JP6198103B2 - Manufacturing method of RTB-based permanent magnet - Google Patents

Manufacturing method of RTB-based permanent magnet Download PDF

Info

Publication number
JP6198103B2
JP6198103B2 JP2013032764A JP2013032764A JP6198103B2 JP 6198103 B2 JP6198103 B2 JP 6198103B2 JP 2013032764 A JP2013032764 A JP 2013032764A JP 2013032764 A JP2013032764 A JP 2013032764A JP 6198103 B2 JP6198103 B2 JP 6198103B2
Authority
JP
Japan
Prior art keywords
less
powder
temperature
magnet
rtb
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013032764A
Other languages
Japanese (ja)
Other versions
JP2014165228A (en
Inventor
宣介 野澤
宣介 野澤
智仁 槙
智仁 槙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2013032764A priority Critical patent/JP6198103B2/en
Publication of JP2014165228A publication Critical patent/JP2014165228A/en
Application granted granted Critical
Publication of JP6198103B2 publication Critical patent/JP6198103B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Powder Metallurgy (AREA)

Description

本発明はR−T−B系永久磁石の製造方法に関する。   The present invention relates to a method for producing an R-T-B permanent magnet.

高性能永久磁石として代表的なR−T−B系永久磁石(RはNdおよび/またはPrを含む希土類元素、TはFeまたはFeの一部をCoで置換したもの、Bはホウ素)は、三元系正方晶化合物であるR14B相(NdFe14B型化合物相)を主相として含み、優れた磁気特性を発揮するため,様々な用途に用いられている。 R-T-B type permanent magnets typical as high performance permanent magnets (R is a rare earth element containing Nd and / or Pr, T is Fe or a part of Fe substituted with Co, and B is boron) It includes an R 2 T 14 B phase (Nd 2 Fe 14 B type compound phase), which is a ternary tetragonal compound, as a main phase, and exhibits excellent magnetic properties, so that it is used in various applications.

中でも、近年、ハイブリッド自動車や電気自動車などの駆動モータなど、高温で使用されるR−T−B系永久磁石の需要が拡大している。このような製品に用いられるR−T−B系永久磁石には高い保磁力が要求される。R−T−B系永久磁石の保磁力を高める方法として、R−T−B系永久磁石のRの一部をDyやTbなどの重希土類元素とすることにより、R14B相(主相)の結晶磁気異方性を高めることが一般的に知られている。しかし、DyやTbなどの重希土類元素は地殻存在量が小さな希少元素であり、今後資源枯渇のリスクが顕在化する可能性があると懸念されており、DyやTbを使用せずにR−T−B系永久磁石の保磁力を高める技術が求められている。 In particular, in recent years, the demand for RTB-based permanent magnets used at high temperatures, such as drive motors for hybrid vehicles and electric vehicles, has been increasing. R-T-B permanent magnets used in such products are required to have a high coercive force. As a method for increasing the coercive force of an R-T-B system permanent magnet, a part of R of the R-T-B system permanent magnet is a heavy rare earth element such as Dy or Tb, so that the R 2 T 14 B phase ( It is generally known to increase the magnetocrystalline anisotropy of the main phase. However, heavy rare earth elements such as Dy and Tb are rare elements with small crustal abundance, and there is concern that the risk of resource depletion may become apparent in the future. R- without using Dy or Tb There is a need for a technique for increasing the coercive force of a T-B permanent magnet.

R−T−B系永久磁石のなかでも粉末冶金法で作製されるR−T−B系焼結磁石において、原料粉末の粉砕粒径を微細化することでDyやTbを使用せずに保磁力が向上することが非特許文献1などにより知られている。また、R14B相の結晶粒径を粉末冶金法では困難なサブミクロンサイズまで微細化する方法として知られるHDDR(Hydrogenation−Disproportionation−Desorption−Recombination)処理法は、R−T−B系永久磁石においてDyやTbを使用せずにさらに高い保磁力が得られる可能性をもった技術として注目されており、例えば非特許文献2に開示されている。 Among RTB-based permanent magnets, RTB-based sintered magnets manufactured by the powder metallurgy method can be used without using Dy or Tb by reducing the pulverized particle size of the raw material powder. It is known from Non-Patent Document 1 that magnetic force is improved. Also, HDDR (Hydrogenation-Deposition-Recombination-Recombination) processing method known as a method for refining the crystal grain size of the R 2 T 14 B phase to submicron size, which is difficult with powder metallurgy, is an R-T-B system. A permanent magnet is attracting attention as a technique that has a possibility of obtaining a higher coercive force without using Dy or Tb, and is disclosed in Non-Patent Document 2, for example.

HDDR処理法は水素化(Hydrogenation)および不均化(Disproportionation)と、脱水素(Desorption)および再結合(Recombination)とを順次実行するプロセスを意味しており、主にR−T−B系異方性ボンド磁石用の磁石粉末の製造方法として採用されている。公知のHDDR処理によれば、まず、R−T−B系合金のインゴットまたは粉末を、Hガス雰囲気、またはHガスと不活性ガスとの混合雰囲気中で温度700℃〜1000℃に保持し、上記のインゴットまたは粉末に水素を吸蔵させる。その後、例えばH圧力が13Pa以下の真空雰囲気、またはH分圧が13Pa以下の不活性雰囲気で温度700℃〜1000℃で脱水素処理し、次いで冷却する。 The HDDR processing method means a process of sequentially performing hydrogenation and disproportionation, dehydrogenation and recombination, and is mainly different from R-T-B system. It has been adopted as a method for producing magnet powder for isotropic bonded magnets. According to the known HDDR treatment, first, an R-T-B alloy ingot or powder is maintained at a temperature of 700 ° C. to 1000 ° C. in an H 2 gas atmosphere or a mixed atmosphere of an H 2 gas and an inert gas. Then, hydrogen is occluded in the ingot or powder. Thereafter, such as H 2 pressure is 13Pa or less of vacuum atmosphere, or H 2 partial pressure is dehydrogenated at a temperature 700 ° C. to 1000 ° C. or less inert atmosphere 13Pa, then cooled.

上記処理において、典型的には以下の反応が進行する。   In the above treatment, the following reaction typically proceeds.

まず、所定温度で水素を吸蔵させる熱処理により、水素化および不均化反応が進行して微細組織が形成される。水素化および不均化反応の両方をあわせて「HD反応」と呼ぶ。典型的なHD反応では、NdFe14B+2H→2NdH+12Fe+FeBの反応が進行する。 First, a hydrogenation and disproportionation reaction proceeds by a heat treatment that occludes hydrogen at a predetermined temperature to form a fine structure. Both hydrogenation and disproportionation reactions are collectively referred to as “HD reactions”. In a typical HD reaction, a reaction of Nd 2 Fe 14 B + 2H 2 → 2NdH 2 + 12Fe + Fe 2 B proceeds.

次いで、所定温度で水素を放出させる熱処理により、脱水素ならびに再結合反応が進行する。脱水素ならびに再結合反応をあわせて「DR反応」と呼ぶ。典型的なDR反応では、例えば2NdH+12Fe+FeB→NdFe14B+2Hの反応が進行する。こうして、微細なR14B結晶相を含む合金が得られる。 Next, dehydrogenation and recombination reaction proceed by heat treatment for releasing hydrogen at a predetermined temperature. The dehydrogenation and recombination reactions are collectively referred to as “DR reactions”. In a typical DR reaction, for example, a reaction of 2NdH 2 + 12Fe + Fe 2 B → Nd 2 Fe 14 B + 2H 2 proceeds. Thus, an alloy containing a fine R 2 T 14 B crystal phase is obtained.

なお、本明細書ではHD反応を起こすための熱処理を「HD処理」、DR反応を起こすための熱処理を「DR処理」と称する。また、HD処理およびDR処理の両方を行うことを「HDDR処理」と称する。   In this specification, the heat treatment for causing the HD reaction is referred to as “HD treatment”, and the heat treatment for causing the DR reaction is referred to as “DR treatment”. Further, performing both HD processing and DR processing is referred to as “HDDR processing”.

HDDR処理で得られたR−T−B系HDDR磁石粉末(以下、「HDDR磁粉」と称する)は、結晶粒径が0.1μm〜1μmであり、粉末ながら大きな保磁力を有し、磁気的な異方性を示している。しかし、HDDR処理のみではハイブリッド自動車や電気自動車用の駆動モータなどでの使用に耐えうる保磁力を有する磁粉を得ることが困難であった。また、ボンド磁石用のHDDR磁粉は減磁曲線の角型性が悪く耐熱性に乏しかった。   The R-T-B type HDDR magnet powder (hereinafter referred to as “HDDR magnetic powder”) obtained by the HDDR treatment has a crystal grain size of 0.1 μm to 1 μm and has a large coercive force while being a powder, and is magnetic. Anisotropy is shown. However, it has been difficult to obtain magnetic powder having a coercive force that can withstand use in a drive motor for a hybrid vehicle or an electric vehicle only by the HDDR process. Moreover, the HDDR magnetic powder for bonded magnets had poor squareness of the demagnetization curve and poor heat resistance.

近年、DyやTbを用いずにHDDR磁粉の保磁力を向上させる手法がいくつか提案されており、例えば特許文献1は、HDDR磁粉とR’−Al合金(R’はNdおよび/またはPrをR’全体に対して90原子%以上含み、DyおよびTbを含まない希土類元素)を混合して550〜900℃で熱処理することでR’−Al合金がHDDR磁粉に拡散して保磁力が向上することを開示している。   In recent years, several methods for improving the coercive force of HDDR magnetic powder without using Dy or Tb have been proposed. For example, Patent Document 1 discloses HDDR magnetic powder and an R′-Al alloy (R ′ represents Nd and / or Pr). R'-Al alloy diffuses into HDDR magnetic powder and improves coercive force by heat treatment at 550 to 900 ° C. by mixing rare earth elements containing 90 atomic% or more with respect to the entire R ′ and not containing Dy and Tb) Is disclosed.

また、HDDR磁粉の角型性を改善しつつ、バルク磁石を得る方法として特許文献2に平均粒径10μm未満のR−T−B系希土類合金粉末を圧粉体としてHDDR処理する方法が開示されている。   Further, Patent Document 2 discloses a method for HDDR treatment using an RTB rare earth alloy powder having an average particle size of less than 10 μm as a green compact as a method for obtaining a bulk magnet while improving the squareness of HDDR magnetic powder. ing.

ところで、R−T−B系焼結磁石においては、通常、焼結後もしくはさらに切削、研削などの加工を行った後に時効処理(真空または不活性ガス雰囲気中500〜600℃程度での熱処理)を行って保磁力を向上させることが通常行われている。特許文献3には、R−T−B系磁石用原料粉末を成型、焼結、時効処理する例が記載されているが、その原料粉末としてHDDR磁粉を使用できることが記載されている。   By the way, in an RTB-based sintered magnet, an aging treatment (heat treatment at about 500 to 600 ° C. in a vacuum or an inert gas atmosphere) is usually performed after sintering or after further processing such as cutting and grinding. It is usually performed to improve the coercive force. Patent Document 3 describes an example of molding, sintering, and aging treatment of a raw material powder for an R-T-B system magnet, and describes that HDDR magnetic powder can be used as the raw material powder.

特開2012−049492号公報JP 2012-049492 A 国際公開第2007/135981号公報International Publication No. 2007/135981 特開平11−307379号公報JP-A-11-307379

小林久理眞,高野隆之,佐川眞人, 電気学会マグネティックス研究会資料,MAG―05―118(2005)K. Kobayashi, T. Takano, T. Sagawa, The Institute of Electrical Engineers of Japan, MAG-05-118 (2005) 広沢哲,西内武司,大久保忠勝,Li Wanfang, 宝野和博,山崎二郎,竹澤昌晃,隅山兼冶,山室佐益,日本金属学会誌 vol.73 p.135(2009)Satoshi Hirosawa, Takeshi Nishiuchi, Tadakatsu Okubo, Li Wangfang, Kazuhiro Hono, Jiro Yamazaki, Masaaki Takezawa, Kanetsu Sumiyama, Samasu Yamamuro, Journal of the Japan Institute of Metals vol. 73 p. 135 (2009)

特許文献1に記載されているように、HDDR磁粉とR’−Al系合金粉末を混合し熱処理することによって、R’−Al系合金がR14B相の結晶粒界に拡散し、保磁力が向上する。しかしながら、HDDR磁粉にR’−Al系合金を拡散させた磁粉は減磁曲線の角型性が悪いという問題がある。 As described in Patent Document 1, by mixing and heat-treating HDDR magnetic powder and R′-Al-based alloy powder, R′-Al-based alloy diffuses into the R 2 T 14 B phase grain boundary, Coercivity is improved. However, magnetic powder obtained by diffusing an R′-Al alloy into HDDR magnetic powder has a problem that the squareness of the demagnetization curve is poor.

また、特許文献2に記載の方法では角型性は改善したものの、得られた磁石はDyを用いることなく十分な保磁力を得ることは困難であった。   Moreover, although the squareness was improved by the method described in Patent Document 2, it was difficult for the obtained magnet to obtain a sufficient coercive force without using Dy.

なお、上述の通り、特許文献3には、R−T−B系磁石用原料粉末を成型、焼結、時効処理する例において、原料粉末としてHDDR磁粉を使用できることが記載されているが、HDDR磁粉に対して直接熱処理を行って保磁力を向上させた例はない。発明者らがHDDR磁粉に対して、焼結磁石と同様の条件で時効処理を行うことを試してみたところ、十分な保磁力向上効果は得られなかった。   As described above, Patent Document 3 describes that HDDR magnetic powder can be used as a raw material powder in an example of molding, sintering, and aging treatment of a raw material powder for an R-T-B system magnet. There is no example of improving the coercive force by directly heat-treating the magnetic powder. When the inventors tried to perform an aging treatment on the HDDR magnetic powder under the same conditions as the sintered magnet, a sufficient coercive force improving effect could not be obtained.

本発明の課題は、Dyを用いることなく十分な保磁力と角型性を有するR−T−B系永久磁石を提供することにある。   The subject of this invention is providing the RTB type permanent magnet which has sufficient coercive force and squareness without using Dy.

本発明の実施形態において、R−T−B系永久磁石の製造方法は、50%体積中心粒径が1μm以上10μm未満であり、R14B相を含むR−T−B系合金粉末(RはNdおよび/またはPrを50原子%以上含む希土類元素、TはFe、またはFeとCo)、または、前記R−T−B系合金粉末に対し粒度150μm未満のR’金属(R’はNd、Pr、Dy、Tbから選ばれる1種以上)またはR’−M系合金(MはAl、Ga、Co、Feから選ばれる1種以上、R’はR’−M系合金全体の20原子%以上100原子%未満)の粉末を混合した混合粉末を用意する工程と、前記R−T−B系合金粉末または混合粉末を成形して圧粉体を作製する工程と、前記圧粉体に対し10kPa超500kPa以下の水素雰囲気中、または水素分圧が10kPa超500kPa以下の水素と不活性ガスの混合雰囲気中で650℃以上900℃以下の温度で熱処理を施し、それによって水素化および不均化反応を起こす工程と、2kPa以上10kPa以下の水素雰囲気中で650℃以上900℃以下の温度で熱処理を施し、それによって脱水素および再結合反応を起こす工程と、真空または不活性雰囲気中において前記圧粉体に対し650℃以上900℃以下の温度で熱処理を施し、それによってR14B相結晶粒の界面近傍に粒界相を形成させる工程とを行い、多孔質磁石を得る。さらに真空または不活性ガス雰囲気中において熱間圧縮成型によって前記多孔質磁石の密度を真密度の96%以上まで高める緻密化工程を行い、その後、真空または不活性ガス雰囲気中において800℃以上900℃以下の温度で熱処理を施す粒界相均質化工程を行う。 In the embodiment of the present invention, the R-T-B system permanent magnet has a 50% volume center particle diameter of 1 μm or more and less than 10 μm, and includes an R-T-B system alloy powder containing an R 2 T 14 B phase. (R is a rare earth element containing 50 atomic% or more of Nd and / or Pr, T is Fe, or Fe and Co), or an R ′ metal (R ′) having a particle size of less than 150 μm with respect to the RTB-based alloy powder Is one or more selected from Nd, Pr, Dy, and Tb) or an R′-M alloy (M is one or more selected from Al, Ga, Co, and Fe, R ′ is the entire R′-M alloy) A step of preparing a mixed powder in which a powder of 20 atomic percent or more and less than 100 atomic percent is mixed, a step of forming a green compact by molding the RTB-based alloy powder or mixed powder, and the green compact. In a hydrogen atmosphere of more than 10 kPa and less than 500 kPa, or hydrogen content A process in which a heat treatment is performed at a temperature of 650 ° C. to 900 ° C. in a mixed atmosphere of hydrogen of 10 kPa to 500 kPa and an inert gas, thereby causing hydrogenation and disproportionation reactions, and a hydrogen atmosphere of 2 kPa to 10 kPa Heat treatment at a temperature of 650 ° C. or higher and 900 ° C. or lower, thereby causing dehydrogenation and recombination reaction, and at a temperature of 650 ° C. or higher and 900 ° C. or lower with respect to the green compact in a vacuum or an inert atmosphere. A porous magnet is obtained by performing a heat treatment and thereby forming a grain boundary phase in the vicinity of the interface of the R 2 T 14 B phase crystal grains. Further, a densification step is performed to increase the density of the porous magnet to 96% or more of the true density by hot compression molding in a vacuum or an inert gas atmosphere, and then 800 ° C. or higher and 900 ° C. in a vacuum or an inert gas atmosphere. A grain boundary phase homogenization step in which heat treatment is performed at the following temperature is performed.

ある実施形態において、前記HD工程前の昇温工程において200℃以上600℃以下の温度を水素雰囲気中で昇温する。   In one embodiment, the temperature is raised from 200 ° C. to 600 ° C. in a hydrogen atmosphere in the temperature raising step before the HD step.

ある実施形態において、前記R−T−B系永久磁石の断面において0.00006μm以上0.785μm以下の面積を有するNd−rich相(Nd酸化物相を含む)の個数密度が2個/μm以上である。 In one embodiment, the number density of Nd-rich phases (including an Nd oxide phase) having an area of 0.00006 μm 2 or more and 0.785 μm 2 or less in a cross section of the RTB-based permanent magnet is 2 / μm 2 or more.

本発明によれば、従来のHDDR磁粉やその磁粉を熱間圧縮成形によってバルク化した磁石と比べて良好な角型性を示し、かつ従来の多孔質磁石や多孔質磁石を熱間圧縮成形して得られる高密度磁石に比べて高い保磁力を有するR−T−B系永久磁石を製造することが可能となる。   According to the present invention, the conventional HDDR magnetic powder and the magnet powder that has been bulked by hot compression molding exhibit better squareness, and the conventional porous magnet and porous magnet are hot compression molded. Thus, it becomes possible to produce an RTB-based permanent magnet having a higher coercive force than a high-density magnet obtained in this way.

本発明の実施形態で好適に使用され得るホットプレス装置を示す図である。It is a figure which shows the hot press apparatus which can be used suitably by embodiment of this invention. 本発明のR−T−B系永久磁石および同組成の焼結磁石に対して熱処理を行った時の熱処理温度と保磁力の関係を示したグラフである。It is the graph which showed the relationship between the heat processing temperature when a heat processing was performed with respect to the RTB type permanent magnet of this invention, and the sintered magnet of the same composition, and a coercive force. 本発明の実施例の実験例2において、粒界相均質化熱処理温度と保磁力の関係を示した図である。In Experimental example 2 of the Example of this invention, it is the figure which showed the relationship between the grain boundary phase homogenization heat processing temperature, and a coercive force. 本発明の実施例の実験例4において、粒界相均質化熱処理温度と保磁力の関係を示した図である。In Experimental example 4 of the Example of this invention, it is the figure which showed the relationship between the grain boundary phase homogenization heat processing temperature, and a coercive force. 本発明の実施例の比較例33における高密度磁石の断面加工写真である。It is a cross-sectional processing photograph of the high-density magnet in the comparative example 33 of the Example of this invention. 本発明の実施例の比較例36における高密度磁石の断面加工写真である。It is a cross-sectional processing photograph of the high-density magnet in the comparative example 36 of the Example of this invention. 本発明の実施例の比較例40における高密度磁石の断面加工写真である。It is a cross-sectional processing photograph of the high-density magnet in the comparative example 40 of the Example of this invention. 本発明の実施例の実施例20における高密度磁石の断面加工写真である。It is a cross-section processing photograph of the high-density magnet in Example 20 of the Example of this invention.

本発明においては、後述の圧粉体作製工程によって得られた圧粉体に対して、10kPa超500kPa以下の水素雰囲気中、または水素分圧が10kPa超500kPa以下の水素と不活性ガスの混合雰囲気中で650℃以上900℃以下の温度で熱処理を施し、それによって水素化および不均化反応を起こす(HD処理工程)。その後、2kPa以上10kPa以下の水素雰囲気中で650℃以上900℃以下の温度で熱処理を施すことで、R−T−B系合金粉末のR14B相への脱水素反応と再結合反応を十分に進行させ、α−Feの残留を減らす(DR処理工程)。その後、真空または不活性雰囲気中において前記圧粉体に対し650℃以上900℃以下の温度で熱処理を施し、R−rich相への脱水素反応を進行させR−rich相をR14B相結晶粒の界面近傍に拡散させて粒界相を形成させ(粒界相形成熱処理)多孔質磁石を得る。その後、多孔質磁石を熱間圧縮成形によって真密度の96%以上に緻密化させ、高密度磁石を得る。その後、高密度磁石に対して真空または不活性雰囲気中において800℃以上900℃以下の温度で熱処理を施し、主に磁石内で偏析したR−rich相を粒界に拡散させてその分布を均質化させる(粒界相均質化処理)。 In the present invention, in a hydrogen atmosphere of more than 10 kPa and 500 kPa or less, or a mixed atmosphere of hydrogen and an inert gas having a hydrogen partial pressure of more than 10 kPa and 500 kPa or less with respect to the green compact obtained by the green compact manufacturing process described later Among them, heat treatment is performed at a temperature of 650 ° C. or more and 900 ° C. or less, thereby causing hydrogenation and disproportionation reactions (HD treatment step). Thereafter, a dehydrogenation reaction and a recombination reaction of the R-T-B system alloy powder to the R 2 T 14 B phase are performed by a heat treatment at a temperature of 650 ° C. to 900 ° C. in a hydrogen atmosphere of 2 kPa to 10 kPa. Is sufficiently advanced to reduce α-Fe residue (DR treatment step). Thereafter, the green compact is heat-treated at a temperature of 650 ° C. or higher and 900 ° C. or lower in a vacuum or an inert atmosphere, and a dehydrogenation reaction to the R-rich phase is advanced to convert the R-rich phase into R 2 T 14 B. A porous magnet is obtained by diffusing in the vicinity of the interface of the phase crystal grains to form a grain boundary phase (heat treatment for grain boundary phase formation). Thereafter, the porous magnet is densified to 96% or more of the true density by hot compression molding to obtain a high-density magnet. Then, heat treatment is performed on the high-density magnet at a temperature of 800 ° C. or higher and 900 ° C. or lower in a vacuum or in an inert atmosphere, and the R-rich phase segregated in the magnet is mainly diffused to the grain boundaries to make the distribution uniform. (Granular boundary phase homogenization).

以下、本発明のR−T−B系永久磁石の製造方法における、上記の製造工程について、望ましい実施形態を詳細に説明する。   Hereinafter, a desirable embodiment is described in detail about the above-mentioned manufacturing process in the manufacturing method of the RTB system permanent magnet of the present invention.

<圧粉体作製工程>
R−T−B系合金粉末を成型し、圧粉体を作製する。R−T−B系合金粉末に後述のR’金属(R’はNd、Pr、Dy、Tbから選ばれる1種以上)またはR’−M系合金(MはAl、Ga、Co、Feから選ばれる1種以上、R’はR’−M系合金全体の20原子%以上100原子%以下)の粉末をあらかじめ混合した混合粉末を成型して圧粉体を作製してもよい。圧粉体を成型する工程は、10MPa〜200MPaの圧力を付加し、0.4MA/m〜16MA/mの磁界中(静磁界、パルス磁界など)で行うことが望ましい。成型は公知の粉末プレス装置によって行うことができる。粉末プレス装置から取り出し時の圧粉体密度(成型体密度)は、3.5g/cm〜5.2g/cm程度である。
<Green compact production process>
An R-T-B alloy powder is molded to produce a green compact. The R′-T-B alloy powder described later includes an R ′ metal (R ′ is one or more selected from Nd, Pr, Dy, Tb) or an R′-M alloy (M is Al, Ga, Co, Fe). A green compact may be produced by molding a mixed powder in which powders of one or more selected, R ′ is 20 atom% or more and 100 atom% or less of the entire R′-M alloy, are mixed in advance. The step of molding the green compact is desirably performed in a magnetic field (such as a static magnetic field or a pulsed magnetic field) of 0.4 MA / m to 16 MA / m by applying a pressure of 10 MPa to 200 MPa. Molding can be performed by a known powder press apparatus. Compact density (compact density) when removed from the powder press device is 3.5g / cm 3 ~5.2g / cm 3 order.

上記の成型工程は、磁界を印加することなく実行してもよい。磁界配向を行わない場合、最終的には等方性の多孔質磁石が得られることになる。しかし、より高い磁気特性を得るためには、磁界配向を行いながら成型工程を実行し、最終的に異方性の多孔質磁石を得ることが望ましい。   You may perform said shaping | molding process, without applying a magnetic field. When magnetic field orientation is not performed, an isotropic porous magnet is finally obtained. However, in order to obtain higher magnetic characteristics, it is desirable to execute a molding process while performing magnetic field orientation and finally obtain an anisotropic porous magnet.

この圧粉体の内部には、後に行うHDDR処理において水素ガスが移動・拡散可能な隙間が粉末粒子の間に十分な大きさで存在している。また、本発明では、50%体積中心粒径が1μm以上10μm未満の原料粉末を使用しているため、水素が粉末粒子内の全体を移動することが容易である。したがって、HDDR処理におけるHD反応およびDR反応を短時間で進行させることができる。こうして、HDDR処理後の組織が均質化されるため、高い磁気特性、特に良好な角型性が得られるとともに、HDDR工程に要する時間を短縮できるという利点が得られる。   Inside the green compact, gaps in which hydrogen gas can move and diffuse in the HDDR process to be performed later exist with a sufficient size between the powder particles. Moreover, in this invention, since the raw material powder whose 50% volume center particle size is 1 micrometer or more and less than 10 micrometers is used, it is easy for hydrogen to move the whole in a powder particle. Therefore, the HD reaction and DR reaction in the HDDR process can be advanced in a short time. Thus, since the structure after the HDDR process is homogenized, there are obtained advantages that high magnetic properties, particularly good squareness can be obtained, and the time required for the HDDR process can be shortened.

<HDDR処理>
次に上記圧粉体作製工程によって得られた圧粉体に対し、HDDR処理を施す。本実施形態において、HDDR処理は昇温工程、HD処理工程、DR処理工程、粒界相形成熱処理工程の4工程を含む。
<HDDR processing>
Next, the HDDR process is performed on the green compact obtained by the green compact manufacturing step. In the present embodiment, the HDDR process includes four steps: a temperature raising step, an HD treatment step, a DR treatment step, and a grain boundary phase formation heat treatment step.

(昇温工程)
昇温工程は、上記圧粉体作製工程によって得られた圧粉体に対し、HD処理工程の処理温度まで圧粉体を加熱する工程である。昇温工程は、水素分圧10kPa以上500kPa以下の水素ガス雰囲気または水素ガスと不活性ガス(ArやHeなど)の混合雰囲気、不活性ガス雰囲気、真空中のいずれかで行う。昇温中に低温でR−T−B系合金粉末のHD反応が進行して配向度が低下することを抑制するために、600℃まで水素を含む雰囲気で昇温して圧粉体を水素化させた後、600℃以降は不活性ガス雰囲気、または真空中で昇温してもよい。
(Temperature raising process)
The temperature raising step is a step of heating the green compact to the processing temperature of the HD processing step with respect to the green compact obtained in the green compact manufacturing step. The temperature raising step is performed in a hydrogen gas atmosphere having a hydrogen partial pressure of 10 kPa or more and 500 kPa or less, or a mixed atmosphere of hydrogen gas and an inert gas (Ar, He, etc.), an inert gas atmosphere, or in a vacuum. In order to prevent the HD reaction of the RTB-based alloy powder from proceeding at a low temperature during the temperature rise and lowering the degree of orientation, the temperature of the green compact is increased to 600 ° C. in an atmosphere containing hydrogen. Then, after 600 ° C., the temperature may be raised in an inert gas atmosphere or in a vacuum.

(HD処理工程)
次いで行うHD処理工程は、水素雰囲気中においてR14B相をHD反応させて不均化組織を得る工程である。この時、HD処理工程の温度および水素分圧を適正に制御することによって最終的に得られる磁石の磁気的異方性を高めることができる。HD処理工程の温度は650℃以上900℃以下である。650℃未満では不均化が十分に進むまでに時間がかかりすぎる。また、900℃を超えると不均化組織が粗大化するため、後のDR処理工程によって得られるR14B相の集合組織が粗大となり、磁気特性、特に保磁力の低下を招く。特に粒成長を抑制するという観点から、HD処理工程の温度を900℃以下に設定することがより望ましい。
(HD processing process)
The HD processing step to be performed next is a step of obtaining a disproportionated structure by performing an HD reaction of the R 2 T 14 B phase in a hydrogen atmosphere. At this time, the magnetic anisotropy of the finally obtained magnet can be increased by appropriately controlling the temperature and the hydrogen partial pressure in the HD processing step. The temperature of the HD processing step is 650 ° C. or higher and 900 ° C. or lower. If it is less than 650 degreeC, it will take time for disproportionation to fully advance. If the temperature exceeds 900 ° C., the disproportionated structure becomes coarse, and the texture of the R 2 T 14 B phase obtained by the subsequent DR treatment step becomes coarse, resulting in a decrease in magnetic properties, particularly coercive force. In particular, from the viewpoint of suppressing grain growth, it is more desirable to set the temperature of the HD processing step to 900 ° C. or lower.

HD処理工程の水素分圧は10kPa超500kPa以下である。水素分圧が10kPa未満ではR14B相の不均化が十分に進むまでに時間がかかりすぎるため、生産性の低下を招く可能性がある。水素分圧の下限は20kPaであることが望ましい。また、500kPaを超える水素分圧では、処理に特殊な装置が必要となる可能性がある。水素分圧の上限は150kPa以下であることが望ましい。水素分圧が150kPaを超えると水素吸蔵が急激に起こってしまい、水素吸蔵に伴う体積膨張によって圧粉体にクラックが入ってしまう可能性がある。 The hydrogen partial pressure in the HD treatment process is more than 10 kPa and 500 kPa or less. If the hydrogen partial pressure is less than 10 kPa, it takes too much time for the disproportionation of the R 2 T 14 B phase to proceed sufficiently, which may lead to a decrease in productivity. The lower limit of the hydrogen partial pressure is desirably 20 kPa. Further, when the hydrogen partial pressure exceeds 500 kPa, a special apparatus may be required for the treatment. The upper limit of the hydrogen partial pressure is desirably 150 kPa or less. When the hydrogen partial pressure exceeds 150 kPa, hydrogen occlusion occurs abruptly, and the green compact may crack due to volume expansion accompanying hydrogen occlusion.

HD処理工程に要する時間は、10分以上5時間以下であることが望ましい。10分未満では、R14B相の不均化が十分に進まない可能性がある。また、5時間を超えると不均化組織が粗大化するため、DR処理工程後の再結合組織が粗大となり、磁気特性、特に保磁力の低下を招く可能性がある。より望ましくは15分以上2時間以下である。 The time required for the HD processing step is preferably 10 minutes or more and 5 hours or less. If it is less than 10 minutes, the disproportionation of the R 2 T 14 B phase may not proceed sufficiently. Further, when the time exceeds 5 hours, the disproportionated structure becomes coarse, and thus the recombination structure after the DR treatment process becomes coarse, which may cause a decrease in magnetic properties, particularly coercive force. More desirably, it is 15 minutes or more and 2 hours or less.

(DR処理工程)
次いで行うDR処理工程は、2kPa以上10kPa以下の水素雰囲気中で650℃以上900℃以下の温度で熱処理を施し、R−T−B系合金粉末の脱水素および再結合反応を起こし、R14B相を再結合反応により生成させる。高い保磁力を得るためには3kPa以上8kPa以下がより好ましい。
(DR treatment process)
Next, the DR treatment step to be performed is a heat treatment at a temperature of 650 ° C. or more and 900 ° C. or less in a hydrogen atmosphere of 2 kPa or more and 10 kPa or less, causing dehydrogenation and recombination reaction of the R—T—B system alloy powder, and R 2 T 14 Generate phase B by recombination reaction. In order to obtain a high coercive force, 3 kPa or more and 8 kPa or less are more preferable.

DR処理の雰囲気を従来の真空および不活性ガス雰囲気から、2kPa以上10kPa以下の水素雰囲気に替えることでR−T−B系合金粉末のR水素化物からR−rich相への脱水素反応を抑制しつつ、R14B相への脱水素反応と再結合反応だけを十分に進行させることによって従来処理で存在していたα−Fe相の残留を減少させることができる。残ったR水素化物はこの後の粒界相形成熱処理工程において脱水素反応を進行させ、R−rich相をR14B相結晶粒の粒界に拡散させる。 Suppresses dehydrogenation reaction from R-hydride to R-rich phase of R-TB alloy powder by changing DR treatment atmosphere from conventional vacuum and inert gas atmosphere to hydrogen atmosphere of 2 kPa to 10 kPa However, by sufficiently proceeding only with the dehydrogenation reaction and the recombination reaction into the R 2 T 14 B phase, it is possible to reduce the residue of the α-Fe phase existing in the conventional treatment. The remaining R hydride undergoes a dehydrogenation reaction in the subsequent grain boundary phase forming heat treatment step, and diffuses the R-rich phase into the grain boundaries of the R 2 T 14 B phase crystal grains.

2kPa以上10kPa以下の水素雰囲気は、例えば真空ポンプなどによって排気速度を制御しつつ熱処理装置内を排気してHD処理工程後の圧粉体から脱水素して発生する水素とバランスさせることで実現できる。   A hydrogen atmosphere of 2 kPa or more and 10 kPa or less can be realized by, for example, evacuating the inside of the heat treatment apparatus while controlling the exhaust speed by a vacuum pump or the like and balancing with hydrogen generated by dehydrogenating the green compact after the HD treatment process. .

DR処理工程の温度は650℃以上900℃以下である。650℃未満では脱水素反応が実質的に起こらない。また、900℃を超えると再結合したR14B相が結晶粒成長してしまうため、磁気特性、特に保磁力の低下を招く。また、DR処理工程に要する時間は、15分程度でR14B相の再結合反応は完了するため15分以上が望ましく、30分以上処理することにより、さらなる保磁力の向上効果を得ることができるのでより望ましい。逆に長時間処理しすぎると生産コストの増加につながるため10時間以下が望ましく、3時間以下がより望ましい。 The temperature of the DR treatment process is 650 ° C. or higher and 900 ° C. or lower. If it is less than 650 degreeC, dehydrogenation reaction does not occur substantially. In addition, when the temperature exceeds 900 ° C., the recombined R 2 T 14 B phase grows as crystal grains, leading to a decrease in magnetic properties, particularly coercive force. Further, the time required for the DR treatment step is about 15 minutes, and the recombination reaction of the R 2 T 14 B phase is completed. Therefore, 15 minutes or more is desirable. By treating for 30 minutes or more, the effect of further improving the coercive force is obtained. It is more desirable because it can. On the other hand, if the treatment is performed for a long time, it leads to an increase in production cost, and thus it is preferably 10 hours or less, and more preferably 3 hours or less.

DR処理工程で生成したR14B相は典型的には0.1μm以上1.0μm以下の平均結晶粒径を有する集合組織を形成する。 The R 2 T 14 B phase generated in the DR treatment step typically forms a texture having an average crystal grain size of 0.1 μm or more and 1.0 μm or less.

また、HD処理工程とDR処理工程の間で数分程度、不活性ガスを流気して熱処理装置内の水素を置換しても良い。それによってDR処理工程において真空ポンプで熱処理装置内を排気する際に大量の水素がポンプ内へ流入することがなく、安全に処理がおこなえる。   Further, the hydrogen in the heat treatment apparatus may be replaced by flowing an inert gas between the HD treatment process and the DR treatment process for about several minutes. As a result, a large amount of hydrogen does not flow into the pump when the heat treatment apparatus is evacuated by the vacuum pump in the DR treatment process, and the treatment can be performed safely.

(粒界相形成熱処理工程)
次いで行う粒界相形成熱処理工程は、真空または不活性雰囲気において650℃以上900℃以下で保持することにより、R−T−B系合金粉末に含まれるRの水素化物やR’−M系合金粉末の脱水素反応を起こし、Rに富む液相が生成し、R14B相の結晶粒界に粒界相(希土類リッチ相)が形成されて保磁力が発現する。さらに、焼結反応も同時に起こり、多孔質の永久磁石となる。
(Grain boundary phase formation heat treatment process)
Next, the grain boundary phase forming heat treatment step is carried out by holding at 650 ° C. or more and 900 ° C. or less in a vacuum or an inert atmosphere, so that an R hydride or R′-M alloy contained in the RTB-based alloy powder. A dehydrogenation reaction of the powder occurs, a liquid phase rich in R is generated, and a grain boundary phase (rare earth-rich phase) is formed at the crystal grain boundary of the R 2 T 14 B phase to develop a coercive force. Furthermore, a sintering reaction also occurs at the same time, resulting in a porous permanent magnet.

R’−M系合金粉末を混合して圧粉体を形成した場合、R’−M系合金粉末を混合していない場合に比べ、粒界相(希土類リッチ相)がより均質に形成されるために高い保磁力が得られる。   When the green compact is formed by mixing the R′-M alloy powder, the grain boundary phase (rare earth rich phase) is formed more uniformly than when the R′-M alloy powder is not mixed. Therefore, a high coercive force can be obtained.

粒界相形成熱処理工程の雰囲気は、保磁力の観点から処理中の酸化を抑えるために、不活性ガスを導入しつつ真空排気することによる減圧雰囲気が望ましい。また粒界相形成熱処理工程の温度は650℃以上900℃以下である。650℃未満では脱水素反応が実質的に起こらない。また、900℃を超えるとR14B相が結晶粒成長してしまうため、磁気特性、特に保磁力の低下を招く。また、粒界相形成熱処理工程に要する時間は、5分以上10時間以下が望ましく、10分以上1時間以下がより望ましい。 The atmosphere of the grain boundary phase forming heat treatment step is preferably a reduced pressure atmosphere by evacuating while introducing an inert gas in order to suppress oxidation during the treatment from the viewpoint of coercive force. The temperature in the grain boundary phase forming heat treatment step is 650 ° C. or higher and 900 ° C. or lower. If it is less than 650 degreeC, dehydrogenation reaction does not occur substantially. On the other hand, if the temperature exceeds 900 ° C., the R 2 T 14 B phase grows and the magnetic properties, particularly the coercive force, are reduced. The time required for the grain boundary phase forming heat treatment step is preferably 5 minutes or more and 10 hours or less, and more preferably 10 minutes or more and 1 hour or less.

<多孔質磁石>
上記HDDR処理によって、3.5g/cm以上7.0g/cm以下の密度を有する多孔質磁石が得られる。この多孔質磁石には、HDDR処理工程で相互に結合した粉末粒子の間に、三次元網状に連通する長径10μm程度の空隙が存在している。圧粉体を構成していた個々の粉末粒子は、HDDR処理により隣接する粉末粒子と結合し、剛性を発揮する三次元構造を形成するとともに、個々の粉末粒子内では微細なNdFe14B型結晶相の集合組織が形成されている。本発明のR−T−B系多孔質磁石の密度は、3.5g/cm以上7.0g/cm以下であるが、粉末粒子間の隙間が存在した状態でも、粒子同士が結合し、十分な機械的強度と優れた磁気特性とを発揮する。
<Porous magnet>
By the HDDR treatment, a porous magnet having a density of 3.5 g / cm 3 or more and 7.0 g / cm 3 or less is obtained. In this porous magnet, there is a void having a major axis of about 10 μm communicating with the three-dimensional network between the powder particles bonded to each other in the HDDR processing step. The individual powder particles constituting the green compact are combined with adjacent powder particles by the HDDR process to form a three-dimensional structure exhibiting rigidity, and fine Nd 2 Fe 14 B in each powder particle. A texture of the type crystal phase is formed. The density of the R-T-B type porous magnet of the present invention is 3.5 g / cm 3 or more and 7.0 g / cm 3 or less, but the particles are bonded to each other even when there are gaps between the powder particles. Demonstrate sufficient mechanical strength and excellent magnetic properties.

<多孔質磁石の熱間圧縮成型>
上記の方法によって得られた多孔質磁石は、ホットプレス法などの熱間圧縮成形によって高密度化を行い、平均結晶粒径0.1μm以上1μm以下のR14B相の集合組織を有する高密度磁石を得る。以下に熱間圧縮成型による高密度化について、具体的な実施形態の一例を示す。多孔質磁石に対する熱間圧縮は、公知の熱間圧縮技術を用いて行うことができる。例えば、ホットプレス、SPS(spark plasma sintering)、HIP、熱間圧延などの熱間圧縮成型を行うことが可能である。なかでも、所望の形状を得やすいホットプレスやSPSが好適に用いられ得る。以下、ホットプレスを行う手順について説明する。
<Hot compression molding of porous magnet>
The porous magnet obtained by the above method is densified by hot compression molding such as hot pressing, and has a texture of R 2 T 14 B phase with an average crystal grain size of 0.1 μm to 1 μm. Get a high density magnet. An example of a specific embodiment will be shown below for densification by hot compression molding. Hot compression on the porous magnet can be performed using a known hot compression technique. For example, hot compression molding such as hot pressing, SPS (spark plasma sintering), HIP, and hot rolling can be performed. Especially, the hot press and SPS which are easy to obtain a desired shape can be used suitably. Hereinafter, a procedure for performing hot pressing will be described.

本実施形態では、図1に示す構成を有するホットプレス装置を用いる。この装置は、中央に開口部を有する金型(ダイ)27と多孔質磁石を加圧するための上パンチ28aおよび下パンチ28bと、これらのパンチ28a、28bを昇降する駆動部30a、30bとを備えている。   In the present embodiment, a hot press apparatus having the configuration shown in FIG. 1 is used. This apparatus includes a die (die) 27 having an opening in the center, an upper punch 28a and a lower punch 28b for pressurizing a porous magnet, and drive units 30a and 30b for raising and lowering these punches 28a and 28b. I have.

上述した方法によって作製した多孔質磁石(図1では参照符号「10」と付している)を、図1に示す金型27に装填する。このとき、配向方向とプレス方向とが一致するように装填を行うことが望ましい。金型27およびパンチ28a、28bは、使用する雰囲気ガス中で加熱温度および印加圧力に耐えうる材料から形成される。このような材料としては、カーボンや、タングステンカーバイドなどの超硬合金が望ましい。なお、多孔質磁石10の外形寸法は金型27の開口部寸法よりも小さく設定しておくことにより、異方性を高められる。次に、多孔質磁石10を装填した金型27をホットプレス装置にセットする。ホットプレス装置は、真空(1.3Pa以下)または不活性雰囲気に制御することが可能なチャンバ26を備えていることが望ましい。チャンバ26内には、例えば抵抗加熱によるカーボンヒーターなどの加熱装置と、多孔質磁石を加圧して圧縮するためのシリンダーとが備え付けられている。   A porous magnet (indicated by reference numeral “10” in FIG. 1) produced by the method described above is loaded into the mold 27 shown in FIG. At this time, it is desirable to perform loading so that the orientation direction and the pressing direction coincide. The mold 27 and the punches 28a and 28b are formed of a material that can withstand the heating temperature and the applied pressure in the atmosphere gas to be used. As such a material, carbon or cemented carbide such as tungsten carbide is desirable. In addition, the anisotropy can be increased by setting the outer dimension of the porous magnet 10 to be smaller than the opening dimension of the mold 27. Next, the mold 27 loaded with the porous magnet 10 is set in a hot press apparatus. The hot press apparatus preferably includes a chamber 26 that can be controlled to a vacuum (1.3 Pa or less) or an inert atmosphere. In the chamber 26, for example, a heating device such as a carbon heater by resistance heating and a cylinder for pressurizing and compressing the porous magnet are provided.

チャンバ26内を真空または不活性ガス雰囲気で満たした後、加熱装置により金型27を加熱し、金型27に装填された多孔質磁石10の温度を600℃〜900℃に高め、9.8〜294MPaの圧力Pで多孔質磁石10を加圧する。多孔質磁石10に対する加圧は、金型27の温度が設定レベルに到達してから開始することが望ましい。金型の温度が十分に高くない場合には、加圧時に多孔質磁石に割れが生じたり、得られる高密度磁石の配向度が悪化してしまう可能性がある。加圧しながら600℃〜900℃の温度で10分以上保持した後、冷却する。加熱圧縮により高密度化された磁石が大気と接触して酸化しない程度の低い温度(100℃以下程度)まで冷却が進んだ後、本実施例の磁石をチャンバから取り出す。こうして、上記の多孔質磁石からR−T−B系高密度磁石を得ることができる。   After filling the chamber 26 with a vacuum or an inert gas atmosphere, the mold 27 is heated by a heating device, and the temperature of the porous magnet 10 loaded in the mold 27 is increased to 600 ° C. to 900 ° C., 9.8 The porous magnet 10 is pressurized with a pressure P of ˜294 MPa. It is desirable that the pressurization to the porous magnet 10 is started after the temperature of the mold 27 reaches a set level. If the mold temperature is not sufficiently high, the porous magnet may be cracked during pressurization, or the degree of orientation of the resulting high-density magnet may deteriorate. While maintaining the pressure at 600 ° C. to 900 ° C. for 10 minutes or more while cooling, it is cooled. After the magnet, which has been densified by heat compression, is cooled to a low temperature (about 100 ° C. or less) that does not oxidize due to contact with the atmosphere, the magnet of this embodiment is taken out of the chamber. Thus, an RTB-based high density magnet can be obtained from the above porous magnet.

得られた磁石の密度は真密度の96%以上に達する。また、本実施形態によれば、最終的な結晶相集合組織において、個々の結晶粒の最短粒径aと最長粒径bの比b/aが2未満である結晶粒が全結晶粒の50体積%以上存在する。この点において、本実施形態の磁石は、例えば特開平02−39503号公報などに記載の従来の熱間塑性加工による異方性バルク磁石と大きく異なっている。このような磁石の結晶組織においては最短粒径aと最長粒径bの比b/aが2を超えた扁平な結晶粒が支配的である。   The density of the obtained magnet reaches 96% or more of the true density. In addition, according to the present embodiment, in the final crystal phase texture, the crystal grains in which the ratio b / a of the shortest particle diameter a to the longest particle diameter b of each crystal grain is less than 2 are 50 of the total crystal grains. It exists by volume% or more. In this respect, the magnet of the present embodiment is greatly different from the conventional anisotropic bulk magnet by hot plastic working described in, for example, Japanese Patent Laid-Open No. 02-39503. In such a crystal structure of a magnet, flat crystal grains in which the ratio b / a between the shortest particle diameter a and the longest particle diameter b exceeds 2 are dominant.

<高密度磁石の粒界相均質化熱処理工程>
熱間圧縮成形によって得られた高密度磁石に対して粒界相均質化工程をおこなう。具体的には、真空または不活性ガス(ArやHeなど)雰囲気中において800℃以上900℃以下の温度で熱処理を施し、高密度磁石内で偏析したR−rich相を粒界に拡散させてその分布を均質化させる。熱処理に要する時間は、5分以上5時間以下であることが望ましく、10分以上1時間以下がより望ましい。
<Granular boundary phase homogenization heat treatment process of high-density magnet>
A grain boundary phase homogenization process is performed with respect to the high-density magnet obtained by hot compression molding. Specifically, heat treatment is performed at a temperature of 800 ° C. or more and 900 ° C. or less in a vacuum or an inert gas (Ar, He, etc.) atmosphere, and the R-rich phase segregated in the high-density magnet is diffused to the grain boundaries. Homogenize the distribution. The time required for the heat treatment is preferably 5 minutes or more and 5 hours or less, more preferably 10 minutes or more and 1 hour or less.

以下、焼結磁石に対する熱処理と比較することによって、本発明の高密度磁石における粒界相均質化熱処理工程の効果について説明する。   Hereinafter, the effect of the grain boundary phase homogenization heat treatment process in the high-density magnet of the present invention will be described by comparing with the heat treatment for the sintered magnet.

図2は、本発明の実施形態における高密度磁石と、比較として同組成の焼結磁石に対して、熱処理を450℃〜950℃の温度で行った時の熱処理温度と保磁力との関係を示したグラフである。図2に示すようにDR処理工程で水素分圧を制御してAr減圧で熱処理(粒界相形成熱処理)した後に熱間圧縮成形によって高密度化をおこなった本発明の高密度磁石の保磁力(HcJ)は、450℃〜950℃で熱処理(粒界相均質化熱処理)した際、450℃〜550℃付近で極大値をとって、熱処理前に比べ若干向上する。この現象は同組成の焼結磁石でも同程度の温度付近で起こっていることから、一般的に焼結磁石でおこなわれている時効処理と同様の現象と考えられる。その後保磁力(HcJ)は、700℃付近で極小値をとった後、800℃から再び向上し、900℃付近で最大値をとる。この時に得られる保磁力(HcJ)は同組成の焼結磁石と比べ、200kA/m近く高い値であり、Dyを用いることなく高い保磁力が得られることが分かる。この800℃〜900℃の温度で保磁力(HcJ)が向上する現象は、同組成の焼結磁石では見られない現象であり、本発明の製造方法によって得られた高密度磁石でのみ見られる現象である。 FIG. 2 shows the relationship between the heat treatment temperature and the coercive force when heat treatment is performed at a temperature of 450 ° C. to 950 ° C. for a high-density magnet in the embodiment of the present invention and a sintered magnet of the same composition as a comparison. It is the shown graph. As shown in FIG. 2, the coercive force of the high-density magnet of the present invention, in which the hydrogen partial pressure is controlled in the DR treatment step and heat treatment is performed at a reduced Ar pressure (grain boundary phase formation heat treatment) and then densified by hot compression molding. When (H cJ ) is heat-treated at 450 ° C. to 950 ° C. (grain boundary phase homogenization heat treatment), it takes a maximum value in the vicinity of 450 ° C. to 550 ° C., and is slightly improved compared to before heat treatment. Since this phenomenon occurs in the vicinity of the same temperature even in sintered magnets having the same composition, it is considered that this phenomenon is similar to the aging treatment generally performed in sintered magnets. Thereafter, the coercive force (H cJ ) takes a minimum value in the vicinity of 700 ° C., then increases again from 800 ° C., and takes a maximum value in the vicinity of 900 ° C. The coercive force (H cJ ) obtained at this time is nearly 200 kA / m higher than that of a sintered magnet having the same composition, and it can be seen that a high coercive force can be obtained without using Dy. This phenomenon in which the coercive force (H cJ ) is improved at a temperature of 800 ° C. to 900 ° C. is a phenomenon that cannot be seen with a sintered magnet having the same composition, and can only be seen with a high-density magnet obtained by the production method of the present invention. It is a phenomenon.

<追加熱処理工程>
粒界相均質化工程をおこなった高密度磁石に対して追加熱処理工程をおこなっても良い。具体的には、真空または不活性ガス(ArやHeなど)雰囲気中において450℃以上650℃以下の温度で熱処理を施す。熱処理に要する時間は、5分以上5時間以下であることが望ましく、10分以上1時間以下がより望ましい。
<Additional heat treatment process>
You may perform an additional heat processing process with respect to the high-density magnet which performed the grain boundary phase homogenization process. Specifically, heat treatment is performed at a temperature of 450 ° C. or higher and 650 ° C. or lower in a vacuum or an inert gas (Ar, He, or the like) atmosphere. The time required for the heat treatment is preferably 5 minutes or more and 5 hours or less, more preferably 10 minutes or more and 1 hour or less.

以下、本発明によるR−T−B系永久磁石の製造方法におけるR−T−B系合金粉末およびR−T−B系合金粉末とR’金属またはR’−M系合金の粉末との混合粉末について、望ましい実施形態を詳細に説明する。   Hereinafter, in the manufacturing method of the RTB-based permanent magnet according to the present invention, the RTB-based alloy powder and the RTB-based alloy powder are mixed with the R ′ metal or R′-M-based alloy powder. Preferred embodiments of the powder will be described in detail.

<R−T−B系合金>
まず、主たる相として硬磁性相であるR14B相および希土類リッチ相を含むR−T−B系合金を用意する。ここで、「R」は希土類元素であり、Ndおよび/またはPrを50原子%以上含む。本明細書における希土類元素Rはイットリウム(Y)を含んでもよい。TはFeまたはFeとCoである。このR−T−B系合金は、R14B相を体積比率で50%以上含んでいることが望ましい。原料合金に含まれる希土類元素Rの大部分は、R14B相および希土類リッチ相を構成しているが、一部はR3やその他の相を構成している。
<R-T-B alloy>
First, an R—T—B system alloy including an R 2 T 14 B phase, which is a hard magnetic phase, and a rare earth-rich phase as a main phase is prepared. Here, “R” is a rare earth element and contains Nd and / or Pr by 50 atomic% or more. The rare earth element R in this specification may contain yttrium (Y). T is Fe or Fe and Co. This R-T-B alloy preferably contains 50% or more of the R 2 T 14 B phase by volume. Most of the rare earth element R contained in the raw material alloy constitutes the R 2 T 14 B phase and the rare earth rich phase, but a part constitutes R 2 O 3 and other phases.

希土類元素Rの組成比率は原料合金全体の10原子%以上30原子%以下であることが望ましく、12原子%以上17原子%以下であることがより望ましい。後述するR’−M系合金を混合する場合には12原子%以上14原子%以下であると、HDDR処理後の組織において1μm以上の希土類リッチ相の塊を減らすことができる。また、HDDR処理中のR14B相の粒成長を抑制でき、同時にR14B相の構成比率を高められる。その結果HcJや減磁曲線の角型性の向上が期待できる。さらに、熱間圧縮成形までおこなった際の磁化の向上も図れる。また、希少元素であることから多量に用いることは避けるべきではあるがRの一部をDyおよび/またはTbとすることで、保磁力を向上させることもできる。 The composition ratio of the rare earth element R is preferably 10 atomic percent or more and 30 atomic percent or less, and more preferably 12 atomic percent or more and 17 atomic percent or less of the entire raw material alloy. In the case of mixing an R′-M-based alloy, which will be described later, a rare earth-rich phase mass of 1 μm or more can be reduced in the structure after HDDR treatment when the content is 12 atomic% or more and 14 atomic% or less. Moreover, the grain growth of the R 2 T 14 B phase during HDDR treatment can be suppressed, and at the same time, the constituent ratio of the R 2 T 14 B phase can be increased. As a result, improvement in the squareness of HcJ and the demagnetization curve can be expected. Furthermore, it is possible to improve the magnetization when hot compression molding is performed. In addition, since it is a rare element, it should be avoided to use a large amount, but the coercive force can be improved by using a part of R as Dy and / or Tb.

Bの組成比率は原料合金全体の3原子%以上15原子%以下が望ましく、5原子%以上8原子%以下がより望ましく、5.5原子%以上7.5原子%以下がさらに望ましい。Bはその一部をCで置換してもよいが、その置換量は置換前のBの量に対して10原子%以下であることが望ましい。   The composition ratio of B is preferably 3 atomic percent or more and 15 atomic percent or less, more preferably 5 atomic percent or more and 8 atomic percent or less, and further preferably 5.5 atomic percent or more and 7.5 atomic percent or less. A part of B may be substituted with C, but the amount of substitution is preferably 10 atomic% or less with respect to the amount of B before substitution.

「T」は残余を占め、Fe、またはFeおよびFeの一部を置換したCoである。その置換量はT全体の量に対して50原子%以下であることが望ましい。また、原料合金全体に対するCoの総量は、コストなどの観点から、20原子%以下であることが望ましく、5原子%以下であることがさらに望ましい。Coを全く含有しない場合でも高い磁気特性は得られるが、0.5原子%以上のCoを含有すると、より安定した磁気特性を得ることができる。   “T” occupies the remainder and is Fe or Co substituted for Fe and part of Fe. The amount of substitution is desirably 50 atomic% or less with respect to the total amount of T. Further, the total amount of Co with respect to the entire raw material alloy is preferably 20 atomic% or less, and more preferably 5 atomic% or less from the viewpoint of cost and the like. High magnetic properties can be obtained even when Co is not contained at all, but more stable magnetic properties can be obtained when Co of 0.5 atomic% or more is contained.

磁気特性向上などの効果を得るため、Al、Ti、V、Cr、Ga、Nb、Mo、In、Sn、Hf、Ta、W、Cu、Si、Zr、Niなどの元素を適宜添加してもよい。ただし、添加量の増加は、特に飽和磁化の低下を招くため、総量で全体の10原子%以下とすることが望ましい。原料合金には不可避の不純物を含有していてもよい。   In order to obtain effects such as improvement of magnetic characteristics, elements such as Al, Ti, V, Cr, Ga, Nb, Mo, In, Sn, Hf, Ta, W, Cu, Si, Zr, and Ni may be added as appropriate. Good. However, since an increase in the amount of addition causes a decrease in saturation magnetization in particular, the total amount is preferably 10 atomic% or less. The raw material alloy may contain inevitable impurities.

R−T−B系合金は、磁気特性に悪影響を及ぼすα−Fe相の量を低減することのできるストリップキャスト法により作製することが望ましいが、ブックモールド法、遠心鋳造法、アトマイズ法などによっても作製することができる。原料合金における組織均質化などを目的として、粉砕前の原料合金に対して熱処理を施してもよい。このような熱処理は、真空または不活性ガス雰囲気において、典型的には1000℃以上の温度で実行され得る。   The R-T-B alloy is preferably produced by a strip casting method that can reduce the amount of α-Fe phase that adversely affects the magnetic properties. However, the book casting method, centrifugal casting method, atomizing method, etc. Can also be made. For the purpose of homogenizing the structure of the raw material alloy, heat treatment may be performed on the raw material alloy before pulverization. Such heat treatment can be performed in a vacuum or inert gas atmosphere, typically at a temperature of 1000 ° C. or higher.

<R−T−B系合金粉末>
得られたR−T−B系合金は、後述するR’−M系合金と混合しない場合、ジョークラッシャーなどの機械的粉砕法や水素吸蔵粉砕法などを用いて粗粉砕し、大きさ50μm〜1000μm程度の粗粉砕粉末を作製する。この粗粉砕粉末に対してジェットミルなどによる微粉砕を行い、50%体積中心粒径が1μm以上10μm未満のR−T−B系合金粉末を作製する。
<R-T-B alloy powder>
When the obtained RTB-based alloy is not mixed with an R′-M-based alloy described later, it is coarsely pulverized using a mechanical pulverization method such as a jaw crusher or a hydrogen occlusion pulverization method. A roughly pulverized powder of about 1000 μm is prepared. The coarsely pulverized powder is finely pulverized by a jet mill or the like to produce an RTB-based alloy powder having a 50% volume center particle size of 1 μm or more and less than 10 μm.

なお、50%体積中心粒径(D50)は気流分散型レーザー回折法により測定できる。50%体積中心粒径が明らかに所望の範囲内であることを確認できるレベルである場合には、任意抽出の粉末の粒径を電子顕微鏡観察によって簡易に確認してもよい。 The 50% volume center particle size (D 50 ) can be measured by a gas flow dispersion type laser diffraction method. When the 50% volume center particle size is at a level where it can be clearly confirmed that it is within the desired range, the particle size of the arbitrarily extracted powder may be easily confirmed by observation with an electron microscope.

<R’の金属またはR’−M系合金(拡散材)>
R’の金属またはR’−M系合金を用意する。ここで、「R’」は希土類元素であり、Nd、Pr、Dy、Tbからなる群から選択された少なくとも1種の希土類元素である。また、「M」は、Al、Ga、Co、Feからなる群から選択された少なくとも1種の元素である。R’−M系合金は、後に記載する水素吸蔵処理においてR’の水素化物(R’H)とR’−M化合物(R’M、R’Mなど)とに分解するが、このとき生成するR’−M化合物の融点が、後に記載するHD処理の熱処理温度よりも高くなるように、「M」を選ぶことが望ましい。拡散材は、不可避の不純物を含有していてもよい。
<R 'metal or R'-M alloy (diffusion material)>
An R ′ metal or an R′-M alloy is prepared. Here, “R ′” is a rare earth element, and is at least one rare earth element selected from the group consisting of Nd, Pr, Dy, and Tb. “M” is at least one element selected from the group consisting of Al, Ga, Co, and Fe. The R′-M alloy is decomposed into R ′ hydride (R′H x ) and R′-M compounds (R′M, R′M 2, etc.) in the hydrogen storage treatment described later. It is desirable to select “M” so that the melting point of the R′-M compound sometimes generated is higher than the heat treatment temperature of HD treatment described later. The diffusing material may contain inevitable impurities.

R’−M系合金における希土類元素R’の組成比率は20原子%以上100原子%未満であり、25原子%以上100原子%未満であることが望ましく、40原子%以上98原子%以下であることがより望ましく、60原子%以上90原子%以下であることがさらに望ましい。   The composition ratio of the rare earth element R ′ in the R′-M alloy is 20 atomic% or more and less than 100 atomic%, preferably 25 atomic% or more and less than 100 atomic%, and 40 atomic% or more and 98 atomic% or less. It is more desirable that it is 60 atomic% or more and 90 atomic% or less.

R’の金属またはR’−M系合金は、ブックモールド法、遠心鋳造法、アトマイズ法、ストリップキャスト法、液体超急冷法などの公知の方法によって作製することができる。   The R ′ metal or the R′-M alloy can be produced by a known method such as a book mold method, a centrifugal casting method, an atomizing method, a strip casting method, or a liquid superquenching method.

さらに、それらの方法によって作製したR’−M系合金は、10kPa以上の水素雰囲気中、または水素分圧が10kPa以上の水素と不活性ガスの混合雰囲気において900℃以下の温度で水素吸蔵させることで、HDDR処理の昇温工程におけるR’−M系合金のR−T−B系合金粉末への拡散を抑制することができる。この水素吸蔵処理によって、R’−M系合金はR’の水素化物とR’−M化合物に分解される。R’の水素化物の融点は、HD処理工程の処理温度よりも高いため、R’−M合金のR−T−B系合金粉末への拡散を抑制することができる。   Furthermore, the R′-M alloy produced by these methods should store hydrogen at a temperature of 900 ° C. or less in a hydrogen atmosphere of 10 kPa or more or in a mixed atmosphere of hydrogen and inert gas having a hydrogen partial pressure of 10 kPa or more. Thus, diffusion of the R′-M alloy to the RTB alloy powder in the temperature raising step of the HDDR process can be suppressed. By this hydrogen storage treatment, the R′-M alloy is decomposed into a hydride of R ′ and an R′-M compound. Since the melting point of the hydride of R ′ is higher than the processing temperature in the HD processing step, the diffusion of the R′-M alloy into the RTB-based alloy powder can be suppressed.

なお、上述に記載の、HDDR処理の昇温工程において、600℃まで水素を含む雰囲気で昇温して圧粉体を水素化させた後、600℃以上は不活性ガス雰囲気、または真空中で昇温することによっても、同じように昇温中のR’−M系合金のR−T−B系合金粉末への拡散を抑制することができる。   In addition, in the temperature rising step of the HDDR process described above, the temperature is increased to 600 ° C. in an atmosphere containing hydrogen to hydrogenate the green compact, and then the temperature of 600 ° C. or higher is in an inert gas atmosphere or in a vacuum. Similarly, by increasing the temperature, it is possible to suppress diffusion of the R′-M alloy during the temperature increase into the RTB-based alloy powder.

<混合粉末>
R’−M系合金を混合する場合は、あらかじめ上記R−T−B系合金とR’−M系合金を混合した混合粉末を作製する。その際、R−T−B系合金とR’−M系合金を別々に粉砕した後に混合しても、R−T−B系合金とR’−M系合金の混合物を粉砕してもよい。
<Mixed powder>
When mixing the R′-M alloy, a mixed powder is prepared in advance by mixing the RTB alloy and the R′-M alloy. At that time, the RTB-based alloy and the R′-M-based alloy may be separately pulverized and mixed, or the mixture of the RTB-based alloy and the R′-M-based alloy may be pulverized. .

R−T−B系合金とR’−M系合金を別々に粉砕する場合には、まずR−T−B系合金をジョークラッシャーなどの機械的粉砕法や水素吸蔵粉砕法などを用いて粗粉砕し、大きさ50μm〜1000μm程度の粗粉砕粉末を作製する。この粗粉砕粉末に対してジェットミルなどによる微粉砕を行い、50%体積中心粒径が1μm以上10μm未満のR−T−B系合金粉末を作製する。   When the R-T-B type alloy and the R′-M-type alloy are separately pulverized, the R-T-B type alloy is first roughened using a mechanical crushing method such as a jaw crusher or a hydrogen occlusion crushing method. Crushing to produce coarsely pulverized powder having a size of about 50 μm to 1000 μm. The coarsely pulverized powder is finely pulverized by a jet mill or the like to produce an RTB-based alloy powder having a 50% volume center particle size of 1 μm or more and less than 10 μm.

一方、R’−M系合金を機械的粉砕法や水素吸蔵粉砕法などを用いて粗粉砕し、例えば大きさ150μm未満のR’−M系合金粉末を作製する。拡散材の粉砕時には、粉砕性の向上などを目的として固体潤滑剤および/または液体潤滑剤を添加してもよい。R’−M系合金粉末の大きさは、JIS Z 2510記載の方法によってJIS Z 8801−1に規定のふるいを用いて分級し、所望の粒度の範囲に調整すればよいが、R’−M系合金粉末も50%体積中心粒径は気流分散型レーザー回折法によって測定して求めるか、電子顕微鏡によって確認する。   On the other hand, the R′-M alloy is coarsely pulverized using a mechanical pulverization method, a hydrogen occlusion pulverization method, or the like to produce an R′-M alloy powder having a size of less than 150 μm, for example. When the diffusing material is pulverized, a solid lubricant and / or a liquid lubricant may be added for the purpose of improving the pulverization property. The size of the R′-M type alloy powder may be classified by using the sieve specified in JIS Z 8801-1 by the method described in JIS Z 2510 and adjusted to a desired particle size range. The 50% volume center particle size of the system alloy powder is also determined by measuring by an air flow dispersion type laser diffraction method or confirmed by an electron microscope.

作製したR−T−B系合金粉末とR’−M系合金粉末を公知の粉末混合法によって混合し混合粉末を得る。   The produced RTB-based alloy powder and R′-M-based alloy powder are mixed by a known powder mixing method to obtain a mixed powder.

取り扱いの観点から、R−T−B系合金粉末およびR’−M系合金粉末の50%体積中心粒径はそれぞれ1μm以上であることが望ましい。50%体積中心粒径が1μm未満になると、混合粉末が大気雰囲気中の酸素と反応しやすくなり、酸化による発熱・発火の危険性が高まるからである。取り扱いをより容易にするためには、50%体積中心粒径を3μm以上に設定することが望ましい。拡散材粉末の50%体積中心粒径は、酸化抑制の観点から10μm以上であることが好ましい。成型体の機械的強度向上という観点から、R−T−B系合金粉末の50%体積中心粒径の望ましい上限は9μmであり、さらに望ましい上限は8μmである。また、HDDR反応の均一性という観点から、R’−M系合金粉末の粒径は150μm未満である。   From the viewpoint of handling, it is desirable that the 50% volume center particle size of the RTB-based alloy powder and the R′-M-based alloy powder is 1 μm or more, respectively. This is because when the 50% volume center particle size is less than 1 μm, the mixed powder easily reacts with oxygen in the air atmosphere, increasing the risk of heat generation and ignition due to oxidation. In order to make the handling easier, it is desirable to set the 50% volume center particle size to 3 μm or more. The 50% volume center particle size of the diffusing material powder is preferably 10 μm or more from the viewpoint of suppressing oxidation. From the viewpoint of improving the mechanical strength of the molded body, the desirable upper limit of the 50% volume center particle size of the RTB-based alloy powder is 9 μm, and the more desirable upper limit is 8 μm. Further, from the viewpoint of uniformity of the HDDR reaction, the particle diameter of the R′-M alloy powder is less than 150 μm.

R−T−B系合金とR’−M系合金を別々に粉砕することにより、R−T−B系合金粉末の50%体積中心粒径を1μm以上10μm未満、R’−M系合金粉末の50%体積中心粒径を10μm以上とすることができ、特に酸素と反応しやすいR’−M系合金粉末の酸化を抑制することができる。   By grinding the RTB-based alloy and the R′-M-based alloy separately, the 50% volume center particle size of the RTB-based alloy powder is 1 μm or more and less than 10 μm. The 50% volume center particle diameter of the R′-M alloy powder, which easily reacts with oxygen, can be suppressed.

また、R−T−B系合金とR’−M系合金の混合物を粉砕する場合においては、まずR−T−B系合金とR’−M系合金の混合物をジョークラッシャーなどの機械的粉砕法や水素吸蔵粉砕法などを用いて粗粉砕し、大きさ50μm〜1000μm程度の粗粉砕粉末を作製する。この粗粉砕粉末に対してジェットミルなどによる微粉砕を行い、50%体積中心粒径が1μm以上10μm未満の混合粉末を作製する。R−T−B系合金とR’−M系合金をそれぞれ大きさ50μm〜1000μm程度の粗粉砕粉末としてから混合し、混合した粗粉砕粉を微粉砕してもよい。   In the case of pulverizing a mixture of an R-T-B type alloy and an R′-M-type alloy, the mixture of the R-T-B type alloy and the R′-M type alloy is first mechanically pulverized by a jaw crusher or the like. A coarsely pulverized powder having a size of about 50 μm to 1000 μm is prepared by coarsely pulverizing using a method or a hydrogen storage and pulverization method. The coarsely pulverized powder is finely pulverized by a jet mill or the like to produce a mixed powder having a 50% volume center particle size of 1 μm or more and less than 10 μm. The RTB-based alloy and the R′-M-based alloy may be mixed as coarsely pulverized powder having a size of about 50 μm to 1000 μm, respectively, and the mixed coarsely pulverized powder may be finely pulverized.

混合粉末の50%体積中心粒径が1μm未満になると、混合粉末が大気雰囲気中の酸素と反応しやすくなり、酸化による発熱・発火の危険性が高まる。取り扱いをより容易にするためには、50%体積中心粒径を3μm以上に設定することが望ましい。圧粉体の機械的強度向上という観点から、50%体積中心粒径の望ましい上限は9μmであり、より望ましい上限は8μmである。   When the 50% volume center particle size of the mixed powder is less than 1 μm, the mixed powder easily reacts with oxygen in the air atmosphere, increasing the risk of heat generation and ignition due to oxidation. In order to make the handling easier, it is desirable to set the 50% volume center particle size to 3 μm or more. From the viewpoint of improving the mechanical strength of the green compact, a desirable upper limit of 50% volume center particle size is 9 μm, and a more desirable upper limit is 8 μm.

R−T−B系合金とR’−M系合金の混合物を粉砕することによって、R−T−B系合金と拡散材が均一に混合された混合粉末を容易に作製することができる。   By pulverizing the mixture of the RTB-based alloy and the R′-M-based alloy, a mixed powder in which the RTB-based alloy and the diffusion material are uniformly mixed can be easily produced.

R−T−B系合金とR’−M系合金の混合比は、重量比で(R−T−B系合金):(拡散材)=m:1(5≦m≦100)であることが望ましい。mが5未満であると、R’−M系合金の割合が多くなりすぎるために、主相であるR14B相の体積率の低下を招き、結果として残留磁束密度の低下を招く可能性がある。また、mが100を超えるとR’−M系合金を添加した効果がほとんど得られなくなる可能性がある。 The mixing ratio of the R-T-B type alloy and the R′-M-type alloy is (R-T-B type alloy) :( diffusion material) = m: 1 (5 ≦ m ≦ 100) in weight ratio. Is desirable. When m is less than 5, the ratio of the R′-M alloy is excessively increased, which causes a decrease in the volume ratio of the main phase R 2 T 14 B phase, resulting in a decrease in residual magnetic flux density. there is a possibility. On the other hand, if m exceeds 100, the effect of adding the R′-M alloy may be hardly obtained.

混合粉末における希土類元素RおよびR’の総量は、混合粉末全体の10原子%以上30原子%以下であることが望ましく、12原子%以上17原子%以下であることがより望ましい。また、混合粉末における希土類元素RおよびR’の総量は、混合粉末全体の15原子%以下であると、ホットプレス後に金型から取り出しやすいのでより望ましい。   The total amount of rare earth elements R and R ′ in the mixed powder is preferably 10 atomic percent or more and 30 atomic percent or less, and more preferably 12 atomic percent or more and 17 atomic percent or less of the entire mixed powder. In addition, the total amount of rare earth elements R and R ′ in the mixed powder is more preferably 15 atomic% or less of the entire mixed powder because it is easy to remove from the mold after hot pressing.

上記圧粉体の成型工程、およびR−T−B系合金やR’−M系合金の粉砕工程は、R−T−B系合金粉末やR’−M系合金粉末の酸化を抑制しながら行うことが望ましい。R−T−B系合金粉末やR’−M系合金粉末の酸化を抑制するには、各工程および各工程間のハンドリングをできる限り酸素量を抑制した不活性雰囲気で行うことが望ましい。DR処理前の圧粉体の酸素量は1質量%以下に抑制することが望ましく、0.6質量%以下に抑制することがより望ましい。   The green compact molding step and the RTB-based alloy or R′-M-based alloy pulverizing step suppress the oxidation of the RTB-based alloy powder or the R′-M-based alloy powder. It is desirable to do. In order to suppress the oxidation of the RTB-based alloy powder or the R′-M-based alloy powder, it is desirable that each process and handling between the processes be performed in an inert atmosphere in which the amount of oxygen is suppressed as much as possible. The amount of oxygen in the green compact before the DR treatment is preferably suppressed to 1% by mass or less, and more preferably to 0.6% by mass or less.

本発明のR−T−B系永久磁石は、組織において特徴的なNd−rich相の分散状態を以下のような方法で評価することができる。磁石をクロスセクションポリッシャ(例えば装置名:SM−09010、日本電子製)にて切削加工し、加工断面の反射電子像をFE−SEM(例えば装置名:JSM−7001F、日本電子製)を用いて倍率5000倍で撮影する。反射電子像において主相であるNdFe14B相のコントラストは暗く、粒界相であるNd−rich相(Nd酸化物相を含む)は明るく表示される。撮影した5000倍の画像を用い、領域24μm×18μm(実寸法)からNd−rich相3重点を画像編集ソフト(例えば製品名:Photoshop Elements
9、Adobe Systems製)で2値化処理により抽出する。また、画像解析ソフト(例えば製品名:WinROOF、三谷商事製)でNd−rich相3重点の数密度および総面積を測定する。その際、0.00006μm未満のNd−rich相と0.785μm超のNd−rich相は保磁力の向上にほとんど寄与しないと考えられるため除外する。本発明のR−T−B系永久磁石は、以上のような方法により0.00006μm以上0.785μm以下の面積を有するNd−rich相の個数密度が2個/μm以上存在することが特徴として評価される。
The RTB-based permanent magnet of the present invention can evaluate the dispersion state of the Nd-rich phase characteristic in the structure by the following method. The magnet is cut with a cross section polisher (for example, device name: SM-09010, manufactured by JEOL), and the reflected electron image of the processed cross section is used with FE-SEM (for example, device name: JSM-7001F, manufactured by JEOL). Shoot at a magnification of 5000 times. In the reflected electron image, the contrast of the Nd 2 Fe 14 B phase that is the main phase is dark, and the Nd-rich phase (including the Nd oxide phase) that is the grain boundary phase is displayed brightly. Image editing software (for example, product name: Photoshop Elements) from the area of 24 μm × 18 μm (actual size) to the Nd-rich phase 3 point using the captured 5000 × image.
9 and manufactured by Adobe Systems). Further, the number density and the total area of the Nd-rich phase triple point are measured by image analysis software (for example, product name: WinROOF, manufactured by Mitani Corporation). At that time, the Nd-rich phase of less than 0.00006 μm 2 and the Nd-rich phase of more than 0.785 μm 2 are considered to hardly contribute to the improvement of the coercive force, and are excluded. The R-T-B-based permanent magnet of the present invention is to present number density of Nd-rich phase having an area of 0.00006Myuemu 2 more 0.785Myuemu 2 or less 2 / [mu] m 2 or more by the above method Is evaluated as a feature.

下の表1に示す組成のR−T−B系合金を用意し、上述した実施形態の製造方法により、高密度磁石を作製した。以下、本実験例における高密度磁石の作製方法を説明する。   An RTB-based alloy having the composition shown in Table 1 below was prepared, and a high-density magnet was manufactured by the manufacturing method of the above-described embodiment. Hereinafter, a method for producing a high-density magnet in this experimental example will be described.

(実験例1)
まず、表1のB1の組成を有するR−T−B系合金をストリップキャスト法で作製した。得られた合金を水素吸蔵崩壊法によって粒径425μm以下の粉末に粗粉砕した後、ジェットミルを用いて粗粉末を微粉砕し、50%体積中心粒径4.2μmのR−T−B系合金粉末を得た。なお、50%体積中心粒径は、レーザー回折式粒度分布測定装置(Sympatec社製、HEROS/RODOS、以下すべて同じ装置で測定)によって測定した。
次に、R−T−B系合金粉末をプレス装置の金型に充填し、1.2MA/mの磁界中において、磁界と直角方向に32MPaの圧力を印加して圧粉体を作製した。圧粉体の密度は、寸法と重量に基づいて計算すると、4.2g/cmであった。
(Experimental example 1)
First, an RTB-based alloy having the composition of B1 in Table 1 was produced by a strip cast method. The obtained alloy was coarsely pulverized into a powder having a particle size of 425 μm or less by the hydrogen storage / disintegration method, and then the coarse powder was finely pulverized using a jet mill to obtain an RTB system having a 50% volume center particle size of 4.2 μm. An alloy powder was obtained. The 50% volume center particle size was measured by a laser diffraction particle size distribution measuring device (manufactured by Sympatec, HEROS / RODOS, hereinafter all measured by the same device).
Next, the R-T-B system alloy powder was filled in a die of a press machine, and a pressure of 32 MPa was applied in a direction perpendicular to the magnetic field in a magnetic field of 1.2 MA / m to produce a green compact. The density of the green compact was 4.2 g / cm 3 when calculated based on dimensions and weight.

次に、圧粉体に対してHDDR処理を行った。圧粉体を100kPaのアルゴン流気中で860℃まで14℃/minの昇温速度で昇温し、次いで雰囲気を100kPaの水素流気に切り替えた後、860℃を120分保持してHD処理工程を行った。その後、860℃に保持したままAr流気に切り替えて2分保持して熱処理装置内の雰囲気を置換した。次いでArガスを止めて熱処理装置内を真空ポンプで排気し、圧粉体から発生する水素の排気速度を調整して熱処理装置内の水素圧力を4.0kPaに調整しながら60分保持し、DR処理工程を行った。次いで860℃のまま5.3kPaに減圧したアルゴン流気中で10分保持し、粒界相形成熱処理工程を行った。その後、100kPaのアルゴン流気中で室温まで冷却し、多孔質磁石を得た。作製した多孔質磁石の寸法と重量から密度を計算すると、5.55g/cmであった。 Next, HDDR processing was performed on the green compact. The green compact was heated to 860 ° C. at a heating rate of 14 ° C./min in a 100 kPa argon flow, and then the atmosphere was switched to a hydrogen flow of 100 kPa, and then kept at 860 ° C. for 120 minutes for HD processing. The process was performed. Then, while maintaining at 860 ° C., the atmosphere was switched to Ar and maintained for 2 minutes to replace the atmosphere in the heat treatment apparatus. Next, the Ar gas is stopped and the inside of the heat treatment apparatus is evacuated with a vacuum pump, and the hydrogen pressure generated in the green compact is adjusted to maintain the hydrogen pressure in the heat treatment apparatus at 4.0 kPa and held for 60 minutes. Processing steps were performed. Subsequently, it hold | maintained for 10 minutes in the argon air pressure-reduced to 5.3 kPa with 860 degreeC, and the grain boundary phase formation heat treatment process was performed. Then, it cooled to room temperature in 100 kPa argon flow, and the porous magnet was obtained. When the density was calculated from the size and weight of the produced porous magnet, it was 5.55 g / cm 3 .

さらに多孔質磁石を超硬合金製の金型中で800℃に加熱し、50MPaの圧力で20分間の熱間圧縮処理(ホットプレス)を行うことにより、密度7.52g/cmの高密度磁石を得た。作製した高密度磁石に対して3.2MA/mのパルス磁界で着磁した後、磁気特性をBHトレーサー(装置名:MTR−1412(メトロン技研社製))で測定した。結果を表2(比較例1)に示す。 Further, the porous magnet was heated to 800 ° C. in a cemented carbide mold and subjected to hot compression treatment (hot pressing) at a pressure of 50 MPa for 20 minutes, whereby a high density of 7.52 g / cm 3 was achieved. A magnet was obtained. After magnetizing the produced high-density magnet with a pulse magnetic field of 3.2 MA / m, the magnetic properties were measured with a BH tracer (device name: MTR-1412 (Metron Giken Co., Ltd.)). The results are shown in Table 2 (Comparative Example 1).

さらに高密度磁石に対して10−2Pa以下の真空中で700℃〜950℃で60minの粒界相均質化熱処理工程を行い、真空中で室温まで冷却した。得られた試料に対し3.2MA/mのパルス磁界で着磁した後、磁気特性をBHトレーサー(装置名:MTR−1412(メトロン技研社製))で測定した。結果を表2に示す。表2に示すように、熱処理を行わなかった磁石(比較例1)に対して、700℃および950℃で熱処理した場合(比較例2および比較例3)は保磁力が低下したが、800℃〜900℃で熱処理した場合(実施例1〜3)は保磁力が向上した。 Further subjected to grain boundary phase homogenization heat treatment step of 60min at 700 ° C. to 950 ° C. at 10 -2 Pa in a vacuum of high-density magnets, and cooled to room temperature in vacuo. After magnetizing the obtained sample with a pulse magnetic field of 3.2 MA / m, the magnetic properties were measured with a BH tracer (device name: MTR-1412 (Metron Giken Co., Ltd.)). The results are shown in Table 2. As shown in Table 2, the coercive force decreased when the heat treatment was performed at 700 ° C. and 950 ° C. (Comparative Example 2 and Comparative Example 3) with respect to the magnet not subjected to heat treatment (Comparative Example 1). When the heat treatment was performed at ˜900 ° C. (Examples 1 to 3), the coercive force was improved.

(実験例2)
HD処理工程までの昇温を、600(℃)までは100kPaの水素流気中で14℃/minの昇温速度で昇温し、その後雰囲気を100kPaのアルゴン流気に切り替えた後、860℃まで14℃/minの昇温速度で昇温したこと以外は実験例1と同様にして多孔質磁石A(本発明の熱処理工程)を作製した。また、HD処理工程の後、Ar流気に切り替えて2分保持して熱処理装置内の雰囲気を置換した後、従来のように860℃のまま5.3kPaに減圧したアルゴン流気中で60分保持しDR処理工程を行い、その後粒界相形成熱処理工程を行わなかったこと以外は多孔質磁石Aと同様にして多孔質磁石B(従来のDR処理工程)を作製した。作製した多孔質磁石の寸法と重量から密度を計算すると、それぞれ多孔質磁石Aが5.77g/cm、多孔質磁石Bが5.85g/cmであった。
(Experimental example 2)
The temperature up to the HD treatment step was raised to 600 (° C.) at a rate of 14 ° C./min in a 100 kPa hydrogen stream, and then the atmosphere was switched to a 100 kPa argon stream, followed by 860 ° C. A porous magnet A (heat treatment step of the present invention) was produced in the same manner as in Experimental Example 1 except that the temperature was increased at a temperature increase rate of 14 ° C./min. In addition, after the HD treatment step, after switching to Ar flow and holding for 2 minutes to replace the atmosphere in the heat treatment apparatus, the flow is kept at 860 ° C. in an argon flow reduced to 5.3 kPa for 60 minutes. A porous magnet B (conventional DR processing step) was produced in the same manner as the porous magnet A except that the DR treatment step was performed and the grain boundary phase formation heat treatment step was not performed. When the density was calculated from the size and weight of the produced porous magnet, the porous magnet A was 5.77 g / cm 3 and the porous magnet B was 5.85 g / cm 3 , respectively.

さらに多孔質磁石を超硬合金製の金型中で800℃に加熱し、50MPaの圧力で20分間の熱間圧縮処理(ホットプレス)を行うことにより、多孔質磁石Aから密度7.52g/cm、多孔質磁石Bから7.51g/cmの高密度磁石を得た。作製した高密度磁石に対して3.2MA/mのパルス磁界で着磁した後、磁気特性をBHトレーサー(装置名:MTR−1412(メトロン技研社製))で測定した。結果を表3(比較例4)、表4(比較例10)に示す。 Further, the porous magnet A was heated to 800 ° C. in a cemented carbide mold and subjected to hot compression treatment (hot pressing) at a pressure of 50 MPa for 20 minutes. A high density magnet of 7.51 g / cm 3 was obtained from cm 3 and porous magnet B. After magnetizing the produced high-density magnet with a pulse magnetic field of 3.2 MA / m, the magnetic properties were measured with a BH tracer (device name: MTR-1412 (Metron Giken Co., Ltd.)). The results are shown in Table 3 (Comparative Example 4) and Table 4 (Comparative Example 10).

さらに高密度磁石に対して10−2Pa以下の真空中にて450℃〜950℃で60minの熱処理を行い、真空中で室温まで冷却した。得られた試料に対し3.2MA/mのパルス磁界で着磁した後、磁気特性をBHトレーサー(装置名:MTR−1412(メトロン技研社製))で測定した。多孔質磁石Aの結果を表3に示す。また、多孔質磁石Bの結果を表4に示す。さらに多孔質磁石Aと多孔質磁石Bの粒界相均質化熱処理温度と保磁力(HcJ)の関係を示した図を図3に示す。表3、表4、図3に示すようにDR処理工程で水素分圧を制御してAr減圧で熱処理(粒界相形成熱処理)した後に熱間圧縮成形によって高密度化をおこなった本発明の高密度磁石の保磁力(HcJ)は450℃〜950℃で熱処理(粒界相均質化熱処理)した際、少なくとも450℃〜550℃の間で極大値をとって、熱処理前に比べ若干向上する。この現象は実験例5で後述するようにR−T−B系焼結磁石で一般的におこなわれている保磁力向上のための熱処理(いわゆる時効処理)と温度範囲がほぼ一致するため同様の現象と考えられる。それより高温では保磁力(HcJ)は、700℃付近で極小値をとった後、800℃から再び向上し900℃付近で最大値をとる。この現象は従来のDR処理工程で作製された多孔質磁石Bから得られた高密度磁石や実験例5で後述するようなR−T−B系焼結磁石では見られない現象であり、本発明の製造方法によって得られた高密度磁石でのみ見られる現象である。 Further, the high-density magnet was heat-treated at 450 ° C. to 950 ° C. for 60 minutes in a vacuum of 10 −2 Pa or less, and cooled to room temperature in vacuum. After magnetizing the obtained sample with a pulse magnetic field of 3.2 MA / m, the magnetic properties were measured with a BH tracer (device name: MTR-1412 (Metron Giken Co., Ltd.)). The results for porous magnet A are shown in Table 3. Table 4 shows the result of the porous magnet B. Furthermore, the figure which showed the relationship between the grain boundary phase homogenization heat processing temperature of the porous magnet A and the porous magnet B, and a coercive force ( HcJ ) is shown in FIG. As shown in Table 3, Table 4, and FIG. 3, the hydrogen partial pressure was controlled in the DR treatment step and heat treatment was performed at Ar reduced pressure (grain boundary phase formation heat treatment), and then the density was increased by hot compression molding. The coercive force (H cJ ) of the high-density magnet takes a maximum value at least between 450 ° C. and 550 ° C. when heat-treated at 450 ° C. to 950 ° C. (grain boundary phase homogenization heat treatment), and is slightly improved compared to before heat treatment. To do. This phenomenon is similar to the heat treatment (so-called aging treatment) for improving the coercive force generally performed in the RTB-based sintered magnet as described later in Experimental Example 5 because the temperature range is substantially the same. It is considered a phenomenon. At higher temperatures, the coercive force (H cJ ) takes a minimum value around 700 ° C., then increases again from 800 ° C., and reaches a maximum value around 900 ° C. This phenomenon is a phenomenon that is not seen in a high-density magnet obtained from the porous magnet B produced by the conventional DR treatment process or an RTB-based sintered magnet as will be described later in Experimental Example 5. This is a phenomenon that can be seen only in the high-density magnet obtained by the manufacturing method of the invention.

さらに表3における実施例4〜6の高密度磁石に対し、10−2Pa以下の真空中にて500℃で60minの追加熱処理を行い、真空中で室温まで冷却した。得られた試料に対し3.2MA/mのパルス磁界で着磁した後、磁気特性をBHトレーサー(装置名:MTR−1412(メトロン技研社製))で測定した。結果を表5に示す。表5に示すように500℃の追加熱処理によってさらに保磁力が向上することが分かる。 Further, the high-density magnets of Examples 4 to 6 in Table 3 were subjected to additional heat treatment at 500 ° C. for 60 minutes in a vacuum of 10 −2 Pa or less, and cooled to room temperature in vacuum. After magnetizing the obtained sample with a pulse magnetic field of 3.2 MA / m, the magnetic properties were measured with a BH tracer (device name: MTR-1412 (Metron Giken Co., Ltd.)). The results are shown in Table 5. As shown in Table 5, it can be seen that the coercive force is further improved by the additional heat treatment at 500 ° C.

(実験例3)
HD処理工程、DR処理工程の温度を820℃、840℃、880℃に変えた以外は実験例2と同様にして多孔質磁石を作製した。作製した多孔質磁石の寸法と重量から密度を計算すると、それぞれ820℃の試料が5.26g/cm、840℃の試料が5.48g/cm、840℃の試料が5.92g/cmであった。
(Experimental example 3)
A porous magnet was produced in the same manner as in Experimental Example 2, except that the temperatures of the HD treatment process and DR treatment process were changed to 820 ° C., 840 ° C., and 880 ° C. When the density is calculated from the size and weight of the produced porous magnet, the sample at 820 ° C. is 5.26 g / cm 3 , the sample at 840 ° C. is 5.48 g / cm 3 , and the sample at 840 ° C. is 5.92 g / cm 3 . 3 .

さらに多孔質磁石を超硬合金製の金型中で800℃に加熱し、50MPaの圧力で20分間の熱間圧縮処理(ホットプレス)を行うことにより、いずれの試料からも7.51g/cmの高密度磁石を得た。作製した高密度磁石に対して3.2MA/mのパルス磁界で着磁した後、磁気特性をBHトレーサー(装置名:MTR−1412(メトロン技研社製))で測定した。結果を表6(比較例17〜19)に示す。 Furthermore, the porous magnet was heated to 800 ° C. in a cemented carbide mold and subjected to a hot compression treatment (hot press) for 20 minutes at a pressure of 50 MPa, so that 7.51 g / cm from any sample. 3 high density magnets were obtained. After magnetizing the produced high-density magnet with a pulse magnetic field of 3.2 MA / m, the magnetic properties were measured with a BH tracer (device name: MTR-1412 (Metron Giken Co., Ltd.)). The results are shown in Table 6 (Comparative Examples 17 to 19).

さらに高密度磁石に対して10−2Pa以下の真空中にて900℃で60minの熱処理を行い、真空中で室温まで冷却した。得られた試料に対し3.2MA/mのパルス磁界で着磁した後、磁気特性をBHトレーサー(装置名:MTR−1412(メトロン技研社製))で測定した。結果を表6(実施例10〜12)に示す。表6には、比較の為、比較例4および実施例6の結果もあわせて示す。表6に示すようにHD処理工程、DR処理工程の温度がいずれの場合でも粒界相均質化熱処理によって保磁力が大きく向上することが分かる。 Further, the high-density magnet was heat-treated at 900 ° C. for 60 minutes in a vacuum of 10 −2 Pa or less, and cooled to room temperature in vacuum. After magnetizing the obtained sample with a pulse magnetic field of 3.2 MA / m, the magnetic properties were measured with a BH tracer (device name: MTR-1412 (Metron Giken Co., Ltd.)). The results are shown in Table 6 (Examples 10 to 12). Table 6 also shows the results of Comparative Example 4 and Example 6 for comparison. As shown in Table 6, it can be seen that the coercive force is greatly improved by the grain boundary phase homogenization heat treatment regardless of the temperature of the HD treatment process and the DR treatment process.

(実験例4)
表1に示すB2〜B6の組成を有するR−T−B系合金をストリップキャスト法で作製した。得られた合金を水素吸蔵崩壊法によって粒径425μm以下の粉末に粗粉砕した後、ジェットミルを用いて粗粉末を微粉砕し、50%体積中心粒径4.2μmのR−T−B系合金粉末を得た。
(Experimental example 4)
An RTB-based alloy having a composition of B2 to B6 shown in Table 1 was produced by strip casting. The obtained alloy was coarsely pulverized into a powder having a particle size of 425 μm or less by the hydrogen storage / disintegration method, and then the coarse powder was finely pulverized using a jet mill to obtain an RTB system having a 50% volume center particle size of 4.2 μm. An alloy powder was obtained.

また、Nd70Al30の組成(原子%)の合金をメルトスピニング法で作製した。具体的には、合金を溶解し、オリフィス径0.8mmφの石英ノズル中からロール周速度20m/sで回転する銅ロールに噴射し、リボン状の合金を得た。これらの合金を水素ガス流気中で400℃まで昇温し水素を吸蔵させた後、機械粉砕により粉砕し、目開き53μmのメッシュを用いて分級し、大きさが53μm以下のNd−Al合金粉末を得た。なお、得られた拡散材粉末の粒径は明らかに1μm以上であることを、電子顕微鏡観察によって確認した。得られたR−T−B系合金粉末およびNd−Al合金粉末を、メノウ乳鉢を用いR−T−B系合金粉末:Nd−Al合金粉末 = 14:1(重量比)の混合比で混合し、混合粉末を得た。 Further, an alloy having a composition (atomic%) of Nd 70 Al 30 was produced by a melt spinning method. Specifically, the alloy was melted and sprayed from a quartz nozzle having an orifice diameter of 0.8 mmφ onto a copper roll rotating at a roll peripheral speed of 20 m / s to obtain a ribbon-like alloy. These alloys are heated to 400 ° C. in a hydrogen gas stream, occluded with hydrogen, pulverized by mechanical pulverization, classified using a mesh having an opening of 53 μm, and an Nd—Al alloy having a size of 53 μm or less. A powder was obtained. In addition, it confirmed by observation with an electron microscope that the particle size of the obtained diffusing material powder was clearly 1 μm or more. The obtained RTB-based alloy powder and Nd-Al alloy powder were mixed using an agate mortar at a mixing ratio of RTB-based alloy powder: Nd-Al alloy powder = 14: 1 (weight ratio). As a result, a mixed powder was obtained.

次に、上記混合粉末をプレス装置の金型に充填し、1.2MA/mの磁界中において、磁界と直角方向に32MPaの圧力を印加して圧粉体を作製した。圧粉体の密度は、寸法と重量に基づいて計算すると、4.3g/cmであった。 Next, the mixed powder was filled in a die of a press machine, and a green compact was produced by applying a pressure of 32 MPa in a direction perpendicular to the magnetic field in a magnetic field of 1.2 MA / m. The density of the green compact was 4.3 g / cm 3 when calculated based on dimensions and weight.

次に、圧粉体に対して実験例2と同じ方法でHDDR処理を行い、多孔質磁石を得た。作製した多孔質磁石の寸法と重量から密度を計算すると、5.84g/cmであった。 Next, the green compact was subjected to HDDR treatment by the same method as in Experimental Example 2 to obtain a porous magnet. When the density was calculated from the size and weight of the produced porous magnet, it was 5.84 g / cm 3 .

さらに多孔質磁石を超硬合金製の金型中で800℃に加熱し、50MPaの圧力で20分間の熱間圧縮処理(ホットプレス)を行うことにより、密度7.52g/cm(B2)、7.51g/cm(B3)、密度7.46g/cm(B4)、7.48g/cm(B5)、密度7.49g/cm(B6)の高密度磁石を得た。作製した高密度磁石に対して3.2MA/mのパルス磁界で着磁した後、磁気特性をBHトレーサー(装置名:MTR−1412(メトロン技研社製))で測定した。結果を表7(比較例20、比較例33、比較例46〜48)に示す。 Furthermore, the density of 7.52 g / cm 3 (B2) is obtained by heating the porous magnet in a cemented carbide alloy mold to 800 ° C. and performing a hot compression treatment (hot pressing) for 20 minutes at a pressure of 50 MPa. 7.51 g / cm 3 (B3), density 7.46 g / cm 3 (B4), 7.48 g / cm 3 (B5), and density 7.49 g / cm 3 (B6). After magnetizing the produced high-density magnet with a pulse magnetic field of 3.2 MA / m, the magnetic properties were measured with a BH tracer (device name: MTR-1412 (Metron Giken Co., Ltd.)). The results are shown in Table 7 (Comparative Example 20, Comparative Example 33, Comparative Examples 46 to 48).

さらに高密度磁石に対して10−2Pa以下の真空中で450℃〜950℃で60minの熱処理を行い、真空中で室温まで冷却した。得られた試料に対し3.2MA/mのパルス磁界で着磁した後、磁気特性をBHトレーサー(装置名:MTR−1412(メトロン技研社製))で測定した。結果を表7に示す。また、B2の合金を用いた試料の粒界相均質化熱処理温度と保磁力(HcJ)の関係を図4に示す。表7、図4に示すようにR‘−M系合金を混合した場合にも実験例2の場合と同様に、保磁力(HcJ)は450℃〜550℃の間で極大値をとって、熱処理前に比べ若干向上し、その後700℃付近で極小値をとった後、800℃から再び向上し、900℃付近で最大値をとることが分かる。 Further, the high-density magnet was heat-treated at 450 ° C. to 950 ° C. for 60 minutes in a vacuum of 10 −2 Pa or less, and cooled to room temperature in vacuum. After magnetizing the obtained sample with a pulse magnetic field of 3.2 MA / m, the magnetic properties were measured with a BH tracer (device name: MTR-1412 (Metron Giken Co., Ltd.)). The results are shown in Table 7. FIG. 4 shows the relationship between the grain boundary phase homogenization heat treatment temperature and the coercive force (H cJ ) of the sample using the B2 alloy. As shown in Table 7 and FIG. 4, when the R′-M alloy is mixed, the coercive force (H cJ ) takes a maximum value between 450 ° C. and 550 ° C. as in the case of Experimental Example 2. It can be seen that the temperature is slightly improved as compared with that before the heat treatment, then reaches a minimum value near 700 ° C., then increases again from 800 ° C., and reaches a maximum value near 900 ° C.

また、熱間圧縮成形後、熱処理をおこなっていない比較例33、500℃、650℃で熱処理をおこなった比較例36、比較例40、および900℃で熱処理をおこなった実施例20をクロスセクションポリッシャ(装置名:SM−09010、日本電子製)にて切削加工し、加工断面の反射電子像をFE−SEM(装置名:JSM−7001F、日本電子製)を用いて倍率5000倍で撮影した。反射電子像を図5〜図8に示す。反射電子像において主相であるNdFe14B相のコントラストは暗く、粒界相であるNd−rich相は明るく表示される。観察領域24μm×18μmの画像からNd−rich相3重点を画像編集ソフト(製品名:Photoshop Elements 9、Adobe Systems製)で2値化処理により抽出し、画像解析ソフト(製品名:WinROOF、三谷商事製)でNd−rich相3重点の数密度および総面積を測定した。結果を表8に示す。なお、0.0006μm未満は除外した。高い保磁力の得られた900℃熱処理試料(実施例20)は円相当直径1.0μm以下の面積をもつNd−rich相3重点の数密度が大きい結果が得られた。900℃の熱処理によってNd−rich相が分散されて主相の周りにより均一に配置され、これによって高保磁力を発現する組織が得られたことが分かる。 Further, after hot compression molding, Comparative Example 33 in which heat treatment was not performed, Comparative Example 36 in which heat treatment was performed at 500 ° C. and 650 ° C., Comparative Example 40, and Example 20 in which heat treatment was performed at 900 ° C. were cross-section polishers. (Device name: SM-09010, manufactured by JEOL Ltd.) was cut and a reflected electron image of the processed cross section was photographed at a magnification of 5000 using FE-SEM (device name: JSM-7001F, manufactured by JEOL Ltd.). The reflected electron images are shown in FIGS. In the reflected electron image, the contrast of the Nd 2 Fe 14 B phase that is the main phase is dark, and the Nd-rich phase that is the grain boundary phase is displayed brightly. Nd-rich phase 3 points are extracted from the image of the observation area 24 μm × 18 μm by binarization processing with image editing software (product name: Photoshop Elements 9, manufactured by Adobe Systems), and image analysis software (product name: WinROOF, Mitani Corporation) The number density and total area of the Nd-rich phase triple point were measured. The results are shown in Table 8. In addition, less than 0.0006 μm 2 was excluded. The 900 ° C. heat-treated sample with high coercive force (Example 20) obtained a large number density of Nd-rich phase triple points having an area with an equivalent circle diameter of 1.0 μm or less. It can be seen that the Nd-rich phase is dispersed by the heat treatment at 900 ° C. and is more uniformly arranged around the main phase, thereby obtaining a structure exhibiting a high coercive force.

さらに表7の実施例13〜23(17、19を除く)の高密度磁石に対し、10−2Pa以下の真空中で475〜650℃で60minの追加熱処理を行い、真空中で室温まで冷却した。得られた試料に対し3.2MA/mのパルス磁界で着磁した後、磁気特性をBHトレーサー(装置名:MTR−1412(メトロン技研社製))で測定した。結果を表9に示す。表9に示すように800℃〜900℃の熱処理後に475〜650℃で熱処理することによってさらに保磁力が向上することが分かる。 Further, the high-density magnets of Examples 13 to 23 (excluding 17 and 19) in Table 7 were subjected to additional heat treatment at 475 to 650 ° C. for 60 minutes in a vacuum of 10 −2 Pa or less, and cooled to room temperature in vacuum. did. After magnetizing the obtained sample with a pulse magnetic field of 3.2 MA / m, the magnetic properties were measured with a BH tracer (device name: MTR-1412 (Metron Giken Co., Ltd.)). The results are shown in Table 9. As shown in Table 9, it can be seen that the coercive force is further improved by heat treatment at 475 to 650 ° C. after heat treatment at 800 ° C. to 900 ° C.

(実験例5)
まず、表1のB1の組成を有するR−T−B系合金をストリップキャスト法で作製した。得られた合金を水素吸蔵崩壊法によって粒径425μm以下の粉末に粗粉砕した後、ジェットミルを用いて粗粉末を微粉砕し、50%体積中心粒径4.2μmのR−T−B系合金粉末を得た。
(Experimental example 5)
First, an RTB-based alloy having the composition of B1 in Table 1 was produced by a strip cast method. The obtained alloy was coarsely pulverized into a powder having a particle size of 425 μm or less by the hydrogen storage / disintegration method, and then the coarse powder was finely pulverized using a jet mill to obtain an RTB system having a 50% volume center particle size of 4.2 μm. An alloy powder was obtained.

次に、R−T−B系合金粉末をプレス装置の金型に充填し、1.2MA/mの磁界中において、磁界と直角方向に32MPaの圧力を印加して圧粉体を作製した。圧粉体の密度は、寸法と重量に基づいて計算すると、4.2g/cmであった。 Next, the R-T-B system alloy powder was filled in a die of a press machine, and a pressure of 32 MPa was applied in a direction perpendicular to the magnetic field in a magnetic field of 1.2 MA / m to produce a green compact. The density of the green compact was 4.2 g / cm 3 when calculated based on dimensions and weight.

次に圧粉体を0.5kPaに減圧したアルゴン流気中で1040℃まで昇温し、240分保持した。その後、850℃まで15分で冷却した後、100kPaのアルゴン流気中で室温まで冷却し、焼結磁石を得た。   Next, the temperature of the green compact was raised to 1040 ° C. in an argon stream depressurized to 0.5 kPa and held for 240 minutes. Then, after cooling to 850 degreeC in 15 minutes, it cooled to room temperature in 100 kPa argon stream, and the sintered magnet was obtained.

得られた焼結磁石の寸法と重量から密度を計算すると、7.53g/cmであった。この焼結磁石に対して3.2MA/mのパルス磁界で着磁した後、磁気特性をBHトレーサー(装置名:MTR−1412(メトロン技研社製))で測定した。結果を表10に示す。 When the density was calculated from the size and weight of the obtained sintered magnet, it was 7.53 g / cm 3 . After magnetizing the sintered magnet with a pulse magnetic field of 3.2 MA / m, the magnetic properties were measured with a BH tracer (device name: MTR-1412 (Metron Giken Co., Ltd.)). The results are shown in Table 10.

さらにこの焼結磁石に対して10Pa以下の真空中で450℃〜950℃で60minの熱処理を行い、真空中で室温まで冷却した。得られた試料に対し3.2MA/mのパルス磁界で着磁した後、磁気特性をBHトレーサー(装置名:MTR−1412(メトロン技研社製))で測定した。結果を表10に示す。表10に示すように焼結磁石では本発明の高密度磁石と異なり800〜900℃の温度域での熱処理による保磁力向上効果が得られないことが分かる。   Further, the sintered magnet was heat-treated at 450 ° C. to 950 ° C. for 60 minutes in a vacuum of 10 Pa or less, and cooled to room temperature in vacuum. After magnetizing the obtained sample with a pulse magnetic field of 3.2 MA / m, the magnetic properties were measured with a BH tracer (device name: MTR-1412 (Metron Giken Co., Ltd.)). The results are shown in Table 10. As shown in Table 10, it can be seen that the sintered magnet cannot obtain the effect of improving the coercive force by the heat treatment in the temperature range of 800 to 900 ° C., unlike the high-density magnet of the present invention.

本発明によれば、従来のHDDR磁粉やその磁粉を熱間圧縮成形によってバルク化した磁石と比べて良好な角型性を示し、かつ従来の多孔質磁石や多孔質磁石を熱間圧縮成形して得られる高密度磁石に比べて高い保磁力を有するR−T−B系永久磁石を製造することが可能となる。   According to the present invention, the conventional HDDR magnetic powder and the magnet powder that has been bulked by hot compression molding exhibit better squareness, and the conventional porous magnet and porous magnet are hot compression molded. Thus, it becomes possible to produce an RTB-based permanent magnet having a higher coercive force than a high-density magnet obtained in this way.

10 多孔質磁石
27 金型(ダイ)
28a 上パンチ
28b 下パンチ
30a 駆動部
30b 駆動部
26 チャンバ
10 Porous magnet 27 Mold (die)
28a Upper punch 28b Lower punch 30a Driving unit 30b Driving unit 26 Chamber

Claims (2)

50%体積中心粒径が1μm以上10μm未満であり、R14B相を含むR−T−B系合金粉末(RはNdおよび/またはPrを50原子%以上含む希土類元素、TはFe、またはFeとCo)、または、前記R−T−B系合金粉末に対し粒度150μm未満のR’金属(R’はNd、Pr、Dy、Tbから選ばれる1種以上)またはR’−M系合金(MはAl、Ga、Co、Feから選ばれる1種以上、R’はR’−M系合金全体の20原子%以上100原子%未満)の粉末を混合した混合粉末を用意する工程と、
前記R−T−B系合金粉末または混合粉末を成型して圧粉体を作製する工程と、
前記圧粉体に対し10kPa超500kPa以下の水素雰囲気中、または水素分圧が10kPa超500kPa以下の水素と不活性ガスの混合雰囲気中で650℃以上900℃以下の温度で熱処理を施し、それによって水素化および不均化反応を起こすHD処理工程と、
2kPa以上10kPa以下の水素雰囲気中で650℃以上900℃以下の温度で熱処理を施し、それによって脱水素および再結合反応を起こすDR処理工程と、
真空または不活性雰囲気中において前記圧粉体に対し650℃以上900℃以下の温度で熱処理を施し、それによってR14B相結晶粒の界面近傍に粒界相を形成させる粒界相形成熱処理工程と、
真空または不活性ガス雰囲気中において600℃以上900℃以下の温度で熱間圧縮成型によって真密度の96%以上まで密度を高める緻密化工程と、
真空または不活性ガス雰囲気中において800℃以上900℃以下の温度で熱処理を施す粒界相均質化工程
を含むR−T−B系永久磁石の製造方法。
An RTB-based alloy powder having a 50% volume center particle diameter of 1 μm or more and less than 10 μm and containing an R 2 T 14 B phase (R is a rare earth element containing 50 atomic% or more of Nd and / or Pr, T is Fe , Or Fe and Co), or an R ′ metal having a particle size of less than 150 μm with respect to the RTB-based alloy powder (R ′ is one or more selected from Nd, Pr, Dy, Tb) or R′-M. A step of preparing a mixed powder in which a powder of an alloy based alloy (M is one or more selected from Al, Ga, Co, Fe, and R ′ is 20 atomic% or more and less than 100 atomic% of the entire R′-M alloy) When,
Forming the green compact by molding the RTB-based alloy powder or mixed powder;
The green compact is subjected to heat treatment at a temperature of 650 ° C. or more and 900 ° C. or less in a hydrogen atmosphere of more than 10 kPa and 500 kPa or less, or in a mixed atmosphere of hydrogen and inert gas having a hydrogen partial pressure of more than 10 kPa and 500 kPa or less, thereby An HD treatment process that causes hydrogenation and disproportionation reactions;
A DR treatment step in which heat treatment is performed at a temperature of 650 ° C. or more and 900 ° C. or less in a hydrogen atmosphere of 2 kPa or more and 10 kPa or less, thereby causing dehydrogenation and recombination reaction;
Grain boundary phase formation in which the green compact is heat-treated at a temperature of 650 ° C. or higher and 900 ° C. or lower in a vacuum or an inert atmosphere, thereby forming a grain boundary phase in the vicinity of the interface of R 2 T 14 B phase crystal grains. A heat treatment step;
A densification step for increasing the density to 96% or more of the true density by hot compression molding at a temperature of 600 ° C. or higher and 900 ° C. or lower in a vacuum or an inert gas atmosphere;
The manufacturing method of the RTB type | system | group permanent magnet including the grain boundary phase homogenization process which heat-processes at the temperature of 800 to 900 degreeC in a vacuum or inert gas atmosphere.
前記HD工程前の昇温工程において200℃以上600℃以下の温度を水素雰囲気中で昇温する、請求項1に記載のR−T−B系永久磁石の製造方法 The manufacturing method of the RTB type | system | group permanent magnet of Claim 1 which heats up the temperature of 200 to 600 degreeC in a hydrogen atmosphere in the temperature rising process before the said HD process .
JP2013032764A 2013-02-22 2013-02-22 Manufacturing method of RTB-based permanent magnet Active JP6198103B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013032764A JP6198103B2 (en) 2013-02-22 2013-02-22 Manufacturing method of RTB-based permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013032764A JP6198103B2 (en) 2013-02-22 2013-02-22 Manufacturing method of RTB-based permanent magnet

Publications (2)

Publication Number Publication Date
JP2014165228A JP2014165228A (en) 2014-09-08
JP6198103B2 true JP6198103B2 (en) 2017-09-20

Family

ID=51615603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013032764A Active JP6198103B2 (en) 2013-02-22 2013-02-22 Manufacturing method of RTB-based permanent magnet

Country Status (1)

Country Link
JP (1) JP6198103B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6642184B2 (en) * 2016-03-28 2020-02-05 Tdk株式会社 RTB based sintered magnet
JP6652011B2 (en) * 2016-08-05 2020-02-19 Tdk株式会社 RTB based sintered magnet
CN107369512A (en) * 2017-08-10 2017-11-21 烟台首钢磁性材料股份有限公司 A kind of R T B class sintered permanent magnets
JP2019047021A (en) * 2017-09-05 2019-03-22 住友電気工業株式会社 Method for manufacturing rare earth magnet

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3196224B2 (en) * 1991-02-01 2001-08-06 三菱マテリアル株式会社 Rare earth-Fe-Co-B anisotropic magnet
JP2000021614A (en) * 1998-06-29 2000-01-21 Mitsubishi Materials Corp Manufacture of rare earth magnet powder superior in magnetic anisotropy
JP2003243211A (en) * 2002-02-15 2003-08-29 Mitsubishi Materials Corp Method for manufacturing rare earth magnet powder superior in magnetic anisotropy
US8268093B2 (en) * 2006-05-18 2012-09-18 Hitachi Metals, Ltd. R-Fe-B porous magnet and method for producing the same
JP2008127648A (en) * 2006-11-22 2008-06-05 Hitachi Metals Ltd Method for producing rare earth anisotropic magnet powder
EP2043114B1 (en) * 2006-11-30 2019-01-02 Hitachi Metals, Ltd. R-fe-b microcrystalline high-density magnet and process for production thereof
JP2010251740A (en) * 2009-03-27 2010-11-04 Hitachi Metals Ltd Method of manufacturing rare-earth magnet
JP5288276B2 (en) * 2009-08-28 2013-09-11 日立金属株式会社 Manufacturing method of RTB-based permanent magnet
JP2012195392A (en) * 2011-03-16 2012-10-11 Hitachi Metals Ltd Method of manufacturing r-t-b permanent magnet
JP5906874B2 (en) * 2011-03-28 2016-04-20 日立金属株式会社 Manufacturing method of RTB-based permanent magnet
JP5906876B2 (en) * 2011-03-29 2016-04-20 日立金属株式会社 Manufacturing method of RTB-based permanent magnet

Also Published As

Publication number Publication date
JP2014165228A (en) 2014-09-08

Similar Documents

Publication Publication Date Title
CN107871582B (en) R-Fe-B sintered magnet
JP6229783B2 (en) Method for producing microcrystalline alloy intermediate product and microcrystalline alloy intermediate product
CN107871581B (en) Method for preparing R-Fe-B sintered magnet
JP4924615B2 (en) R-Fe-B fine crystal high-density magnet and method for producing the same
JP6037128B2 (en) R-T-B rare earth magnet powder, method for producing R-T-B rare earth magnet powder, and bonded magnet
JP6221233B2 (en) R-T-B system sintered magnet and manufacturing method thereof
JP5906874B2 (en) Manufacturing method of RTB-based permanent magnet
JP6451900B2 (en) R-Fe-B sintered magnet and method for producing the same
JP7179799B2 (en) R-Fe-B system sintered magnet
JP6051922B2 (en) Method for producing RTB-based sintered magnet
JP6471669B2 (en) Manufacturing method of RTB-based magnet
JP5906876B2 (en) Manufacturing method of RTB-based permanent magnet
JP6198103B2 (en) Manufacturing method of RTB-based permanent magnet
JP6691666B2 (en) Method for manufacturing RTB magnet
WO2012029527A1 (en) Alloy material for r-t-b-based rare earth permanent magnet, production method for r-t-b-based rare earth permanent magnet, and motor
JP2013115156A (en) Method of manufacturing r-t-b-based permanent magnet
JP2012195392A (en) Method of manufacturing r-t-b permanent magnet
JP7537536B2 (en) RTB based sintered magnet
JP6691667B2 (en) Method for manufacturing RTB magnet
JP2014022596A (en) Manufacturing method of rare earth-iron-boron-based porous magnet
JP2013207008A (en) Method of producing r-t-b-based permanent magnet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170728

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170810

R150 Certificate of patent or registration of utility model

Ref document number: 6198103

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350