JP2014022596A - Manufacturing method of rare earth-iron-boron-based porous magnet - Google Patents
Manufacturing method of rare earth-iron-boron-based porous magnet Download PDFInfo
- Publication number
- JP2014022596A JP2014022596A JP2012160598A JP2012160598A JP2014022596A JP 2014022596 A JP2014022596 A JP 2014022596A JP 2012160598 A JP2012160598 A JP 2012160598A JP 2012160598 A JP2012160598 A JP 2012160598A JP 2014022596 A JP2014022596 A JP 2014022596A
- Authority
- JP
- Japan
- Prior art keywords
- powder
- rtb
- less
- kpa
- alloy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Powder Metallurgy (AREA)
- Hard Magnetic Materials (AREA)
- Manufacturing Cores, Coils, And Magnets (AREA)
Abstract
Description
本願はR−Fe−B系多孔質磁石の製造方法に関する。 The present application relates to a method for producing an R—Fe—B porous magnet.
高性能永久磁石として代表的なR−T−B系永久磁石(RはNdおよび/またはPrを含む希土類元素、TはFeまたはFeの一部をCoおよび/またはNiで置換したもの、Bはホウ素)は、三元系正方晶化合物であるR2T14B相(Nd2Fe14B型化合物相)を主相として含み、優れた磁気特性を発揮するため、様々な用途に用いられている。 R-T-B permanent magnets typical as high-performance permanent magnets (R is a rare earth element containing Nd and / or Pr, T is Fe or a part of Fe substituted with Co and / or Ni, B is Boron) contains the R 2 T 14 B phase (Nd 2 Fe 14 B type compound phase), which is a ternary tetragonal compound, as a main phase and exhibits excellent magnetic properties, so it is used for various applications. Yes.
中でも、近年、ハイブリッド自動車や電気自動車などの駆動モータなど、高温で使用されるR−T−B系永久磁石の需要が拡大している。このような製品に用いられるR−T−B系永久磁石には高い保磁力が要求される。R−T−B系永久磁石の保磁力を高める方法として、R−T−B系永久磁石のRの一部をDyやTbなどの重希土類元素とすることにより、R2T14B相(主相)の結晶磁気異方性を高めることが一般的に知られている。しかし、DyやTbなどの重希土類元素は地殻存在量が小さな希少元素であり、今後資源枯渇のリスクが顕在化する可能性があると懸念されており、DyやTbを使用せずにR−T−B系永久磁石の保磁力を高める技術が求められている。 In particular, in recent years, the demand for RTB-based permanent magnets used at high temperatures, such as drive motors for hybrid vehicles and electric vehicles, has been increasing. R-T-B permanent magnets used in such products are required to have a high coercive force. As a method for increasing the coercive force of an R-T-B system permanent magnet, a part of R of the R-T-B system permanent magnet is made of a heavy rare earth element such as Dy or Tb, so that the R 2 T 14 B phase ( It is generally known to increase the magnetocrystalline anisotropy of the main phase. However, heavy rare earth elements such as Dy and Tb are rare elements with small crustal abundance, and there is concern that the risk of resource depletion may become apparent in the future. R- without using Dy or Tb There is a need for a technique for increasing the coercive force of a T-B permanent magnet.
R−T−B系永久磁石のなかでも粉末冶金法で作製されるR−T−B系焼結磁石において、原料粉末の粉砕粒径を微細化することでDyやTbを使用せずに保磁力が向上することが非特許文献1などにより知られている。また、R2T14B相の結晶粒径を粉末冶金法では困難なサブミクロンサイズまで微細化する方法として知られるHDDR(Hydrogenation−Disproportionation−Desorption−Recombination)処理法は、R−T−B系永久磁石においてDyやTbを使用せずにさらに高い保磁力が得られる可能性をもった技術として注目されており、例えば非特許文献2に開示されている。 Among RTB-based permanent magnets, RTB-based sintered magnets manufactured by the powder metallurgy method can be used without using Dy or Tb by reducing the pulverized particle size of the raw material powder. It is known from Non-Patent Document 1 that magnetic force is improved. Also, HDDR (Hydrogenation-Deposition-Recombination-Recombination) processing method known as a method for refining the crystal grain size of R 2 T 14 B phase to submicron size, which is difficult with powder metallurgy, is an R-T-B system. A permanent magnet is attracting attention as a technique that has a possibility of obtaining a higher coercive force without using Dy or Tb, and is disclosed in Non-Patent Document 2, for example.
HDDR処理法は水素化(Hydrogenation)および不均化(Disproportionation)と、脱水素(Desorption)および再結合(Recombination)とを順次実行するプロセスを意味しており、主にR−T−B系異方性ボンド磁石用の磁石粉末の製造方法として採用されている。公知のHDDR処理によれば、まず、R−T−B系合金のインゴットまたは粉末を、H2ガス雰囲気、またはH2ガスと不活性ガスとの混合雰囲気中で温度700℃〜1000℃に保持し、上記のインゴットまたは粉末に水素を吸蔵させる。その後、例えばH2圧力が13Pa以下の真空雰囲気、またはH2分圧が13Pa以下の不活性雰囲気で温度700℃〜1000℃で脱水素処理し、次いで冷却する。 The HDDR processing method means a process of sequentially performing hydrogenation and disproportionation, dehydrogenation and recombination, and is mainly different from R-T-B system. It has been adopted as a method for producing magnet powder for isotropic bonded magnets. According to the known HDDR process, first, an R-T-B alloy ingot or powder is maintained at a temperature of 700 ° C. to 1000 ° C. in an H 2 gas atmosphere or a mixed atmosphere of an H 2 gas and an inert gas. Then, hydrogen is occluded in the ingot or powder. Thereafter, such as H 2 pressure is 13Pa or less of vacuum atmosphere, or H 2 partial pressure is dehydrogenated at a temperature 700 ° C. to 1000 ° C. or less inert atmosphere 13Pa, then cooled.
上記処理において、典型的には以下の反応が進行する。 In the above treatment, the following reaction typically proceeds.
まず、所定温度で水素を吸蔵させる熱処理により、水素化および不均化反応が進行して微細組織が形成される。水素化および不均化反応の両方をあわせて「HD反応」と呼ぶ。典型的なHD反応では、Nd2Fe14B+2H2→2NdH2+12Fe+Fe2Bの反応が進行する。 First, a hydrogenation and disproportionation reaction proceeds by a heat treatment that occludes hydrogen at a predetermined temperature to form a fine structure. Both hydrogenation and disproportionation reactions are collectively referred to as “HD reactions”. In a typical HD reaction, a reaction of Nd 2 Fe 14 B + 2H 2 → 2NdH 2 + 12Fe + Fe 2 B proceeds.
次いで、所定温度で水素を放出させる熱処理により、脱水素ならびに再結合反応が進行する。脱水素ならびに再結合反応をあわせて「DR反応」と呼ぶ。典型的なDR反応では、例えば2NdH2+12Fe+Fe2B→Nd2Fe14B+2H2の反応が進行する。こうして、微細なR2T14B結晶相を含む合金が得られる。 Next, dehydrogenation and recombination reaction proceed by heat treatment for releasing hydrogen at a predetermined temperature. The dehydrogenation and recombination reactions are collectively referred to as “DR reactions”. In a typical DR reaction, for example, a reaction of 2NdH 2 + 12Fe + Fe 2 B → Nd 2 Fe 14 B + 2H 2 proceeds. Thus, an alloy containing a fine R 2 T 14 B crystal phase is obtained.
なお、本明細書ではHD反応を起こすための熱処理を「HD処理」、DR反応を起こすための熱処理を「DR処理」と称する。また、HD処理およびDR処理の両方を行うことを「HDDR処理」と称する。 In this specification, the heat treatment for causing the HD reaction is referred to as “HD treatment”, and the heat treatment for causing the DR reaction is referred to as “DR treatment”. Further, performing both HD processing and DR processing is referred to as “HDDR processing”.
HDDR処理で得られたR−T−B系HDDR磁石粉末(以下、「HDDR磁粉」と称する)は、結晶粒径が0.1μm〜1μmであり、粉末ながら大きな保磁力を有し、磁気的な異方性を示している。しかし、HDDR処理のみではハイブリッド自動車や電気自動車用の駆動モータなどでの使用に耐えうる保磁力を有する磁粉を得ることが困難であった。また、ボンド磁石用のHDDR磁粉は減磁曲線の角型性が悪く耐熱性に乏しかった。 The R-T-B type HDDR magnet powder (hereinafter referred to as “HDDR magnetic powder”) obtained by the HDDR treatment has a crystal grain size of 0.1 μm to 1 μm and has a large coercive force while being a powder, and is magnetic. Anisotropy is shown. However, it has been difficult to obtain magnetic powder having a coercive force that can withstand use in a drive motor for a hybrid vehicle or an electric vehicle only by the HDDR process. Moreover, the HDDR magnetic powder for bonded magnets had poor squareness of the demagnetization curve and poor heat resistance.
これに対し、得られたHDDR磁粉に別の材料を混合または被覆して熱処理することにより保磁力を向上させる方法がこれまでにいくつか提案されている。 On the other hand, several methods have been proposed so far in which the HDDR magnetic powder obtained is mixed or coated with another material and heat-treated to improve the coercive force.
特許文献1では、Dy、Tb、Ho、Er、Tm、Gd、Nd、Sm、Pr、Ce、La、Y、Zr、Cr、Mo、V、Ga、Zn、Cu、Mg、Li、Al、Mn、Nb、Tiの中から選択される少なくとも一種の金属蒸気を、磁粉に付着させて熱処理・拡散を行うことにより、磁気特性、耐食性および耐候性が向上することが開示されている。Dy、Tb等が磁粉の粒界に拡散することにより、磁気特性の優れた磁石が得られると記載されている。 In Patent Document 1, Dy, Tb, Ho, Er, Tm, Gd, Nd, Sm, Pr, Ce, La, Y, Zr, Cr, Mo, V, Ga, Zn, Cu, Mg, Li, Al, Mn It is disclosed that magnetic properties, corrosion resistance, and weather resistance are improved by attaching at least one metal vapor selected from Nb, Ti to magnetic powder and performing heat treatment / diffusion. It is described that a magnet having excellent magnetic properties can be obtained by diffusing Dy, Tb, etc. to the grain boundaries of the magnetic powder.
特許文献2には、HDDR磁粉とR’−Al系合金を混合して熱処理することで重希土類元素を用いずに保磁力が向上することが開示されている。 Patent Document 2 discloses that coercive force is improved without using a heavy rare earth element by mixing and heat-treating HDDR magnetic powder and an R′-Al alloy.
また、特許文献3は、HDDR磁石粉末をアルミニウム膜で被覆した後、450℃〜600℃で熱処理を行うことを開示している。 Patent Document 3 discloses that the HDDR magnet powder is coated with an aluminum film and then heat-treated at 450 ° C. to 600 ° C.
また、HDDR磁粉の角型性を改善しつつ、バルク磁石を得る方法として特許文献4に平均粒径10μm未満のR−Fe−B系希土類合金粉末を圧粉体としてHDDR処理する方法が開示されている。 Further, as a method for obtaining a bulk magnet while improving the squareness of HDDR magnetic powder, Patent Document 4 discloses a method for HDDR treatment using an R—Fe—B rare earth alloy powder having an average particle size of less than 10 μm as a green compact. ing.
HDDR磁粉にR’−M系合金を拡散させた上記の磁粉は角型性に劣る。また、従来の多孔質磁石は必ずしも十分に高い保磁力を有していない。 The above magnetic powder obtained by diffusing an R′-M alloy into HDDR magnetic powder is inferior in squareness. Moreover, the conventional porous magnet does not necessarily have a sufficiently high coercive force.
本発明の実施形態によれば、従来のHDDR磁粉にR’−M系合金を拡散させた磁粉と比べて良好な角型性を示し、かつ従来の多孔質磁石に比べて高い保磁力を有するR−T−B系永久磁石を提供することができる。 According to the embodiment of the present invention, the present invention exhibits good squareness as compared with magnetic powder obtained by diffusing an R′-M alloy into conventional HDDR magnetic powder, and has a higher coercive force than that of a conventional porous magnet. An R-T-B permanent magnet can be provided.
本発明の実施形態において、R−T−B系多孔質磁石の製造方法は、50%体積中心粒径が1μm以上10μm未満であり、R2T14B相を含むR−T−B系合金粉末(RはNdおよび/またはPrを50原子%以上含む希土類元素、TはFe、またはFeとCo)と、粒度150μm未満のR’金属(R’はNd、Pr、Dy、Tbから選ばれる1種以上)またはR’−M系合金(MはAl、Ga、Co、Feから選ばれる1種以上、R’はR’−M系合金全体の20原子%以上100原子%未満)の粉末との混合粉末を用意する工程と、前記混合粉末を成形して圧粉体を作製する工程と、前記圧粉体に対し10kPa超500kPa以下の水素雰囲気中、または水素分圧が10kPa超500kPa以下の水素と不活性ガスの混合雰囲気中で650℃以上950℃未満の温度で熱処理を施し、それによって水素化および不均化反応を起こすHD処理工程と、2kPa以上10kPa以下の水素雰囲気中で650℃以上950℃未満の温度で熱処理を施し、それによって脱水素および再結合反応を起こすDR処理工程と、真空または不活性雰囲気中において650℃以上950℃未満の温度で熱処理を施し、それによってR2T14B相結晶粒の界面近傍に粒界相を形成させる粒界相形成熱処理工程とを含む。 In an embodiment of the present invention, an RTB-based porous magnet manufacturing method includes an RTB-based alloy having a 50% volume center particle size of 1 μm or more and less than 10 μm and including an R 2 T 14 B phase. Powder (R is a rare earth element containing Nd and / or Pr of 50 atomic% or more, T is Fe, or Fe and Co), and R ′ metal having a particle size of less than 150 μm (R ′ is selected from Nd, Pr, Dy, Tb) Powder of one or more) or R′-M alloy (M is one or more selected from Al, Ga, Co, Fe, R ′ is 20 atomic% or more and less than 100 atomic% of the entire R′-M alloy) A step of preparing a mixed powder, a step of forming a green compact by molding the mixed powder, a hydrogen atmosphere of 10 kPa to 500 kPa or a hydrogen partial pressure of 10 kPa to 500 kPa with respect to the green compact 65 in a mixed atmosphere of hydrogen and inert gas Heat treatment at a temperature of 950 ° C. or more and less than 950 ° C., thereby causing hydrogenation and disproportionation reactions, and heat treatment at a temperature of 650 ° C. or more and less than 950 ° C. in a hydrogen atmosphere of 2 kPa or more and 10 kPa or less, Thereby, a DR treatment step for causing dehydrogenation and recombination reaction, and heat treatment at a temperature of 650 ° C. or more and less than 950 ° C. in a vacuum or an inert atmosphere, thereby forming grains near the interface of the R 2 T 14 B phase grains. And a grain boundary phase forming heat treatment step for forming a boundary phase.
ある実施形態において、前記R’金属またはR’−M系合金はあらかじめ水素を吸蔵させる。 In one embodiment, the R ′ metal or the R′-M alloy preliminarily stores hydrogen.
ある実施形態において、前記HD処理工程前の昇温工程において200℃以上600℃以下の温度を水素雰囲気中で昇温する。 In one embodiment, the temperature is raised from 200 ° C. to 600 ° C. in a hydrogen atmosphere in the temperature raising step before the HD treatment step.
ある実施形態において、前記HD処理工程前における前記圧粉体の密度は、3.5g/cm3以上5.2g/cm3以下の範囲にある。 In one embodiment, the density of the green compact before the HD treatment step is in a range of 3.5 g / cm 3 or more and 5.2 g / cm 3 or less.
ある実施形態において、前記粒界相形成熱処理工程後における前記成形体は、3.5g/cm3以上6.5g/cm3以下の密度を有する多孔質である。 In one embodiment, the molded body after the grain boundary phase formation heat treatment step is porous having a density of 3.5 g / cm 3 or more and 6.5 g / cm 3 or less.
ある実施形態において、前記多孔質の圧粉体は、三次元網状に連通する空隙を有し、前記圧粉体を構成する個々の粉末粒子は隣接する粉末粒子と結合している。 In one embodiment, the porous green compact has voids communicating in a three-dimensional network, and individual powder particles constituting the green compact are combined with adjacent powder particles.
ある実施形態において、前記混合粉末における前記R−T−B系合金粉末と前記R’金属またはR’−M系合金の粉末との混合比率は、重量比で(R−T−B系合金粉末):(R’金属またはR’−M系合金粉末)=m:1(5≦m≦100)である。 In one embodiment, a mixing ratio of the RTB-based alloy powder and the R ′ metal or R′-M-based alloy powder in the mixed powder is a weight ratio (RTB-based alloy powder). ): (R ′ metal or R′-M alloy powder) = m: 1 (5 ≦ m ≦ 100).
ある実施形態において、前記混合粉末を用意する工程は、前記R−T−B系合金粉末を準備する工程と、前記R’金属またはR’−M系合金の粉末を準備する工程と、前記R−T−B系合金粉末と前記R’金属またはR’−M系合金の粉末とを混合する工程とを含む。 In one embodiment, the step of preparing the mixed powder includes the step of preparing the RTB-based alloy powder, the step of preparing the R ′ metal or R′-M-based alloy powder, and the R And a step of mixing the TB alloy powder and the R ′ metal or R′-M alloy powder.
ある実施形態において、前記混合粉末を用意する工程は、R−T−B系合金とR’金属またはR’−M系合金との混合物を、50%体積中心粒径が1μm以上10μm未満の粉末に粉砕する工程を含む。 In one embodiment, the step of preparing the mixed powder includes the step of preparing a mixture of an RTB-based alloy and an R ′ metal or an R′-M based alloy with a 50% volume center particle size of 1 μm or more and less than 10 μm. Crushing step.
本発明の実施形態において、R−T−B系高密度磁石の製造方法は、上記いずれかの製造方法によって製造されたR−T−B系多孔質磁石を準備する工程と、熱間圧縮成型によって前記R−T−B系多孔質磁石の密度を高めて高密度磁石を形成する工程とを含む。 In an embodiment of the present invention, a method for producing an RTB-based high-density magnet includes a step of preparing an RTB-based porous magnet manufactured by any of the above-described manufacturing methods, and hot compression molding. And increasing the density of the RTB-based porous magnet to form a high-density magnet.
ある実施形態において、前記高密度磁石の密度は、7.0g/cm3以上7.6g/cm3以下の範囲にある。 In one embodiment, the density of the high-density magnet is in a range of 7.0 g / cm 3 or more and 7.6 g / cm 3 or less.
本発明の実施形態によれば、R’金属またはR’−M系合金の少なくとも一部のR−T−B系合金への拡散を抑制しつつR−T−B系合金粉末の脱水素反応と再結合反応を進行させることができる。 According to the embodiment of the present invention, the dehydrogenation reaction of the RTB-based alloy powder while suppressing the diffusion of at least a part of the R ′ metal or the R′-M-based alloy into the RTB-based alloy. And the recombination reaction can proceed.
HDDR磁粉は、ボンド磁石として用いられるため、約75μmという比較的粗い粒度の原料粉末から作製される。このため、均一なHDDR処理が困難で組織が不均質となり、その結果、減磁曲線の角型性が悪かった。また、特許文献2に記載されているようにHDDR磁粉とR’−Al系合金粉末を混合し熱処理すると、R’−Al系合金がR2T14B相の結晶粒界に拡散し、保磁力が向上するが、R’−Al系合金をHDDR磁粉に拡散させた後も減磁曲線の角型性は改善せず、Hk/HcJで0.3程度であった。なお、Hkは磁化がBr×0.9となる磁界Hの値であり、Hk/HcJが高いほど、減磁曲線の角型性に優れている。以下、減磁曲線の角型性を単に「角型性」と称する場合がある。 Since HDDR magnetic powder is used as a bond magnet, it is made from a raw material powder having a relatively coarse particle size of about 75 μm. For this reason, uniform HDDR processing is difficult and the structure becomes inhomogeneous. As a result, the squareness of the demagnetization curve is poor. Further, as described in Patent Document 2, when HDDR magnetic powder and R′-Al alloy powder are mixed and heat-treated, the R′-Al alloy diffuses into the R 2 T 14 B phase grain boundary and is retained. Although the magnetic force was improved, the squareness of the demagnetization curve was not improved even after the R′-Al-based alloy was diffused into the HDDR magnetic powder, and H k / H cJ was about 0.3. H k is the value of the magnetic field H at which the magnetization is B r × 0.9, and the higher the H k / H cJ , the better the squareness of the demagnetization curve. Hereinafter, the squareness of the demagnetization curve may be simply referred to as “squareness”.
本発明者は、前述した背景技術を踏まえ、特許文献4の製造方法によって製造される角型性に優れる多孔質磁石に対してR’−M系合金を拡散させ、角型性に優れ、かつ保磁力の高い磁石を作製しようと試みた。しかしながら、多孔質磁石はバルク体であるために、大きな磁石に対してR’−M系合金を内部まで拡散させることは困難であり、磁石の内部と外部で磁気特性のばらつきが生じてしまった。 Based on the background art described above, the present inventor diffuses an R′-M-based alloy into a porous magnet excellent in squareness manufactured by the manufacturing method of Patent Document 4, has excellent squareness, and An attempt was made to make a magnet with high coercivity. However, since the porous magnet is a bulk body, it is difficult to diffuse the R′-M alloy to the inside of a large magnet, resulting in variations in magnetic properties inside and outside the magnet. .
次に、本発明者らは多孔質磁石に均一にR’−M系合金を拡散させるために、HDDR処理前のR−T−B系合金粉末にあらかじめR’−M系合金粉末を混合しておいてからHDDR処理することを試みた。それによって得られた多孔質磁石は角型性に優れ、かつR’−M系合金を混合していない多孔質磁石に対して保磁力は向上した。しかしながら、HDDR処理した後でR’−M系合金を拡散させた多孔質磁石と比べ十分に保磁力が向上したとは言えなかった。その要因として、あらかじめ混合しておいたR’−M系合金がDR処理のR2T14B相が生成する前の段階でほとんど拡散してしまっていたことがわかった。R2T14B相の粒界相は、DR処理の後に形成される。このため、R’−M系合金は、R2T14B相の結晶粒界に優先的に拡散せず、粒界組織が不均質になってしまうことも分かった。 Next, in order to uniformly diffuse the R′-M alloy in the porous magnet, the inventors previously mixed the R′-M alloy powder with the RTB alloy powder before HDDR treatment. I tried to process HDDR. The porous magnet obtained thereby was excellent in squareness, and the coercive force was improved compared to the porous magnet not mixed with the R′-M alloy. However, it cannot be said that the coercive force is sufficiently improved as compared with the porous magnet in which the R′-M alloy is diffused after the HDDR treatment. As a factor, it was found that the R′-M alloy that had been mixed in advance had almost diffused before the DR-treated R 2 T 14 B phase was formed. The grain boundary phase of the R 2 T 14 B phase is formed after the DR treatment. For this reason, it has also been found that the R′-M alloy does not diffuse preferentially to the grain boundaries of the R 2 T 14 B phase and the grain boundary structure becomes inhomogeneous.
本発明者らは、DR処理の雰囲気を従来の真空または不活性ガス雰囲気から、2kPa以上10kPa以下の水素雰囲気に替えてみた。そして、R’−M系合金の拡散を進行させずにR−T−B系合金粉末のDR処理だけを進行させ、R−T−B系合金粉末のDR処理完了後に真空または不活性ガス雰囲気で熱処理することで、R’−M系合金をR2T14B相の結晶粒界に優先的に拡散させた。それによって従来のHDDR磁粉にR’−M系合金を拡散させた磁粉と比べて良好な角型性を示し、かつ従来の多孔質磁石に比べて高い保磁力を有するR−T−B系永久磁石が得られることを見出した。 The inventors changed the DR treatment atmosphere from a conventional vacuum or inert gas atmosphere to a hydrogen atmosphere of 2 kPa to 10 kPa. Then, only the DR treatment of the RTB-based alloy powder is allowed to proceed without proceeding the diffusion of the R′-M alloy, and after completion of the DR treatment of the RTB-based alloy powder, a vacuum or an inert gas atmosphere The R′-M alloy was preferentially diffused into the crystal grain boundaries of the R 2 T 14 B phase. As a result, the R-T-B permanent permanent material exhibits better squareness than the conventional magnetic powder obtained by diffusing the R'-M alloy into the HDDR magnetic powder and has a higher coercive force than the conventional porous magnet. It has been found that a magnet can be obtained.
図1Aは、本発明によるR−T−B系多孔質磁石の製造方法の一例を示すフローチャートである。 FIG. 1A is a flowchart showing an example of a method for producing an RTB-based porous magnet according to the present invention.
図1Aに示す例では、まず、R−T−B系合金粉末(第1粉末)と、R’金属またはR’−M系合金の粉末(第2粉末)との混合粉末を用意する(ステップS1)。R−T−B系合金粉末は、50%体積中心粒径が1μm以上10μm未満であり、R2T14B相を含むR−T−B系合金の粉末である。RはNdおよび/またはPrを50原子%以上含む希土類元素、TはFe、またはFeとCoである。R’金属またはR’−M系合金の粉末は、粒度150μm未満のR’金属またはR’−M系合金の粉末である。R’はNd、Pr、Dy、Tbから選ばれる1種以上、MはAl、Ga、Co、Feから選ばれる1種以上である。R’−M系合金の粉末において、R’はR’−M系合金全体の20原子%以上100原子%未満である。 In the example shown in FIG. 1A, first, a mixed powder of an RTB-based alloy powder (first powder) and an R ′ metal or R′-M-based alloy powder (second powder) is prepared (steps). S1). The RTB-based alloy powder is an RTB-based alloy powder having a 50% volume center particle size of 1 μm or more and less than 10 μm and including an R 2 T 14 B phase. R is a rare earth element containing 50 atomic% or more of Nd and / or Pr, and T is Fe, or Fe and Co. The R ′ metal or R′-M alloy powder is an R ′ metal or R′-M alloy powder having a particle size of less than 150 μm. R ′ is one or more selected from Nd, Pr, Dy, and Tb, and M is one or more selected from Al, Ga, Co, and Fe. In the R′-M alloy powder, R ′ is 20 atomic% or more and less than 100 atomic% of the entire R′-M alloy.
次に、このような混合粉末を成型することによって成型体(圧粉体)を作製する(ステップS2)。 Next, a molded body (a green compact) is produced by molding such a mixed powder (step S2).
こうして作製した圧粉体に対し、10kPa超500kPa以下の水素雰囲気中、または水素分圧が10kPa超500kPa以下の水素と不活性ガスの混合雰囲気中で650℃以上950℃未満の温度で熱処理を施し、それによって水素化および不均化反応を起こすHD処理工程を行う(ステップS3)。 The green compact thus prepared is subjected to heat treatment at a temperature of 650 ° C. or more and less than 950 ° C. in a hydrogen atmosphere of more than 10 kPa and 500 kPa or less, or in a mixed atmosphere of hydrogen and inert gas having a hydrogen partial pressure of more than 10 kPa and less than 500 kPa. Then, an HD treatment process for causing hydrogenation and disproportionation reactions is performed (step S3).
次に、HD処理工程を終えた圧粉体に対して、2kPa以上10kPa以下の水素雰囲気中で650℃以上950℃未満の温度で熱処理を施し、それによって脱水素および再結合反応を起こすDR処理工程を行う(ステップS4)。 Next, the green compact subjected to the HD treatment process is subjected to a heat treatment at a temperature of 650 ° C. or more and less than 950 ° C. in a hydrogen atmosphere of 2 kPa or more and 10 kPa or less, thereby causing a dehydrogenation and a recombination reaction. A process is performed (step S4).
その後、DR処理工程を終えた圧粉体に対して、真空または不活性雰囲気中において650℃以上950℃未満の温度で熱処理を施し、それによってR2T14B相結晶粒の界面近傍に粒界相を形成させる粒界相形成熱処理工程を行う(ステップS5)。 Thereafter, the green compact after the DR treatment process is subjected to heat treatment at a temperature of 650 ° C. or higher and lower than 950 ° C. in a vacuum or an inert atmosphere, so that the grains near the interface of the R 2 T 14 B phase crystal grains. A grain boundary phase forming heat treatment step for forming a boundary phase is performed (step S5).
この方法によって得られる多孔体は密度が3.5g/cm3以上6.5g/cm3以下と真密度(約7.6g/cm3)に対して46%以上86%以下の水準であり、粉末粒子間に隙間が存在しているが、個々の粒子同士は結合しており、十分な機械的強度と優れた磁気特性とを発揮する。 The porous body obtained by this method has a density of 3.5 g / cm 3 or more and 6.5 g / cm 3 or less and a level of 46% or more and 86% or less with respect to the true density (about 7.6 g / cm 3 ). Although there are gaps between the powder particles, the individual particles are bonded to each other and exhibit sufficient mechanical strength and excellent magnetic properties.
以下、本発明によるR−T−B系永久磁石の製造方法について、実施形態を詳細に説明する。 Hereinafter, an embodiment is described in detail about a manufacturing method of a RTB system permanent magnet by the present invention.
<R−T−B系合金(原料合金)>
まず、主たる相として硬磁性相であるR2T14B相および希土類リッチ相を含むR−T−B系合金を用意する。ここで、「R」は希土類元素であり、Ndおよび/またはPrを50原子%以上含む。本明細書における希土類元素は、スカンジウム(Sc)、イットリウム(Y)、およびランタノイドからなる群から選択された少なくとも1つの元素である。ここで、ランタノイドとは、ランタンからルテチウムまでの15の元素の総称である。TはFeまたはFeとCoである。
<R-T-B alloy (raw material alloy)>
First, an R—T—B system alloy including a hard magnetic phase, R 2 T 14 B phase and a rare earth-rich phase, is prepared as a main phase. Here, “R” is a rare earth element and contains Nd and / or Pr by 50 atomic% or more. The rare earth element in this specification is at least one element selected from the group consisting of scandium (Sc), yttrium (Y), and lanthanoid. Here, the lanthanoid is a general term for 15 elements from lanthanum to lutetium. T is Fe or Fe and Co.
本実施形態におけるR−T−B系合金は、R2T14B相を体積比率で50%以上含んでいる。R−T−B系合金に含まれる希土類元素Rの大部分は、R2T14B相および希土類リッチ相を構成しているが、一部はR2O3やその他の相を構成してもよい。 The RTB-based alloy in the present embodiment includes 50% or more of the R 2 T 14 B phase by volume ratio. Most of the rare earth element R contained in the R-T-B-based alloy constitutes the R 2 T 14 B phase and the rare earth-rich phase, but some constitutes R 2 O 3 and other phases. Also good.
希土類元素Rの組成比率はR−T−B系合金全体の10原子%以上30原子%以下であり得、12原子%以上17原子%以下であり得る。さらに12原子%以上14原子%以下であると、HDDR処理後の組織において1μm以上の希土類リッチ相(非磁性)の塊を減らすことができる。また、HDDR処理中のR2T14B相の粒成長を抑制でき、同時にR2T14B相の構成比率を高められる。その結果HcJや減磁曲線の角型性の向上が期待できる。さらに、熱間圧縮成形までおこなった際の磁化の向上も図れる。また、希少元素であることから多量に用いることは避けるべきではあるが、Rの一部をDyおよび/またはTbとすることで、保磁力を向上させることもできる。 The composition ratio of the rare earth element R can be 10 atomic% or more and 30 atomic% or less, and can be 12 atomic% or more and 17 atomic% or less of the entire R-T-B alloy. Further, when the content is 12 atomic% or more and 14 atomic% or less, the mass of the rare earth-rich phase (non-magnetic) of 1 μm or more can be reduced in the structure after the HDDR treatment. Moreover, the grain growth of the R 2 T 14 B phase during HDDR treatment can be suppressed, and at the same time, the constituent ratio of the R 2 T 14 B phase can be increased. As a result, improvement in the squareness of H cJ and demagnetization curve can be expected. Furthermore, it is possible to improve the magnetization when hot compression molding is performed. Further, since it is a rare element, it should be avoided to use a large amount, but the coercive force can be improved by using a part of R as Dy and / or Tb.
Bの組成比率はR−T−B系合金全体の3原子%以上15原子%以下であり得る。Bの組成比率は、5原子%以上8原子%以下であり得、5.5原子%以上7.5原子%以下であってもよい。Bはその一部をCで置換してもよいが、その置換量は置換前のBの量に対して10原子%以下であり得る。 The composition ratio of B may be 3 atomic% or more and 15 atomic% or less of the entire RTB-based alloy. The composition ratio of B may be 5 atom% or more and 8 atom% or less, and may be 5.5 atom% or more and 7.5 atom% or less. A part of B may be substituted with C, but the amount of substitution may be 10 atomic% or less with respect to the amount of B before substitution.
「T」は残余を占め、Fe、またはFeおよびFeの一部を置換したCoである。その置換量はT全体の量に対して50原子%以下であり得る。また、本実施形態におけるR−T−B系合金全体に対するCoの総量は、コストなどの観点から、20原子%以下であり得、5原子%以下であり得る。Coを全く含有しない場合でも高い磁気特性は得られるが、0.5原子%以上のCoを含有すると、より安定した磁気特性を得ることができる。 “T” occupies the remainder and is Fe or Co substituted for Fe and part of Fe. The amount of substitution may be 50 atomic% or less with respect to the total amount of T. In addition, the total amount of Co with respect to the entire RTB-based alloy in the present embodiment may be 20 atomic% or less and may be 5 atomic% or less from the viewpoint of cost and the like. High magnetic properties can be obtained even when Co is not contained at all, but more stable magnetic properties can be obtained when Co of 0.5 atomic% or more is contained.
磁気特性向上などの効果を得るため、Al、Ti、V、Cr、Ga、Nb、Mo、In、Sn、Hf、Ta、W、Cu、Si、Zr、Niなどの元素を適宜添加してもよい。ただし、添加量の増加は、特に飽和磁化の低下を招くため、総量で全体の10原子%以下とすることができる。R−T−B系合金には不可避の不純物を含有していてもよい。 In order to obtain effects such as improvement of magnetic characteristics, elements such as Al, Ti, V, Cr, Ga, Nb, Mo, In, Sn, Hf, Ta, W, Cu, Si, Zr, and Ni may be added as appropriate. Good. However, since the increase in the amount of addition leads to a decrease in saturation magnetization in particular, the total amount can be 10 atomic% or less of the whole. The RTB-based alloy may contain inevitable impurities.
R−T−B系合金は、磁気特性に悪影響を及ぼすα−Fe相の量を低減することのできるストリップキャスト法により作製することができる。R−T−B系合金は、ブックモールド法、遠心鋳造法、アトマイズ法などによっても作製することもできる。R−T−B系合金における組織均質化などを目的として、粉砕前のR−T−B系合金に対して熱処理を施してもよい。このような熱処理は、真空または不活性ガス雰囲気において、典型的には1000℃以上の温度で実行され得る。 The RTB-based alloy can be produced by a strip casting method that can reduce the amount of α-Fe phase that adversely affects magnetic properties. The RTB-based alloy can also be produced by a book mold method, a centrifugal casting method, an atomizing method, or the like. For the purpose of homogenizing the structure of the R-T-B alloy, the R-T-B alloy before pulverization may be subjected to heat treatment. Such heat treatment can be performed in a vacuum or inert gas atmosphere, typically at a temperature of 1000 ° C. or higher.
<拡散材>
拡散材としてR’の金属またはR’−M系合金を用意する。ここで、「R’」は希土類元素であり、Nd、Pr、Dy、Tbからなる群から選択された少なくとも1種の希土類元素である。また、「M」は、Al、Ga、Co、Feからなる群から選択された少なくとも1種の元素である。R’−M系合金は、後に記載する水素吸蔵処理においてR’の水素化物(R’Hx)と、R’−M化合物(R’M、R’M2など)、R’−M化合物に水素が固溶した化合物、M単相、Mに水素が固溶した相など、とに分解する。このとき生成するR’−M化合物の融点が、後に記載するHD処理の熱処理温度よりも高くなるように、「M」を選ぶことができる。例えば、Nd70Al30合金の場合にはNdHxとNdAl2に分解するがNdAl2の融点はNd―Al合金の二元系状態図(例えば「Binary Alloy Phase Diagrams, II Ed., Ed. T.B. Massalski,1990,1,,181-182,Gschneidner K.A. Jr.」)から読み取ると1460℃であり、HD処理の熱処理温度よりも高い。なお、拡散材は、不可避の不純物を含有していてもよい。
<Diffusion material>
An R ′ metal or an R′-M alloy is prepared as a diffusion material. Here, “R ′” is a rare earth element, and is at least one rare earth element selected from the group consisting of Nd, Pr, Dy, and Tb. “M” is at least one element selected from the group consisting of Al, Ga, Co, and Fe. R′-M alloys include R ′ hydrides (R′H x ), R′-M compounds (R′M, R′M 2 etc.), R′-M compounds in the hydrogen storage treatment described later. It decomposes into a compound in which hydrogen is dissolved in solid, an M single phase, a phase in which hydrogen is dissolved in M, and the like. “M” can be selected so that the melting point of the R′-M compound produced at this time is higher than the heat treatment temperature of HD treatment described later. For example, in the case of an Nd 70 Al 30 alloy, it decomposes into NdH x and NdAl 2 , but the melting point of NdAl 2 is a binary phase diagram of the Nd—Al alloy (for example, “Binary Alloy Phase Diagrams, II Ed., Ed. T B. Massalski, 1990, 1, 181-182, Gschneidner K.A. Jr.)), it is 1460 ° C., which is higher than the heat treatment temperature of HD processing. Note that the diffusing material may contain inevitable impurities.
本実施形態で用いるR’−M系合金における希土類元素R’の組成比率は20原子%以上100原子%未満である。希土類元素R’の組成比率が20原子%未満であると、希土類元素R’が結晶粒界に十分に供給されないために保磁力の向上効果が小さい、もしくは得られない。R’−M系合金における希土類元素R’の組成比率は30原子%以上98原子%以下であり得、60原子%以上90原子%以下であってもよい。 The composition ratio of the rare earth element R ′ in the R′-M alloy used in the present embodiment is 20 atomic% or more and less than 100 atomic%. When the composition ratio of the rare earth element R ′ is less than 20 atomic%, the rare earth element R ′ is not sufficiently supplied to the crystal grain boundary, so that the effect of improving the coercive force is small or cannot be obtained. The composition ratio of the rare earth element R ′ in the R′-M alloy may be 30 atomic% or more and 98 atomic% or less, and may be 60 atomic% or more and 90 atomic% or less.
R’の金属またはR’−M系合金は、ブックモールド法、遠心鋳造法、アトマイズ法、ストリップキャスト法、液体超急冷法などの公知の方法によって作製することができる。 The R ′ metal or the R′-M alloy can be produced by a known method such as a book mold method, a centrifugal casting method, an atomizing method, a strip casting method, or a liquid superquenching method.
<混合粉末>
次に、上記R−T−B系合金と拡散材を混合した混合粉末を作製する。その際、R−T−B系合金と拡散材を別々に粉砕した後に混合しても、R−T−B系合金と拡散材の混合物を粉砕してもよい。
<Mixed powder>
Next, a mixed powder in which the RTB-based alloy and the diffusion material are mixed is prepared. At this time, the RTB-based alloy and the diffusing material may be separately pulverized and mixed, or the RTB-based alloy and diffusing material mixture may be pulverized.
R−T−B系合金と拡散材を別々に粉砕する場合には、まずR−T−B系合金をジョークラッシャーなどの機械的粉砕法や水素吸蔵粉砕法などを用いて粗粉砕し、大きさ50μm〜1000μm程度の粗粉砕粉末を作製する。この粗粉砕粉末に対してジェットミルなどによる微粉砕を行い、50%体積中心粒径が1μm以上10μm未満のR−T−B系合金粉末(原料合金粉末)を作製する。 When the RTB-based alloy and the diffusing material are separately pulverized separately, the RTB-based alloy is first roughly pulverized using a mechanical pulverization method such as a jaw crusher or a hydrogen storage pulverization method. A coarsely pulverized powder having a thickness of about 50 μm to 1000 μm is prepared. The coarsely pulverized powder is finely pulverized by a jet mill or the like to produce an RTB-based alloy powder (raw material alloy powder) having a 50% volume center particle size of 1 μm or more and less than 10 μm.
なお、50%体積中心粒径(D50)は気流分散型レーザー回折法により測定できる。50%体積中心粒径が明らかに所望の範囲内であることを確認できるレベルである場合には、任意抽出の粉末の粒径を電子顕微鏡観察によって簡易に確認してもよい。 The 50% volume center particle size (D 50 ) can be measured by a gas flow dispersion type laser diffraction method. When the 50% volume center particle size is at a level where it can be clearly confirmed that it is within the desired range, the particle size of the arbitrarily extracted powder may be easily confirmed by observation with an electron microscope.
一方、拡散材を機械的粉砕法や水素吸蔵粉砕法などを用いて粗粉砕し、例えば大きさ150μm未満の拡散材粉末を作製する。拡散材の粉砕時には、粉砕性の向上などを目的として固体潤滑剤および/または液体潤滑剤を添加してもよい。拡散材粉末の大きさは、JIS Z 2510記載の方法によってJIS Z 8801−1に規定のふるいを用いて分級し、所望の粒度の範囲に調整すればよいが、拡散材粉末も50%体積中心粒径は気流分散型レーザー回折法によって測定して求めるか、電子顕微鏡によって確認する。 On the other hand, the diffusing material is coarsely pulverized using a mechanical pulverization method, a hydrogen occlusion pulverization method, or the like to produce a diffusing material powder having a size of less than 150 μm, for example. When the diffusing material is pulverized, a solid lubricant and / or a liquid lubricant may be added for the purpose of improving the pulverization property. The size of the diffusing material powder may be classified by the method described in JIS Z 2510 using a sieve specified in JIS Z 8801-1, and adjusted to a desired particle size range. The particle diameter is determined by measuring by an air current dispersion type laser diffraction method or confirmed by an electron microscope.
作製したR−T−B系合金粉末と拡散材粉末を公知の粉末混合法によって混合し混合粉末を得る。 The produced RTB-based alloy powder and diffusing material powder are mixed by a known powder mixing method to obtain a mixed powder.
取り扱いの観点から、本実施形態におけるR−T−B系合金粉末および拡散材粉末の50%体積中心粒径はそれぞれ1μm以上である。50%体積中心粒径が1μm未満になると、混合粉末が大気雰囲気中の酸素と反応しやすくなり、酸化による発熱・発火の危険性が高まるからである。取り扱いをより容易にするためには、50%体積中心粒径を3μm以上に設定し得る。拡散材粉末の50%体積中心粒径は、酸化抑制の観点から10μm以上であり得る。成型体の機械的強度向上という観点から、R−T−B系合金粉末の50%体積中心粒径の上限は9μmに設定され得、8μmに設定されても良い。また、HDDR反応の均一性という観点から、本実施形態における拡散材粉末の粒径は150μm未満である。 From the viewpoint of handling, the 50% volume center particle diameters of the RTB-based alloy powder and the diffusing material powder in this embodiment are each 1 μm or more. This is because when the 50% volume center particle size is less than 1 μm, the mixed powder easily reacts with oxygen in the air atmosphere, increasing the risk of heat generation and ignition due to oxidation. In order to make handling easier, the 50% volume center particle size can be set to 3 μm or more. The 50% volume center particle size of the diffusing material powder may be 10 μm or more from the viewpoint of suppressing oxidation. From the viewpoint of improving the mechanical strength of the molded body, the upper limit of the 50% volume center particle size of the RTB-based alloy powder can be set to 9 μm and may be set to 8 μm. Further, from the viewpoint of the uniformity of the HDDR reaction, the particle size of the diffusing material powder in this embodiment is less than 150 μm.
R−T−B系合金と拡散材を別々に粉砕することにより、R−T−B系合金粉末の50%体積中心粒径を1μm以上10μm未満、拡散材粉末の50%体積中心粒径を10μm以上とすることができ、特に酸素と反応しやすい拡散材粉末の酸化を抑制することができる。 By separately crushing the RTB-based alloy and the diffusing material, the 50% volume center particle size of the RTB-based alloy powder is 1 μm or more and less than 10 μm, and the 50% volume center particle size of the diffusing material powder is The thickness can be 10 μm or more, and in particular, oxidation of the diffusing material powder that easily reacts with oxygen can be suppressed.
また、R−T−B系合金と拡散材の混合物を粉砕する場合においては、まずR−T−B系合金と拡散材の混合物をジョークラッシャーなどの機械的粉砕法や水素吸蔵粉砕法などを用いて粗粉砕し、大きさ50μm〜1000μm程度の粗粉砕粉末を作製する。この粗粉砕粉末に対してジェットミルなどによる微粉砕を行い、50%体積中心粒径が1μm以上10μm未満の混合粉末を作製する。R−T−B系合金と拡散材をそれぞれ大きさ50μm〜1000μm程度の粗粉砕粉末としてから混合し、混合した粗粉砕粉を微粉砕してもよい。 In the case of pulverizing a mixture of an R-T-B alloy and a diffusing material, the mixture of the R-T-B alloy and the diffusing material is first subjected to a mechanical pulverization method such as a jaw crusher or a hydrogen occlusion pulverization method. And coarsely pulverized to produce coarsely pulverized powder having a size of about 50 μm to 1000 μm. The coarsely pulverized powder is finely pulverized by a jet mill or the like to produce a mixed powder having a 50% volume center particle size of 1 μm or more and less than 10 μm. The RTB-based alloy and the diffusing material may be mixed as coarsely pulverized powder having a size of about 50 μm to 1000 μm, respectively, and the mixed coarsely pulverized powder may be finely pulverized.
混合粉末の50%体積中心粒径が1μm未満になると、混合粉末が大気雰囲気中の酸素と反応しやすくなり、酸化による発熱・発火の危険性が高まる。取り扱いをより容易にするためには、50%体積中心粒径を3μm以上に設定することができる。圧粉体の機械的強度向上という観点から、50%体積中心粒径の上限は9μmであり得、さらに8μmであり得る。 When the 50% volume center particle size of the mixed powder is less than 1 μm, the mixed powder easily reacts with oxygen in the air atmosphere, increasing the risk of heat generation and ignition due to oxidation. In order to make the handling easier, the 50% volume center particle size can be set to 3 μm or more. From the viewpoint of improving the mechanical strength of the green compact, the upper limit of the 50% volume center particle size may be 9 μm, and may further be 8 μm.
R−T−B系合金と拡散材の混合物を粉砕することによって、R−T−B系合金と拡散材が均一に混合された混合粉末を容易に作製することができる。 By pulverizing the mixture of the RTB-based alloy and the diffusing material, it is possible to easily produce a mixed powder in which the RTB-based alloy and the diffusing material are uniformly mixed.
R−T−B系合金と拡散材の混合比は、重量比で(R−T−B系合金):(拡散材)=m:1(5≦m≦100)であり得る。mが5未満であると、拡散材の割合が多くなりすぎるために、主相であるR2T14B相の体積率の低下を招き、結果として残留磁束密度の低下を招く可能性がある。また、mが100を超えると拡散材を添加した効果がほとんど得られなくなる可能性がある。 The mixing ratio of the RTB-based alloy and the diffusing material may be (RT-B-based alloy) :( diffusing material) = m: 1 (5 ≦ m ≦ 100) in weight ratio. When m is less than 5, the proportion of the diffusing material is excessively increased, leading to a decrease in the volume ratio of the main phase R 2 T 14 B phase, which may result in a decrease in residual magnetic flux density. . On the other hand, if m exceeds 100, the effect of adding the diffusing material may be hardly obtained.
混合粉末における希土類元素RおよびR’の総量は、混合粉末全体の10原子%以上30原子%以下であり得、12原子%以上17原子%以下であってもよい。また、混合粉末における希土類元素RおよびR’の総量は、混合粉末全体の15原子%以下であると、ホットプレス後に金型から取り出しやすい。 The total amount of rare earth elements R and R ′ in the mixed powder may be 10 atomic% or more and 30 atomic% or less of the entire mixed powder, and may be 12 atomic% or more and 17 atomic% or less. Further, if the total amount of rare earth elements R and R ′ in the mixed powder is 15 atomic% or less of the entire mixed powder, it is easy to take out from the mold after hot pressing.
<圧粉体>
次に、上記の混合粉末を成型し、圧粉体を作製する。圧粉体を成型する工程は、例えば10MPa〜200MPaの圧力を付加し、0.4MA/m〜16MA/mの磁界中(静磁界、パルス磁界など)で行うことができる。成型は公知の粉末プレス装置によって行うことができる。粉末プレス装置から取り出し時の圧粉体密度(成型体密度)は、例えば3.5g/cm3〜5.2g/cm3程度である。
<Green compact>
Next, the mixed powder is molded to produce a green compact. The step of molding the green compact can be performed, for example, by applying a pressure of 10 MPa to 200 MPa and in a magnetic field of 0.4 MA / m to 16 MA / m (static magnetic field, pulse magnetic field, etc.). Molding can be performed by a known powder press apparatus. Compact density (compact density) when removed from the powder press apparatus, for example 3.5g / cm 3 ~5.2g / cm 3 order.
上記の成型工程は、磁界を印加することなく実行してもよい。磁界配向を行わない場合、最終的には等方性の多孔質磁石が得られることになる。しかし、より高い磁気特性を得るためには、磁界配向を行いながら成型工程を実行し、最終的に異方性の多孔質磁石を得ることができる。 You may perform said shaping | molding process, without applying a magnetic field. When magnetic field orientation is not performed, an isotropic porous magnet is finally obtained. However, in order to obtain higher magnetic characteristics, a molding step is performed while performing magnetic field orientation, and an anisotropic porous magnet can be finally obtained.
R−T−B系合金および拡散材の粉砕工程、および上記圧粉体の成型工程は、R−T−B系合金粉末および拡散材粉末の酸化を抑制しながら行うことができる。R−T−B系合金粉末および拡散材粉末の酸化を抑制するために、各工程および各工程間のハンドリングをできる限り酸素量を抑制した不活性雰囲気で行うことができる。DR処理前の圧粉体の酸素量は1質量%以下に抑制することができ、さらに0.6質量%以下に抑制することができる。 The step of crushing the RTB-based alloy and the diffusion material and the step of forming the green compact can be performed while suppressing oxidation of the RTB-based alloy powder and the diffusion material powder. In order to suppress the oxidation of the RTB-based alloy powder and the diffusing material powder, each process and handling between the processes can be performed in an inert atmosphere in which the amount of oxygen is suppressed as much as possible. The oxygen content of the green compact before the DR treatment can be suppressed to 1% by mass or less, and further to 0.6% by mass or less.
本発明の実施形態では、混合粉末を圧縮して成型した圧粉体に対してHDDR処理を行う。この圧粉体の内部には、水素ガスが移動・拡散可能な隙間が粉末粒子の間に十分な大きさで存在している。また、本発明の実施形態では、50%体積中心粒径が1μm以上10μm未満の原料粉末を使用しているため、水素が粉末粒子内の全体を移動することが容易である。これらのHD反応およびDR反応を短時間で進行させることができる。こうして、HDDR後の組織が均質化されるため、高い磁気特性、特に良好な角型性が得られるとともに、HDDR工程に要する時間を短縮できるという利点が得られる。 In the embodiment of the present invention, the HDDR process is performed on the green compact obtained by compressing and molding the mixed powder. Inside the green compact, a gap through which hydrogen gas can move and diffuse exists between the powder particles with a sufficient size. In the embodiment of the present invention, since the raw material powder having a 50% volume center particle size of 1 μm or more and less than 10 μm is used, it is easy for hydrogen to move entirely within the powder particles. These HD and DR reactions can proceed in a short time. Thus, since the structure after HDDR is homogenized, it is possible to obtain an advantage that high magnetic properties, particularly good squareness can be obtained, and the time required for the HDDR process can be shortened.
<HDDR処理>
次に上記成型工程によって得られた圧粉体に対し、HDDR処理を施す。本実施形態において、HDDR処理は昇温工程、HD処理工程、DR処理工程、粒界相形成熱処理工程の4工程を含む。
<HDDR processing>
Next, the HDDR process is performed on the green compact obtained by the molding step. In the present embodiment, the HDDR process includes four steps: a temperature raising step, an HD treatment step, a DR treatment step, and a grain boundary phase formation heat treatment step.
昇温工程は、混合粉末を用いて成型した圧粉体に対し、HD処理工程の処理温度まで圧粉体を加熱する工程である。昇温工程は、水素分圧10kPa超500kPa以下の水素ガス雰囲気または水素ガスと不活性ガス(ArやHeなど)の混合雰囲気、不活性ガス雰囲気、真空中のいずれかで行う。なお、昇温中の拡散材の拡散を抑制するために拡散材をあらかじめ1kPa以上の水素雰囲気、または水素分圧が1kPa以上の水素と不活性ガスの混合雰囲気において950℃以下の温度で水素吸蔵させることができる。あるいは、昇温中の拡散材の拡散を抑制するために600℃まで水素を含む雰囲気で昇温し、600℃以降はR−T−B系合金粉末の低温でのHD反応の進行による配向度の低下を抑制するために不活性ガス雰囲気、または真空中で昇温することができる。前述のようにして昇温前に水素吸蔵させたものに対して、このような昇温過程を経てもよい。なお、水素吸蔵時や水素雰囲気での昇温時にR−T−B系合金粉末に存在する希土類リッチ相は水素化され、主にRの水素化物として存在する。また、拡散材はR’の水素化物やR’−M化合物などに分解される。RおよびR’の水素化物の融点は、HD処理工程の処理温度よりも高いため、R’−M合金の拡散を抑制することができる。 The temperature raising step is a step of heating the green compact to the processing temperature of the HD processing step with respect to the green compact molded using the mixed powder. The temperature raising step is performed in one of a hydrogen gas atmosphere with a hydrogen partial pressure of more than 10 kPa and 500 kPa or less, a mixed atmosphere of hydrogen gas and an inert gas (Ar, He, etc.), an inert gas atmosphere, or a vacuum. In order to suppress diffusion of the diffusing material during the temperature rise, the diffusing material is stored in a hydrogen atmosphere at a temperature of 950 ° C. or less in a hydrogen atmosphere of 1 kPa or more in advance or a mixed atmosphere of hydrogen and an inert gas having a hydrogen partial pressure of 1 kPa or more. Can be made. Alternatively, in order to suppress diffusion of the diffusing material during temperature rise, the temperature is raised to 600 ° C. in an atmosphere containing hydrogen, and after 600 ° C., the degree of orientation due to the progress of the HD reaction at a low temperature of the RTB-based alloy powder. The temperature can be raised in an inert gas atmosphere or in a vacuum in order to suppress the decrease in the temperature. Such a temperature rising process may be performed on the hydrogen occluded before the temperature rising as described above. Note that the rare earth-rich phase present in the RTB-based alloy powder during hydrogen occlusion or when the temperature is raised in a hydrogen atmosphere is hydrogenated and exists mainly as an R hydride. Further, the diffusion material is decomposed into R 'hydride, R'-M compound, and the like. Since the melting points of the hydrides of R and R ′ are higher than the processing temperature in the HD processing step, the diffusion of the R′-M alloy can be suppressed.
次いで行うHD処理工程は、水素雰囲気中においてR2T14B相をHD反応させて不均化組織を得る工程である。この時、HD処理工程の温度および水素分圧を適正に制御することによって最終的に得られる磁石の磁気的異方性を高めることができる。HD処理工程の温度は650℃以上950℃未満である。650℃未満では不均化が十分に進むまでに時間がかかりすぎる。また、950℃以上では不均化組織が粗大化するため、後のDR処理工程によって得られるR2T14B相の集合組織が粗大となり、磁気特性、特に保磁力の低下を招く。特に粒成長を抑制するという観点から、HD処理工程の温度を900℃以下に設定することができる。 The HD processing step to be performed next is a step of obtaining a disproportionated structure by performing an HD reaction of the R 2 T 14 B phase in a hydrogen atmosphere. At this time, the magnetic anisotropy of the finally obtained magnet can be increased by appropriately controlling the temperature and the hydrogen partial pressure in the HD processing step. The temperature of the HD processing step is 650 ° C. or higher and lower than 950 ° C. If it is less than 650 degreeC, it will take time for disproportionation to fully advance. Further, since the disproportionated structure becomes coarser at 950 ° C. or higher, the texture of the R 2 T 14 B phase obtained by the subsequent DR treatment step becomes coarse, resulting in a decrease in magnetic characteristics, particularly coercive force. In particular, from the viewpoint of suppressing grain growth, the temperature of the HD treatment process can be set to 900 ° C. or lower.
HD処理工程の水素分圧は20kPa以上とすることができる。水素分圧が20kPa未満ではR2T14B相の不均化が十分に進むまでに時間がかかりすぎるため、生産性の低下を招く可能性がある。また、500kPaを超える水素分圧では、処理に特殊な装置が必要となるため、500kPa以下であり得、150kPa以下であり得る。水素分圧が150kPaを超えると水素吸蔵が急激に起こってしまい、水素吸蔵に伴う体積膨張によって圧粉体にクラックが入ってしまう可能性がある。 The hydrogen partial pressure in the HD treatment process can be 20 kPa or more. When the hydrogen partial pressure is less than 20 kPa, it takes too much time for the disproportionation of the R 2 T 14 B phase to proceed sufficiently, which may lead to a decrease in productivity. In addition, when the hydrogen partial pressure exceeds 500 kPa, a special apparatus is required for the treatment, so that it can be 500 kPa or less, and 150 kPa or less. When the hydrogen partial pressure exceeds 150 kPa, hydrogen occlusion occurs abruptly, and the green compact may crack due to volume expansion accompanying hydrogen occlusion.
HD処理工程に要する時間は、10分以上5時間以下とすることができる。10分未満では、R2T14B相の不均化が十分に進まない可能性がある。また、5時間を超えると不均化組織が粗大化するため、DR処理工程後の再結合組織が粗大となり、磁気特性、特に保磁力の低下を招く可能性がある。より望ましくは15分以上2時間以下である。 The time required for the HD processing step can be 10 minutes to 5 hours. If it is less than 10 minutes, disproportionation of the R 2 T 14 B phase may not proceed sufficiently. Further, when the time exceeds 5 hours, the disproportionated structure becomes coarse, and thus the recombination structure after the DR treatment process becomes coarse, which may cause a decrease in magnetic properties, particularly coercive force. More desirably, it is 15 minutes or more and 2 hours or less.
次いで行うDR処理工程は、2kPa以上10kPa以下の水素雰囲気中で650℃以上950℃未満の温度で熱処理を施し、それによって拡散材粉末の拡散を抑制しつつR−T−B系合金粉末の脱水素および再結合反応を起こし、R2T14B相を再結合反応により生成させる。2kPa未満では、拡散材の拡散が進行してしまい、10kPa超ではR−T−B系合金のDR反応が起こり難い。より高い保磁力を得るためには3kPa以上8kPa以下に設定され得る。2kPa以上10kPa以下の水素雰囲気は、例えば真空ポンプなどによって排気速度を制御しつつ熱処理装置内を排気してHD処理工程後の圧粉体から脱水素して発生する水素とバランスさせることで実現できる。DR処理工程の温度は650℃以上950℃未満である。650℃未満では脱水素反応が実質的に起こらない。また、950℃以上では再結合したR2T14B相が結晶粒成長してしまうため、磁気特性、特に保磁力の低下を招く。粒成長を抑制するという観点からは、DR処理工程の温度を900℃以下に設定され得る。また、DR処理工程に要する時間は、15分程度でR2T14B相の再結合反応は完了するため15分以上に設定され得、30分以上処理することにより、さらなる保磁力の向上効果を得ることができる。逆に長時間処理しすぎると生産コストの増加につながるため、10時間以下に設定され得、さらに3時間以下に設定され得る。 Next, the DR treatment step is performed by performing heat treatment at a temperature of 650 ° C. or more and less than 950 ° C. in a hydrogen atmosphere of 2 kPa or more and 10 kPa or less, thereby suppressing the diffusion of the diffusing material powder and dehydrating the RTB-based alloy powder. Elementary and recombination reactions occur and an R 2 T 14 B phase is generated by the recombination reaction. If it is less than 2 kPa, diffusion of the diffusing material proceeds, and if it exceeds 10 kPa, the DR reaction of the RTB-based alloy hardly occurs. In order to obtain a higher coercive force, it can be set to 3 kPa or more and 8 kPa or less. A hydrogen atmosphere of 2 kPa or more and 10 kPa or less can be realized by, for example, evacuating the inside of the heat treatment apparatus while controlling the exhaust speed by a vacuum pump or the like and balancing with hydrogen generated by dehydrogenating the green compact after the HD treatment process. . The temperature of the DR treatment process is 650 ° C. or higher and lower than 950 ° C. If it is less than 650 degreeC, dehydrogenation reaction does not occur substantially. Further, when the temperature is higher than 950 ° C., the recombined R 2 T 14 B phase grows in crystal grains, leading to a decrease in magnetic properties, particularly coercive force. From the viewpoint of suppressing grain growth, the temperature of the DR treatment step can be set to 900 ° C. or lower. Further, the time required for the DR treatment process is about 15 minutes, and the recombination reaction of the R 2 T 14 B phase is completed, so it can be set to 15 minutes or more. By treating for 30 minutes or more, the coercive force can be further improved. Can be obtained. On the other hand, if the treatment is performed for a long time, the production cost is increased, so that it can be set to 10 hours or less and further set to 3 hours or less.
DR処理工程で生成したR2T14B相は典型的には0.1μm以上1.0μm以下の平均結晶粒径を有する集合組織を形成する。なお、R’−M系合金のM元素にAlなどのR2T14B相に拡散し易い元素を用いた場合にはDR処理工程中にM元素がR−T−B系合金粉末に拡散することがあるが、R’の拡散は十分に抑制できるため保磁力を向上させる効果は十分に発揮される。 The R 2 T 14 B phase generated in the DR treatment step typically forms a texture having an average crystal grain size of 0.1 μm or more and 1.0 μm or less. When an element that easily diffuses into the R 2 T 14 B phase such as Al is used as the M element of the R′-M alloy, the M element diffuses into the RTB alloy powder during the DR treatment process. However, since the diffusion of R ′ can be sufficiently suppressed, the effect of improving the coercive force is sufficiently exhibited.
また、HD処理工程とDR処理工程の間で数分程度、不活性ガスを流気して熱処理装置内の水素を置換しても良い。それによってDR処理工程において真空ポンプで熱処理装置内を排気する際に大量の水素がポンプ内へ流入することがなく、安全に処理がおこなえる。次いで行う粒界相形成熱処理工程は、真空または不活性雰囲気において650℃以上950℃未満で保持することにより、R−T−B系合金粉末に含まれるRの水素化物およびR’−M系合金粉末の脱水素反応を起こし、Rに富む液相が生成し、R2T14B相の結晶粒界に粒界相(希土類リッチ相)が形成されて保磁力が発現する。拡散材粉末を混合していない場合に比べ、粒界相(希土類リッチ相)がより均質に形成されるために高い保磁力が得られる。さらに、焼結反応も同時に起こり、多孔質の永久磁石となる。粒界相形成熱処理工程の雰囲気は不活性ガスを導入しつつ真空排気する減圧雰囲気にすることで処理中の酸化が抑えられるため保磁力の低下が防止される。また粒界相形成熱処理工程の温度は650℃以上950℃未満である。650℃未満では脱水素反応が実質的に起こらない。また、950℃を超えるとR2T14B相が結晶粒成長してしまうため、磁気特性、特に保磁力の低下を招く。粒成長を抑制するという観点からは、粒界相形成熱処理工程の温度を900℃以下に設定され得る。また、粒界相形成熱処理工程に要する時間は、5分以上10時間以下に設定され得、さらに10分以上1時間以下に設定され得る。 Further, the hydrogen in the heat treatment apparatus may be replaced by flowing an inert gas between the HD treatment process and the DR treatment process for about several minutes. As a result, a large amount of hydrogen does not flow into the pump when the heat treatment apparatus is evacuated by the vacuum pump in the DR treatment process, and the treatment can be performed safely. Next, the grain boundary phase forming heat treatment step is carried out by holding at 650 ° C. or more and less than 950 ° C. in a vacuum or an inert atmosphere, so that the R hydride and R′-M alloy contained in the RTB-based alloy powder A dehydrogenation reaction of the powder occurs, a liquid phase rich in R is generated, a grain boundary phase (rare earth rich phase) is formed at the crystal grain boundary of the R 2 T 14 B phase, and a coercive force is developed. Compared with the case where the diffusing material powder is not mixed, the grain boundary phase (rare earth rich phase) is formed more homogeneously, so that a high coercive force is obtained. Furthermore, a sintering reaction also occurs at the same time, resulting in a porous permanent magnet. The atmosphere in the grain boundary phase forming heat treatment step is a reduced pressure atmosphere that is evacuated while introducing an inert gas, so that oxidation during the treatment can be suppressed and a reduction in coercive force is prevented. The temperature in the grain boundary phase forming heat treatment step is 650 ° C. or higher and lower than 950 ° C. If it is less than 650 degreeC, dehydrogenation reaction does not occur substantially. On the other hand, if the temperature exceeds 950 ° C., the R 2 T 14 B phase grows and the magnetic properties, particularly the coercive force, are reduced. From the viewpoint of suppressing grain growth, the temperature of the grain boundary phase forming heat treatment step can be set to 900 ° C. or lower. Further, the time required for the grain boundary phase forming heat treatment step can be set to 5 minutes or more and 10 hours or less, and can be further set to 10 minutes or more and 1 hour or less.
<多孔質磁石>
上記HDDR処理によって、3.5g/cm3以上6.5g/cm3以下の密度を有する多孔質磁石が得られる。なお、本明細書における「密度」とは、すべて、室温(約20℃から約30℃)で計測した磁石の寸法と重量から計算した磁石内部の空隙を含む見かけ密度を指すものとする。このため、各熱処理工程によって室温よりも高い温度に上昇した成型体に関する「密度」として表示する値も、その温度における密度の値でなく、室温で測定した場合の値である。
<Porous magnet>
By the HDDR treatment, a porous magnet having a density of 3.5 g / cm 3 or more and 6.5 g / cm 3 or less is obtained. The “density” in this specification refers to the apparent density including voids inside the magnet calculated from the size and weight of the magnet measured at room temperature (about 20 ° C. to about 30 ° C.). For this reason, the value displayed as “density” regarding the molded body that has risen to a temperature higher than room temperature by each heat treatment step is not a density value at that temperature but a value when measured at room temperature.
この多孔質磁石には、HDDR処理工程で相互に結合した粉末粒子の間に、三次元網状に連通する長径10μm程度の空隙が存在している。圧粉体を構成していた個々の粉末粒子は、HDDR処理により隣接する粉末粒子と結合し、剛性を発揮する三次元構造を形成するとともに、個々の粉末粒子内では微細なNd2Fe14B型結晶相の集合組織が形成されている。本発明の実施形態におけるR−T−B系多孔質磁石の密度は、3.5g/cm3以上6.5g/cm3以下であるが、粉末粒子間の隙間が存在した状態でも、粒子同士が結合し、十分な機械的強度と優れた磁気特性とを発揮する。 In this porous magnet, there is a void having a major axis of about 10 μm communicating with the three-dimensional network between the powder particles bonded to each other in the HDDR processing step. The individual powder particles constituting the green compact are combined with the adjacent powder particles by the HDDR process to form a three-dimensional structure exhibiting rigidity, and fine Nd 2 Fe 14 B in each powder particle. A texture of the type crystal phase is formed. The density of the RTB-based porous magnet in the embodiment of the present invention is 3.5 g / cm 3 or more and 6.5 g / cm 3 or less. Combine to exhibit sufficient mechanical strength and excellent magnetic properties.
<多孔質磁石の熱間圧縮成型>
上記の方法によって得られた多孔質磁石は、そのままの状態でバルク永久磁石として利用することができるが、さらにホットプレス法などの熱間圧縮成型を用いることによって、高密度化を行い、平均結晶粒径0.1μm以上1.0μm以下のR2T14B相の集合組織を有する高密度磁石を得ることができる。ここで、高密度磁石とは、密度が7.0g/cm3以上7.6g/cm3以下の磁石を意味する。
<Hot compression molding of porous magnet>
The porous magnet obtained by the above method can be used as a bulk permanent magnet as it is, but it is further densified by using hot compression molding such as a hot press method, and the average crystal A high-density magnet having a texture of R 2 T 14 B phase with a particle size of 0.1 μm or more and 1.0 μm or less can be obtained. Here, the high density magnet means a magnet having a density of 7.0 g / cm 3 or more and 7.6 g / cm 3 or less.
以下に熱間圧縮成型による高密度化について、具体的な実施形態の一例を示す。多孔質磁石に対する熱間圧縮は、公知の熱間圧縮技術を用いて行うことができる。例えば、ホットプレス、SPS(spark plasma sintering)、HIP、熱間圧延などの熱間圧縮成型を行うことが可能である。なかでも、所望の形状を得やすいホットプレスやSPSが好適に用いられ得る。以下、ホットプレスを行う手順について説明する。 An example of a specific embodiment will be shown below for densification by hot compression molding. Hot compression on the porous magnet can be performed using a known hot compression technique. For example, hot compression molding such as hot pressing, SPS (spark plasma sintering), HIP, and hot rolling can be performed. Especially, the hot press and SPS which are easy to obtain a desired shape can be used suitably. Hereinafter, a procedure for performing hot pressing will be described.
本実施形態では、図1Bに示す構成を有するホットプレス装置を用いる。この装置は、中央に開口部を有する金型(ダイ)27と多孔質磁石を加圧するための上パンチ28aおよび下パンチ28bと、これらのパンチ28a、28bを昇降する駆動部30a、30bとを備えている。 In this embodiment, a hot press apparatus having the configuration shown in FIG. 1B is used. This apparatus includes a die (die) 27 having an opening in the center, an upper punch 28a and a lower punch 28b for pressurizing a porous magnet, and drive units 30a and 30b for raising and lowering these punches 28a and 28b. I have.
上述した方法によって作製した多孔質磁石(図1Bでは参照符号「10」と付している)を、図1Bに示す金型27に装填する。このとき、配向方向とプレス方向とが一致するように装填を行うことができる。金型27およびパンチ28a、28bは、使用する雰囲気ガス中で加熱温度および印加圧力に耐えうる材料から形成される。このような材料としては、カーボンや、タングステンカーバイドなどの超硬合金が使用され得る。なお、多孔質磁石10の外形寸法は金型27の開口部寸法よりも小さく設定しておくことにより、異方性を高められる。次に、多孔質磁石10を装填した金型27をホットプレス装置にセットする。本実施形態におけるホットプレス装置は、真空(1.3Pa以下)または不活性雰囲気に制御することが可能なチャンバ26を備えている。チャンバ26内には、例えば抵抗加熱によるカーボンヒーターなどの加熱装置と、多孔質磁石を加圧して圧縮するためのシリンダーとが備え付けられている。 A porous magnet (indicated by reference numeral “10” in FIG. 1B) produced by the method described above is loaded into the mold 27 shown in FIG. 1B. At this time, loading can be performed so that the orientation direction and the pressing direction coincide. The mold 27 and the punches 28a and 28b are formed of a material that can withstand the heating temperature and the applied pressure in the atmosphere gas to be used. As such a material, carbon or cemented carbide such as tungsten carbide may be used. In addition, the anisotropy can be increased by setting the outer dimension of the porous magnet 10 to be smaller than the opening dimension of the mold 27. Next, the mold 27 loaded with the porous magnet 10 is set in a hot press apparatus. The hot press apparatus in this embodiment includes a chamber 26 that can be controlled to a vacuum (1.3 Pa or less) or an inert atmosphere. In the chamber 26, for example, a heating device such as a carbon heater by resistance heating and a cylinder for pressurizing and compressing the porous magnet are provided.
チャンバ26内を真空または不活性ガス雰囲気で満たした後、加熱装置により金型27を加熱し、金型27に装填された多孔質磁石10の温度を600℃〜900℃に高め、9.8〜294MPaの圧力Pで多孔質磁石10を加圧する。本実施形態において、多孔質磁石10に対する加圧は、金型27の温度が設定レベルに到達してから開始する。金型の温度が十分に高くない場合には、加圧時に多孔質磁石に割れが生じたり、得られる高密度磁石の配向度が悪化してしまう可能性がある。加圧しながら600℃〜900℃の温度で10分以上保持した後、冷却する。加熱圧縮により高密度化された磁石が大気と接触して酸化しない程度の低い温度(100℃以下程度)まで冷却が進んだ後、本実施例の磁石をチャンバから取り出す。こうして、上記の多孔質磁石から本実施形態のR−T−B系高密度磁石を得ることができる。 After filling the chamber 26 with a vacuum or an inert gas atmosphere, the mold 27 is heated by a heating device, and the temperature of the porous magnet 10 loaded in the mold 27 is increased to 600 ° C. to 900 ° C., 9.8 The porous magnet 10 is pressurized with a pressure P of ˜294 MPa. In the present embodiment, pressurization of the porous magnet 10 is started after the temperature of the mold 27 reaches a set level. If the mold temperature is not sufficiently high, the porous magnet may be cracked during pressurization, or the degree of orientation of the resulting high-density magnet may deteriorate. While maintaining the pressure at 600 ° C. to 900 ° C. for 10 minutes or more while cooling, it is cooled. After the magnet, which has been densified by heat compression, is cooled to a low temperature (about 100 ° C. or less) that does not oxidize due to contact with the atmosphere, the magnet of this embodiment is taken out of the chamber. Thus, the RTB-based high density magnet of the present embodiment can be obtained from the porous magnet.
こうして得られた磁石の密度は真密度の90%以上に達する。また、本実施形態によれば、最終的な結晶相集合組織において、個々の結晶粒の最短粒径aと最長粒径bの比b/aが2未満である結晶粒が全結晶粒の50体積%以上存在する。この点において、本実施形態の磁石は、例えば特開平02−39503号公報などに記載の従来の熱間塑性加工による異方性バルク磁石と大きく異なっている。このような磁石の結晶組織においては最短粒径aと最長粒径bの比b/aが2を超えた扁平な結晶粒が支配的である。 The density of the magnet thus obtained reaches 90% or more of the true density. In addition, according to the present embodiment, in the final crystal phase texture, the crystal grains in which the ratio b / a of the shortest particle diameter a to the longest particle diameter b of each crystal grain is less than 2 are 50 of the total crystal grains. It exists by volume% or more. In this respect, the magnet of the present embodiment is greatly different from the conventional anisotropic bulk magnet by hot plastic working described in, for example, Japanese Patent Laid-Open No. 02-39503. In such a crystal structure of a magnet, flat crystal grains in which the ratio b / a between the shortest particle diameter a and the longest particle diameter b exceeds 2 are dominant.
下の表1に示す組成のR−T−B系合金、および表2に示す組成のR’の金属またはR’−M系合金を用意し、上述した実施形態の製造方法により、多孔質磁石を作製した。以下、本実験例における多孔質磁石の作製方法を説明する。 An RTB-based alloy having the composition shown in Table 1 below and an R ′ metal or R′-M-based alloy having the composition shown in Table 2 are prepared, and a porous magnet is produced by the manufacturing method of the above-described embodiment. Was made. Hereinafter, a method for producing a porous magnet in this experimental example will be described.
(実験例1)DR雰囲気制御(粒界形成熱処理有無による組織変化)
まず、表1のB5、B7の組成を有するR−T−B系合金をストリップキャスト法で作製した。得られた合金を水素吸蔵崩壊法によって粒径425μm以下の粉末に粗粉砕した後、ジェットミルを用いて粗粉末を微粉砕し、50%体積中心粒径4.6μmの微粉末を得た。なお、50%体積中心粒径は、レーザー回折式粒度分布測定装置(Sympatec社製、HEROS/RODOS、以下すべて同じ装置で測定)によって測定した。
(Experimental example 1) DR atmosphere control (structure change with and without grain boundary formation heat treatment)
First, an RTB-based alloy having the composition of B5 and B7 in Table 1 was produced by strip casting. The obtained alloy was coarsely pulverized to a powder having a particle size of 425 μm or less by the hydrogen storage / disintegration method, and then the coarse powder was finely pulverized using a jet mill to obtain a fine powder having a 50% volume center particle size of 4.6 μm. The 50% volume center particle size was measured by a laser diffraction particle size distribution measuring device (manufactured by Sympatec, HEROS / RODOS, hereinafter all measured by the same device).
また、表2のD5の組成を有する拡散材をメルトスピニング法で作製した。具体的には、オリフィス径0.8mmφの石英ノズル中で合金を溶解し、ロール周速度20m/sで回転する銅ロールに噴射し、リボン状の合金を得た。これらの合金を水素ガス流気中で400℃まで昇温し水素を吸蔵させた後、機械粉砕により粉砕し、目開き53μmのメッシュを用いて分級し、大きさが53μm以下の拡散材粉末を得た。なお、得られた拡散材粉末の粒径は明らかに1μm以上であることを、電子顕微鏡観察によって確認した。得られたR−T−B系合金粉末および拡散材粉末を、メノウ乳鉢を用い表3に示す混合比で混合し、混合粉末M1、M2を得た。 Further, a diffusing material having the composition of D5 in Table 2 was produced by a melt spinning method. Specifically, the alloy was melted in a quartz nozzle having an orifice diameter of 0.8 mmφ and sprayed onto a copper roll rotating at a roll peripheral speed of 20 m / s to obtain a ribbon-like alloy. These alloys were heated up to 400 ° C. in a hydrogen gas stream, occluded with hydrogen, pulverized by mechanical pulverization, classified using a mesh having an opening of 53 μm, and diffusing material powder having a size of 53 μm or less was obtained. Obtained. In addition, it confirmed by observation with an electron microscope that the particle size of the obtained diffusing material powder was clearly 1 μm or more. The obtained RTB-based alloy powder and diffusing material powder were mixed at a mixing ratio shown in Table 3 using an agate mortar to obtain mixed powders M1 and M2.
次に、混合粉末M2をプレス装置の金型に充填し、1.2MA/mの磁界中において、磁界と直角方向に32MPaの圧力を印加して圧粉体を作製した。圧粉体の密度は、寸法と重量に基づいて計算すると、4.2g/cm3であった。 Next, the mixed powder M2 was filled in a die of a press machine, and a green compact was produced by applying a pressure of 32 MPa in a direction perpendicular to the magnetic field in a magnetic field of 1.2 MA / m. The density of the green compact was 4.2 g / cm 3 when calculated based on dimensions and weight.
次に、圧粉体に対して前述のHDDR処理を行った。具体的には、圧粉体を100kPaの水素流気中で600℃まで14℃/minの昇温速度で昇温し、その後雰囲気を100kPaのアルゴン流気に切り替えた後、860℃まで14℃/minの昇温速度で昇温し、次いで雰囲気を100kPaの水素流気に切り替えた後、860℃を120分保持してHD処理工程を行った。その後、860℃に保持したままAr流気に切り替えて2分保持して熱処理装置内の雰囲気を置換した。次いでArガスを止めて熱処理装置内を真空ポンプで排気し、圧粉体から発生する水素の排気速度を調整して熱処理装置内の水素圧力を4.0kPaに調整しながら60分保持し、DR処理工程を行った。次いで860℃のまま5.3kPaに減圧したアルゴン流気中で10分保持し、粒界相形成熱処理工程を行った。その後、100kPaのアルゴン流気中で室温まで冷却し、実施例1(表4の条件S1)を作製した。また、比較例としてDR処理工程を行った後、粒界相形成熱処理工程を行わずに100kPaのアルゴン流気中で室温まで冷却した比較例1(表4の条件S2)も作製した。さらにDR処理の雰囲気制御をおこなわず、従来の条件でDR処理を行った比較例を作製した。 Next, the above-mentioned HDDR process was performed on the green compact. Specifically, the green compact was heated to 600 ° C. at a rate of 14 ° C./min in a 100 kPa hydrogen flow, and then the atmosphere was switched to a 100 kPa argon flow, and then 14 ° C. to 860 ° C. The temperature was increased at a rate of temperature increase of / min, and then the atmosphere was switched to a hydrogen gas flow of 100 kPa. Then, while maintaining at 860 ° C., the atmosphere was switched to Ar and maintained for 2 minutes to replace the atmosphere in the heat treatment apparatus. Next, the Ar gas is stopped and the inside of the heat treatment apparatus is evacuated with a vacuum pump, and the hydrogen pressure generated in the green compact is adjusted to maintain the hydrogen pressure in the heat treatment apparatus at 4.0 kPa and held for 60 minutes. Processing steps were performed. Subsequently, it hold | maintained for 10 minutes in the argon air pressure-reduced to 5.3 kPa with 860 degreeC, and the grain boundary phase formation heat treatment process was performed. Then, it cooled to room temperature in 100 kPa argon flow, and Example 1 (condition S1 of Table 4) was produced. Moreover, after performing the DR treatment process as a comparative example, Comparative Example 1 (condition S2 in Table 4) was prepared by cooling to room temperature in a 100 kPa argon flow without performing the grain boundary phase formation heat treatment process. Furthermore, the comparative example which performed DR process on the conventional conditions without performing the atmosphere control of DR process was produced.
混合粉末M1をプレス装置の金型に充填し、0.6MA/mの磁界中において、磁界と平行方向に76MPaの圧力を印加して圧粉体を作製した。圧粉体の密度は、寸法と重量に基づいて計算すると、4.3g/cm3であった。 The mixed powder M1 was filled in a die of a press machine, and a green compact was produced by applying a pressure of 76 MPa in a direction parallel to the magnetic field in a magnetic field of 0.6 MA / m. The density of the green compact was 4.3 g / cm 3 when calculated based on the dimensions and weight.
次に、圧粉体に対して前述のHDDR処理を行った。具体的には、圧粉体を100kPaの水素流気中で600℃まで14℃/minの昇温速度で昇温し、100kPaの水素流気中で600℃を30分保持した。その後雰囲気を100kPaのアルゴン流気に切り替えた後、860℃まで14℃/minの昇温速度で昇温し、次いで雰囲気を100kPaの水素流気に切り替えた後、860℃を120分保持してHD処理工程を行った。その後、860℃に保持したまま表4に示すように雰囲気を100kPaのアルゴン流気に切り替えて30分、50分保持し、従来処理に相当するDR処理工程を行った。その後、100kPaのアルゴン流気中で室温まで冷却し、比較例2(表4の条件S3)、比較例3(表4の条件S4)を作製した。 Next, the above-mentioned HDDR process was performed on the green compact. Specifically, the green compact was heated to 600 ° C. at a rate of 14 ° C./min in a 100 kPa hydrogen flow, and kept at 600 ° C. for 30 minutes in a 100 kPa hydrogen flow. Then, after switching the atmosphere to 100 kPa argon flow, the temperature was increased to 860 ° C. at a rate of 14 ° C./min, and then the atmosphere was switched to 100 kPa hydrogen flow, and then kept at 860 ° C. for 120 minutes. The HD processing step was performed. Thereafter, as shown in Table 4 while maintaining at 860 ° C., the atmosphere was switched to argon flow of 100 kPa and maintained for 30 minutes and 50 minutes, and a DR treatment step corresponding to the conventional treatment was performed. Then, it cooled to room temperature in 100 kPa argon stream, and produced the comparative example 2 (condition S3 of Table 4) and the comparative example 3 (condition S4 of Table 4).
作製したサンプルの寸法と重量から密度を計算すると、実施例1が5.56g/cm3、比較例1が5.25g/cm3、比較例2が5.56g/cm3、比較例3が5.65g/cm3であった。作製したサンプルに対して3.2MA/mのパルス磁界で着磁した後、磁気特性をBHトレーサー(装置名:MTR−1412(メトロン技研社製))で測定した。結果を表5に示す。表5からわかるようにDR処理工程の後、粒界形成熱処理工程を行わなかった比較例1は保磁力(HcJ)が非常に低く、粒界形成熱処理工程を行った実施例1は高い保磁力(HcJ)が得られた。また、従来のDR処理工程によって得られた比較例3は実施例1に比べて低い保磁力(HcJ)となった。なお、比較例2は従来のDR処理工程を行っているがDR処理時間が短いのでDR反応が完了せず、粒界も形成されていないために比較例1と同様に非常に低い保磁力(HcJ)となった。表5において、Jmaxは、着磁したサンプルの着磁方向に2テスラ(T)まで磁界Hを印加したときのサンプルの磁化J(T)の最大測定値であり、Br/Jmaxは高いほど配向性に優れている。また、Hkは磁化Br×0.9となる磁界Hの値であり、Hk/HcJが高いほど、減磁曲線の角型性に優れている。 When the density was calculated from the dimensions and weights of the prepared samples, Example 1 was 5.56 g / cm 3 , Comparative Example 1 was 5.25 g / cm 3 , Comparative Example 2 was 5.56 g / cm 3 , and Comparative Example 3 was It was 5.65 g / cm 3 . The prepared sample was magnetized with a pulse magnetic field of 3.2 MA / m, and then the magnetic properties were measured with a BH tracer (device name: MTR-1412 (manufactured by Metron Engineering Co., Ltd.)). The results are shown in Table 5. As can be seen from Table 5, Comparative Example 1 in which the grain boundary forming heat treatment step was not performed after the DR treatment step has a very low coercive force (H cJ ), and Example 1 in which the grain boundary forming heat treatment step was performed has a high coercive force. A magnetic force (H cJ ) was obtained. Further, Comparative Example 3 obtained by the conventional DR treatment process had a lower coercive force (H cJ ) than that of Example 1. In Comparative Example 2, the conventional DR treatment process is performed. However, since the DR treatment time is short, the DR reaction is not completed and no grain boundary is formed. H cJ ). In Table 5, J max is the maximum measured value of the magnetization J (T) of the sample when the magnetic field H is applied up to 2 Tesla (T) in the magnetization direction of the magnetized sample, and B r / J max is The higher the value, the better the orientation. H k is the value of the magnetic field H at which the magnetization B r × 0.9, and the higher the H k / H cJ , the better the squareness of the demagnetization curve.
図2に比較例1(DR雰囲気制御あり、粒界相形成熱処理なし)の研磨面の走査型電子顕微鏡(日本電子製:JSM−7001FA)による1000倍の反射電子像(BSE像:4つの像のうちの左上の像)と同顕微鏡に装備されたエネルギー分散型X線分析装置(EDX)によるNd、Fe、Alの元素マッピング像を示す。図3に実施例1(DR雰囲気制御、粒界相形成熱処理ともにあり)の研磨面の走査型電子顕微鏡(日本電子製:JSM−7001FA)による1000倍の反射電子像(BSE像:4つの像のうちの左上の像)と同顕微鏡に装備されたエネルギー分散型X線分析装置(EDX)によるNd、Fe、Alの元素マッピング像を示す。 FIG. 2 shows a 1000-fold backscattered electron image (BSE images: four images) of a polished surface of Comparative Example 1 (with DR atmosphere control and no grain boundary phase formation heat treatment) using a scanning electron microscope (JSM-7001FA). And an element mapping image of Nd, Fe, and Al by an energy dispersive X-ray analyzer (EDX) equipped in the same microscope. FIG. 3 shows a 1000-fold backscattered electron image (BSE image: four images) of the polished surface of Example 1 (both DR atmosphere control and grain boundary phase formation heat treatment) using a scanning electron microscope (JEOL: JSM-7001FA). And an element mapping image of Nd, Fe, and Al by an energy dispersive X-ray analyzer (EDX) equipped in the same microscope.
粒界相形成熱処理を行わなかった比較例1(図2)では、反射電子像に明るいコントラストで示される希土類リッチ相のなかに10μm以上のサイズのものが確認され、元素マッピングからNdが多く、Alもその周囲に比較的濃化していることからDR処理工程後も拡散材がある程度残留していることがわかる。 In Comparative Example 1 (FIG. 2) in which the grain boundary phase formation heat treatment was not performed, a size of 10 μm or more was confirmed in the rare earth-rich phase indicated by the bright contrast in the reflected electron image, and Nd was large from elemental mapping. Since Al is also relatively concentrated around it, it can be seen that some diffusion material remains after the DR treatment step.
一方、粒界相形成熱処理を行った実施例1(図3)では、10μm以上のサイズの希土類リッチ相は確認されなかった。 On the other hand, in Example 1 (FIG. 3) in which the grain boundary phase formation heat treatment was performed, a rare earth-rich phase having a size of 10 μm or more was not confirmed.
図4および図5は、それぞれ、比較例1および実施例1の研磨面の走査型電子顕微鏡(日本電子製:JSM−7001FA)による5000倍の反射電子像(BSE像)を示す。粒界相形成熱処理を行わなかった比較例1(図4)では、結晶粒界、特に2粒子粒界に明るいコントラストで示される粒界相(希土類リッチ相)が見られないが、粒界相形成熱処理を行った実施例1(図5)では2粒子粒界に均質な粒界相(希土類リッチ相)が形成されている。 FIG. 4 and FIG. 5 show 5000-fold reflected electron images (BSE images) of the polished surfaces of Comparative Example 1 and Example 1 using a scanning electron microscope (JEOL: JSM-7001FA), respectively. In Comparative Example 1 (FIG. 4) in which the grain boundary phase formation heat treatment was not performed, the grain boundary phase (rare earth rich phase) indicated by a bright contrast was not observed at the crystal grain boundary, particularly at the two grain boundary, In Example 1 (FIG. 5) in which the formation heat treatment was performed, a homogeneous grain boundary phase (rare earth rich phase) was formed at the two grain boundaries.
これらの結果より、DR雰囲気の制御を行ったDR処理終了後では、拡散材が拡散せずにある程度残存しているが、粒界相はまだ形成されず、粒界相形成熱処理によって拡散材の拡散が急激に起こり、粒界相の形成に寄与したと考えられる。 From these results, after completion of the DR treatment in which the DR atmosphere is controlled, the diffusion material remains to some extent without being diffused, but the grain boundary phase is not yet formed, and the diffusion material is formed by the grain boundary phase formation heat treatment. It is thought that diffusion occurred rapidly and contributed to the formation of the grain boundary phase.
図6、図7に比較例2(従来のDR処理、DR反応未完了)の研磨面の走査型電子顕微鏡(日本電子製:JSM−7001FA)による400倍と10000倍の反射電子像(BSE像)を、図8、図9に同じく比較例3(従来のDR処理)の400倍と9500倍のBSE像を示す。 FIG. 6 and FIG. 7 show 400-fold and 10,000-fold backscattered electron images (BSE images) of the polished surface of Comparative Example 2 (conventional DR treatment, DR reaction incomplete) using a scanning electron microscope (JEOL: JSM-7001FA). 8 and 9 show 400 and 9500 times BSE images of Comparative Example 3 (conventional DR processing).
比較例2では、図6の400倍のBSE像からは、図3の実施例1と同じく拡散材粉末が残存していないことがわかる。また、図7の10000倍のBSE像から、R−T−B系合金粉末中にα−Fe相が残留しており、R−T−B系合金粉末の再結合反応が完了せず、粒界相も形成されていないことが確認できる。これらより、比較例2ではDR雰囲気制御を行っていないため、粒界相が形成される前に拡散材の拡散が起こってしまっていることがわかる。一方比較例3では、図8の400倍のBSE像から、比較例2と同じく、DR雰囲気制御を行っていないため拡散材の拡散が起こってしまい、拡散材粉末が残存していないことが確認でき、図9の9500倍のBSE像から、R−T−B系合金粉末の再結合反応が完了し、R2T14B相の結晶粒界に不均質ではあるものの粒界相も形成されていることがわかる。これらの結果から、DR雰囲気制御をおこなわない従来のDR処理においては、粒界相を形成する前に拡散材の拡散が起こってしまい、粒界相の形成にあまり寄与しなかったと考えられる。このために、比較例3のように最終的に高い保磁力が得られなかったと考えられる。 In Comparative Example 2, it can be seen from the BSE image 400 times that in FIG. 6 that no diffusing material powder remains as in Example 1 in FIG. Further, from the 10,000 times BSE image of FIG. 7, the α-Fe phase remains in the RTB-based alloy powder, the recombination reaction of the RTB-based alloy powder is not completed, and the grains It can be confirmed that no boundary phase is formed. From these, it can be seen that in the comparative example 2, since the DR atmosphere control is not performed, the diffusion of the diffusing material has occurred before the grain boundary phase is formed. On the other hand, in Comparative Example 3, it was confirmed from the 400 times BSE image of FIG. 8 that the diffusion of the diffusing material occurred because the DR atmosphere was not controlled as in Comparative Example 2, and no diffusing material powder remained. From the BSE image of 9500 times in FIG. 9, the recombination reaction of the R-T-B alloy powder is completed, and a grain boundary phase is formed although it is inhomogeneous at the crystal grain boundary of the R 2 T 14 B phase. You can see that From these results, it is considered that in the conventional DR process in which the DR atmosphere control is not performed, diffusion of the diffusing material occurs before the formation of the grain boundary phase, which does not contribute much to the formation of the grain boundary phase. For this reason, it is considered that a high coercive force was not finally obtained as in Comparative Example 3.
なお、比較例2および3は、実施例1と使用するR−T−B系合金の組成が異なるが、これは、より希土類量の多い組成の合金を使用してR’−M合金を残存しやすくしたためであるが、それでも粒界相形成前にR’−M合金が拡散してしまったことから、より実施例の効果が確認できた。 In Comparative Examples 2 and 3, the composition of the RTB-based alloy used in Example 1 is different from that in Example 1, but this is because the R'-M alloy remains using an alloy having a higher rare earth composition. This is because the R′-M alloy diffused before the formation of the grain boundary phase, but the effects of the examples could be confirmed.
(実験例2)DR雰囲気制御(水素圧力変化)
まず、表1の組成を有するR−T−B系合金B6をストリップキャスト法で作製した。得られた合金を水素吸蔵崩壊法によって粒径425μm以下の粉末に粗粉砕した後、ジェットミルを用いて粗粉末を微粉砕し、50%体積中心粒径4.9μmの微粉末を得た。なお、50%体積中心粒径は、レーザー回折式粒度分布測定装置(Sympatec社製、HEROS/RODOS、以下すべて同じ装置で測定)によって測定した。
(Experiment 2) DR atmosphere control (hydrogen pressure change)
First, an RTB-based alloy B6 having the composition shown in Table 1 was produced by strip casting. The obtained alloy was coarsely pulverized to a powder having a particle size of 425 μm or less by the hydrogen storage / disintegration method, and then the coarse powder was finely pulverized using a jet mill to obtain a fine powder having a 50% volume center particle size of 4.9 μm. The 50% volume center particle size was measured by a laser diffraction particle size distribution measuring device (manufactured by Sympatec, HEROS / RODOS, hereinafter all measured by the same device).
また、表2の組成を有する拡散材D5をメルトスピニング法で作製した。具体的には、オリフィス径0.8mmφの石英ノズル中で合金を溶解し、ロール周速度20m/sで回転する銅ロールに噴射し、リボン状の合金を得た。この合金を水素ガス流気中で400℃まで昇温し水素を吸蔵させた後、機械粉砕により粉砕し、目開き53μmのメッシュを用いて分級し、大きさが53μm以下の拡散材粉末を得た。なお、得られた拡散材粉末の粒径は明らかに1μm以上であることを、電子顕微鏡観察によって確認した。得られたR−T−B系合金粉末および拡散材粉末を、メノウ乳鉢を用い表6に示す混合比で混合し、混合粉末M3を得た。 Moreover, the diffusing material D5 having the composition shown in Table 2 was produced by a melt spinning method. Specifically, the alloy was melted in a quartz nozzle having an orifice diameter of 0.8 mmφ and sprayed onto a copper roll rotating at a roll peripheral speed of 20 m / s to obtain a ribbon-like alloy. This alloy was heated to 400 ° C. in a hydrogen gas stream, occluded with hydrogen, pulverized by mechanical pulverization, and classified using a mesh having an opening of 53 μm to obtain a diffusing material powder having a size of 53 μm or less. It was. In addition, it confirmed by observation with an electron microscope that the particle size of the obtained diffusing material powder was clearly 1 μm or more. The obtained RTB-based alloy powder and diffusing material powder were mixed at a mixing ratio shown in Table 6 using an agate mortar to obtain mixed powder M3.
次に、この混合粉末をプレス装置の金型に充填し、1.2MA/mの磁界中において、磁界と直角方向に32MPaの圧力を印加して圧粉体を作製した。圧粉体の密度は、寸法と重量に基づいて計算すると、4.2g/cm3であった。 Next, this mixed powder was filled in a mold of a press machine, and a green compact was produced by applying a pressure of 32 MPa in a direction perpendicular to the magnetic field in a magnetic field of 1.2 MA / m. The density of the green compact was 4.2 g / cm 3 when calculated based on dimensions and weight.
次に、圧粉体に対して前述のHDDR処理を行った。具体的には、圧粉体を100kPaの水素流気中で600℃まで14℃/minの昇温速度で昇温し、その後雰囲気を100kPaのアルゴン流気に切り替えた後、860℃まで14℃/minの昇温速度で昇温し、次いで雰囲気を100kPaの水素流気に切り替えた後、860℃を120分保持してHD処理工程を行った。その後、860℃に保持したままAr流気に切り替えて2分保持して熱処理装置内を置換した。次いでArガスを止めて熱処理装置内を真空ポンプで排気し、表7に示すように圧粉体から発生する水素の排気速度を調整して熱処理装置内の水素圧力を0.01〜15.0kPaに調整しながら60分保持し、DR処理工程を行った。 Next, the above-mentioned HDDR process was performed on the green compact. Specifically, the green compact was heated to 600 ° C. at a rate of 14 ° C./min in a 100 kPa hydrogen flow, and then the atmosphere was switched to a 100 kPa argon flow, and then 14 ° C. to 860 ° C. The temperature was increased at a rate of temperature increase of / min, and then the atmosphere was switched to a hydrogen gas flow of 100 kPa. Thereafter, while maintaining the temperature at 860 ° C., the flow was switched to Ar flow and maintained for 2 minutes to replace the inside of the heat treatment apparatus. Next, the Ar gas was stopped and the heat treatment apparatus was evacuated with a vacuum pump, and the hydrogen pressure generated from the green compact was adjusted as shown in Table 7 to adjust the hydrogen pressure in the heat treatment apparatus to 0.01 to 15.0 kPa. It was held for 60 minutes while adjusting to DR process.
次いで860℃のまま5.3kPaに減圧したアルゴン流気中で60分保持し、粒界相形成熱処理工程を行った。その後、100kPaのアルゴン流気中で室温まで冷却し、サンプルを作製した。また、比較例としてHD処理工程後にDR処理工程を行わず、860℃で5.3kPaに減圧したアルゴン流気中で60分保持し、100kPaのアルゴン流気中で室温まで冷却したサンプルも作製した。 Subsequently, it hold | maintained for 60 minutes in the argon air pressure-reduced to 5.3 kPa with 860 degreeC, and the grain boundary phase formation heat treatment process was performed. Then, it cooled to room temperature in 100 kPa argon flow, and the sample was produced. In addition, as a comparative example, a sample was also prepared which was not subjected to the DR treatment step after the HD treatment step, was held for 60 minutes in an argon flow reduced to 5.3 kPa at 860 ° C., and was cooled to room temperature in a 100 kPa argon flow. .
作製したサンプルの寸法と重量から密度を計算すると、6.09〜6.47g/cm3であった。 It was 6.09-6.47 g / cm < 3 > when density was computed from the dimension and weight of the produced sample.
作製したサンプルに対して3.2MA/mのパルス磁界で着磁した後、磁気特性をBHトレーサー(装置名:MTR−1412(メトロン技研社製))で測定した。結果を表8に示す。表8からわかるようにDR処理工程の水素圧力が2kPa〜10kPaで処理した場合に高いHcJが得られていることがわかる。 The prepared sample was magnetized with a pulse magnetic field of 3.2 MA / m, and then the magnetic properties were measured with a BH tracer (device name: MTR-1412 (manufactured by Metron Engineering Co., Ltd.)). The results are shown in Table 8. As can be seen from Table 8, high H cJ is obtained when the hydrogen pressure in the DR treatment step is 2 kPa to 10 kPa.
(実験例3)DR雰囲気制御(R−T−B系合金組成)
まず、表1の組成を有するR−T−B系合金B1、B2、B3、B5、B7をストリップキャスト法で作製した。得られた合金を水素吸蔵崩壊法によって粒径425μm以下の粉末に粗粉砕した後、ジェットミルを用いて粗粉末を微粉砕し、50%体積中心粒径5.0μmの微粉末を得た。なお、50%体積中心粒径は、レーザー回折式粒度分布測定装置(Sympatec社製、HEROS/RODOS、以下すべて同じ装置で測定)によって測定した。
(Experimental example 3) DR atmosphere control (R-T-B alloy composition)
First, RTB-based alloys B1, B2, B3, B5, and B7 having the compositions shown in Table 1 were produced by strip casting. The obtained alloy was coarsely pulverized into a powder having a particle size of 425 μm or less by the hydrogen storage / disintegration method, and then the coarse powder was finely pulverized using a jet mill to obtain a fine powder having a 50% volume center particle size of 5.0 μm. The 50% volume center particle size was measured by a laser diffraction particle size distribution measuring device (manufactured by Sympatec, HEROS / RODOS, hereinafter all measured by the same device).
また、表2の組成を有する拡散材D5をメルトスピニング法で作製した。具体的には、オリフィス径0.8mmφの石英ノズル中で合金を溶解し、ロール周速度20m/sで回転する銅ロールに噴射し、リボン状の合金を得た。この合金を水素ガス流気中で400℃まで昇温し水素を吸蔵させた後、機械粉砕により粉砕し、目開き53μmのメッシュを用いて分級し、大きさが53μm以下の拡散材粉末を得た。なお、得られた拡散材粉末の粒径は明らかに1μm以上であることを、電子顕微鏡観察によって確認した。得られたR−T−B系合金粉末および拡散材粉末を、メノウ乳鉢を用い表9に示す混合比で混合し、混合粉末M4〜M8を得た。 Moreover, the diffusing material D5 having the composition shown in Table 2 was produced by a melt spinning method. Specifically, the alloy was melted in a quartz nozzle having an orifice diameter of 0.8 mmφ and sprayed onto a copper roll rotating at a roll peripheral speed of 20 m / s to obtain a ribbon-like alloy. This alloy was heated to 400 ° C. in a hydrogen gas stream, occluded with hydrogen, pulverized by mechanical pulverization, and classified using a mesh having an opening of 53 μm to obtain a diffusing material powder having a size of 53 μm or less. It was. In addition, it confirmed by observation with an electron microscope that the particle size of the obtained diffusing material powder was clearly 1 μm or more. The obtained RTB-based alloy powder and diffusing material powder were mixed using an agate mortar at a mixing ratio shown in Table 9 to obtain mixed powders M4 to M8.
次に、この混合粉末をプレス装置の金型に充填し、1.2MA/mの磁界中において、磁界と直角方向に32MPaの圧力を印加して圧粉体を作製した。圧粉体の密度は、寸法と重量に基づいて計算すると、4.2〜4.5g/cm3であった。 Next, this mixed powder was filled in a mold of a press machine, and a green compact was produced by applying a pressure of 32 MPa in a direction perpendicular to the magnetic field in a magnetic field of 1.2 MA / m. The density of the green compact was calculated to be 4.2 to 4.5 g / cm 3 based on the size and weight.
次に、圧粉体に対して前述のHDDR処理を行った。具体的には、圧粉体を100kPaの水素流気中で600℃まで14℃/minの昇温速度で昇温し、その後雰囲気を100kPaのアルゴン流気に切り替えた後、860℃まで14℃/minの昇温速度で昇温し、次いで雰囲気を100kPaの水素流気に切り替えた後、860℃を120分保持してHD処理工程を行った。その後、860℃に保持したままAr流気に切り替えて2分保持して熱処理装置内を置換した。次いでArガスを止めて熱処理装置内を真空ポンプで排気し、表7の条件S7と同様に圧粉体から発生する水素の排気速度を調整して熱処理装置内の水素圧力を4.0kPaに調整しながら60分保持し、DR処理工程を行った。次いで860℃のまま5.3kPaに減圧したアルゴン流気中で60分保持し、粒界相形成熱処理工程を行った。その後、100kPaのアルゴン流気中で室温まで冷却し、サンプルを作製した。 Next, the above-mentioned HDDR process was performed on the green compact. Specifically, the green compact was heated to 600 ° C. at a rate of 14 ° C./min in a 100 kPa hydrogen flow, and then the atmosphere was switched to a 100 kPa argon flow, and then 14 ° C. to 860 ° C. The temperature was increased at a rate of temperature increase of / min, and then the atmosphere was switched to a hydrogen gas flow of 100 kPa. Thereafter, while maintaining the temperature at 860 ° C., the flow was switched to Ar flow and maintained for 2 minutes to replace the inside of the heat treatment apparatus. Next, the Ar gas is stopped and the heat treatment apparatus is evacuated by a vacuum pump, and the hydrogen pressure in the heat treatment apparatus is adjusted to 4.0 kPa by adjusting the exhaust speed of hydrogen generated from the green compact as in the condition S7 in Table 7. While maintaining for 60 minutes, the DR treatment step was performed. Subsequently, it hold | maintained for 60 minutes in the argon air pressure-reduced to 5.3 kPa with 860 degreeC, and the grain boundary phase formation heat treatment process was performed. Then, it cooled to room temperature in 100 kPa argon flow, and the sample was produced.
作製したサンプルの寸法と重量から密度を計算すると、6.19〜6.39g/cm3であった。 It was 6.19-6.39 g / cm < 3 > when the density was computed from the dimension and weight of the produced sample.
作製したサンプルに対して3.2MA/mのパルス磁界で着磁した後、磁気特性をBHトレーサー(装置名:MTR−1412(メトロン技研社製))で測定した。結果を表10に示す。表10からわかるようにいずれの組成においても高いHcJが得られていることがわかる。 The prepared sample was magnetized with a pulse magnetic field of 3.2 MA / m, and then the magnetic properties were measured with a BH tracer (device name: MTR-1412 (manufactured by Metron Engineering Co., Ltd.)). The results are shown in Table 10. As can be seen from Table 10, high H cJ is obtained in any composition.
(実験例4)DR雰囲気制御(拡散材混合量)
まず、表1の組成を有するR−T−B系合金B6をストリップキャスト法で作製した。得られた合金を水素吸蔵崩壊法によって粒径425μm以下の粉末に粗粉砕した後、ジェットミルを用いて粗粉末を微粉砕し、50%体積中心粒径4.6μmの微粉末を得た。なお、50%体積中心粒径は、レーザー回折式粒度分布測定装置(Sympatec社製、HEROS/RODOS、以下すべて同じ装置で測定)によって測定した。
(Experimental example 4) DR atmosphere control (mixing amount of diffusion material)
First, an RTB-based alloy B6 having the composition shown in Table 1 was produced by strip casting. The obtained alloy was coarsely pulverized to a powder having a particle size of 425 μm or less by the hydrogen storage / disintegration method, and then the coarse powder was finely pulverized using a jet mill to obtain a fine powder having a 50% volume center particle size of 4.6 μm. The 50% volume center particle size was measured by a laser diffraction particle size distribution measuring device (manufactured by Sympatec, HEROS / RODOS, hereinafter all measured by the same device).
また、表2の組成を有する拡散材D5をメルトスピニング法で作製した。具体的には、オリフィス径0.8mmφの石英ノズル中で合金を溶解し、ロール周速度20m/sで回転する銅ロールに噴射し、リボン状の合金を得た。この合金を水素ガス流気中で400℃まで昇温し水素を吸蔵させた後、機械粉砕により粉砕し、目開き53μmのメッシュを用いて分級し、大きさが53μm以下の拡散材粉末を得た。なお、得られた拡散材粉末の粒径は明らかに1μm以上であることを、電子顕微鏡観察によって確認した。得られたR−T−B系合金粉末および拡散材粉末を、メノウ乳鉢を用い表11に示す混合比で混合し、混合粉末M9〜M18を得た。また比較例として拡散材粉末を混合していないR−T−B系合金粉末B6のみの粉末も用意した。 Moreover, the diffusing material D5 having the composition shown in Table 2 was produced by a melt spinning method. Specifically, the alloy was melted in a quartz nozzle having an orifice diameter of 0.8 mmφ and sprayed onto a copper roll rotating at a roll peripheral speed of 20 m / s to obtain a ribbon-like alloy. This alloy was heated to 400 ° C. in a hydrogen gas stream, occluded with hydrogen, pulverized by mechanical pulverization, and classified using a mesh having an opening of 53 μm to obtain a diffusing material powder having a size of 53 μm or less. It was. In addition, it confirmed by observation with an electron microscope that the particle size of the obtained diffusing material powder was clearly 1 μm or more. The obtained RTB-based alloy powder and diffusing material powder were mixed at a mixing ratio shown in Table 11 using an agate mortar to obtain mixed powders M9 to M18. As a comparative example, a powder of only an RTB-based alloy powder B6 not mixed with a diffusing material powder was also prepared.
次に、この混合粉末をプレス装置の金型に充填し、1.2MA/mの磁界中において、磁界と直角方向に32MPaの圧力を印加して圧粉体を作製した。圧粉体の密度は、寸法と重量に基づいて計算すると、4.2〜4.5g/cm3であった。 Next, this mixed powder was filled in a mold of a press machine, and a green compact was produced by applying a pressure of 32 MPa in a direction perpendicular to the magnetic field in a magnetic field of 1.2 MA / m. The density of the green compact was calculated to be 4.2 to 4.5 g / cm 3 based on the size and weight.
次に、圧粉体に対して前述のHDDR処理を行った。具体的には、圧粉体を100kPaの水素流気中で600℃まで14℃/minの昇温速度で昇温し、その後雰囲気を100kPaのアルゴン流気に切り替えた後、860℃まで14℃/minの昇温速度で昇温し、次いで雰囲気を100kPaの水素流気に切り替えた後、860℃を120分保持してHD処理工程を行った。その後、860℃に保持したままAr流気に切り替えて2分保持して熱処理装置内を置換した。次いでArガスを止めて熱処理装置内を真空ポンプで排気し、表4の条件S1と同様に圧粉体から発生する水素の排気速度を調整して熱処理装置内の水素圧力を4.0kPaに調整しながら60分保持し、DR処理工程を行った。次いで860℃のまま5.3kPaに減圧したアルゴン流気中で10分保持し、粒界相形成熱処理工程を行った。その後、100kPaのアルゴン流気中で室温まで冷却し、サンプルを作製した。 Next, the above-mentioned HDDR process was performed on the green compact. Specifically, the green compact was heated to 600 ° C. at a rate of 14 ° C./min in a 100 kPa hydrogen flow, and then the atmosphere was switched to a 100 kPa argon flow, and then 14 ° C. to 860 ° C. The temperature was increased at a rate of temperature increase of / min, and then the atmosphere was switched to a hydrogen gas flow of 100 kPa. Thereafter, while maintaining the temperature at 860 ° C., the flow was switched to Ar flow and maintained for 2 minutes to replace the inside of the heat treatment apparatus. Next, the Ar gas is stopped and the heat treatment apparatus is evacuated by a vacuum pump, and the hydrogen pressure in the heat treatment apparatus is adjusted to 4.0 kPa by adjusting the exhaust speed of hydrogen generated from the green compact as in the condition S1 of Table 4. While maintaining for 60 minutes, the DR treatment step was performed. Subsequently, it hold | maintained for 10 minutes in the argon air pressure-reduced to 5.3 kPa with 860 degreeC, and the grain boundary phase formation heat treatment process was performed. Then, it cooled to room temperature in 100 kPa argon flow, and the sample was produced.
作製したサンプルの寸法と重量から密度を計算すると、5.58〜5.67g/cm3であった。 When the density was calculated from the size and weight of the prepared sample, it was 5.58 to 5.67 g / cm 3 .
作製したサンプルに対して3.2MA/mのパルス磁界で着磁した後、磁気特性をBHトレーサー(装置名:MTR−1412(メトロン技研社製))で測定した。結果を表12に示す。表12からわかるようにいずれの混合粉末においても従来よりも高い保磁力を有する多孔質磁石が得られているが、特に重量比で(R−T−B系合金粉末):(拡散材粉末)=m:1(5≦m≦100)の場合に良好な角型性と高い保磁力を有する多孔質磁石が得られている。 The prepared sample was magnetized with a pulse magnetic field of 3.2 MA / m, and then the magnetic properties were measured with a BH tracer (device name: MTR-1412 (manufactured by Metron Engineering Co., Ltd.)). The results are shown in Table 12. As can be seen from Table 12, a porous magnet having a higher coercive force than any of the conventional powders is obtained in any of the mixed powders, but in particular by weight ratio (RTB-based alloy powder): (diffusing material powder) = M: 1 (5 ≦ m ≦ 100), a porous magnet having good squareness and high coercive force is obtained.
(実験例5)DR雰囲気制御(拡散材組成の違い)
まず、表1の組成を有するR−T−B系合金B6をストリップキャスト法で作製した。得られた合金を水素吸蔵崩壊法によって粒径425μm以下の粉末に粗粉砕した後、ジェットミルを用いて粗粉末を微粉砕し、50%体積中心粒径4.2μmの微粉末を得た。なお、50%体積中心粒径は、レーザー回折式粒度分布測定装置(Sympatec社製、HEROS/RODOS、以下すべて同じ装置で測定)によって測定した。
(Experimental example 5) DR atmosphere control (diffuser material composition difference)
First, an RTB-based alloy B6 having the composition shown in Table 1 was produced by strip casting. The obtained alloy was coarsely pulverized to a powder having a particle size of 425 μm or less by the hydrogen storage / disintegration method, and then the coarse powder was finely pulverized using a jet mill to obtain a fine powder having a 50% volume center particle size of 4.2 μm. The 50% volume center particle size was measured by a laser diffraction particle size distribution measuring device (manufactured by Sympatec, HEROS / RODOS, hereinafter all measured by the same device).
また、表2の組成を有する拡散材D1〜D4、D6〜D13をメルトスピニング法で作製した。具体的には、オリフィス径0.8mmφの石英ノズル中で合金を溶解し、ロール周速度20m/sで回転する銅ロールに噴射し、リボン状の合金を得た。これらの合金を水素ガス流気中で400℃まで昇温し水素を吸蔵させた後、機械粉砕により粉砕し、目開き53μmのメッシュを用いて分級し、大きさが53μm以下の拡散材粉末を得た。ただし、D8は粉砕性が悪かったため150μmのメッシュを用いて分級し、大きさが53μm以下の拡散材粉末を得た。なお、得られた拡散材粉末の粒径は明らかに1μm以上であることを、電子顕微鏡観察によって確認した。得られたR−T−B系合金粉末および拡散材粉末を、メノウ乳鉢を用い表13に示す混合比で混合し、混合粉末M19〜M30を得た。 Moreover, the diffusing materials D1 to D4 and D6 to D13 having the compositions shown in Table 2 were produced by the melt spinning method. Specifically, the alloy was melted in a quartz nozzle having an orifice diameter of 0.8 mmφ and sprayed onto a copper roll rotating at a roll peripheral speed of 20 m / s to obtain a ribbon-like alloy. These alloys were heated up to 400 ° C. in a hydrogen gas stream, occluded with hydrogen, pulverized by mechanical pulverization, classified using a mesh having an opening of 53 μm, and diffusing material powder having a size of 53 μm or less was obtained. Obtained. However, since D8 was poor in pulverizability, it was classified using a 150 μm mesh to obtain a diffusing material powder having a size of 53 μm or less. In addition, it confirmed by observation with an electron microscope that the particle size of the obtained diffusing material powder was clearly 1 μm or more. The obtained RTB-based alloy powder and diffusing material powder were mixed using an agate mortar at a mixing ratio shown in Table 13 to obtain mixed powders M19 to M30.
次に、この混合粉末をプレス装置の金型に充填し、1.2MA/mの磁界中において、磁界と直角方向に32MPaの圧力を印加して圧粉体を作製した。圧粉体の密度は、寸法と重量に基づいて計算すると、4.2〜4.3g/cm3であった。 Next, this mixed powder was filled in a mold of a press machine, and a green compact was produced by applying a pressure of 32 MPa in a direction perpendicular to the magnetic field in a magnetic field of 1.2 MA / m. The density of the green compact was 4.2 to 4.3 g / cm 3 when calculated based on dimensions and weight.
次に、圧粉体に対して前述のHDDR処理を行った。具体的には、圧粉体を100kPaの水素流気中で600℃まで14℃/minの昇温速度で昇温し、その後雰囲気を100kPaのアルゴン流気に切り替えた後、860℃まで14℃/minの昇温速度で昇温し、次いで雰囲気を100kPaの水素流気に切り替えた後、860℃を120分保持してHD処理工程を行った。その後、860℃に保持したままAr流気に切り替えて2分保持して熱処理装置内を置換した。次いでArガスを止めて熱処理装置内を真空ポンプで排気し、表4の条件S1と同様に圧粉体から発生する水素の排気速度を調整して熱処理装置内の水素圧力を4.0kPaに調整しながら60分保持し、DR処理工程を行った。次いで860℃のまま5.3kPaに減圧したアルゴン流気中で10分保持し、粒界相熱処理工程を行った。その後、100kPaのアルゴン流気中で室温まで冷却し、サンプルを作製した。作製したサンプルの寸法と重量から密度を計算すると、4.58〜5.67g/cm3であった。 Next, the above-mentioned HDDR process was performed on the green compact. Specifically, the green compact was heated to 600 ° C. at a rate of 14 ° C./min in a 100 kPa hydrogen flow, and then the atmosphere was switched to a 100 kPa argon flow, and then 14 ° C. to 860 ° C. The temperature was increased at a rate of temperature increase of / min, and then the atmosphere was switched to a hydrogen gas flow of 100 kPa, and then the HD treatment step was performed while maintaining 860 ° C. for 120 minutes. Thereafter, while maintaining the temperature at 860 ° C., the flow was switched to Ar flow and maintained for 2 minutes to replace the inside of the heat treatment apparatus. Next, the Ar gas is stopped and the heat treatment apparatus is evacuated by a vacuum pump, and the hydrogen pressure in the heat treatment apparatus is adjusted to 4.0 kPa by adjusting the exhaust speed of hydrogen generated from the green compact as in the condition S1 of Table 4. While maintaining for 60 minutes, the DR treatment step was performed. Subsequently, it hold | maintained for 10 minutes in the argon air pressure-reduced to 5.3 kPa with 860 degreeC, and performed the grain-boundary-phase heat processing process. Then, it cooled to room temperature in 100 kPa argon flow, and the sample was produced. When the density was calculated from the size and weight of the prepared sample, it was 4.58 to 5.67 g / cm 3 .
作製したサンプルに対して3.2MA/mのパルス磁界で着磁した後、磁気特性をBHトレーサー(装置名:MTR−1412(メトロン技研社製))で測定した。結果を表14に示す。表14からわかるように拡散材における希土類元素R’の組成比率が20原子%以上100原子%以下の場合に、良好な角型性と高い保磁力を有する多孔質磁石が得られている。さらに30原子%以上98原子%以下である場合により良好な角型性と高い保磁力を有する多孔質磁石が得られており、60原子%以上90原子%以下である場合にさらに良好な角型性と高い保磁力を有する多孔質磁石が得られている。また、M元素にGa、Fe、Coを用いた場合やR’元素にPrを用いた場合でも良好な角型性と高い保磁力を有する多孔質磁石が得られている。 The prepared sample was magnetized with a pulse magnetic field of 3.2 MA / m, and then the magnetic properties were measured with a BH tracer (device name: MTR-1412 (manufactured by Metron Engineering Co., Ltd.)). The results are shown in Table 14. As can be seen from Table 14, when the composition ratio of the rare earth element R ′ in the diffusing material is 20 atomic% or more and 100 atomic% or less, a porous magnet having good squareness and high coercive force is obtained. Furthermore, a porous magnet having better squareness and high coercive force is obtained when the content is 30 atomic percent or more and 98 atomic percent or less, and when the content is 60 atomic percent or more and 90 atomic percent or less, an even better rectangular shape is obtained. Porous magnets having high properties and high coercive force have been obtained. Further, even when Ga, Fe, or Co is used as the M element, or when Pr is used as the R ′ element, a porous magnet having good squareness and high coercive force is obtained.
(実験例6)DR雰囲気制御(拡散材水素吸蔵なし)
まず、表1の組成を有するR−T−B系合金B8をストリップキャスト法で作製した。得られた合金を水素吸蔵崩壊法によって粒径425μm以下の粉末に粗粉砕した後、ジェットミルを用いて粗粉末を微粉砕し、50%体積中心粒径4.2μmの微粉末を得た。なお、50%体積中心粒径は、レーザー回折式粒度分布測定装置(Sympatec社製、HEROS/RODOS、以下すべて同じ装置で測定)によって測定した。
(Experimental example 6) DR atmosphere control (without diffusion material hydrogen storage)
First, an RTB-based alloy B8 having the composition shown in Table 1 was produced by strip casting. The obtained alloy was coarsely pulverized to a powder having a particle size of 425 μm or less by the hydrogen storage / disintegration method, and then the coarse powder was finely pulverized using a jet mill to obtain a fine powder having a 50% volume center particle size of 4.2 μm. The 50% volume center particle size was measured by a laser diffraction particle size distribution measuring device (manufactured by Sympatec, HEROS / RODOS, hereinafter all measured by the same device).
また、表2の組成を有する拡散材D5をメルトスピニング法で作製した。具体的には、オリフィス径0.8mmφの石英ノズル中で合金を溶解し、ロール周速度20m/sで回転する銅ロールに噴射し、リボン状の合金を得た。リボン状の合金を機械粉砕により粉砕し、目開き150μmのメッシュを用いて分級し、大きさが150μm以下の拡散材粉末を得た。なお、得られた拡散材粉末の粒径は明らかに1μm以上であることを、電子顕微鏡観察によって確認した。得られたR−T−B系合金粉末および拡散材粉末を、メノウ乳鉢を用い表15に示す混合比で混合し、混合粉末M31を得た。 Moreover, the diffusing material D5 having the composition shown in Table 2 was produced by a melt spinning method. Specifically, the alloy was melted in a quartz nozzle having an orifice diameter of 0.8 mmφ and sprayed onto a copper roll rotating at a roll peripheral speed of 20 m / s to obtain a ribbon-like alloy. The ribbon-like alloy was pulverized by mechanical pulverization, and classified using a mesh having an opening of 150 μm to obtain a diffusing material powder having a size of 150 μm or less. In addition, it confirmed by observation with an electron microscope that the particle size of the obtained diffusing material powder was clearly 1 μm or more. The obtained RTB-based alloy powder and diffusing material powder were mixed using an agate mortar at a mixing ratio shown in Table 15 to obtain mixed powder M31.
次に、この混合粉末をプレス装置の金型に充填し、1.2MA/mの磁界中において、磁界と直角方向に32MPaの圧力を印加して圧粉体を作製した。圧粉体の密度は、寸法と重量に基づいて計算すると、4.2g/cm3であった。 Next, this mixed powder was filled in a mold of a press machine, and a green compact was produced by applying a pressure of 32 MPa in a direction perpendicular to the magnetic field in a magnetic field of 1.2 MA / m. The density of the green compact was 4.2 g / cm 3 when calculated based on dimensions and weight.
次に、圧粉体に対して前述のHDDR処理を行った。具体的には、圧粉体を100kPaの水素流気中で600℃まで14℃/minの昇温速度で昇温し、その後雰囲気を100kPaのアルゴン流気に切り替えた後、860℃まで14℃/minの昇温速度で昇温し、次いで雰囲気を100kPaの水素流気に切り替えた後、860℃を120分保持してHD処理工程を行った。その後、860℃に保持したままAr流気に切り替えて2分保持して熱処理装置内を置換した。次いでArガスを止めて熱処理装置内を真空ポンプで排気し、表4の条件S1と同様に圧粉体から発生する水素の排気速度を調整して熱処理装置内の水素圧力を4.0kPaに調整しながら60分保持し、DR処理工程を行った。次いで860℃のまま5.3kPaに減圧したアルゴン流気中で10分保持し、粒界相形成熱処理工程を行った。その後、100kPaのアルゴン流気中で室温まで冷却し、サンプルを作製した。作製したサンプルの寸法と重量から密度を計算すると、5.79g/cm3であった。 Next, the above-mentioned HDDR process was performed on the green compact. Specifically, the green compact was heated to 600 ° C. at a rate of 14 ° C./min in a 100 kPa hydrogen flow, and then the atmosphere was switched to a 100 kPa argon flow, and then 14 ° C. to 860 ° C. The temperature was increased at a rate of temperature increase of / min, and then the atmosphere was switched to a hydrogen gas flow of 100 kPa, and then the HD treatment step was performed while maintaining 860 ° C. for 120 minutes. Thereafter, while maintaining the temperature at 860 ° C., the flow was switched to Ar flow and maintained for 2 minutes to replace the inside of the heat treatment apparatus. Next, the Ar gas is stopped and the heat treatment apparatus is evacuated by a vacuum pump, and the hydrogen pressure in the heat treatment apparatus is adjusted to 4.0 kPa by adjusting the exhaust speed of hydrogen generated from the green compact as in the condition S1 of Table 4. While maintaining for 60 minutes, the DR treatment step was performed. Subsequently, it hold | maintained for 10 minutes in the argon air pressure-reduced to 5.3 kPa with 860 degreeC, and the grain boundary phase formation heat treatment process was performed. Then, it cooled to room temperature in 100 kPa argon flow, and the sample was produced. When the density was calculated from the size and weight of the prepared sample, it was 5.79 g / cm 3 .
作製したサンプルに対して3.2MA/mのパルス磁界で着磁した後、磁気特性をBHトレーサー(装置名:MTR−1412(メトロン技研社製))で測定した。結果を表16に示す。表16からわかるように水素吸蔵させていない拡散材を用いた場合でも良好な角型性と高い保磁力を有する多孔質磁石が得られている。 The prepared sample was magnetized with a pulse magnetic field of 3.2 MA / m, and then the magnetic properties were measured with a BH tracer (device name: MTR-1412 (manufactured by Metron Engineering Co., Ltd.)). The results are shown in Table 16. As can be seen from Table 16, a porous magnet having a good squareness and a high coercive force is obtained even when a diffusion material not occluded by hydrogen is used.
(実験例7)Ar中昇温
まず、表1の組成を有するR−T−B系合金B8をストリップキャスト法で作製した。得られた合金を水素吸蔵崩壊法によって粒径425μm以下の粉末に粗粉砕した後、ジェットミルを用いて粗粉末を微粉砕し、50%体積中心粒径4.6μmの微粉末を得た。なお、50%体積中心粒径は、レーザー回折式粒度分布測定装置(Sympatec社製、HEROS/RODOS、以下すべて同じ装置で測定)によって測定した。
(Experimental Example 7) Temperature rise in Ar First, an RTB-based alloy B8 having the composition shown in Table 1 was produced by a strip cast method. The obtained alloy was coarsely pulverized to a powder having a particle size of 425 μm or less by the hydrogen storage / disintegration method, and then the coarse powder was finely pulverized using a jet mill to obtain a fine powder having a 50% volume center particle size of 4.6 μm. The 50% volume center particle size was measured by a laser diffraction particle size distribution measuring device (manufactured by Sympatec, HEROS / RODOS, hereinafter all measured by the same device).
また、表2の組成を有する拡散材D5をメルトスピニング法で作製した。具体的には、オリフィス径0.8mmφの石英ノズル中で合金を溶解し、ロール周速度20m/sで回転する銅ロールに噴射し、リボン状の合金を得た。この合金を水素ガス流気中で400℃まで昇温し水素を吸蔵させた後、機械粉砕により粉砕し、目開き53μmのメッシュを用いて分級し、大きさが53μm以下の拡散材粉末を得た。なお、得られた拡散材粉末の粒径は明らかに1μm以上であることを、電子顕微鏡観察によって確認した。得られたR−T−B系合金粉末および拡散材粉末を、メノウ乳鉢を用い表17に示す混合比で混合し、混合粉末M32を得た。 Moreover, the diffusing material D5 having the composition shown in Table 2 was produced by a melt spinning method. Specifically, the alloy was melted in a quartz nozzle having an orifice diameter of 0.8 mmφ and sprayed onto a copper roll rotating at a roll peripheral speed of 20 m / s to obtain a ribbon-like alloy. This alloy was heated to 400 ° C. in a hydrogen gas stream, occluded with hydrogen, pulverized by mechanical pulverization, and classified using a mesh having an opening of 53 μm to obtain a diffusing material powder having a size of 53 μm or less. It was. In addition, it confirmed by observation with an electron microscope that the particle size of the obtained diffusing material powder was clearly 1 μm or more. The obtained RTB-based alloy powder and diffusing material powder were mixed using an agate mortar at a mixing ratio shown in Table 17 to obtain mixed powder M32.
次に、この混合粉末をプレス装置の金型に充填し、1.2MA/mの磁界中において、磁界と直角方向に32MPaの圧力を印加して圧粉体を作製した。圧粉体の密度は、寸法と重量に基づいて計算すると、4.2g/cm3であった。 Next, this mixed powder was filled in a mold of a press machine, and a green compact was produced by applying a pressure of 32 MPa in a direction perpendicular to the magnetic field in a magnetic field of 1.2 MA / m. The density of the green compact was 4.2 g / cm 3 when calculated based on dimensions and weight.
次に、圧粉体に対して前述のHDDR処理を行った。具体的には、圧粉体を100kPaのアルゴン流気中で860℃まで14℃/minの昇温速度で昇温し、次いで雰囲気を100kPaの水素流気に切り替えた後、860℃を120分保持してHD処理工程を行った。その後、860℃に保持したままAr流気に切り替えて2分保持して熱処理装置内を置換した。次いでArガスを止めて熱処理装置内を真空ポンプで排気し、表4の条件S1と同様に圧粉体から発生する水素の排気速度を調整して熱処理装置内の水素圧力を4.0kPaに調整しながら60分保持し、DR処理工程を行った。次いで860℃のまま5.3kPaに減圧したアルゴン流気中で10分保持し、粒界相形成熱処理工程を行った。その後、100kPaのアルゴン流気中で室温まで冷却し、サンプルを作製した。 Next, the above-mentioned HDDR process was performed on the green compact. Specifically, the green compact was heated to 860 ° C. at a heating rate of 14 ° C./min in a 100 kPa argon flow, and then the atmosphere was switched to a 100 kPa hydrogen flow, and then 860 ° C. was maintained for 120 minutes. The HD treatment process was performed while holding. Thereafter, while maintaining the temperature at 860 ° C., the flow was switched to Ar flow and maintained for 2 minutes to replace the inside of the heat treatment apparatus. Next, the Ar gas is stopped and the heat treatment apparatus is evacuated by a vacuum pump, and the hydrogen pressure in the heat treatment apparatus is adjusted to 4.0 kPa by adjusting the exhaust speed of hydrogen generated from the green compact as in the condition S1 of Table 4. While maintaining for 60 minutes, the DR treatment step was performed. Subsequently, it hold | maintained for 10 minutes in the argon air pressure-reduced to 5.3 kPa with 860 degreeC, and the grain boundary phase formation heat treatment process was performed. Then, it cooled to room temperature in 100 kPa argon flow, and the sample was produced.
作製したサンプルの寸法と重量から密度を計算すると、5.79g/cm3であった。 When the density was calculated from the size and weight of the prepared sample, it was 5.79 g / cm 3 .
作製したサンプルに対して3.2MA/mのパルス磁界で着磁した後、磁気特性をBHトレーサー(装置名:MTR−1412(メトロン技研社製))で測定した。結果を表18に示す。表18からわかるようにアルゴン雰囲気で昇温した場合でも良好な角型性と高い保磁力を有する多孔質磁石が得られている。 The prepared sample was magnetized with a pulse magnetic field of 3.2 MA / m, and then the magnetic properties were measured with a BH tracer (device name: MTR-1412 (manufactured by Metron Engineering Co., Ltd.)). The results are shown in Table 18. As can be seen from Table 18, even when the temperature is raised in an argon atmosphere, a porous magnet having good squareness and high coercive force is obtained.
(実験例8)水素吸蔵なし+Ar中昇温
実験例6で作製した混合粉末M31と同様の混合粉末を作製した。次に、この混合粉末をプレス装置の金型に充填し、1.2MA/mの磁界中において、磁界と直角方向に32MPaの圧力を印加して圧粉体を作製した。圧粉体の密度は、寸法と重量に基づいて計算すると、4.2g/cm3であった。
(Experimental example 8) No hydrogen occlusion + temperature rise in Ar A mixed powder similar to the mixed powder M31 produced in Experimental Example 6 was produced. Next, this mixed powder was filled in a mold of a press machine, and a green compact was produced by applying a pressure of 32 MPa in a direction perpendicular to the magnetic field in a magnetic field of 1.2 MA / m. The density of the green compact was 4.2 g / cm 3 when calculated based on dimensions and weight.
次に、圧粉体に対して前述のHDDR処理を行った。具体的には、圧粉体を100kPaのアルゴン流気中で860℃まで14℃/minの昇温速度で昇温し、次いで雰囲気を100kPaの水素流気に切り替えた後、860℃を120分保持してHD処理工程を行った。その後、860℃に保持したままAr流気に切り替えて2分保持して熱処理装置内を置換した。次いでArガスを止めて熱処理装置内を真空ポンプで排気し、表4の条件S1と同様に圧粉体から発生する水素の排気速度を調整して熱処理装置内の水素圧力を4.0kPaに調整しながら60分保持し、DR処理工程を行った。次いで860℃のまま5.3kPaに減圧したアルゴン流気中で10分保持し、粒界相形成熱処理工程を行った。その後、100kPaのアルゴン流気中で室温まで冷却し、サンプルを作製した。 Next, the above-mentioned HDDR process was performed on the green compact. Specifically, the green compact was heated to 860 ° C. at a heating rate of 14 ° C./min in a 100 kPa argon flow, and then the atmosphere was switched to a 100 kPa hydrogen flow, and then 860 ° C. was maintained for 120 minutes. The HD treatment process was performed while holding. Thereafter, while maintaining the temperature at 860 ° C., the flow was switched to Ar flow and maintained for 2 minutes to replace the inside of the heat treatment apparatus. Next, the Ar gas is stopped and the heat treatment apparatus is evacuated by a vacuum pump, and the hydrogen pressure in the heat treatment apparatus is adjusted to 4.0 kPa by adjusting the exhaust speed of hydrogen generated from the green compact as in the condition S1 of Table 4. While maintaining for 60 minutes, the DR treatment step was performed. Subsequently, it hold | maintained for 10 minutes in the argon air pressure-reduced to 5.3 kPa with 860 degreeC, and the grain boundary phase formation heat treatment process was performed. Then, it cooled to room temperature in 100 kPa argon flow, and the sample was produced.
作製したサンプルの寸法と重量から密度を計算すると、6.11g/cm3であった。 When the density was calculated from the size and weight of the prepared sample, it was 6.11 g / cm 3 .
作製したサンプルに対して3.2MA/mのパルス磁界で着磁した後、磁気特性をBHトレーサー(装置名:MTR−1412(メトロン技研社製))で測定した。結果を表19に示す。表19からわかるように実験例6のようにHDDR処理の昇温時に600℃まで水素雰囲気で昇温した場合や、実験例7のように水素吸蔵させた拡散材を用いた場合に比べて保磁力は低くなるものの、良好な角型性と高い保磁力を有する多孔質磁石が得られている。 The prepared sample was magnetized with a pulse magnetic field of 3.2 MA / m, and then the magnetic properties were measured with a BH tracer (device name: MTR-1412 (manufactured by Metron Engineering Co., Ltd.)). The results are shown in Table 19. As can be seen from Table 19, compared to the case where the temperature was raised to 600 ° C. in the hydrogen atmosphere when the HDDR treatment was heated, as in Experimental Example 6, or the case where a diffusing material with hydrogen storage was used as in Experimental Example 7. Although the magnetic force is low, a porous magnet having good squareness and high coercive force has been obtained.
(実験例9)DR雰囲気制御(制御時間変化)
実験例1で作製した混合粉末M2と同様の混合粉末を作製した。次に、この混合粉末をプレス装置の金型に充填し、1.2MA/mの磁界中において、磁界と直角方向に32MPaの圧力を印加して圧粉体を作製した。圧粉体の密度は、寸法と重量に基づいて計算すると、4.2g/cm3であった。
(Experimental example 9) DR atmosphere control (control time change)
A mixed powder similar to the mixed powder M2 prepared in Experimental Example 1 was prepared. Next, this mixed powder was filled in a mold of a press machine, and a green compact was produced by applying a pressure of 32 MPa in a direction perpendicular to the magnetic field in a magnetic field of 1.2 MA / m. The density of the green compact was 4.2 g / cm 3 when calculated based on dimensions and weight.
次に、圧粉体に対して前述のHDDR処理を行った。具体的には、圧粉体を100kPaの水素流気中で600℃まで14℃/minの昇温速度で昇温し、その後雰囲気を100kPaのアルゴン流気に切り替えた後、860℃まで14℃/minの昇温速度で昇温し、次いで雰囲気を100kPaの水素流気に切り替えた後、860℃を120分保持してHD処理工程を行った。その後、860℃に保持したままAr流気に切り替えて2分保持して熱処理装置内を置換した。次いでArガスを止めて熱処理装置内を真空ポンプで排気し、表20に示すように圧粉体から発生する水素の排気速度を調整して熱処理装置内の水素圧力を4.0kPaに調整しながら15〜180分保持し、DR処理工程を行った。次いで860℃のまま5.3kPaに減圧したアルゴン流気中で60分保持し、粒界相形成熱処理工程を行った。その後、100kPaのアルゴン流気中で室温まで冷却し、サンプルを作製した。 Next, the above-mentioned HDDR process was performed on the green compact. Specifically, the green compact was heated to 600 ° C. at a rate of 14 ° C./min in a 100 kPa hydrogen flow, and then the atmosphere was switched to a 100 kPa argon flow, and then 14 ° C. to 860 ° C. The temperature was increased at a rate of temperature increase of / min, and then the atmosphere was switched to a hydrogen gas flow of 100 kPa. Thereafter, while maintaining the temperature at 860 ° C., the flow was switched to Ar flow and maintained for 2 minutes to replace the inside of the heat treatment apparatus. Next, the Ar gas was stopped and the heat treatment apparatus was evacuated with a vacuum pump. As shown in Table 20, while adjusting the exhaust speed of hydrogen generated from the green compact and adjusting the hydrogen pressure in the heat treatment apparatus to 4.0 kPa, Holding for 15 to 180 minutes, the DR treatment step was performed. Subsequently, it hold | maintained for 60 minutes in the argon air pressure-reduced to 5.3 kPa with 860 degreeC, and the grain boundary phase formation heat treatment process was performed. Then, it cooled to room temperature in 100 kPa argon flow, and the sample was produced.
作製したサンプルの寸法と重量から密度を計算すると、6.03〜6.25g/cm3であった。 When the density was calculated from the size and weight of the prepared sample, it was 6.03 to 6.25 g / cm 3 .
作製したサンプルに対して3.2MA/mのパルス磁界で着磁した後、磁気特性をBHトレーサー(装置名:MTR−1412(メトロン技研社製))で測定した。結果を表21に示す。表21からわかるようにいずれのサンプルも良好な磁気特性が得られている The prepared sample was magnetized with a pulse magnetic field of 3.2 MA / m, and then the magnetic properties were measured with a BH tracer (device name: MTR-1412 (manufactured by Metron Engineering Co., Ltd.)). The results are shown in Table 21. As can be seen from Table 21, all the samples have good magnetic properties.
(実験例10)DR雰囲気制御(真空時間変化)
実験例1で作製した混合粉末M2と同様の混合粉末を作製した。次に、この混合粉末をプレス装置の金型に充填し、1.2MA/mの磁界中において、磁界と直角方向に32MPaの圧力を印加して圧粉体を作製した。圧粉体の密度は、寸法と重量に基づいて計算すると、4.2〜4.3g/cm3であった。
(Experimental example 10) DR atmosphere control (change in vacuum time)
A mixed powder similar to the mixed powder M2 prepared in Experimental Example 1 was prepared. Next, this mixed powder was filled in a mold of a press machine, and a green compact was produced by applying a pressure of 32 MPa in a direction perpendicular to the magnetic field in a magnetic field of 1.2 MA / m. The density of the green compact was 4.2 to 4.3 g / cm 3 when calculated based on dimensions and weight.
次に、圧粉体に対して前述のHDDR処理を行った。具体的には、圧粉体を100kPaの水素流気中で600℃まで14℃/minの昇温速度で昇温し、その後雰囲気を100kPaのアルゴン流気に切り替えた後、860℃まで14℃/minの昇温速度で昇温し、次いで雰囲気を100kPaの水素流気に切り替えた後、860℃を120分保持してHD処理工程を行った。その後、860℃に保持したままAr流気に切り替えて2分保持して熱処理装置内を置換した。次いでArガスを止めて熱処理装置内を真空ポンプで排気し、表22に示すように圧粉体から発生する水素の排気速度を調整して熱処理装置内の水素圧力を4.0kPaに調整しながら60分保持し、DR処理工程を行った。次いで860℃のまま5.3kPaに減圧したアルゴン流気中で5〜60分保持し、粒界相形成熱処理工程を行った。その後、100kPaのアルゴン流気中で室温まで冷却し、サンプルを作製した。 Next, the above-mentioned HDDR process was performed on the green compact. Specifically, the green compact was heated to 600 ° C. at a rate of 14 ° C./min in a 100 kPa hydrogen flow, and then the atmosphere was switched to a 100 kPa argon flow, and then 14 ° C. to 860 ° C. The temperature was increased at a rate of temperature increase of / min, and then the atmosphere was switched to a hydrogen gas flow of 100 kPa. Thereafter, while maintaining the temperature at 860 ° C., the flow was switched to Ar flow and maintained for 2 minutes to replace the inside of the heat treatment apparatus. Next, the Ar gas was stopped and the inside of the heat treatment apparatus was evacuated with a vacuum pump. As shown in Table 22, while adjusting the exhaust speed of hydrogen generated from the green compact to adjust the hydrogen pressure in the heat treatment apparatus to 4.0 kPa. The DR treatment process was performed for 60 minutes. Subsequently, the grain boundary phase forming heat treatment step was performed by maintaining the pressure at 860 ° C. in an argon flow reduced to 5.3 kPa for 5 to 60 minutes. Then, it cooled to room temperature in 100 kPa argon flow, and the sample was produced.
作製したサンプルの寸法と重量から密度を計算すると、5.47〜6.10g/cm3であった。 It was 5.47-6.10 g / cm < 3 > when the density was computed from the dimension and weight of the produced sample.
作製したサンプルに対して3.2MA/mのパルス磁界で着磁した後、磁気特性をBHトレーサー(装置名:MTR−1412(メトロン技研社製))で測定した。結果を表23に示す。表23からわかるようにいずれのサンプルも良好な磁気特性が得られている The prepared sample was magnetized with a pulse magnetic field of 3.2 MA / m, and then the magnetic properties were measured with a BH tracer (device name: MTR-1412 (manufactured by Metron Engineering Co., Ltd.)). The results are shown in Table 23. As can be seen from Table 23, all the samples have good magnetic properties.
(実験例11)DR雰囲気制御試料のホットプレス
まず、表1の組成を有するR−T−B系合金B4、B9をストリップキャスト法で作製した。得られた合金を水素吸蔵崩壊法によって粒径425μm以下の粉末に粗粉砕した後、ジェットミルを用いて粗粉末を微粉砕し、50%体積中心粒径4.6μmの微粉末を得た。なお、50%体積中心粒径は、レーザー回折式粒度分布測定装置(Sympatec社製、HEROS/RODOS、以下すべて同じ装置で測定)によって測定した。
(Experimental Example 11) Hot Press of DR Atmosphere Control Sample First, RTB-based alloys B4 and B9 having the compositions shown in Table 1 were produced by strip casting. The obtained alloy was coarsely pulverized to a powder having a particle size of 425 μm or less by the hydrogen storage / disintegration method, and then the coarse powder was finely pulverized using a jet mill to obtain a fine powder having a 50% volume center particle size of 4.6 μm. The 50% volume center particle size was measured by a laser diffraction particle size distribution measuring device (manufactured by Sympatec, HEROS / RODOS, hereinafter all measured by the same device).
また、表2の組成を有する拡散材D5をメルトスピニング法で作製した。具体的には、オリフィス径0.8mmφの石英ノズル中で合金を溶解し、ロール周速度20m/sで回転する銅ロールに噴射し、リボン状の合金を得た。この合金を水素ガス流気中で400℃まで昇温し水素を吸蔵させた後、機械粉砕により粉砕し、目開き53μmのメッシュを用いて分級し、大きさが53μm以下の拡散材粉末を得た。なお、得られた拡散材粉末の粒径は明らかに1μm以上であることを、電子顕微鏡観察によって確認した。 Moreover, the diffusing material D5 having the composition shown in Table 2 was produced by a melt spinning method. Specifically, the alloy was melted in a quartz nozzle having an orifice diameter of 0.8 mmφ and sprayed onto a copper roll rotating at a roll peripheral speed of 20 m / s to obtain a ribbon-like alloy. This alloy was heated to 400 ° C. in a hydrogen gas stream, occluded with hydrogen, pulverized by mechanical pulverization, and classified using a mesh having an opening of 53 μm to obtain a diffusing material powder having a size of 53 μm or less. It was. In addition, it confirmed by observation with an electron microscope that the particle size of the obtained diffusing material powder was clearly 1 μm or more.
得られたR−T−B系合金粉末および拡散材粉末を、メノウ乳鉢を用い表24に示す混合比で混合し、混合粉末M33、M34を得た。 The obtained RTB-based alloy powder and diffusing material powder were mixed at the mixing ratio shown in Table 24 using an agate mortar to obtain mixed powders M33 and M34.
次に、この混合粉末をプレス装置の金型に充填し、1.2MA/mの磁界中において、磁界と直角方向に32MPaの圧力を印加して圧粉体を作製した。圧粉体の密度は、寸法と重量に基づいて計算すると、4.2〜4.3g/cm3であった。 Next, this mixed powder was filled in a mold of a press machine, and a green compact was produced by applying a pressure of 32 MPa in a direction perpendicular to the magnetic field in a magnetic field of 1.2 MA / m. The density of the green compact was 4.2 to 4.3 g / cm 3 when calculated based on dimensions and weight.
次に、圧粉体に対して前述のHDDR処理を行った。具体的には、圧粉体を100kPaの水素流気中で600℃まで14℃/minの昇温速度で昇温し、その後雰囲気を100kPaのアルゴン流気に切り替えた後、860℃まで14℃/minの昇温速度で昇温し、次いで雰囲気を100kPaの水素流気に切り替えた後、860℃を120分保持してHD処理工程を行った。その後、860℃に保持したままAr流気に切り替えて2分保持して熱処理装置内を置換した。次いでArガスを止めて熱処理装置内を真空ポンプで排気し、表4の条件S1と同様に圧粉体から発生する水素の排気速度を調整して熱処理装置内の水素圧力を4.0kPaに調整しながら60分保持し、DR処理工程を行った。次いで860℃のまま5.3kPaに減圧したアルゴン流気中で10分保持し、粒界相形成熱処理工程を行った。その後、100kPaのアルゴン流気中で室温まで冷却し、サンプルを作製した。 Next, the above-mentioned HDDR process was performed on the green compact. Specifically, the green compact was heated to 600 ° C. at a rate of 14 ° C./min in a 100 kPa hydrogen flow, and then the atmosphere was switched to a 100 kPa argon flow, and then 14 ° C. to 860 ° C. The temperature was increased at a rate of temperature increase of / min, and then the atmosphere was switched to a hydrogen gas flow of 100 kPa, and then the HD treatment step was performed while maintaining 860 ° C. for 120 minutes. Thereafter, while maintaining the temperature at 860 ° C., the flow was switched to Ar flow and maintained for 2 minutes to replace the inside of the heat treatment apparatus. Next, the Ar gas is stopped and the heat treatment apparatus is evacuated by a vacuum pump, and the hydrogen pressure in the heat treatment apparatus is adjusted to 4.0 kPa by adjusting the exhaust speed of hydrogen generated from the green compact as in the condition S1 of Table 4. While maintaining for 60 minutes, the DR treatment step was performed. Subsequently, it hold | maintained for 10 minutes in the argon air pressure-reduced to 5.3 kPa with 860 degreeC, and the grain boundary phase formation heat treatment process was performed. Then, it cooled to room temperature in 100 kPa argon flow, and the sample was produced.
作製したM33とM34の多孔質磁石の寸法と重量から密度を計算すると、それぞれ5.55g/cm3、5.85g/cm3であった。 If the dimensions and weight of the M33 and M34 of the porous magnet manufactured calculating the density, respectively 5.55 g / cm 3, it was 5.85 g / cm 3.
作製したM33とM34の多孔質磁石に対して3.2MA/mのパルス磁界で着磁した後、磁気特性をBHトレーサー(装置名:MTR−1412(メトロン技研社製))で測定した。結果を表25に示す。 After magnetizing the produced M33 and M34 porous magnets with a pulse magnetic field of 3.2 MA / m, the magnetic properties were measured with a BH tracer (device name: MTR-1412 (manufactured by Metron Engineering Co., Ltd.)). The results are shown in Table 25.
さらに多孔質磁石を超硬合金製の金型中で800℃に加熱し、50MPaの圧力で20分間の熱間圧縮処理(ホットプレス)を行うことにより、密度7.46g/cm3、7.47g/cm3の高密度磁石を得た。作製した高密度磁石に対して3.2MA/mのパルス磁界で着磁した後、磁気特性をBHトレーサー(装置名:MTR−1412(メトロン技研社製))で測定した。結果を表25に示す。表25からわかるようにいずれのサンプルも良好な磁気特性が得られ、特にホットプレスによってHDDR処理後に比べさらに磁気特性が向上していることが分かる。 Further, the porous magnet was heated to 800 ° C. in a cemented carbide mold and subjected to hot compression treatment (hot pressing) at a pressure of 50 MPa for 20 minutes, whereby a density of 7.46 g / cm 3 , 7. A high-density magnet of 47 g / cm 3 was obtained. After magnetizing the produced high-density magnet with a pulse magnetic field of 3.2 MA / m, the magnetic properties were measured with a BH tracer (device name: MTR-1412 (Metron Giken Co., Ltd.)). The results are shown in Table 25. As can be seen from Table 25, good magnetic properties can be obtained for all the samples, and it can be seen that the magnetic properties are further improved by the hot press as compared with the HDDR treatment.
本発明は、永久磁石を備える各種の機器および装置に適用され得る。また、本発明は、ハイブリッド自動車や電気自動車用の駆動モータなどでの使用にも利用され得る。 The present invention can be applied to various devices and apparatuses including permanent magnets. The present invention can also be used for use in a drive motor for a hybrid vehicle or an electric vehicle.
10 多孔質磁石
27 金型(ダイ)
28a 上パンチ
28b 下パンチ
30a 駆動部
30b 駆動部
26 チャンバ
10 Porous magnet 27 Mold (die)
28a Upper punch 28b Lower punch 30a Driving unit 30b Driving unit 26 Chamber
Claims (11)
前記混合粉末を成形して圧粉体を作製する工程と、
前記圧粉体に対し10kPa超500kPa以下の水素雰囲気中、または水素分圧が10kPa超500kPa以下の水素と不活性ガスの混合雰囲気中で650℃以上950℃未満の温度で熱処理を施し、それによって水素化および不均化反応を起こすHD処理工程と、
2kPa以上10kPa以下の水素雰囲気中で650℃以上950℃未満の温度で熱処理を施し、それによって脱水素および再結合反応を起こすDR処理工程と、
真空または不活性雰囲気中において650℃以上950℃未満の温度で熱処理を施し、それによってR2T14B相結晶粒の界面近傍に粒界相を形成させる粒界相形成熱処理工程と、
を含むR−T−B系多孔質磁石の製造方法。 An RTB-based alloy powder having a 50% volume center particle size of 1 μm or more and less than 10 μm and containing an R 2 T 14 B phase (R is a rare earth element containing 50 atomic% or more of Nd and / or Pr, T is Fe Or Fe and Co) and an R ′ metal (R ′ is one or more selected from Nd, Pr, Dy, and Tb) having a particle size of less than 150 μm or an R′-M alloy (M is Al, Ga, Co, Fe) A step of preparing a mixed powder with a powder of at least one selected from R, R ′ being 20 atomic percent or more and less than 100 atomic percent of the entire R′-M alloy;
Forming the green compact by forming the mixed powder;
The green compact is subjected to a heat treatment at a temperature of 650 ° C. or more and less than 950 ° C. in a hydrogen atmosphere of more than 10 kPa and 500 kPa or less, or in a mixed atmosphere of hydrogen and inert gas having a hydrogen partial pressure of more than 10 kPa and less than 500 kPa, thereby An HD treatment process that causes hydrogenation and disproportionation reactions;
A DR treatment step in which heat treatment is performed at a temperature of 650 ° C. or more and less than 950 ° C. in a hydrogen atmosphere of 2 kPa or more and 10 kPa or less, thereby causing dehydrogenation and recombination reaction;
A grain boundary phase forming heat treatment step in which heat treatment is performed at a temperature of 650 ° C. or more and less than 950 ° C. in a vacuum or an inert atmosphere, thereby forming a grain boundary phase in the vicinity of the interface of the R 2 T 14 B phase crystal grains;
The manufacturing method of the RTB type | system | group porous magnet containing this.
前記R−T−B系合金粉末を準備する工程と、
前記R’金属またはR’−M系合金の粉末を準備する工程と、
前記R−T−B系合金粉末と前記R’金属またはR’−M系合金の粉末とを混合する工程と、
を含む、請求項1から7のいずれかに記載のR−T−B系多孔質磁石の製造方法。 The step of preparing the mixed powder includes
Preparing the RTB-based alloy powder;
Preparing a powder of the R ′ metal or R′-M alloy;
Mixing the RTB alloy powder and the R ′ metal or R′-M alloy powder;
The manufacturing method of the RTB type | system | group porous magnet in any one of Claim 1 to 7 containing these.
R−T−B系合金とR’金属またはR’−M系合金との混合物を、50%体積中心粒径が1μm以上10μm未満の粉末に粉砕する工程を含む、請求項1から8のいずれかに記載のR−T−B系多孔質磁石の製造方法。 The step of preparing the mixed powder includes
The method according to any one of claims 1 to 8, comprising a step of pulverizing a mixture of an RTB alloy and an R ′ metal or an R′-M alloy into a powder having a 50% volume center particle size of 1 μm or more and less than 10 μm. A method for producing an RTB-based porous magnet according to claim 1.
熱間圧縮成型によって前記R−T−B系多孔質磁石の密度を高めて高密度磁石を形成する工程と、
を含む、R−T−B系高密度磁石の製造方法。 Preparing an RTB-based porous magnet produced by the production method according to claim 1;
Increasing the density of the RTB-based porous magnet by hot compression molding to form a high-density magnet;
The manufacturing method of the RTB type | system | group high density magnet containing this.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012160598A JP2014022596A (en) | 2012-07-19 | 2012-07-19 | Manufacturing method of rare earth-iron-boron-based porous magnet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012160598A JP2014022596A (en) | 2012-07-19 | 2012-07-19 | Manufacturing method of rare earth-iron-boron-based porous magnet |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2014022596A true JP2014022596A (en) | 2014-02-03 |
Family
ID=50197139
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012160598A Pending JP2014022596A (en) | 2012-07-19 | 2012-07-19 | Manufacturing method of rare earth-iron-boron-based porous magnet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2014022596A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111243810A (en) * | 2020-02-29 | 2020-06-05 | 厦门钨业股份有限公司 | Rare earth permanent magnetic material and preparation method and application thereof |
-
2012
- 2012-07-19 JP JP2012160598A patent/JP2014022596A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111243810A (en) * | 2020-02-29 | 2020-06-05 | 厦门钨业股份有限公司 | Rare earth permanent magnetic material and preparation method and application thereof |
CN111243810B (en) * | 2020-02-29 | 2021-08-06 | 厦门钨业股份有限公司 | Rare earth permanent magnetic material and preparation method and application thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6229783B2 (en) | Method for producing microcrystalline alloy intermediate product and microcrystalline alloy intermediate product | |
JP5304907B2 (en) | R-Fe-B fine crystal high density magnet | |
CN107871582B (en) | R-Fe-B sintered magnet | |
CN107871581B (en) | Method for preparing R-Fe-B sintered magnet | |
JP4873008B2 (en) | R-Fe-B porous magnet and method for producing the same | |
JP2017147427A (en) | R-iron-boron based sintered magnet and method for manufacturing the same | |
JP4872887B2 (en) | Porous material for R-Fe-B permanent magnet and method for producing the same | |
JP5906874B2 (en) | Manufacturing method of RTB-based permanent magnet | |
TWI738932B (en) | R-Fe-B series sintered magnet and its manufacturing method | |
JP6471669B2 (en) | Manufacturing method of RTB-based magnet | |
JP2014130888A (en) | R-t-b-based sintered magnet and method for producing the same | |
JP5906876B2 (en) | Manufacturing method of RTB-based permanent magnet | |
JP2020129679A (en) | Rare earth-iron-boron based sintered magnet | |
JP5288276B2 (en) | Manufacturing method of RTB-based permanent magnet | |
JP6691666B2 (en) | Method for manufacturing RTB magnet | |
JP6198103B2 (en) | Manufacturing method of RTB-based permanent magnet | |
WO2012029527A1 (en) | Alloy material for r-t-b-based rare earth permanent magnet, production method for r-t-b-based rare earth permanent magnet, and motor | |
JP2013115156A (en) | Method of manufacturing r-t-b-based permanent magnet | |
JP2012195392A (en) | Method of manufacturing r-t-b permanent magnet | |
JP6691667B2 (en) | Method for manufacturing RTB magnet | |
JP2014022596A (en) | Manufacturing method of rare earth-iron-boron-based porous magnet | |
JP2013207008A (en) | Method of producing r-t-b-based permanent magnet |