JP2014161991A - Robot movement mechanism and robot comprising the same - Google Patents

Robot movement mechanism and robot comprising the same Download PDF

Info

Publication number
JP2014161991A
JP2014161991A JP2013038079A JP2013038079A JP2014161991A JP 2014161991 A JP2014161991 A JP 2014161991A JP 2013038079 A JP2013038079 A JP 2013038079A JP 2013038079 A JP2013038079 A JP 2013038079A JP 2014161991 A JP2014161991 A JP 2014161991A
Authority
JP
Japan
Prior art keywords
leg
wheel
robot
type robot
omnidirectional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013038079A
Other languages
Japanese (ja)
Inventor
Kazuteru Hida
和輝 飛田
Isayuki Sagayama
功幸 嵯峨山
Hironori Ogawa
博教 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2013038079A priority Critical patent/JP2014161991A/en
Publication of JP2014161991A publication Critical patent/JP2014161991A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Manipulator (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a robot movement mechanism that can move flexibly on a flat surface and tackle with an irregular ground and continuously uneven stair steps.SOLUTION: The robot movement mechanism has omnidirectional wheels, which can be independently driven, formed at an end of a leg portion of a movement mechanism having a leg structure; has a sensor for detecting a posture of a main body thereof; and is mounted with a control method of giving rotation command to the omnidirectional wheels according to output value of the posture detecting sensor to avoid falling, and a caster type robot comprises the robot movement mechanism.

Description

本発明は、ロボットの移動機構及びそれを備えるロボットに関し、より具体的には、脚と車輪を融合した形状のロボットに関するものであり、特に、段差等の踏破性を備え、また、平面上において運動方向の拘束を受けない脚車輪型ロボットに関するものである。   The present invention relates to a robot moving mechanism and a robot including the same, and more specifically to a robot having a shape in which legs and wheels are fused, and particularly has a stepping property such as a step, and on a plane. The present invention relates to a leg-wheel type robot that is not restricted in the direction of motion.

近年、産業界のみならず、生活支援分野でのロボットの活動を想定して、平面上だけでなく不整地や段差、階段等の踏破性が要求され、そのため、多くの研究者により不整地移動ロボットの研究が盛んに行われている。不整地移動ロボットは、機構上、車輪型、クローラ型、脚型、あるいはそれらの複合型のグループに大別される.   In recent years, assuming robot activity not only in industry but also in the field of life support, not only on flat surfaces but also rough terrain, steps, steps, etc. are required, so many researchers move rough terrain. There is a lot of research on robots. Rough terrain mobile robots can be broadly classified into wheel type, crawler type, leg type, or a combination of these groups.

特に、複合型のロボットのうち、脚機構と車輪とを複合利用するものは、不整地移動を実現しながらも、平地での高い移動性を有するという利点がある(特許文献1参照)。   In particular, a composite robot that uses a leg mechanism and wheels in combination has an advantage that it has high mobility on a flat ground while realizing rough terrain movement (see Patent Document 1).

また、平地において、通常の車輪機構では、車輪の進む向きと垂直な方向には、車輪自身に拘束され運動方向が制限されるため、車輪の回転軸とは異なる向きの軸上に複数の従動車輪を配置する全方位車輪(オムニホイール,メカナムホイール)を用いて平面上を斜めや真横などに移動する移動機構が存在する(特許文献2参照)。   Also, on a flat ground, in a normal wheel mechanism, the direction of movement is restricted by the wheel itself in the direction perpendicular to the traveling direction of the wheel. There is a moving mechanism that moves omnidirectionally or directly beside on a plane using omnidirectional wheels (omni wheels, mecanum wheels) on which wheels are arranged (see Patent Document 2).

特許4724845号Japanese Patent No. 4724845 特開2010−76630号公報JP 2010-76630 A

ところで特許文献1のような移動機構は、不整地などへの対応に優れているが、全方向車輪を補助輪(特に従動輪)としてのみ用いており、駆動力を発する部分は通常の車輪であることから、車輪機構による真横や斜めへの移動ができない。   By the way, although the movement mechanism like patent document 1 is excellent in correspondence with rough terrain etc., the omnidirectional wheel is used only as an auxiliary wheel (especially driven wheel), and the part which emits driving force is a normal wheel. For this reason, the wheel mechanism cannot be moved sideways or diagonally.

また、特許文献2のようなロボットにおいては、全方向車輪を駆動輪として用いており、平面上での自由自在な運動が可能であるが、不整地や連続的な段差である階段への対応力は低い。   Moreover, in the robot like patent document 2, the omnidirectional wheel is used as a driving wheel, and the free movement on a plane is possible, but it corresponds to the uneven terrain and the stairs which are a continuous level difference. The power is low.

本発明は、上記のような従来の問題に鑑みなされたものであって、平面上での自由自在な運動を可能としながらも、不整地や連続的な段差である階段への対応も可能なロボットの移動機構、及び、それを備えるロボットを提供することを目的とする。   The present invention has been made in view of the conventional problems as described above, and can cope with uneven terrain and staircases that are continuous steps while allowing free movement on a flat surface. An object of the present invention is to provide a robot moving mechanism and a robot including the same.

本発明の上記目的は、下記の構成により達成される。   The above object of the present invention can be achieved by the following constitution.

股関節ピッチ軸、膝ピッチ軸を有する脚部先端に、独立に駆動可能な2つの全方向車輪を設置し、本体の姿勢を検出するセンサを有し、姿勢検出センサの出力値に応じて全方向車輪に回転指令を与え転倒回避する制御法を実装した、脚車輪型ロボットの移動機構、及び、それを備える脚車輪型ロボット。   Two omnidirectional wheels that can be driven independently are installed at the tip of the leg that has the hip joint pitch axis and knee pitch axis, and has a sensor that detects the posture of the main body, and omnidirectional according to the output value of the posture detection sensor A moving mechanism of a leg wheel type robot, and a leg wheel type robot including the same, which implements a control method for giving a rotation command to a wheel to avoid overturning.

また、股関節ピッチ軸、膝直動関節を有する脚部先端に、独立に駆動可能な2つの全方向車輪を設置し、本体の姿勢を検出するセンサを有し、姿勢検出センサの出力値に応じて全方向車輪に回転指令を与え転倒を回避する制御法を実装した、脚車輪型ロボットの移動機構、及び、それを備える脚車輪型ロボット。   In addition, two omnidirectional wheels that can be driven independently are installed at the tip of the leg that has a hip joint pitch axis and a knee linear motion joint, and has a sensor that detects the posture of the main body, according to the output value of the posture detection sensor. A leg wheel type robot moving mechanism, and a leg wheel type robot equipped with the same, which implements a control method for giving rotation commands to omnidirectional wheels and avoiding overturning.

また、股関節直動軸,膝直動関節を有する脚部先端に、独立に駆動可能な2つの全方向車輪を設置し、本体の姿勢を検出するセンサを有し、姿勢検出センサの出力値に応じて全方向車輪に回転指令を与え転倒を回避する制御法を実装した、脚車輪型ロボットの移動機構、及び、それを備える脚車輪型ロボット。   In addition, two omnidirectional wheels that can be driven independently are installed at the tip of the leg having the hip joint linear motion shaft and knee linear motion joint, and has a sensor for detecting the posture of the main body, and the output value of the posture detection sensor Correspondingly, a leg wheel type robot moving mechanism, and a leg wheel type robot provided with the moving mechanism of the leg wheel type robot, which implements a control method for giving rotation commands to omnidirectional wheels and avoiding overturning.

また、股関節直動軸、膝関節ピッチ軸を有する脚部先端に、独立に駆動可能な2つの全方向車輪を設置し、本体の姿勢を検出するセンサを有し、姿勢検出センサの出力値に応じて全方向車輪に回転指令を与え転倒を回避する制御法を実装した、脚車輪型ロボットの移動機構、及び、それを備える脚車輪型ロボット。   In addition, two omnidirectional wheels that can be driven independently are installed at the tip of the leg that has the hip joint linear motion axis and the knee joint pitch axis, and has a sensor that detects the posture of the main body, and the output value of the posture detection sensor Correspondingly, a leg wheel type robot moving mechanism, and a leg wheel type robot provided with the moving mechanism of the leg wheel type robot, which implements a control method for giving rotation commands to omnidirectional wheels and avoiding overturning.

本発明の上記脚車輪型ロボットの移動機構、及び、それを備えるロボットによれば、脚構造による不整地移動を実現しながらも、平地での拘束方向のない高い移動性が、全方向車輪により得られる。   According to the movement mechanism of the above-described leg-wheel type robot of the present invention and the robot including the same, high mobility without a restraining direction on a flat ground is realized by the omnidirectional wheel while realizing irregular terrain movement by the leg structure. can get.

従来の駆動車輪つき四脚車輪ロボットの構成を説明する図である。It is a figure explaining the structure of the conventional quadruped wheel robot with a drive wheel. 本発明の第1実施形態を説明する図である。It is a figure explaining 1st Embodiment of this invention. 全方向車輪の一例としてのメカナムホイールを説明する図である。It is a figure explaining the Mecanum wheel as an example of an omnidirectional wheel. 全方向車輪の一例としてのオムニホイールを説明する図である。It is a figure explaining the omni wheel as an example of an omnidirectional wheel. 全方向車輪を用いた移動機構の一例を説明する図である(メカナムホイールの例)。It is a figure explaining an example of the moving mechanism using an omnidirectional wheel (example of a Mecanum wheel). 全方向車輪を用いた移動機構の一例を説明する図である(オムニホイールの例)It is a figure explaining an example of the moving mechanism using an omnidirectional wheel (example of an omni wheel). 第1の実施形態の構成を用いたガイダンスロボットを説明する図である。It is a figure explaining the guidance robot using the structure of 1st Embodiment. 倒立振子・台車系モデルを説明する図である。It is a figure explaining an inverted pendulum and cart system model. 本発明の第2実施形態を説明する図である。It is a figure explaining 2nd Embodiment of this invention. 本発明の第3実施形態を説明する図である。It is a figure explaining 3rd Embodiment of this invention. 本発明の第4実施形態を説明する図である。It is a figure explaining 4th Embodiment of this invention.

以下、本発明の実施形態を図面を参照しつつ説明する。まず、図1に従来の駆動車輪付四脚車輪型ロボットの構成を示す。ロボット基部11に脚部51が4本接続されており、脚部51はそれぞれ、股関節ヨー軸21を介して股関節部リンク31が回転可能であり、股関節部リンク31の他端には股関節ピッチ軸22を介して腿部リンク32が回転可能であり、腿部リンク32の他端は膝関節23を介して脛部リンク33を回転可能とする垂直多関節構成であり、腿部リンク32の他端には駆動車輪41を設置し、平面上を車輪の拘束の下、運動可能とするものである。   Embodiments of the present invention will be described below with reference to the drawings. First, FIG. 1 shows the configuration of a conventional quadruped wheel type robot with drive wheels. Four leg portions 51 are connected to the robot base 11, and each leg portion 51 can rotate a hip joint link 31 via a hip joint yaw shaft 21, and a hip joint pitch axis is connected to the other end of the hip joint link 31. 22, the thigh link 32 is rotatable, and the other end of the thigh link 32 has a vertical articulated configuration that allows the tibial link 33 to be rotated via the knee joint 23. A driving wheel 41 is installed at the end so that it can move on a plane under the restraint of the wheel.

つぎに、図2を参照して、本発明に係る脚車輪型ロボットの第1実施形態について説明する。図2は、図1の脚車輪型ロボットの駆動車輪41を全方向車輪42に変更したものであり、股関節ヨー軸21を取り去った構成である。また、基部11に姿勢検出センサ12を設置し、本体の倒れなどの角度情報を取得する。   Next, a first embodiment of the leg-wheel type robot according to the present invention will be described with reference to FIG. FIG. 2 shows a configuration in which the drive wheel 41 of the leg wheel type robot of FIG. 1 is changed to an omnidirectional wheel 42, and the hip joint yaw axis 21 is removed. In addition, an attitude detection sensor 12 is installed in the base 11 to acquire angle information such as the body tilting.

全方向車輪42は、図3に示すメカナムホイール、図4に示すオムニホイールなどである。図3のメカナムホイールは、モータなどの駆動軸が接続される主軸ハウジング81と、第1の従動小車輪82a、第2の従動小車輪82b、および従動輪用軸83から構成される。ホイール自体が回転することで推進力を得るが、地面に接地する部分は主軸と45度ずれた軸に固定された従動小車輪であり、ホイール進行方向以外の方向への運動が拘束されないものであり、これを図5のごとく組み合わせて、各軸の駆動力を調整することで、全方向への移動を可能とする移動機構が実現できるものである。   The omnidirectional wheel 42 is a Mecanum wheel shown in FIG. 3, an omni wheel shown in FIG. The Mecanum wheel shown in FIG. 3 includes a main shaft housing 81 to which a drive shaft such as a motor is connected, a first driven small wheel 82a, a second driven small wheel 82b, and a driven wheel shaft 83. The wheel itself rotates to obtain a propulsive force, but the part that contacts the ground is a driven small wheel fixed to a shaft that is 45 degrees away from the main shaft, and movement in directions other than the wheel traveling direction is not restricted. Yes, by combining this as shown in FIG. 5 and adjusting the driving force of each axis, a moving mechanism that enables movement in all directions can be realized.

同様に、図4のオムニホイールは、モータなどの駆動軸が接続される主軸ハウジング81と、従動小車輪84、および従動輪用軸83から構成される。ホイール自体が回転することで推進力を得るが、地面に接地する部分は主軸と90度ずれた軸に固定された従動小車輪であり、ホイール進行方向以外の方向への運動が拘束されないものであり、これを図6のごとく組み合わせて、各軸の駆動力を調整することで、全方向への移動を可能とする移動機構が実現できるものである。   Similarly, the omni wheel in FIG. 4 includes a main shaft housing 81 to which a drive shaft such as a motor is connected, a driven small wheel 84, and a driven wheel shaft 83. The wheel itself rotates to obtain propulsive force, but the part that contacts the ground is a driven small wheel fixed to a shaft that is 90 degrees away from the main shaft, and movement in directions other than the wheel traveling direction is not constrained. There is a combination of these as shown in FIG. 6, and by adjusting the driving force of each axis, a moving mechanism that can move in all directions can be realized.

以上のような、脚構造と全方向車輪を用いた脚車輪型ロボットの構成を用いた案内ロボット(ガイダンスロボット)の例を図7に示す。ガイダンスロボットは、人からの指令に応じて進行方向を決定し、周囲の障害物を検知して回避や停止するものである。基部11には周囲の障害物や階段などを認識するための距離画像センサ61や、人からの指令を検出する入力デバイス(力センサ)が備わる。   FIG. 7 shows an example of a guide robot (guidance robot) using the configuration of the leg wheel type robot using the leg structure and the omnidirectional wheel as described above. The guidance robot determines a traveling direction according to a command from a person, detects surrounding obstacles, and avoids or stops. The base 11 is provided with a distance image sensor 61 for recognizing surrounding obstacles and stairs and an input device (force sensor) for detecting a command from a person.

これまでに説明してきたように、足先に全方向車輪42を備えていることで、平面上を拘束向がなく自在に走行できるため股関節ヨー軸21が必ずしも必要ではなくなる。また、図8に示す倒立振子・台車系の制御を応用することで、ロボットの転倒回避などの制御が可能となる。図8において台車101と倒立振子102とは、1軸の受動関節で接続されており、台車101を左右に動かすことで、倒立振子102を倒れないように制御するものであり、以下の運動方程式が成り立つことが知られている。   As described above, since the omnidirectional wheel 42 is provided at the tip of the foot, the hip joint yaw shaft 21 is not necessarily required because it can run freely on the plane without restraining direction. Further, by applying the control of the inverted pendulum / cart system shown in FIG. 8, it is possible to perform control such as avoiding overturning of the robot. In FIG. 8, the carriage 101 and the inverted pendulum 102 are connected by a single-axis passive joint, and are controlled so that the inverted pendulum 102 does not fall by moving the carriage 101 left and right. Is known to hold.

Figure 2014161991
m:振子の質量
L:振子の長さ(半分)
θ:振子の角度
τ:振子に加わるトルク
M:台車の質量
Χ:台車の変位
f:台車に加わる力
g:重力加速度
Figure 2014161991
m: Mass of pendulum L: Length of pendulum (half)
θ: pendulum angle τ: torque applied to the pendulum M: mass of the carriage Χ: displacement of the carriage f: force applied to the carriage g: acceleration of gravity

支持脚2点を結ぶ線分を紙面に垂直な向きに合わせればこのモデルが適用できる。姿勢検出センサ12により検出された角度情報に応じて全方向車輪を駆動することで、転倒を回避する制御が可能となる。それゆえ、転倒回避のために股関節ヨー軸21を設けておく必要がなくなりこれを取り去った構成に自由度が削減できる。   This model can be applied by aligning the line connecting the two support legs in a direction perpendicular to the page. By driving the omnidirectional wheel in accordance with the angle information detected by the attitude detection sensor 12, it is possible to control to prevent the vehicle from overturning. Therefore, it is not necessary to provide the hip joint yaw shaft 21 in order to avoid the fall, and the degree of freedom can be reduced to a configuration in which this is removed.

つぎに、図9を参照して、本発明に係る脚車輪型ロボットの第2実施形態について説明する。図9は、図2の脚車輪型ロボットの膝関節23を脛部直動関節92に変更したものである。その他の構成及び作用効果については、前記第1実施形態と同様である。   Next, a second embodiment of the leg wheel type robot according to the present invention will be described with reference to FIG. 9 is obtained by changing the knee joint 23 of the leg-wheel type robot of FIG. About another structure and an effect, it is the same as that of the said 1st Embodiment.

つぎに、図10を参照して、本発明に係る脚車輪型ロボットの第3実施形態について説明する。図10は、図2の脚車輪型ロボットの膝関節23を脛部直動関節92に、股関節ピッチ軸22を腿部直動関節93に変更したものである。その他の構成及び作用効果については、前記第1実施形態と同様である。   Next, a third embodiment of the leg-wheel type robot according to the present invention will be described with reference to FIG. FIG. 10 is a diagram in which the knee joint 23 of the leg-wheel type robot of FIG. 2 is changed to a shin part linear motion joint 92 and the hip joint pitch axis 22 is changed to a thigh linear motion joint 93. About another structure and an effect, it is the same as that of the said 1st Embodiment.

つぎに、図11を参照して、本発明に係る脚車輪型ロボットの第4実施形態について説明する。図11は、図2の脚車輪型ロボットの股関節ピッチ軸22を腿部直動関節93に変更したものである。その他の構成及び作用効果については、前記第1実施形態と同様である。   Next, a fourth embodiment of the leg-wheel type robot according to the present invention will be described with reference to FIG. 11 is obtained by changing the hip joint pitch axis 22 of the leg wheel type robot of FIG. About another structure and an effect, it is the same as that of the said 1st Embodiment.

なお、以上の説明では、人を案内するガイダンスロボットを想定した説明としたが、これに限られるものではなく、一般的な歩行機械においても利用可能である。 In the above description, the description is made assuming a guidance robot for guiding a person. However, the present invention is not limited to this, and the present invention can also be used in a general walking machine.

11 ロボット基部
12 姿勢検出センサ
21 股関節ヨー軸
22 股関節ピッチ軸
23 膝関節
31 股関節部リンク
32 腿部リンク
33 脛部リンク
41 駆動車輪
42 全方向車輪
43 メカナムホイール
44 オムニホイール
51 脚部
61 距離画像センサ
71 入力デバイス
81 主軸ハウジング
82a 従動小車輪
82b 従動小車輪
83 従動輪用軸
84 従動小車輪
92 脛部直動関節
93 腿部直動関節
101 台車
102 倒立振子
11 Robot Base 12 Posture Detection Sensor 21 Hip Joint Yaw Axis 22 Hip Joint Pitch Shaft 23 Knee Joint 31 Hip Joint Link 32 Thigh Link 33 Tibial Link 41 Drive Wheel 42 Omnidirectional Wheel 43 Mecanum Wheel 44 Omni Wheel 51 Leg 61 Distance Image Sensor 71 Input device 81 Spindle housing 82a Driven small wheel 82b Driven small wheel 83 Driven wheel shaft 84 Driven small wheel 92 Tibial direct acting joint 93 Thigh direct acting joint 101 Cart 102 Inverted pendulum

Claims (8)

股関節ピッチ軸、膝ピッチ軸を有する脚部先端に、独立に駆動可能な2つの全方向車輪を設置し、本体の姿勢を検出するセンサを有する脚車輪型ロボット。   A leg-wheel type robot having a sensor for detecting the posture of a main body by installing two omnidirectional wheels that can be driven independently at the tip of a leg having a hip pitch axis and a knee pitch axis. 姿勢検出センサの出力値に応じて全方向車輪に回転指令を与え転倒を回避する制御法を実装した請求項1に示す構成の脚車輪型ロボット。   The leg-wheel type robot having the structure shown in claim 1, wherein a control method is implemented in which a rotation command is given to an omnidirectional wheel in accordance with an output value of a posture detection sensor to avoid overturning. 股関節ピッチ軸、膝直動関節を有する脚部先端に、独立に駆動可能な2つの全方向車輪を設置し、本体の姿勢を検出するセンサを有する脚車輪型ロボット。   A leg-wheel type robot having sensors that detect the posture of the main body by installing two omnidirectional wheels that can be independently driven at the tip of a leg having a hip joint pitch axis and a knee joint. 姿勢検出センサの出力値に応じて全方向車輪に回転指令を与え転倒を回避する制御法を実装した請求項3に示す構成の脚車輪型ロボット。   4. A leg-wheel type robot having a configuration as shown in claim 3, wherein a control method is implemented in which a rotation command is given to an omnidirectional wheel in accordance with an output value of a posture detection sensor to avoid overturning. 股関節直動関節、膝直動関節を有する脚部先端に、独立に駆動可能な2つの全方向車輪を設置し、本体の姿勢を検出するセンサを有する脚車輪型ロボット。   A leg-wheel type robot having a sensor that detects the posture of a main body by installing two omnidirectional wheels that can be driven independently at the tip of a leg having a hip joint and a knee joint. 姿勢検出センサの出力値に応じて全方向車輪に回転指令を与え転倒を回避する制御法を実装した請求項5に示す構成の脚車輪型ロボット。   6. A leg-wheel type robot having a configuration as shown in claim 5, wherein a control method is implemented in which a rotation command is given to an omnidirectional wheel in accordance with an output value of an attitude detection sensor to avoid overturning. 股関節直動関節、膝関節ピッチ軸を有する脚部先端に、独立に駆動可能な2つの全方向車輪を設置し、本体の姿勢を検出するセンサを有する脚車輪型ロボット。   A leg-wheel type robot having sensors that detect the posture of the main body by installing two omnidirectional wheels that can be independently driven at the tip of a leg having a hip joint linear motion joint and a knee joint pitch axis. 姿勢検出センサの出力値に応じて全方向車輪に回転指令を与え転倒を回避する制御法を実装した請求項7に示す構成の脚車輪型ロボット。   8. A leg-wheel type robot having a structure as shown in claim 7, wherein a control method is implemented in which a rotation command is given to an omnidirectional wheel in accordance with an output value of a posture detection sensor to avoid overturning.
JP2013038079A 2013-02-28 2013-02-28 Robot movement mechanism and robot comprising the same Pending JP2014161991A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013038079A JP2014161991A (en) 2013-02-28 2013-02-28 Robot movement mechanism and robot comprising the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013038079A JP2014161991A (en) 2013-02-28 2013-02-28 Robot movement mechanism and robot comprising the same

Publications (1)

Publication Number Publication Date
JP2014161991A true JP2014161991A (en) 2014-09-08

Family

ID=51613105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013038079A Pending JP2014161991A (en) 2013-02-28 2013-02-28 Robot movement mechanism and robot comprising the same

Country Status (1)

Country Link
JP (1) JP2014161991A (en)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105599821A (en) * 2016-01-06 2016-05-25 山东优宝特智能机器人有限公司 Electric driven biomimetic four-leg robot with environment sensing ability and control method
CN106474748A (en) * 2016-08-11 2017-03-08 河南教育学院 Universal movable toy internal core device
JP2017109294A (en) * 2015-12-18 2017-06-22 清水建設株式会社 Robot for construction work
CN107336763A (en) * 2017-07-10 2017-11-10 上海理工大学 A kind of comprehensive multi-joint simulating crawling robot
CN107364626A (en) * 2017-08-21 2017-11-21 北京建工环境修复股份有限公司 A kind of single-degree-of-freedom foldable water tank
CN107458494A (en) * 2017-07-01 2017-12-12 湖南翼航无人机科技有限公司 A kind of industrial robot walking mechanism for adapting to a variety of landform
WO2018003886A1 (en) * 2016-07-01 2018-01-04 学校法人東京理科大学 Omnidirectional movement device and orientation control method
CN109080727A (en) * 2018-06-05 2018-12-25 燕山大学 A kind of Six-foot walking robot
KR20190002372A (en) * 2017-06-29 2019-01-08 한양대학교 에리카산학협력단 Work robot
CN109176461A (en) * 2018-10-31 2019-01-11 北京林业大学 Wheel leg type barrier-surpassing robot
CN109213160A (en) * 2018-08-31 2019-01-15 西南大学 A kind of field weeding fertilising operation takes turns biped robot more
CN109484509A (en) * 2018-11-23 2019-03-19 广东职业技术学院 One kind is crawled climbing robot
CN109606239A (en) * 2019-01-28 2019-04-12 沈阳理工大学 A kind of automobile-used bionical elevating mechanism of rescue with active metamorphic function
CN109733496A (en) * 2018-11-30 2019-05-10 西安电子科技大学 The sufficient wheel leg transform autonomous robot of one kind six
CN109795575A (en) * 2019-02-26 2019-05-24 华南理工大学 Hexapod robot system and its motion control method for glass curtain wall detection
CN109910017A (en) * 2019-04-23 2019-06-21 中铁工程装备集团有限公司 A kind of detection used suitable for shield/tool changing robot and its application method
CN110253620A (en) * 2019-07-25 2019-09-20 长安大学 A kind of integrated joint of fast demountable can variant multi-foot robot
CN110371212A (en) * 2019-07-31 2019-10-25 武汉科技大学 Barrier-surpassing robot and its obstacle-detouring method
CN110481666A (en) * 2019-08-28 2019-11-22 太原科技大学 Six limb leg crawler belt foot polar region scientific investigation vehicle of ultra-large type crosses over snowbank gait planning method
WO2020036111A1 (en) * 2018-08-16 2020-02-20 ソニー株式会社 Control device and control method
CN111098948A (en) * 2019-12-11 2020-05-05 中国飞机强度研究所 Leg wheel type automobile walking mechanism and control method
CN111332382A (en) * 2020-04-01 2020-06-26 安徽工业大学 Horizontal joint quadruped robot
CN114475859A (en) * 2022-01-18 2022-05-13 福州大学 Folding and unfolding structure of wheeled mobile robot
CN114852211A (en) * 2022-05-31 2022-08-05 华南理工大学 Torsion-resistant truss-based parallel quadruped robot device and control method thereof
CN114852207A (en) * 2022-04-26 2022-08-05 中国北方车辆研究所 Shaft-driven three-degree-of-freedom wheel foot walking mechanism
DE112021001798T5 (en) 2020-03-23 2023-02-16 Sony Group Corporation CONTROL DEVICE AND CONTROL METHOD AND COMPUTER PROGRAM
WO2023165192A1 (en) * 2022-03-01 2023-09-07 腾讯科技(深圳)有限公司 Robot control method and apparatus, and robot and computer-readable storage medium

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017109294A (en) * 2015-12-18 2017-06-22 清水建設株式会社 Robot for construction work
CN105599821A (en) * 2016-01-06 2016-05-25 山东优宝特智能机器人有限公司 Electric driven biomimetic four-leg robot with environment sensing ability and control method
JPWO2018003886A1 (en) * 2016-07-01 2019-06-13 学校法人東京理科大学 Omnidirectional mobile device and attitude control method therefor
WO2018003886A1 (en) * 2016-07-01 2018-01-04 学校法人東京理科大学 Omnidirectional movement device and orientation control method
CN106474748A (en) * 2016-08-11 2017-03-08 河南教育学院 Universal movable toy internal core device
KR20190002372A (en) * 2017-06-29 2019-01-08 한양대학교 에리카산학협력단 Work robot
KR102083085B1 (en) * 2017-06-29 2020-04-23 한양대학교 에리카산학협력단 Work robot
US11485029B2 (en) 2017-06-29 2022-11-01 Industry-University Cooperation Foundation Hanyang University Erica Campus Working robot
CN107458494A (en) * 2017-07-01 2017-12-12 湖南翼航无人机科技有限公司 A kind of industrial robot walking mechanism for adapting to a variety of landform
CN107458494B (en) * 2017-07-01 2019-12-27 湖南翼航无人机科技有限公司 Industrial robot running gear who adapts to multiple topography
CN107336763A (en) * 2017-07-10 2017-11-10 上海理工大学 A kind of comprehensive multi-joint simulating crawling robot
CN107364626A (en) * 2017-08-21 2017-11-21 北京建工环境修复股份有限公司 A kind of single-degree-of-freedom foldable water tank
CN109080727A (en) * 2018-06-05 2018-12-25 燕山大学 A kind of Six-foot walking robot
CN109080727B (en) * 2018-06-05 2021-01-08 燕山大学 Six-foot walking robot
WO2020036111A1 (en) * 2018-08-16 2020-02-20 ソニー株式会社 Control device and control method
CN109213160A (en) * 2018-08-31 2019-01-15 西南大学 A kind of field weeding fertilising operation takes turns biped robot more
CN109213160B (en) * 2018-08-31 2020-11-24 西南大学 Multi-wheel foot robot for field weeding and fertilizing operation
CN109176461A (en) * 2018-10-31 2019-01-11 北京林业大学 Wheel leg type barrier-surpassing robot
CN109484509A (en) * 2018-11-23 2019-03-19 广东职业技术学院 One kind is crawled climbing robot
CN109484509B (en) * 2018-11-23 2023-09-01 广东职业技术学院 Creeping robot
CN109733496A (en) * 2018-11-30 2019-05-10 西安电子科技大学 The sufficient wheel leg transform autonomous robot of one kind six
CN109606239B (en) * 2019-01-28 2021-07-06 沈阳理工大学 Bionic lifting mechanism with active metamorphic function for rescue vehicle
CN109606239A (en) * 2019-01-28 2019-04-12 沈阳理工大学 A kind of automobile-used bionical elevating mechanism of rescue with active metamorphic function
CN109795575A (en) * 2019-02-26 2019-05-24 华南理工大学 Hexapod robot system and its motion control method for glass curtain wall detection
CN109910017A (en) * 2019-04-23 2019-06-21 中铁工程装备集团有限公司 A kind of detection used suitable for shield/tool changing robot and its application method
CN109910017B (en) * 2019-04-23 2023-12-22 中铁工程装备集团有限公司 Detection/tool changing robot suitable for shield and use method thereof
CN110253620A (en) * 2019-07-25 2019-09-20 长安大学 A kind of integrated joint of fast demountable can variant multi-foot robot
CN110371212A (en) * 2019-07-31 2019-10-25 武汉科技大学 Barrier-surpassing robot and its obstacle-detouring method
CN110481666B (en) * 2019-08-28 2022-06-21 太原科技大学 Gait planning method for ultra-large six-limb-leg crawler foot polar region scientific investigation vehicle crossing snow dune
CN110481666A (en) * 2019-08-28 2019-11-22 太原科技大学 Six limb leg crawler belt foot polar region scientific investigation vehicle of ultra-large type crosses over snowbank gait planning method
CN111098948A (en) * 2019-12-11 2020-05-05 中国飞机强度研究所 Leg wheel type automobile walking mechanism and control method
DE112021001798T5 (en) 2020-03-23 2023-02-16 Sony Group Corporation CONTROL DEVICE AND CONTROL METHOD AND COMPUTER PROGRAM
CN111332382A (en) * 2020-04-01 2020-06-26 安徽工业大学 Horizontal joint quadruped robot
CN114475859B (en) * 2022-01-18 2023-02-21 福州大学 Folding and unfolding structure of wheeled mobile robot
CN114475859A (en) * 2022-01-18 2022-05-13 福州大学 Folding and unfolding structure of wheeled mobile robot
WO2023165192A1 (en) * 2022-03-01 2023-09-07 腾讯科技(深圳)有限公司 Robot control method and apparatus, and robot and computer-readable storage medium
CN114852207A (en) * 2022-04-26 2022-08-05 中国北方车辆研究所 Shaft-driven three-degree-of-freedom wheel foot walking mechanism
CN114852211B (en) * 2022-05-31 2023-08-18 华南理工大学 Anti-torsion truss-based parallel four-foot robot device and control method thereof
CN114852211A (en) * 2022-05-31 2022-08-05 华南理工大学 Torsion-resistant truss-based parallel quadruped robot device and control method thereof

Similar Documents

Publication Publication Date Title
JP2014161991A (en) Robot movement mechanism and robot comprising the same
US11731277B2 (en) Generalized coordinate surrogates for integrated estimation and control
JP5978028B2 (en) Mobile robot controller
JP5510081B2 (en) Obstacle avoidance support device, obstacle avoidance support method, and moving object
US8269447B2 (en) Magnetic spherical balancing robot drive
KR101049626B1 (en) robot
KR101374619B1 (en) Autonomous mobile body and control method of same
JP2007290054A (en) Bipedal type moving mechanism
JP4523244B2 (en) Power-assisted mobile trolley
Ma et al. An omnidirectional mobile robot: Concept and analysis
JP2003266337A (en) Bipedal walking robot
CN105416967B (en) Carry servicing unit
JP2008126936A (en) Moving device
JP2014100767A (en) Level difference walking control device and method of multileg walking robot
JP2016074060A (en) Automatic remote work machine and working method thereof
JP2006055972A (en) Foot traveling mechanism and bipedal walking robot with the same
JP7150155B2 (en) Control devices and control systems for moving bodies
JP2007112168A (en) Spherical moving device
JP2013101593A (en) Wheel type robot
Munakata et al. A novel step climbing strategy for a wheelchair with active-caster add-on mechanism
JP2009107033A (en) Legged mobile robot and its control method
Lee et al. Autonomous shape-variable crawler: One-dimensional displacement coordination for constant upper frame posture
JP7549340B2 (en) robot
JP2009190117A (en) Robot arm and robot
Chen et al. Design and fabrication of a statically stable stair‐climbing robotic wheelchair