limited to the case where the hydraulic substance and water are allowed to meet at the construction site (or the vicinity).

(水硬性材料に配合可能な成分)
水硬性材料の成型物や硬化物の強度向上に用いられ、安全衛生面で影響がないものとして、ガラス繊維等の無機繊維;パルプ、ビニロン繊維、ポリプロピレン繊維等の有機繊維等の繊維状材料を配合できる。
軽量化のために、パーライト等の無機軽量骨材;ポリスチレン系樹脂等の有機発泡材料、有機質中空微小球、EVAチップ等の有機軽量骨材を配合できる。
凝結時間調整剤として、ケイフッ化マグネシウム等のケイフッ化物;ホウ酸等のホウ酸類;グルコン酸、グルコヘプトン酸、クエン酸、酒石酸等のオキシカルボン酸類およびその塩;リグニンスルホン酸、フミン酸、タンニン酸等の高分子有機酸類およびその塩等の凝結遅延剤等を配合できる。
(Ingredients that can be blended in hydraulic materials)
It is used to improve the strength of molded and cured hydraulic materials and has no impact on safety and health. Inorganic fibers such as glass fibers; fibrous materials such as organic fibers such as pulp, vinylon fibers and polypropylene fibers Can be blended.
In order to reduce the weight, inorganic lightweight aggregates such as pearlite; organic foamed materials such as polystyrene resins, organic lightweight microspheres, and organic lightweight aggregates such as EVA chips can be blended.
As a setting time adjusting agent, silicofluoride such as magnesium silicofluoride; boric acids such as boric acid; oxycarboxylic acids such as gluconic acid, glucoheptonic acid, citric acid and tartaric acid and salts thereof; lignin sulfonic acid, humic acid, tannic acid, etc. A high-molecular-weight organic acid and a set retarder such as a salt thereof can be added.

凝結時間調整剤として、また、塩化カルシウム、塩化ナトリウム、塩化カリウム等の塩化物;チオシアン酸ナトリウム等のチオシアン酸塩;亜硝酸カルシウム、亜硝酸ナトリウム、亜硝酸カリウム等の亜硝酸塩;硝酸カルシウム、硝酸ナトリウム、硝酸カリウム等の硝酸塩;硫酸カルシウム、硫酸ナトリウム、硫酸カリウム等の硫酸塩;炭酸カルシウム、炭酸ナトリウム、炭酸カリウム等の炭酸塩;珪酸ナトリウム(水ガラス)等の無機系化合物による凝結促進剤・急結剤等を配合できる。
凝結時間調整剤として、また、ジエタノールアミン(DEA)、トリエタノールアミン(TEA)等のアミン類;ギ酸カルシウム、酢酸カルシウム等の有機酸のカルシウム塩等の有機系化合物による凝結促進剤・急結剤を配合できる。
As a setting time adjusting agent, chlorides such as calcium chloride, sodium chloride and potassium chloride; thiocyanates such as sodium thiocyanate; nitrites such as calcium nitrite, sodium nitrite and potassium nitrite; calcium nitrate and sodium nitrate Nitrates such as potassium nitrate; sulfates such as calcium sulfate, sodium sulfate and potassium sulfate; carbonates such as calcium carbonate, sodium carbonate and potassium carbonate; coagulation accelerators and rapid setting by inorganic compounds such as sodium silicate (water glass) An agent etc. can be mix | blended.
As setting time adjusting agents, amines such as diethanolamine (DEA) and triethanolamine (TEA); coagulation accelerators and rapid setting agents by organic compounds such as calcium salts of organic acids such as calcium formate and calcium acetate Can be blended.

水硬性材料成型物の水硬前後の過度の収縮を防止するために、ポリプロビレングリコール、ポリプロピレンポリエチレングリコール等のポリアルキレングリコール類、アルコキシポリプロピレングリコールアクリレート類等の収縮低減剤を配合できる。
前記水溶性セルロースエーテル(A)に類似の増粘効果や分離低減効果が期待できるものとして、ポリビニルアルコール;カルボキシメチルセルロース等のセルロース系水溶性高分子;ヒドロキシプロピル化デンプン等のデンプン系高分子;ポリアクリルアミド、ポリアクリル酸ソーダ等のアクリル系水溶性高分子;キサンタンガム、グアガム等のバイオポリマーを増粘剤や分離低減剤として配合する事ができる。
In order to prevent excessive shrinkage before and after hydraulic molding of the hydraulic material molding, a shrinkage reducing agent such as polyalkylene glycols such as polypropylene glycol and polypropylene polyethylene glycol, and alkoxy polypropylene glycol acrylates can be blended.
Polyvinyl alcohol; Cellulose-based water-soluble polymers such as carboxymethylcellulose; Starch-based polymers such as hydroxypropylated starch; Polyethylene alcohols that can be expected to have a thickening effect and separation reduction effect similar to the water-soluble cellulose ether (A) Acrylic water-soluble polymers such as acrylamide and polyacrylic acid soda; biopolymers such as xanthan gum and guar gum can be blended as thickeners and separation reducing agents.

アニオン性アクリル樹脂、EVA(エチレン酢酸ビニルエマルジョン)、PAE(ポリアクリル酸エステルエマルジョン)、PVAC(ポリ酢酸ビニルエマルジョン)、VAVeoVa(酢酸ビニルビニルバーサテートエマルジョン)等の合成樹脂エマルジョン樹脂を増粘剤や分離低減剤として配合する事ができる。また、この合成樹脂エマルジョンをPVA等の乳化剤とともに、スプレードライ等で乾燥し粉体状とした、合成樹脂エマルジョン由来の再乳化型粉末樹脂も増粘剤や分離低減剤として配合する事ができる。
特にEVA、PAE、PVAC、VAVeoVa等の合成樹脂エマルジョンは、接着剤成分でもあり、成型物での各種物性;抗張力、圧縮強度、弾性率、伸度等の、物理特性の向上に非常に有効である。しかし軽い鏝すべりや鏝切れへの寄与は無く、特に成型時、施工後の施工面を修正する際には鏝への付着が高くなる。
合成樹脂エマルジョン由来の再乳化型粉末樹脂も、水硬材料に添加される水でエマルジョン化し、やはり同様の接着剤成分として機能する。
Synthetic resin emulsion resins such as anionic acrylic resin, EVA (ethylene vinyl acetate emulsion), PAE (polyacrylic ester emulsion), PVAC (polyvinyl acetate emulsion), VAVEoVa (vinyl acetate vinyl versatate emulsion), etc. It can be blended as a separation reducing agent. Further, a re-emulsification type powder resin derived from a synthetic resin emulsion obtained by drying this synthetic resin emulsion together with an emulsifier such as PVA into a powder form by spray drying or the like can also be blended as a thickener or a separation reducing agent.
In particular, synthetic resin emulsions such as EVA, PAE, PVAC, and VAVeoVa are also adhesive components, and are very effective in improving physical properties such as various physical properties in molded products; tensile strength, compressive strength, elastic modulus, elongation, etc. is there. However, there is no contribution to light wobbling or flaw cutting, and adhesion to the wrinkles increases especially when the construction surface is modified after molding.
The re-emulsification type powder resin derived from the synthetic resin emulsion is also emulsified with water added to the hydraulic material, and also functions as a similar adhesive component.

消泡剤として、エチレンオキシド、プロピレンオキシドを主成分とするポリオキシアルキレン系消泡剤、ポリプロピレングリコール系消泡剤や鉱物油系消泡剤、変性シリコーン系消泡剤、ジメチルポリシロキサン等を配合できる。またそれらの液体系消泡剤を含浸させたシリカ粉末である、粉末系の消泡剤を配合できる。
膨張剤として、アルミニウム粉体等を配合できる。また防錆剤、着色剤等を配合できる。
As an antifoaming agent, a polyoxyalkylene antifoaming agent mainly composed of ethylene oxide or propylene oxide, a polypropylene glycol antifoaming agent, a mineral oil antifoaming agent, a modified silicone antifoaming agent, dimethylpolysiloxane, or the like can be blended. . Moreover, the powder type antifoamer which is the silica powder which impregnated those liquid type antifoamers can be mix | blended.
As a swelling agent, aluminum powder or the like can be blended. Moreover, a rust preventive, a coloring agent, etc. can be mix | blended.

防水剤や撥水剤として、塩化カルシウム、珪酸ナトリウム、珪酸質粉末、ジルコニウム化合物、脂肪酸石鹸、脂肪酸、脂肪酸エステル、またはこれらをエマルジョン化した脂肪酸系化合物や、シリコーンオイル、シリコーンエマルジョン、パラフィン、パラフィンエマルジョン、アスファルトエマルジョン、油含有廃白土、ゴムラテックス等を配合できる。   As waterproofing and water repellents, calcium chloride, sodium silicate, siliceous powder, zirconium compounds, fatty acid soaps, fatty acids, fatty acid esters, fatty acid compounds obtained by emulsifying these, silicone oil, silicone emulsion, paraffin, paraffin emulsion Asphalt emulsion, oil-containing waste clay, rubber latex, etc. can be blended.

セメントや骨材の流動化等に寄与し、流動性やワーカービリティを向上させるために、AE剤、減水剤、AE減水剤、流動化剤、高性能AE減水剤等として、以下の成分を配合することができる。
AE剤として、アニオン性界面活性剤、ノニオン性界面活性剤、両性界面活性剤等を配合できる。
In order to contribute to fluidization of cement and aggregates and improve fluidity and workability, the following ingredients are blended as AE agent, water reducing agent, AE water reducing agent, fluidizing agent, high performance AE water reducing agent, etc. can do.
As an AE agent, an anionic surfactant, a nonionic surfactant, an amphoteric surfactant, etc. can be mix | blended.

減水剤・AE減水剤として、リグニンスルホン酸塩またはその誘導体、オキシカルボン酸塩、ポリオール誘導体、ポリオキシエチレンアルキルアリルエーテル誘導体、アルキルアリルスルホン酸塩のホルマリン縮合物、メラミンスルホン酸塩のホルマリン縮合物、ポリカルボン酸系化合物等を配合できる。
流動化剤として、ナフタレンスルホン酸塩ホルマリン縮合物、メラミンスルホン酸塩ホルマリン縮合物、ポリカルボン酸系化合物、ポリスチレンスルホン酸塩等を配合できる。
As water reducing agent / AE water reducing agent, lignin sulfonate or its derivatives, oxycarboxylate, polyol derivative, polyoxyethylene alkylallyl ether derivative, alkylallylsulfonate formalin condensate, melamine sulfonate formalin condensate Polycarboxylic acid compounds can be blended.
As a fluidizing agent, naphthalene sulfonate formalin condensate, melamine sulfonate formalin condensate, polycarboxylic acid compound, polystyrene sulfonate, and the like can be blended.

高性能AE減水剤として、ナフタレンスルホン酸塩ホルマリン縮合物とリグニンスルホン酸類の混合物や、ナフタレンスルホン酸塩ホルマリン縮合物とポリカルボン酸系化合物の混合物、メラミンスルホン酸塩ホルマリン縮合物とスランプロス低減剤の混合物、ポリカルボン酸系化合物、ポリカルボン酸エーテル系化合物、芳香族アミノスルホン酸化合物等を、本発明の効果に悪い影響のない範囲で必要により配合できる。
水硬性材料用混和剤を含有する水硬性材料では、水硬性物質と骨材の配合物を主成分としており、水硬性物質と骨材以外の成分の配合は避けるほうが好ましいことは言うまでもないことである。そのために、水硬性物質と骨材の配合物とそれ以外の成分の重量比(水硬性物質と骨材の配合物/それ以外の成分)は、90/10〜100/0が好ましい。
As a high-performance AE water reducing agent, a mixture of naphthalene sulfonate formalin condensate and lignin sulfonic acid, a mixture of naphthalene sulfonate formalin condensate and polycarboxylic acid compound, melamine sulfonate formalin condensate and slump loss reducing agent These compounds, polycarboxylic acid-based compounds, polycarboxylic acid ether-based compounds, aromatic aminosulfonic acid compounds, and the like can be blended as necessary within a range that does not adversely affect the effects of the present invention.
Needless to say, the hydraulic material containing the admixture for hydraulic material is mainly composed of a mixture of hydraulic substance and aggregate, and it is preferable to avoid the combination of components other than the hydraulic substance and aggregate. is there. Therefore, the weight ratio of the combination of the hydraulic substance and the aggregate and the other components (the combination of the hydraulic substance and the aggregate / the other components) is preferably 90/10 to 100/0.

上記その他の成分を、必要に応じ、水硬性材料用混和剤の時点で混合しておいてもよい。   You may mix the said other component at the time of the admixture for hydraulic materials as needed.

水硬性材料中に含まれる/又は加えられる水の量は、水硬性材料の種類等に応じて選定され、常用量とすることができるが、水硬性物質と骨材の配合物に対して10〜100重量%の範囲が好ましい。
本発明の水硬性材料は、上記水硬性材料を構成する各成分を別々に水と混合して得られるものも含まれる。
The amount of water contained in or added to the hydraulic material is selected according to the type of hydraulic material and the like, and can be a normal dose, but is 10 for the combination of hydraulic material and aggregate. A range of ˜100% by weight is preferred.
The hydraulic material of the present invention includes those obtained by separately mixing each component constituting the hydraulic material with water.

〔成型物〕
本発明の成型物は、上記水硬性材料を硬化させて得られるものであり、たとえば、普通セメントモルタル、コンクリート下地セメントモルタル、ラス下地セメントモルタル、タイル用セメントモルタル、サンドモルタル、耐火被膜用セメントモルタル、左官用セメントモルタル、厚塗り用セメントモルタル、補修材用セメントモルタル、軽量セメントモルタル、SL(セルフレベリング)材用セメントモルタル、石膏プラスター、石膏ボンド、石膏パテ等の硬化物が挙げられ、主に建築材料として利用される。
成型物は、上記水硬性材料を常法によって硬化させて得られる。
なお、本発明の水硬性材料用混和剤、水硬性材料用混和剤を含有する水硬性材料およびその成型物では、アスベストは一切含まれないと最もよい。
[Molded product]
The molded product of the present invention is obtained by curing the hydraulic material, for example, ordinary cement mortar, concrete base cement mortar, lath base cement mortar, tile cement mortar, sand mortar, fireproof coating cement mortar , Plaster cement mortar, thick coating cement mortar, repair material cement mortar, lightweight cement mortar, SL (self-leveling) material cement mortar, gypsum plaster, gypsum bond, gypsum putty etc. Used as building material.
The molded product is obtained by curing the hydraulic material by a conventional method.
The hydraulic material admixture of the present invention, the hydraulic material containing the admixture for hydraulic material, and the molded product thereof are best if no asbestos is contained.

以下に、本発明の実施例をその比較例等とともに、具体的な想定施工適用先にあわせた処方と共に説明する。なお、本発明はこれらの実施例に限定されるものではない。
実施例及び比較例で用いた材料は、表1に示す。
Below, the Example of this invention is demonstrated with the prescription according to the specific assumption construction application destination with the comparative example etc. The present invention is not limited to these examples.
The materials used in Examples and Comparative Examples are shown in Table 1.

Figure 2015117176
〔セルロースエーテル(A)の粘度測定〕
本発明における粘度は、20mPa・s以上では単一円筒形粘度計としてB型回転粘度
計を使用して求めた値とし、20mPa・s未満では毛細管粘度計としてキャノン−フェンスケ粘度計を使用して求めた値とする。各粘度測定はJIS Z 8803に従って20℃で行った。
B型回転粘度計を使用した粘度測定の際、%表示で求められる測定値が測定範囲30〜80%の範囲内に収まるよう回転ローターのタイプ、回転数を決定し、測定した。粘度は測定値に各測定条件(回転ローターのタイプ/回転数)での換算乗数をかけて求めた。測定条件候補が複数ある場合は、回転数12rpm>30rpm>6rpm>60rpmの順番で優先的に採用し、それでも一義的に決定しない場合は回転ローターNo.4>No.3>No.2>No.1の順番で優先的に採用し決定した。
Figure 2015117176
[Measurement of viscosity of cellulose ether (A)]
The viscosity in the present invention is a value obtained by using a B-type rotational viscometer as a single cylindrical viscometer at 20 mPa · s or more, and a Canon-Fenske viscometer is used as a capillary viscometer at less than 20 mPa · s. The obtained value. Each viscosity measurement was performed at 20 ° C. according to JIS Z 8803.
When measuring the viscosity using a B-type rotational viscometer, the type and number of rotations of the rotating rotor were determined and measured so that the measured value obtained in% display was within the measurement range of 30 to 80%. The viscosity was obtained by multiplying the measured value by a conversion multiplier under each measurement condition (rotating rotor type / rotational speed). When there are a plurality of measurement condition candidates, they are preferentially adopted in the order of the number of revolutions 12 rpm> 30 rpm> 6 rpm> 60 rpm. 4> No. 3> No. 2> No. Adopted and decided preferentially in order of 1.

上記粘度測定方法に従い、まず本発明のセルロースエーテル(A)に相当するA−1(ヒドロキシプロピルメチルセルロース:マーポローズ 90MP−4000)を2重量%濃度でイオン交換水に溶解させた後、20℃での粘度を測定した。各測定条件(回転ローターのタイプ/回転数)における粘度(測定値)は、
No.4/6rpmで6,500mPa・s(6.5%)、No.4/12rpmで5,250mPa・s(10.5%)、No.4/30rpmで4,040mPa・s(20.2%)、No.4/60rpmで2,970mPa・s(29.7%)、
No.3/6rpmで5,980mPa・s(29.8%)、No.3/12rpmで4,820mPa・s(48.2%)、No.3/30rpmで3,800mPa・s(95.0%)、No.3/60rpmで範囲外であった。
このため、測定条件はNo.3/12rpmを採用し、A−1の粘度を4,820mPa・sとした。
A−1の粘度決定方法と同様の方法で、表2〜6に示すように実施例、比較例に使用したセルロースエーテル(A)の粘度を決定した。
According to the above viscosity measurement method, A-1 (hydroxypropylmethylcellulose: Marporose 90MP-4000) corresponding to the cellulose ether (A) of the present invention was first dissolved in ion-exchanged water at a concentration of 2% by weight, and then at 20 ° C. The viscosity was measured. The viscosity (measured value) under each measurement condition (rotary rotor type / rotation speed) is
No. No. 6500 mPa · s (6.5%) at 4/6 rpm. 4/12 rpm, 5,250 mPa · s (10.5%), no. 4,040 mPa · s (20.2%) at 4/30 rpm, no. 2,970 mPa · s (49.7%) at 4/60 rpm,
No. 5980 mPa · s (29.8%) at 3/6 rpm, no. No. 3 at 4,820 mPa · s (48.2%) at 3/12 rpm. 3/30 rpm, 3,800 mPa · s (95.0%), no. Out of range at 3/60 rpm.
Therefore, the measurement conditions are No. 3/12 rpm was employed, and the viscosity of A-1 was 4,820 mPa · s.
By the method similar to the viscosity determination method of A-1, the viscosity of the cellulose ether (A) used for the Example and the comparative example was determined as shown in Tables 2-6.

〔水不溶性樹脂粒子(B)の評価〕
本発明の水不溶性樹脂粒子(B)に相当するB−1(マツモトマイクロスフェアーM−100(PMMA製))をホソカワミクロン製ミクロンセパレーターで空気分級(微粉側)を行って得られた、B−1の評価をおこなった。
(粒子径の測定)レーザー回析式粒度分布測定装置:日機装社製 マイクロトラック により測定を行い、平均粒子径=2μm、d90=5μmであった。
(円形度の測定)電子顕微鏡写真を撮影し、三谷商事株式会社製 画像解析ソフト WinROOF を使用し2次元的な円形度を測定し、円形度は0.75であった。
(水不溶性の確認)
B−1を1g採取し、イオン交換水99gに分散し、5C濾紙(JIS P 3801)で濾過(減圧濾過)、乾燥して得られた濾紙上に残ったB−1の質量が0.995g(99.5%)であった。
また、B−1を1g採取し、30℃のイオン交換水999gに添加し、30分撹拌したB−1の粒子径の測定を行い、平均粒子径は2μmであり、粒子径の変化は、0%であった。
[Evaluation of water-insoluble resin particles (B)]
B-1 (Matsumoto Microsphere M-100 (manufactured by PMMA)) corresponding to the water-insoluble resin particles (B) of the present invention was obtained by air classification (fine powder side) using a Hosokawa Micron micron separator. An evaluation of 1 was performed.
(Measurement of particle diameter) Laser diffraction type particle size distribution measuring apparatus: Measurement was carried out by Microtrack manufactured by Nikkiso Co., Ltd., and the average particle diameter was 2 μm and d90 = 5 μm.
(Measurement of circularity) An electron micrograph was taken and the two-dimensional circularity was measured using image analysis software WinROOF manufactured by Mitani Corporation. The circularity was 0.75.
(Confirmation of water insolubility)
1 g of B-1 was collected, dispersed in 99 g of ion-exchanged water, filtered (reduced pressure filtration) with 5C filter paper (JIS P 3801) and dried, and the mass of B-1 remaining on the obtained filter paper was 0.995 g. (99.5%).
In addition, 1 g of B-1 was sampled, added to 999 g of ion-exchanged water at 30 ° C., and the particle diameter of B-1 was stirred for 30 minutes. The average particle diameter was 2 μm, and the change in particle diameter was 0%.

〔実施例1〕
水硬性材料用混和剤を表2の様に、まずは「水硬性材料用混和剤」を調製した。次に「水硬性材料」の組成となるように各材料を調製した。この水硬性材料でよく空合わせを行った後、モルタルミキサー(株式会社マルイ製 容量 5L)のボウルに静かに投入し、所定量の水を加え、混練を行い(工業材料規格便覧 モルタル混合方法に準拠)、水硬性材料を調製した。
[Example 1]
First, “admixture for hydraulic material” was prepared as shown in Table 2. Next, each material was prepared so as to have a composition of “hydraulic material”. After well combining with this hydraulic material, gently put it into the bowl of a mortar mixer (capacity 5L manufactured by Marui Co., Ltd.), add a predetermined amount of water, and knead (Industrial Material Standards Handbook Mortar mixing method) Compliant), a hydraulic material was prepared.

Figure 2015117176
Figure 2015117176

Figure 2015117176
Figure 2015117176

Figure 2015117176
Figure 2015117176

Figure 2015117176
Figure 2015117176

Figure 2015117176
Figure 2015117176

〔実施例2〜19、および比較例1〜14〕
実施例1において、表2〜6に示すように、各成分の種類や量をそれぞれ変更する以外は、実施例1と同様にして、水硬性材料を調製した。
表2〜6の各水硬性材料は、想定施工適用先に合わせた処方調整がおこなわれており、想定施工適用先に合わせた試験を行う。なお、各想定適用先の「水硬性材料」の組成調整及び試験について、表2〜6に加え、以下の様に概要を説明する。
[Examples 2 to 19 and Comparative Examples 1 to 14]
In Example 1, as shown in Tables 2 to 6, a hydraulic material was prepared in the same manner as in Example 1 except that the type and amount of each component were changed.
Each hydraulic material in Tables 2 to 6 is subjected to a prescription adjustment according to the assumed construction application destination, and performs a test according to the assumed construction application destination. In addition to Tables 2-6, the outline | summary is demonstrated as follows about the composition adjustment and test of "hydraulic material" of each assumption application destination.

〔普通セメントモルタル〕試験
セメント(普通ポルトランドセメント)600重量部、珪砂5号(細骨材)300重量部および珪砂6号(細骨材)300重量部に対して、表2に示した種類および量の水硬性材料用混和剤をそれぞれ加え十分に混合し、水硬性材料を調製した。
次に、水硬性材料に、表2に示した量の水を加え、モルタルミキサーにて3分間十分混練し、普通セメントモルタル(水硬性材料)を調製した。
なお、混練は、JIS R 5201 10.4.3練混ぜ方法に準じて行った。混練の際、所定量の水により、フロー値が175〜185mmの範囲に収まるように本組成は調整されている。表2にフロー値を示した。混練および以下の評価、養生は、いずれも温度18〜22℃、湿度55%〜75%の条件下で実施した。調製したセメントモルタルを用いて、後述の保水率評価、鏝塗り作業性評価、タイルズレ評価を実施した。さらにセメントモルタルを一週間養生後、その成型物を用いて、後述のモルタル表面状態評価、接着強度評価を実施した。
[Ordinary cement mortar] test The types shown in Table 2 for 600 parts by weight of cement (ordinary Portland cement), 300 parts by weight of silica sand No. 5 (fine aggregate) and 300 parts by weight of silica sand No. 6 (fine aggregate) and A quantity of the admixture for hydraulic material was added and mixed thoroughly to prepare a hydraulic material.
Next, water of the amount shown in Table 2 was added to the hydraulic material, and kneaded for 3 minutes with a mortar mixer to prepare ordinary cement mortar (hydraulic material).
In addition, kneading | mixing was performed according to the JISR5201 10.4.3 kneading | mixing method. During the kneading, the present composition is adjusted so that the flow value falls within the range of 175 to 185 mm with a predetermined amount of water. Table 2 shows the flow values. The kneading and the following evaluation and curing were carried out under conditions of a temperature of 18 to 22 ° C. and a humidity of 55% to 75%. Using the prepared cement mortar, the water retention rate evaluation, the glazing workability evaluation, and the tile shift evaluation described later were performed. Further, after curing the cement mortar for one week, the mortar surface condition evaluation and adhesive strength evaluation described later were carried out using the molded product.

〔補修材用セメントモルタル〕試験
セメント(普通ポルトランドセメント)800重量部、珪砂8号(細骨材)400重量部、流動化剤16重量部、EVAエマルジョンとして、液状のEVAエマルジョン(有効成分45%)の場合は60重量部、エチレン−酢ビ共重合体系エマルジョンを乾燥し粉体としたもの(再乳化型粉末樹脂)の場合40重量部、からなる組成に対して、表3に示した種類および量の水硬性材料用混和剤をそれぞれ加え十分に混合し、水硬性材料を調製した。
混練の際、所定量の水により、フロー値が185〜195mmの範囲に収まるように本組成は調整されている。表3にフロー値を示した。それ以外の混練および養生は、上記普通モルタル試験と同様にして補修材用セメントモルタル(水硬性材料)および成型物を調製した。
調製したセメントモルタルを用いて、後述の保水率評価、鏝塗り作業性評価を実施し、さらにセメントモルタルを一週間養生後、その成型物を用いて、後述の表面状態評価、接着強度評価を実施した。
[Cement mortar for repair material] test Cement (ordinary Portland cement) 800 parts by weight, silica sand No. 8 (fine aggregate) 400 parts by weight, fluidizing agent 16 parts by weight, EVA emulsion in liquid form (active ingredient 45% ) In the case of 60 parts by weight, and in the case of 40 parts by weight in the case of a powder obtained by drying the ethylene-vinyl acetate copolymer emulsion (re-emulsifying powder resin), the types shown in Table 3 And the amount of the admixture for hydraulic material was added and mixed well to prepare the hydraulic material.
During the kneading, the present composition is adjusted with a predetermined amount of water so that the flow value falls within the range of 185 to 195 mm. Table 3 shows the flow values. For other kneading and curing, a repair material cement mortar (hydraulic material) and a molded product were prepared in the same manner as in the normal mortar test.
The prepared cement mortar is used to evaluate the water retention rate and glazing workability described below, and after curing the cement mortar for a week, the molded product is used to evaluate the surface condition and adhesive strength described below. did.

〔軽量セメントモルタル〕試験
セメント600重量部、パーライト(嵩比重:0.1) 60重量部、EVAチップ(嵩比重:0.1)60重量部、ガラス繊維(全長13mm)6重量部に対して、表1または2に示した種類および量の水硬性材料用混和剤をそれぞれ加え十分に混合し、水硬性材料を調製した。
混練の際、所定量の水により、フロー値が155〜165mmの範囲に収まるように本組成は調整されている。表1または2にフロー値を示した。それ以外の混練および養生は、上記普通モルタル試験と同様にして軽量セメントモルタル(水硬性材料)および成型物を調製した。調製したセメントモルタルを用いて、後述の保水率評価、鏝塗り作業性評価を実施し、さらにセメントモルタルを一週間養生後、その成型物を用いて、後述の表面状態評価、接着強度評価を実施した。
[Lightweight cement mortar] test Cement 600 parts by weight, perlite (bulk specific gravity: 0.1) 60 parts by weight, EVA chip (bulk specific gravity: 0.1) 60 parts by weight, glass fiber (total length 13 mm) 6 parts by weight The types and amounts of the admixture for hydraulic material shown in Table 1 or 2 were added and mixed well to prepare a hydraulic material.
During the kneading, the present composition is adjusted with a predetermined amount of water so that the flow value falls within the range of 155 to 165 mm. Table 1 or 2 shows the flow values. For other kneading and curing, a light-weight cement mortar (hydraulic material) and a molded product were prepared in the same manner as the ordinary mortar test. The prepared cement mortar is used to evaluate the water retention rate and glazing workability described below, and after curing the cement mortar for a week, the molded product is used to evaluate the surface condition and adhesive strength described below. did.

〔SL(セルフレベリング)材用セメントモルタル〕試験
セメント500重量部、珪砂5号(細骨材)375重量部および珪砂6号(細骨材)375重量部、流動化剤1重量部、消泡剤0.1重量部に対して、表5に示した種類および量の「水硬性材料用混和剤」をそれぞれ加え十分に混合し、水硬性材料を調製した。
混練の際、所定量の水により、フロー値が195〜205mmの範囲に収まるように本組成は調整されている。表5にフロー値を示した。それ以外の混練および養生は、上記普通モルタル試験と同様にしてSL材用セメントモルタル(水硬性材料)および成型物を調製した。調製したセメントモルタルを用いて、後述の保水率評価、鏝塗り作業性評価を実施し、さらにセメントモルタルを一週間養生後、その成型物を用いて、後述の表面状態評価、接着強度評価を実施した。
[SL (self-leveling) material cement mortar] test 500 parts by weight of cement, 375 parts by weight of silica sand 5 (fine aggregate) and 375 parts by weight of silica sand 6 (fine aggregate), 1 part by weight of fluidizing agent, defoaming With respect to 0.1 part by weight of the agent, the kind and amount of “admixture for hydraulic material” shown in Table 5 were added and mixed well to prepare a hydraulic material.
During the kneading, the composition is adjusted so that the flow value falls within the range of 195 to 205 mm with a predetermined amount of water. Table 5 shows the flow values. For other kneading and curing, a cement mortar for SL material (hydraulic material) and a molded product were prepared in the same manner as in the normal mortar test. The prepared cement mortar is used to evaluate the water retention rate and glazing workability described below, and after curing the cement mortar for a week, the molded product is used to evaluate the surface condition and adhesive strength described below. did.

〔石膏プラスター〕試験
石膏(α型半水石膏)800重量部および、珪砂5号(細骨材)200重量部および珪砂6号(細骨材)200重量部、クエン酸ナトリウム1重量部に対して、表6に示した種類および量の水硬性材料用混和剤をそれぞれ加え十分に混合し、水硬性材料を調製した。混練の際、所定量の水により、フロー値が165〜175mmの範囲に収まるように本組成は調整されている。表6にフロー値を示した。それ以外の混練および養生は、普通セメントモルタル試験と同様にして石膏プラスター(水硬性材料)および成型物を調製した。
調製した石膏プラスターを用いて、後述の保水率評価、鏝塗り作業性評価を実施し、さらに一週間養生後、その成型物を用いて、後述の表面状態評価、接着強度評価を実施した。
[Gypsum plaster] test For 800 parts by weight of gypsum (α-type hemihydrate gypsum), 200 parts by weight of silica sand No. 5 (fine aggregate), 200 parts by weight of silica sand No. 6 (fine aggregate), and 1 part by weight of sodium citrate Then, the kinds and amounts of the admixtures for hydraulic materials shown in Table 6 were added and mixed well to prepare hydraulic materials. During the kneading, the present composition is adjusted so that the flow value falls within the range of 165 to 175 mm with a predetermined amount of water. Table 6 shows the flow values. For other kneading and curing, gypsum plaster (hydraulic material) and moldings were prepared in the same manner as in the ordinary cement mortar test.
The prepared gypsum plaster was used for the water retention rate evaluation and the glazing workability evaluation described later, and after curing for one week, the molded product was used for the surface condition evaluation and the adhesive strength evaluation described later.

1.フロー値評価方法
各セメントモルタル試験、石膏プラスター試験での、各セメントモルタル、石膏プラスターの水量決定のために、本試験前に実施し、フロー値が以下の所定範囲に収まる水量を、JIS A 6916にしたがって決定した。
フロー値は、普通セメントモルタル試験では175〜185mm、補修材用セメントモルタル試験では185〜195mm、軽量セメントモルタル試験では155〜165mm、SL材用セメントモルタル試験では195〜205mm、石膏プラスター試験では165〜175mm、の範囲に収まるよう水量を決定した。
1. Flow value evaluation method In order to determine the amount of water in each cement mortar test and gypsum plaster test in each cement mortar test and gypsum plaster test, it was carried out before this test. Determined according to
The flow values are 175 to 185 mm for the ordinary cement mortar test, 185 to 195 mm for the cement mortar test for repair materials, 155 to 165 mm for the light cement mortar test, 195 to 205 mm for the cement mortar test for SL material, and 165 to 165 mm for the gypsum plaster test. The amount of water was determined so as to be within the range of 175 mm.

2.保水率評価方法
JIS A 6916保水性試験法(ろ紙法)に従い、60分後の水分の広がりとリング型枠の内径とを測定し、保水率Rw(%)を以下に示す計算式(3)で算出した。保水率が大きければ、その水硬性材料の保水性が強いことを示し、保水率が小さければ、保水性が弱いことを示す。
Rw=(Lr/L60)×100 (3)
(式中、Rw:保水率(%)、L60:60分後の水分の広がり(mm)、Lr:リング型枠の内径(mm))
2. Water Retention Rate Evaluation Method According to JIS A 6916 water retention test method (filter paper method), the water spread after 60 minutes and the inner diameter of the ring form are measured, and the water retention rate Rw (%) is calculated by the following formula (3) Calculated with A high water retention rate indicates that the hydraulic material has high water retention, and a low water retention rate indicates poor water retention.
Rw = (Lr / L60) × 100 (3)
(Where, Rw: water retention rate (%), L60: moisture spread after 60 minutes (mm), Lr: inner diameter (mm) of ring mold)

3.鏝塗り作業性評価方法
鏝すべり、鏝切れは仕上げ鏝(全長195mm)での官能評価を行い、再付着性は所定時間経過後、再度仕上げ鏝でならした施工面に、角鏝(鏝面70×230mmの平板状、全重量約200g)を置き軽く押さえた後、その裏面へのモルタル付着状況で評価を行った。
3. Evaluation method of wrinkle-coating work 官能 Slip and wrinkle breakage are sensory-evaluated with finished wrinkles (overall length 195mm). × 230 mm flat plate with a total weight of about 200 g) was placed and lightly pressed, and then the mortar adhesion to the back surface was evaluated.

鏝塗り作業性評価
各セメントモルタルまたは石膏プラスターを鏝塗りし、鏝滑り性および鏝切れ性を、下記の判断基準にしたがって評価した(官能試験)。鏝すべり、鏝切れについて、以下評価基準で○以上を合格とした。
評価基準
◎:非常に良好。
○:良好。
△:普通。
×:悪い。
Evaluation of wrinkling workability Each cement mortar or gypsum plaster was wrinkled, and wrinkle slipping and cutting performance were evaluated according to the following criteria (sensory test). About 評 価 slip and fray cutting, the following evaluation criteria gave ○ or more as pass.
Evaluation criteria A: Very good.
○: Good.
Δ: Normal.
X: Bad.

再付着性試験評価
石膏プラスター以外で実施した。
また、再付着性として、施工後30分放置した施工面に対して、仕上げ鏝で鏝すべり・鏝切れの再評価を行い、評価基準は前述に従い実施する。仕上げ鏝で表面をならしたのち、直ちに施工面を水平にし、角鏝(鏝面70×230mmの平板状、約200g)を軽く押しつけ、30秒後に、角鏝の裏面へのモルタルの付着状況を確認し、これを再付着性評価とする。以下評価基準で○以上を合格とした。
評価基準
◎:付着無
○:付着が鏝面の10%未満
△:付着が鏝面の10%以上50%未満
×:付着が鏝面の50%以上。
Re-adhesion test evaluation It was carried out except for plaster plaster.
In addition, as the re-adhesiveness, re-assessment of wrinkle slipping and flaw cutting with a finishing flaw is performed on the construction surface left for 30 minutes after construction, and the evaluation criteria are carried out according to the above. Immediately after leveling the surface with a finishing paddle, level the construction surface and lightly press the square hook (flat plate of 70 x 230 mm, approximately 200 g). After 30 seconds, check the mortar adherence to the back of the square hook. Confirm this and make this re-adhesion evaluation. In the following evaluation criteria, ○ or more was regarded as acceptable.
Evaluation criteria A: No adhesion ○: Adhesion is less than 10% of the ridge surface Δ: Adhesion is 10% or more and less than 50% of the ridge surface ×: Adhesion is 50% or more of the ridge surface.

4.表面状態評価方法
水平な場所で、歩道用コンクリート平板(JIS A 5304、300×300×60mm)に各セメントモルタルまたは石膏プラスターを所定の厚さで塗布し、一週間養生した後、指触観察によるざらつきの程度を、下記の評価基準にしたがって評価した。塗布する厚さは、普通セメントモルタル試験、軽量セメントモルタル試験または石膏プラスター試験では5mm、補修材用セメントモルタル試験は1mm、SL材用セメントモルタル試験では10mmとした。以下評価基準で○を合格とした。
評価基準
○:ざらつきなく良好。
×:ざらつきあり不良。
4). Surface condition evaluation method Applying each cement mortar or plaster plaster to a concrete plate for sidewalks (JIS A 5304, 300 x 300 x 60 mm) at a predetermined thickness in a horizontal place, curing for one week, and then by finger touch observation The degree of roughness was evaluated according to the following evaluation criteria. The thickness to be applied was 5 mm for the ordinary cement mortar test, light-weight cement mortar test or gypsum plaster test, 1 mm for the repair material cement mortar test, and 10 mm for the SL material cement mortar test. In the following evaluation criteria, “◯” was accepted.
Evaluation criteria ○: Good without roughness.
X: Rough and defective.

5.接着強度評価方法
水平な場所で歩道用コンクリート平板(JIS A 5304、300×300×60mm)に各セメントモルタルまたは石膏プラスターを所定の厚さで塗布し、一週間養生した後の成型物を用いて、建研式接着力試験機(山本打重機株式会社製)を用いてモルタル接着強度を求め評価結果とした。塗布する厚さは、普通セメントモルタル試験、軽量セメントモルタル試験または石膏プラスター試験では5mm、補修材用セメントモルタル試験は1mm、SL材用セメントモルタル試験では10mmとした。以下評価基準で○を合格とした。
評価基準
○:強度が1.0N/mm2以上の場合(合格)
×:強度が1.0N/mm2未満の場合(不良)
5. Adhesive strength evaluation method Each cement mortar or plaster plaster is applied to a concrete plate for sidewalks (JIS A 5304, 300x300x60mm) at a predetermined thickness in a horizontal place, and then cured for one week. The mortar adhesive strength was determined using the Kenken-type adhesive strength tester (manufactured by Yamamoto Uchiki Co., Ltd.) and used as the evaluation result. The thickness to be applied was 5 mm for the ordinary cement mortar test, light-weight cement mortar test or gypsum plaster test, 1 mm for the repair material cement mortar test, and 10 mm for the SL material cement mortar test. In the following evaluation criteria, “◯” was accepted.
Evaluation criteria ○: When the strength is 1.0 N / mm2 or more (pass)
X: When the strength is less than 1.0 N / mm 2 (defect)

6.タイルズレ評価方法:普通セメントモルタル試験
水平な場所で歩道用コンクリート平板(JIS A 5304、300×300×60mm)にモルタルを5mmの厚さで塗布し、磁器製小口平タイル(108×60mm)を貼り付けた後、200gの重りを取り付け、垂直にした後60秒保持した。その後タイルのズレの程度を下記の評価基準にしたがって評価した。以下評価基準で○を合格とした。
評価基準
○:ずれない(合格)。
△:ややずれる(やや不良)。
×:貼付け面から滑落する(不良)。
6). Tile displacement evaluation method: Ordinary cement mortar test Applying mortar to a concrete plate for sidewalks (JIS A 5304, 300 x 300 x 60 mm) at a thickness of 5 mm in a horizontal place, and sticking a porcelain small square tile (108 x 60 mm) After attaching, a 200-g weight was attached and it was made vertical and held for 60 seconds. Thereafter, the degree of tile displacement was evaluated according to the following evaluation criteria. In the following evaluation criteria, “◯” was accepted.
Evaluation criteria ○: No shift (pass).
Δ: Slightly misaligned (slightly poor)
X: It slides down from a sticking surface (defect).

7.電子顕微鏡での断面観察
各セメントモルタルまたは石膏プラスターを型枠(W:30×L:200×T:10mm)内に流し込み注型、または鏝で押し込み成型し、一週間標準条件で養生し、硬化した成型物を折り、破断面について電子顕微鏡写真観察を行い、樹脂粒子の確認を行い、下記の評価基準にしたがって評価した。以下評価基準で○を合格とした。
○:球状の樹脂粒子が確認できる、または使用した樹脂粒子が変形無く確認できる(合格)。
△:変形した樹脂粒子が確認できる(やや不良)。
×:樹脂粒子が確認できない(不良)。
7). Cross-sectional observation with an electron microscope Each cement mortar or gypsum plaster is poured into a formwork (W: 30 x L: 200 x T: 10 mm), cast or pressed with a scissors, cured under standard conditions for one week, and cured The molded product was folded, the fracture surface was observed with an electron micrograph, the resin particles were confirmed, and evaluated according to the following evaluation criteria. In the following evaluation criteria, “◯” was accepted.
○: Spherical resin particles can be confirmed, or used resin particles can be confirmed without deformation (pass).
Δ: Deformed resin particles can be confirmed (somewhat poor).
X: Resin particles cannot be confirmed (defective).

8.凝結評価方法
表2〜6に示した配合で、水硬性材料用混和剤を調整し、セメント(普通ポルトランドセメント)1000重量部に、水硬性材料用混和剤2重量部を加え十分に混合し、水硬性材料を調製した。
水硬性物質に対する混和剤の重量割合を一定にし、細骨材および接着性付与剤の有無に関わらず対応して比較できるようにした。
水硬性材料に水を加え、モルタルミキサーにて2.5分間十分混練し、水硬性材料であるセメントペーストを調製した。凝結試験はJIS R 5201に従い実施した。混練の際、加える水量は軟度評価により、軟度が6±1mmの範囲に収まるようにそれぞれのJISに記載の通りに加減し決定した。凝結時間はその始発時間と終結時間を評価した。
標準と考えられるヒドロキシプロピルメチルセルロース:マーポローズ 90MP−4000(松本油脂製薬株式会社製)を使用した水硬性材料の始発時間(約3.5時間)および終結時間(約5.5時間)を標準時間として、以下の評価基準により凝結遅延性の評価を行った。以下評価基準で○を合格とした。
評価基準
〇:標準始発時間±1時間以内、且つ、終結時間±1時間以内(合格)。
△:標準始発時間±1時間超〜2時間以内、且つ、標準終結時間±1時間超〜2時間以内(やや不良)。
×:標準始発時間±2時間超、且つ、標準終結時間±2時間超(不良)。
8). Condensation Evaluation Method With the formulation shown in Tables 2-6, adjust the admixture for hydraulic material, add 2 parts by weight of admixture for hydraulic material to 1000 parts by weight of cement (ordinary Portland cement), and mix well. A hydraulic material was prepared.
The weight ratio of the admixture to the hydraulic substance was kept constant so that the comparison could be made with or without the fine aggregate and the adhesion-imparting agent.
Water was added to the hydraulic material, and the mixture was sufficiently kneaded for 2.5 minutes with a mortar mixer to prepare a cement paste as a hydraulic material. The setting test was performed according to JIS R 5201. The amount of water added during kneading was determined by adjusting the softness as described in each JIS so that the softness was within the range of 6 ± 1 mm. The setting time was evaluated from the start time and the end time.
Hydroxypropyl methylcellulose considered to be standard: Marporose 90MP-4000 (manufactured by Matsumoto Yushi Seiyaku Co., Ltd.), the initial time (about 3.5 hours) and the end time (about 5.5 hours) of the hydraulic material as standard time The setting delay was evaluated according to the following evaluation criteria. In the following evaluation criteria, “◯” was accepted.
Evaluation criteria ○: Standard start time within ± 1 hour and end time within ± 1 hour (pass).
Δ: Standard start time ± 1 hour to 2 hours or less, and standard end time ± 1 hour to 2 hours (slightly poor).
×: Standard start time ± 2 hours and standard end time ± 2 hours (defect).

表2〜6から分かるように、実施例1〜19では、水溶性セルロースエーテル(A)及び水不溶性樹脂粒子(B)を必須とする水硬性材料用混和剤であって、前記樹脂粒子(B)の平均粒子径が1〜50μmであり、前記樹脂粒子(B)の比重が0.5〜1.5であり、
前記セルロースエーテル(A)100重量部に対する、前記樹脂粒子(B)の重量割合が5〜200重量部である、水硬性材料用混和剤を用いているので、保水性、鏝すべり性、鏝切れ性及び再接着性防止に優れ、該混和剤を含む水硬性材料を硬化させてなる成型物表面の外観が良好である。
一方、水硬性材料用混和剤が樹脂粒子を含まない場合(比較例2、10、12、14)、
セルロースエーテル(A)100重量部に対する、前記樹脂粒子(B)の重量割合が5〜200重量部でない場合(比較例1、5、6、9、11、13)、樹脂粒子(B)の条件に適合しない樹脂粒子である場合(比較例3、4)又は樹脂粒子(B)を含まず、エマルジョン樹脂を含む場合(比較例7、8)には、本願の課題のいずれかが解決できていない。
As can be seen from Tables 2 to 6, in Examples 1 to 19, the water-soluble cellulose ether (A) and the water-insoluble resin particles (B) are essential admixtures for hydraulic materials, and the resin particles (B ) Has an average particle diameter of 1 to 50 μm, and the resin particles (B) have a specific gravity of 0.5 to 1.5,
Since the admixture for hydraulic material in which the weight ratio of the resin particles (B) is 5 to 200 parts by weight with respect to 100 parts by weight of the cellulose ether (A) is used, the water retention, slipperiness, and tearing The appearance of the surface of the molded product obtained by curing the hydraulic material containing the admixture is excellent.
On the other hand, when the admixture for hydraulic material does not contain resin particles (Comparative Examples 2, 10, 12, 14),
When the weight ratio of the resin particles (B) to 100 parts by weight of the cellulose ether (A) is not 5 to 200 parts by weight (Comparative Examples 1, 5, 6, 9, 11, 13), the conditions for the resin particles (B) When the resin particles do not conform to the above (Comparative Examples 3 and 4) or when the resin particles (B) are not included and the emulsion resin is included (Comparative Examples 7 and 8), any of the problems of the present application can be solved. Absent.

Claims (10)

水溶性セルロースエーテル(A)及び水不溶性樹脂粒子(B)を必須とする水硬性材料用混和剤であって、
前記樹脂粒子(B)の平均粒子径が1〜50μmであり、
前記樹脂粒子(B)の比重が0.5〜1.5であり、
前記セルロースエーテル(A)100重量部に対する、前記樹脂粒子(B)の重量割合が5〜200重量部である、水硬性材料用混和剤。
An admixture for a hydraulic material comprising water-soluble cellulose ether (A) and water-insoluble resin particles (B) as essential components,
The resin particles (B) have an average particle diameter of 1 to 50 μm,
The resin particles (B) have a specific gravity of 0.5 to 1.5,
An admixture for a hydraulic material, wherein a weight ratio of the resin particles (B) is 5 to 200 parts by weight with respect to 100 parts by weight of the cellulose ether (A).
前記セルロースエーテル(A)の2重量%の水溶液の20℃における粘度が50〜100,000mPa・sである、請求項1に記載の水硬性材料用混和剤。   The admixture for hydraulic materials according to claim 1, wherein a viscosity of 2% by weight aqueous solution of the cellulose ether (A) at 20 ° C. is 50 to 100,000 mPa · s. 前記セルロースエーテル(A)が、水溶性アルキルセルロース、水溶性ヒドロキシアルキルアルキルセルロース及び水溶性ヒドロキシアルキルセルロースから選ばれる少なくとも1種である、請求項1又は2に記載の水硬性材料用混和剤。   The admixture for hydraulic materials according to claim 1 or 2, wherein the cellulose ether (A) is at least one selected from water-soluble alkylcellulose, water-soluble hydroxyalkylalkylcellulose and water-soluble hydroxyalkylcellulose. 前記樹脂粒子(B)が、(メタ)アクリル樹脂、ナイロン樹脂、ウレタン樹脂、ポリエチレン樹脂、ポリテトラフルオロエチレン樹脂、ポリスチレン樹脂、ポリイミド樹脂、フェノール樹脂、ユリア樹脂、メラミン樹脂、塩化ビニル樹脂及び塩化ビニリデン樹脂から選ばれる少なくとも1種から構成される、請求項1〜3のいずれかに記載の水硬性材料用混和剤。   The resin particles (B) are (meth) acrylic resin, nylon resin, urethane resin, polyethylene resin, polytetrafluoroethylene resin, polystyrene resin, polyimide resin, phenol resin, urea resin, melamine resin, vinyl chloride resin and vinylidene chloride. The admixture for hydraulic materials according to any one of claims 1 to 3, comprising at least one selected from resins. 水溶性セルロースエーテル(A)、水不溶性樹脂粒子(B)、水硬性物質及び骨材を必須とする水硬性材料であって、
前記樹脂粒子(B)の平均粒子径が1〜50μmであり、
前記樹脂粒子(B)の比重が0.5〜1.5であり、
前記セルロースエーテル(A)100重量部に対する、前記樹脂粒子(B)の重量割合が5〜200重量部である、水硬性材料。
A water-soluble cellulose ether (A), a water-insoluble resin particle (B), a hydraulic material that requires a hydraulic substance and an aggregate,
The resin particles (B) have an average particle diameter of 1 to 50 μm,
The resin particles (B) have a specific gravity of 0.5 to 1.5,
The hydraulic material whose weight ratio of the said resin particle (B) with respect to 100 weight part of the said cellulose ether (A) is 5-200 weight part.
前記セルロースエーテル(A)の2重量%の水溶液の20℃における粘度が50〜100,000mPa・sである、請求項5に記載の水硬性材料。   The hydraulic material according to claim 5, wherein a viscosity of 2% by weight aqueous solution of the cellulose ether (A) at 20 ° C. is 50 to 100,000 mPa · s. 前記セルロースエーテルが、水溶性アルキルセルロース、水溶性ヒドロキシアルキルアルキルセルロースおよび水溶性ヒドロキシアルキルセルロースから選ばれる少なくとも1種である、請求項5又は6に記載の水硬性材料。   The hydraulic material according to claim 5 or 6, wherein the cellulose ether is at least one selected from a water-soluble alkyl cellulose, a water-soluble hydroxyalkyl alkyl cellulose, and a water-soluble hydroxyalkyl cellulose. 前記樹脂粒子が、(メタ)アクリル樹脂、ナイロン樹脂、ウレタン樹脂、ポリエチレン樹脂、ポリテトラフルオロエチレン樹脂、ポリスチレン樹脂、ポリイミド樹脂、フェノール樹脂、ユリア樹脂、メラミン樹脂、塩化ビニル樹脂及び塩化ビニリデン樹脂から選ばれる少なくとも1種から構成される、請求項5〜7のいずれかに記載の水硬性材料。   The resin particles are selected from (meth) acrylic resin, nylon resin, urethane resin, polyethylene resin, polytetrafluoroethylene resin, polystyrene resin, polyimide resin, phenol resin, urea resin, melamine resin, vinyl chloride resin and vinylidene chloride resin. The hydraulic material according to any one of claims 5 to 7, comprising at least one selected from the above. 水をさらに含む、請求項5〜8のいずれかに記載の水硬性材料。   The hydraulic material according to claim 5, further comprising water. 請求項9に記載の水硬性材料を硬化させてなる、成型物。   A molded product obtained by curing the hydraulic material according to claim 9.
JP2013263506A 2013-12-20 2013-12-20 Admixture for hydraulic material and its use Active JP6283215B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013263506A JP6283215B2 (en) 2013-12-20 2013-12-20 Admixture for hydraulic material and its use

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013263506A JP6283215B2 (en) 2013-12-20 2013-12-20 Admixture for hydraulic material and its use

Publications (2)

Publication Number Publication Date
JP2015117176A true JP2015117176A (en) 2015-06-25
JP6283215B2 JP6283215B2 (en) 2018-02-21

Family

ID=53530247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013263506A Active JP6283215B2 (en) 2013-12-20 2013-12-20 Admixture for hydraulic material and its use

Country Status (1)

Country Link
JP (1) JP6283215B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019039688A1 (en) * 2017-08-22 2019-02-28 롯데정밀화학 주식회사 Additive composition for tile cement mortar and tile cement mortar comprising same
KR20190021931A (en) * 2017-08-24 2019-03-06 롯데정밀화학 주식회사 Method of preparing additive composition for tile cement mortar, composition for tile cement mortar prepared thereby and tile cement mortar having the composition
CN114605120A (en) * 2022-03-23 2022-06-10 广东水电二局股份有限公司 Underwater undispersed concrete and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007261920A (en) * 2006-03-30 2007-10-11 Dainippon Ink & Chem Inc Cement composition
JP2009249271A (en) * 2008-04-10 2009-10-29 Shikoku Chem Corp Coating material for wall surface

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007261920A (en) * 2006-03-30 2007-10-11 Dainippon Ink & Chem Inc Cement composition
JP2009249271A (en) * 2008-04-10 2009-10-29 Shikoku Chem Corp Coating material for wall surface

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019039688A1 (en) * 2017-08-22 2019-02-28 롯데정밀화학 주식회사 Additive composition for tile cement mortar and tile cement mortar comprising same
KR20190021098A (en) * 2017-08-22 2019-03-05 롯데정밀화학 주식회사 Additive composition for tile cement mortar and tile cement mortar having the same
KR102392377B1 (en) * 2017-08-22 2022-04-29 롯데정밀화학 주식회사 Additive composition for tile cement mortar and tile cement mortar having the same
US11345643B2 (en) 2017-08-22 2022-05-31 Lotte Fine Chemical Co., Ltd. Additive composition for tile cement mortar and tile cement mortar comprising same
KR20190021931A (en) * 2017-08-24 2019-03-06 롯데정밀화학 주식회사 Method of preparing additive composition for tile cement mortar, composition for tile cement mortar prepared thereby and tile cement mortar having the composition
KR102392378B1 (en) 2017-08-24 2022-04-29 롯데정밀화학 주식회사 Method of preparing additive composition for tile cement mortar, composition for tile cement mortar prepared thereby and tile cement mortar having the composition
CN114605120A (en) * 2022-03-23 2022-06-10 广东水电二局股份有限公司 Underwater undispersed concrete and preparation method thereof
CN114605120B (en) * 2022-03-23 2023-01-17 广东水电二局股份有限公司 Underwater undispersed concrete and preparation method thereof

Also Published As

Publication number Publication date
JP6283215B2 (en) 2018-02-21

Similar Documents

Publication Publication Date Title
JP4725742B2 (en) Hydraulic composition
JP6223813B2 (en) Mortar composition
WO2012030884A1 (en) Easy mix mortar/grout composition, method of making and using thereof
JP5939776B2 (en) Repair mortar composition
EP3233751B1 (en) Construction chemical composition for tile mortar
JP2007534605A (en) Cement mortar for tiles using moisture retention agent
TWI417267B (en) Self-leveling composition
JP2007534608A (en) Cement system using moisture retention agent made from raw cotton linter
US8828137B2 (en) Additive composition for mortars, cements and joint compounds and cementitious compositions made therefrom
JP4577521B2 (en) Hydraulic composition
US8882907B2 (en) Additive composition for mortars, cements and joint compounds and cementitious compositions made therefrom
KR101674535B1 (en) Admixture composition for tile cement mortar and tile cement mortar composition having the admixture composition
MX2015003442A (en) Dry mortars with long open time and increased water factor.
JP6283215B2 (en) Admixture for hydraulic material and its use
US9284222B2 (en) Mucilages for hydraulic setting compositions
JP2010155740A (en) High-fluidity mortar
JP2006160589A (en) Admixture for plaster mortar and mortar composition containing the same
JP5792056B2 (en) Mortar
JP3528301B2 (en) High strength self-leveling cement composition
JP2010138031A (en) Hydraulic composition
JP5004294B2 (en) High flow mortar
JP2023511351A (en) Formulations containing hydraulic binders and cellulose ethers
JP5298677B2 (en) Hydraulic composition
KR20240045261A (en) Cellulose ether and superplasticizer dispersions with high solids content
JP6903042B2 (en) Wet spray method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170725

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171010

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180126

R150 Certificate of patent or registration of utility model

Ref document number: 6283215

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250