JP2013228244A - Secondary battery system having function for monitoring battery residual capacity - Google Patents

Secondary battery system having function for monitoring battery residual capacity Download PDF

Info

Publication number
JP2013228244A
JP2013228244A JP2012099519A JP2012099519A JP2013228244A JP 2013228244 A JP2013228244 A JP 2013228244A JP 2012099519 A JP2012099519 A JP 2012099519A JP 2012099519 A JP2012099519 A JP 2012099519A JP 2013228244 A JP2013228244 A JP 2013228244A
Authority
JP
Japan
Prior art keywords
battery
power
current
battery pack
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012099519A
Other languages
Japanese (ja)
Inventor
Katsuhisa Inagaki
克久 稲垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2012099519A priority Critical patent/JP2013228244A/en
Publication of JP2013228244A publication Critical patent/JP2013228244A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a secondary battery system capable of highly accurately monitoring battery residual capacity, without disposing expensive current detecting means such as a shunt resistor and a Hall CT inside a battery pack.SOLUTION: In a secondary battery system, a battery pack 1 is connected to an AC power supply system 10 through a DC filter capacitor 2, a voltage type AC/DC power converter 3 and an AC filter reactor 4. The AC/DC power converter 3 includes a power supply side current detector 5 and a power supply side voltage detector 6 that continuously monitor the AC power supply system 10 and obtain a current value and a voltage value of the system 10, and a control unit 7 for performing current control on the basis of the obtained detection values, for current control for the AC power supply system 10 side. The control unit 7 is provided with a monitoring unit 71 for monitoring charging and discharging power and battery residual capacity of the battery pack 1. The detection values of the power supply side current detector 5 and the power supply side voltage detector 6 are inputted to a calculation unit 72 provided in the monitoring unit 71.

Description

本発明の実施形態は、交直電力変換器と直結された二次電池システムに関するもので、特に、交直電力変換器を利用して電池パックの電池残量を監視する機能を有する二次電池システムに係る。   Embodiments of the present invention relate to a secondary battery system directly connected to an AC / DC power converter, and particularly to a secondary battery system having a function of monitoring the remaining battery level of a battery pack using the AC / DC power converter. Related.

二次電池の高性能化及び大容量化に伴い、充放電電力量の管理が重要になっている。特に電池残量に対し電池電圧が一定となる領域が長いタイプの二次電池では、電池電圧から電池残量を求めることが困難であるため、充放電電力量から電池残量を演算により求めることが多い。   With the high performance and large capacity of secondary batteries, the management of charge / discharge energy is becoming important. In particular, it is difficult to obtain the remaining battery level from the battery voltage in a secondary battery that has a long battery voltage range relative to the remaining battery level. There are many.

現在の電池システムでは、二次電池パックもしくはモジュールに内蔵された、シャント抵抗もしくはホールCTなどにより検出した電流を積分することにより、二次電池への充放電電力量の管理を行っている。これらのシャント抵抗やホールCTには、高い精度が要求されるため、高価であることが多い。一方、精度の低い電流センサを用いた場合には、それを補うために、何らかの対策が必要となる。   In the current battery system, the charge / discharge power amount to the secondary battery is managed by integrating the current detected by the shunt resistor or Hall CT incorporated in the secondary battery pack or module. Since these shunt resistors and Hall CTs require high accuracy, they are often expensive. On the other hand, when a current sensor with low accuracy is used, some countermeasure is required to compensate for it.

例えば、特許文献1の発明では、仮定的に決めた電流値から温度上昇を推測し、その温度上昇から二次電池の素子値の変化および電流の変化を導出するとともに、その導出した電流値で先に導出した電流値を補正する動作を繰り返すことにより、検出能力の劣る電流センサが検出した少ないデータから放電特性を推測している。   For example, in the invention of Patent Document 1, the temperature rise is estimated from the assumed current value, the change in the element value of the secondary battery and the change in the current are derived from the temperature rise, and the derived current value is used. By repeating the operation of correcting the previously derived current value, the discharge characteristics are estimated from a small amount of data detected by a current sensor with poor detection capability.

特開2010−223781号公報JP 2010-223781 A

しかし、このような安価な能力の劣る電流センサを利用した場合は、如何に複雑な演算処理を行ったとしても、得られる検出精度には限界がある。また、そのような複雑な演算処理を行うことは、システムを構成するCPUなどにかかる負担も大きくなり、好ましい手段ではない。   However, when such an inexpensive current sensor with inferior capacity is used, there is a limit to the detection accuracy that can be obtained no matter how complicated the arithmetic processing is performed. Further, performing such complicated arithmetic processing increases the burden on the CPU constituting the system and is not a preferable means.

本発明の実施形態は、電池パック内のシャント抵抗やホールCTなどの高価な電流センサを設けることなく、高い精度で電池残量の監視を行うことができる二次電池システムを提供することにある。   An embodiment of the present invention is to provide a secondary battery system capable of monitoring a remaining battery level with high accuracy without providing an expensive current sensor such as a shunt resistor or Hall CT in a battery pack. .

本発明の実施形態の電池残量の監視機能を有する二次電池システムは、電池パックに対して充放電を行う電力変換器が直結された二次電池システムにおいて、電力変換器が持つ電圧及び/または電流検出器により得られる検出値に基づいて電力変換器を通過する電力量を求め、この電力量に基づいて二次電池への充放電量及びそれに伴う電池残量の演算を行うことを特徴とする。   A secondary battery system having a battery remaining amount monitoring function according to an embodiment of the present invention is a secondary battery system in which a power converter that charges and discharges a battery pack is directly connected. Alternatively, the amount of power passing through the power converter is obtained based on the detection value obtained by the current detector, and the charge / discharge amount to the secondary battery and the battery remaining amount are calculated based on the amount of power. And

本発明の第1実施形態を示す回路図。1 is a circuit diagram showing a first embodiment of the present invention. 本発明の実施形態における電池充放電量の演算部を示すブロック図。The block diagram which shows the calculating part of the battery charging / discharging amount in embodiment of this invention. 本発明の第2実施形態を示す回路図。The circuit diagram which shows 2nd Embodiment of this invention. 本発明の第3実施形態を示す回路図。The circuit diagram which shows 3rd Embodiment of this invention. 本発明の第4実施形態を示す回路図。The circuit diagram which shows 4th Embodiment of this invention.

以下、本発明に係る電池残量の監視機能を有する二次電池システムの実施形態について、図面を参照して説明する。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of a secondary battery system having a battery remaining amount monitoring function according to the present invention will be described with reference to the drawings.

[1.第1実施形態]
図1を用いて、本発明の第1実施形態を説明する。第1実施形態は、交流電源から直接電池パックに対し充放電を行う場合の典型的な構成例である。
[1. First Embodiment]
A first embodiment of the present invention will be described with reference to FIG. 1st Embodiment is a typical structural example in the case of charging / discharging a battery pack directly from AC power supply.

電池パック1は、複数の二次電池を直列及び/または並列に接続して構成されている。この電池パック1は、直流フィルタコンデンサ2、電圧型の交直電力変換器3及び交流フィルタリアクトル4を介して、交流電源系統10に接続される。この場合、交直電力変換器3の二次電池側を交流電源系統よりも高圧の電圧源とみなして、電池パック1に対する充放電制御を行う。すなわち、充電時には、交流電源系統10から昇圧を行いつつ電池パック1に電力を供給し、放電時には、電池電圧を降圧しながら交流電源系統10へ電力を融通する。   The battery pack 1 is configured by connecting a plurality of secondary batteries in series and / or in parallel. The battery pack 1 is connected to an AC power supply system 10 via a DC filter capacitor 2, a voltage type AC / DC power converter 3 and an AC filter reactor 4. In this case, the secondary battery side of the AC / DC power converter 3 is regarded as a voltage source having a higher voltage than the AC power supply system, and charge / discharge control for the battery pack 1 is performed. That is, during charging, power is supplied from the AC power supply system 10 to the battery pack 1 while boosting, and during discharging, power is accommodated to the AC power supply system 10 while reducing the battery voltage.

交直電力変換器3は、交流電源系統10側の電流制御のために、交流電源系統10を常時監視しその電流値及び電圧値を取得する電源側電流検出器5と電源側電圧検出器6、及びこれらの検出値に基づいて電流制御を行う制御部7を備えている。この制御部7は、信号線8を介して交直電力変換器3に接続され、制御部7からの信号により交直電力変換器3の電流制御が行われる。交直電力変換器3の電池パック1側には、電池電圧検出器9が設けられている。   The AC / DC power converter 3 includes a power source side current detector 5 and a power source side voltage detector 6 that constantly monitor the AC power source system 10 and acquire the current value and voltage value for current control on the AC power source system 10 side. And the control part 7 which performs electric current control based on these detected values is provided. The control unit 7 is connected to the AC / DC power converter 3 via the signal line 8, and current control of the AC / DC power converter 3 is performed by a signal from the control unit 7. A battery voltage detector 9 is provided on the battery pack 1 side of the AC / DC power converter 3.

前記制御部7には、電池パック1の充放電電力及び電池残量を監視する監視部71が設けられている。この監視部71に設けられた演算部72に、電源側電流検出器5と電源側電圧検出器6の検出値が入力される。演算部72は、交流電源系統10側での瞬時電力PACを、交直電力変換器3に設けられた電源側電流検出器5が常時計測している電流値と、電源側電圧検出器6が計測している電流値を掛け算することによって演算する。この計算式を次の式1に示す。 The control unit 7 is provided with a monitoring unit 71 that monitors the charge / discharge power of the battery pack 1 and the remaining battery level. Detection values of the power source side current detector 5 and the power source side voltage detector 6 are input to the arithmetic unit 72 provided in the monitoring unit 71. The computing unit 72 includes a current value that is constantly measured by the power source side current detector 5 provided in the AC / DC power converter 3 for the instantaneous power P AC on the AC power source system 10 side, and a power source side voltage detector 6 that Calculation is performed by multiplying the measured current value. This calculation formula is shown in the following formula 1.

Figure 2013228244
Figure 2013228244

式1では、3相各相の相電圧と電流を用いて演算を行っているが、3相3線式の場合には3相の総和がゼロになることを利用して、電源側電流検出器5は2相のみ設け、電源側電圧検出器6は2組の線間電圧のみを測定する場合がある。この場合、残り1相の電流値を演算したり、2組の線間電圧から相電圧を演算することができる。また、制御を回転座標上で行う場合、制御器内部で電流と電圧を静止座標から回転座標へ変換するので、系統電圧に同期した直軸及び横軸2軸の回転座標系上で計算を行ってもよい。   In Equation 1, calculation is performed using the phase voltage and current of each of the three phases. In the case of the three-phase three-wire method, the fact that the sum of the three phases becomes zero is used to detect the current on the power source side. The device 5 may be provided with only two phases, and the power supply side voltage detector 6 may measure only two sets of line voltages. In this case, the current value of the remaining one phase can be calculated, or the phase voltage can be calculated from two sets of line voltages. In addition, when control is performed on rotating coordinates, the current and voltage are converted from stationary coordinates to rotating coordinates inside the controller, so calculations are performed on the linear and horizontal axes of the rotating coordinate system synchronized with the system voltage. May be.

このようにして演算部72で計算された瞬時有効電力を積分することにより、交直電力変換器3の交流側における電力量が演算できる。この場合、電池パック1が接続される直流側の電力量の演算のためには、交直電力変換器3による損失分を考慮しなくてはならない。すなわち、二次電池の充電時には、演算された瞬時有効電力から交直電力変換器3の損失分を差し引く必要がある。   By integrating the instantaneous active power calculated by the calculation unit 72 in this manner, the amount of power on the AC side of the AC / DC power converter 3 can be calculated. In this case, in order to calculate the amount of power on the DC side to which the battery pack 1 is connected, the loss due to the AC / DC power converter 3 must be taken into account. That is, when charging the secondary battery, it is necessary to subtract the loss of the AC / DC power converter 3 from the calculated instantaneous active power.

一方、負荷へ給電したり、系統へ回生する際には、交直電力変換器3の損失分を上乗せしておく必要がある。そのため、前記演算部72では、次の式2に示すような演算を行う。この場合、電池パック1への充放電量は、交直電力変換器3の損失をPLOSSとして、

Figure 2013228244
によって計算される。ただし、式2では電力の流れは充電方向を正の値としている。 On the other hand, when power is supplied to the load or regenerated to the system, the loss of the AC / DC power converter 3 needs to be added. Therefore, the calculation unit 72 performs a calculation as shown in the following Expression 2. In this case, the charge / discharge amount to the battery pack 1 is defined as the loss of the AC / DC power converter 3 as P LOSS .
Figure 2013228244
Calculated by However, in Formula 2, the flow of electric power has a positive value in the charging direction.

また、損失PLOSSは常に正の値をとるものとする。放電時には交流電源系統10側での受電電力PACが負の値をとるが、これに変換器損失PLOSSを上乗せした分が電池パック1から放電される。 Further, the loss P LOSS is always a positive value. Received power P AC of the time of discharge by the AC power supply system 10 side takes a negative value, but amount obtained by adding a converter loss P LOSS to be discharged from the battery pack 1.

損失PLOSSの計算方法は何種類か考えられる。一番単純な方法は、交直電力変換器3の効率を一定とみなして、常時、演算された受電電力PACに対してある一定の定数をかけた量を交直電力変換器3の損失PLOSSとみなす方法である。さらに正確に交直電力変換器3による損失補正を行うのであれば、変換器の性能試験時などで得られる出力対効率の特性データをテーブル化して制御部7内部に保持しておく。実運転時には、制御部7内のテーブルを参照して変換器による損失PLOSSの計算を行う。 There are several ways to calculate the loss P LOSS . The simplest method is that the efficiency of the AC / DC power converter 3 is assumed to be constant, and the loss P LOSS of the AC / DC power converter 3 is always calculated by multiplying the calculated received power PAC by a certain constant. It is a method to consider. If the loss correction by the AC / DC power converter 3 is performed more accurately, output vs. efficiency characteristic data obtained during a converter performance test or the like is tabulated and held in the control unit 7. During actual operation, the loss P LOSS by the converter is calculated with reference to the table in the control unit 7.

この演算部72の一例を、図2に示す。図2において、72aは系統電圧と交流電流の積算器、72bは変換器の出力対向率についての特性データを記録したテーブル、72cは受電電力PACと変換器損失PLOSSを差し引く減算器、72dは積分器である。このような計算手段を使用することにより、前記出力対効率の特性データを参照しながら、前記式2を実行することで、交直電力変換器3による損失補正を正確に行うことができる。 An example of the calculation unit 72 is shown in FIG. In FIG. 2, 72a is the multiplier of the system voltage and the AC current, 72b is a table which records the characteristic data of the output counter rate converter, 72c subtracter subtracting the converter loss P LOSS and reception power P AC, 72d Is an integrator. By using such a calculation means, the loss correction by the AC / DC power converter 3 can be performed accurately by executing the expression 2 while referring to the output vs. efficiency characteristic data.

より具体的には、交直電力変換器3による損失を、下記の3つに分割し、式3により算出を行う。
(1) 出力に依存せず一定である分
(2) 素子の(固定)電圧降下など電流に比例する分
(3) 配線抵抗など電流の二乗に比例する分
More specifically, the loss due to the AC / DC power converter 3 is divided into the following three, and calculation is performed using Equation 3.
(1) A constant amount independent of output
(2) The element is proportional to the current, such as the (fixed) voltage drop of the element.
(3) A component proportional to the square of the current, such as wiring resistance

Figure 2013228244
Figure 2013228244

式3中のIRMSは、交直電力変換器3の交流側電流の実効値である。RLOSSRMS が電流の二乗に比例する分、VLOSSRMSが電流に比例する分、P0LOSSが電流によらず一定である分である。この式の各項の係数および定数項の値は、交直電力変換器3の性能試験時などの結果より、固定値を与える。 I RMS in Equation 3 is an effective value of the AC side current of the AC / DC power converter 3. That is, R LOSS I RMS 2 is proportional to the square of the current, V LOSS I RMS is proportional to the current, and P 0LOSS is constant regardless of the current. The coefficient of each term and the value of the constant term in this equation give fixed values based on the results of the performance test of the AC / DC power converter 3.

ここで述べた手法では、交直電力変換器3を通過する瞬時電力を積分することにより、電池パック1への充放電電力量を求めている。このため、瞬時電力を演算する際に用いる電流や電圧の検出値に誤差が含まれている場合、積分演算により誤差が累積されてしまうおそれがある。これを回避するための手段を説明する。   In the method described here, the charge / discharge power amount to the battery pack 1 is obtained by integrating the instantaneous power passing through the AC / DC power converter 3. For this reason, when the detected value of the current or voltage used when calculating the instantaneous power includes an error, the error may be accumulated by the integration calculation. Means for avoiding this will be described.

放電可能電力量にかかわらず無負荷時端子電圧が一定である領域が長い電池パック1の場合でも、放電末および充電末の近傍では、容易に検出できるほど大きな電圧変化を起こすものが多い。従って、放電動作中に電池側電圧が下降する速度が速くなった場合や、充電動作中に電池側電圧が上昇する速度が速くなった場合は、それぞれ、放電末または充電末に近づいたとし、それまでの充放電電力量の補正を行うとともに、充放電停止措置を行うことができる。   Even in the case of the battery pack 1 having a long region where the terminal voltage at no load is constant regardless of the amount of electric power that can be discharged, there are many cases in which a large voltage change is easily detected near the end of discharge and the end of charge. Therefore, when the speed at which the battery side voltage decreases during the discharging operation becomes faster or when the speed at which the battery side voltage increases during the charging operation becomes faster, While correcting the charging / discharging electric energy until then, a charging / discharging stop measure can be performed.

すなわち、放電時において、交直電力変換器3の電池パック1側の電圧があらかじめ設定した値を下回れば、充放電電力量をその電圧に応じた量に補正する。充電時も、交直電力変換器3の電池パック1側の出電圧があらかじめ設定した値を上回れば、その場合も、充放電電力量をその電圧に応じた量に補正する。   That is, when the voltage on the battery pack 1 side of the AC / DC power converter 3 falls below a preset value during discharging, the charge / discharge power amount is corrected to an amount corresponding to the voltage. Even during charging, if the output voltage on the battery pack 1 side of the AC / DC power converter 3 exceeds a preset value, the charge / discharge power amount is corrected to an amount corresponding to the voltage.

これとは逆に計算上は電池残量が100%もしくは0%に近い状態であっても、電池側電圧もそれに応じた変化が見られない場合は、まだ充電末または放電末に近づいていないと判断し、その段階での充放電電力量の計算値は保持する。   On the other hand, even if the remaining battery level is close to 100% or 0% in the calculation, if the battery side voltage does not change accordingly, it has not yet approached the end of charging or discharging. The calculated value of the charge / discharge energy at that stage is retained.

充電末または放電末に近づいていない状態でも、電池パック1に充放電を行う交直電力変換器3が動作を休止している状態では、交直電力変換器3の電池側電圧は電池パック1の無負荷時電圧(OCV:Open Circuit Voltage)に近い値となり、この値を用いて、電池パック1への総充放電電力量の補正を行うこともできる。   When the AC / DC power converter 3 that charges / discharges the battery pack 1 is not operating at the end of charging or discharging, the battery side voltage of the AC / DC power converter 3 is the same as that of the battery pack 1. It becomes a value close to a load voltage (OCV: Open Circuit Voltage), and using this value, the total charge / discharge power amount to the battery pack 1 can be corrected.

ここで行った補正量をもとに、交直電力変換器3での損失計算で用いる式3の各項の係数や、交直電力変換器3の制御部7内部に持っている損失量のテーブルの修正を行えば、電池パック1への充放電量の演算精度をさらに高めることができる。   Based on the correction amount performed here, the coefficient of each term of Equation 3 used in the loss calculation in the AC / DC power converter 3 and the loss amount table in the control unit 7 of the AC / DC power converter 3 If the correction is performed, the calculation accuracy of the charge / discharge amount to the battery pack 1 can be further increased.

以上のように本実施の形態によれば、電池の充放電量管理のために従来使用されていたシャント抵抗やホールCTなどの電流検出器を使用することなく、二次電池に対して充放電を行う交直電力変換器が本来備えている電流・電力制御のための高性能の制御器や電圧・電流検出器を利用して、電池パックへの充放電量を検出するこができる。   As described above, according to the present embodiment, the secondary battery is charged / discharged without using a current detector such as a shunt resistor or Hall CT conventionally used for charge / discharge amount management of the battery. The charge / discharge amount to the battery pack can be detected by using a high-performance controller or voltage / current detector for current / power control that is originally provided in the AC / DC power converter that performs the above.

[2.第2実施形態]
本発明の第2実施形態を図3により説明する。第2実施形態は、内燃機関と二次電池のハイブリッド自動車など、電池パック1に充放電を行う交直電力変換器が複数台存在する場合に適したものである。
[2. Second Embodiment]
A second embodiment of the present invention will be described with reference to FIG. The second embodiment is suitable when there are a plurality of AC / DC power converters that charge and discharge the battery pack 1 such as a hybrid vehicle of an internal combustion engine and a secondary battery.

本実施形態において、発電機21により発生した電力は、交直電力変換器22により直流に変換され、この部分に電池パック1が直結される。この電池パック1から出力される直流は、交直電力変換器23により負荷24の状態に応じた周波数及び電圧の交流に再変換され、負荷24に供給される。   In this embodiment, the electric power generated by the generator 21 is converted into direct current by the AC / DC power converter 22, and the battery pack 1 is directly connected to this portion. The direct current output from the battery pack 1 is reconverted by the AC / DC power converter 23 into alternating current having a frequency and voltage corresponding to the state of the load 24 and supplied to the load 24.

このように本実施形態では、2台の交直電力変換器22,23が電池パック1に接続されている。そのため、電池パック1への充放電量は、交直電力変換器22により直流に変換される電力と、交直電力変換器23により交流に再変換される電力の差となる。従って、交直電力変換器22,23の制御部7に設けた監視部71の演算部72で、例えば、第1実施形態による方法で各交直電力変換器22,23の直流側の電力量を求めておき、その差分をとることで、電池パック1への充放電電力量を求める。この場合にも、直流部に電池パック専用の電流センサを設置する必要はなくなる。   Thus, in the present embodiment, the two AC / DC power converters 22 and 23 are connected to the battery pack 1. Therefore, the charge / discharge amount to / from the battery pack 1 is the difference between the power converted to DC by the AC / DC power converter 22 and the power reconverted to AC by the AC / DC power converter 23. Accordingly, the calculation unit 72 of the monitoring unit 71 provided in the control unit 7 of the AC / DC power converters 22 and 23 obtains the DC-side power amount of the AC / DC power converters 22 and 23 by the method according to the first embodiment, for example. Then, the charge / discharge electric energy to the battery pack 1 is calculated | required by taking the difference. Also in this case, it is not necessary to install a current sensor dedicated to the battery pack in the DC part.

[3.第3実施形態]
図4を用いて第3実施形態を説明する。第3実施形態においては、電池パック1は、昇圧リアクトル12、スイッチング素子13、フィルタコンデンサ14からなる昇降圧チョッパ15を介して、電圧の異なる直流電源系統16に接続される。本実施形態では、電池パック1の電圧は、絶縁などの観点から電圧を低く抑え、直流電源系統16に対して放電時は昇圧、充電時は降圧して電力を融通する。
[3. Third Embodiment]
A third embodiment will be described with reference to FIG. In the third embodiment, the battery pack 1 is connected to a DC power supply system 16 having different voltages via a step-up / step-down chopper 15 including a step-up reactor 12, a switching element 13, and a filter capacitor 14. In the present embodiment, the voltage of the battery pack 1 is kept low from the standpoint of insulation and the like, and the DC power supply system 16 is stepped up during discharging and stepped down during charging to accommodate power.

昇降圧チョッパ15は低圧側の電流制御を行うもので、昇降圧チョッパ15には昇圧リアクトル12と直列に電流検出器5が設置され、この電流検出器5で得られた電流値に基づいて昇降用チョッパ15を制御することで、低圧側の電流制御が実施される。一方、本実施形態では、昇降圧チョッパ15に電圧検出器9を設け、この電圧検出器9により電池パック1の電圧を常時監視する。   The step-up / step-down chopper 15 performs current control on the low-voltage side. The step-up / down chopper 15 is provided with a current detector 5 in series with the step-up reactor 12, and the step-up / step-down chopper 15 moves up and down based on the current value obtained by the current detector 5. By controlling the chopper 15, the current control on the low voltage side is performed. On the other hand, in this embodiment, the voltage detector 9 is provided in the step-up / step-down chopper 15, and the voltage of the battery pack 1 is constantly monitored by the voltage detector 9.

従って、本実施形態では、次の式4に示すように、昇降圧チョッパ15に設けた電流検出器5と電圧検出器9の検出した電流値と電圧値の掛け算を行うことにより、容易に電池パック1へ出入りする電力を計算することができる。これを積分することにより電池パック1への充放電電力量、すわなち、電池残量を計算することができる。   Therefore, in this embodiment, as shown in the following Expression 4, the battery can be easily obtained by multiplying the current value detected by the current detector 5 and the voltage detector 9 provided in the step-up / down chopper 15 and the voltage value. The power entering and leaving the pack 1 can be calculated. By integrating this, the charge / discharge power amount to the battery pack 1, that is, the remaining battery level can be calculated.

この式は、

Figure 2013228244
によって表される。式4にてRBATTは電池の内部抵抗相当値で、積分の中身の第2項は電池の内部抵抗分による損失分を補正する項である。 This formula is
Figure 2013228244
Represented by In Equation 4, R BATT is a value corresponding to the internal resistance of the battery, and the second term in the integral is a term for correcting the loss due to the internal resistance of the battery.

このように本実施形態によれば、電池パック1の内部には、電池への充放電電力量を正確に求めるための電流検出器を内蔵する必要はなくなる。本実施形態では、電池パック1の電圧を常時監視することから、システムの安全性が確保される利点もある。   As described above, according to the present embodiment, it is not necessary to incorporate a current detector for accurately obtaining the charge / discharge power amount for the battery in the battery pack 1. In this embodiment, since the voltage of the battery pack 1 is constantly monitored, there is an advantage that the safety of the system is ensured.

なお、電池パック1の電圧を検出する電圧検出器9の出力が異常時の保護のみに用いられ制御部7内部に取り入れられていない場合にも、電源側電圧検出器6の検出した電圧値と昇圧チョッパ15の変調率から、昇降圧チョッパ15の低圧側の電圧を容易に計算することができ、これをもって、低圧側の電圧値を電池側の電圧検出値の代替とすることができる。この場合、昇圧チョッパ15の変調率は、昇圧値チョッパ15の動作時に公知の手段により制御部7によって常時監視されているものであり、演算部72は制御部から容易に変調率を取得することができる。   Even when the output of the voltage detector 9 that detects the voltage of the battery pack 1 is used only for protection in the event of an abnormality and is not incorporated in the control unit 7, the voltage value detected by the power supply side voltage detector 6 The voltage on the low voltage side of the step-up / step-down chopper 15 can be easily calculated from the modulation factor of the boost chopper 15, and the voltage value on the low voltage side can be substituted for the detected voltage value on the battery side. In this case, the modulation factor of the boost chopper 15 is constantly monitored by the control unit 7 by known means during operation of the boost value chopper 15, and the calculation unit 72 can easily obtain the modulation factor from the control unit. Can do.

本実施形態において、電池の残量管理は、昇降圧チョッパ15の制御部7が行っても良いし、電池への充放電電力量を電池パック1へ渡し、電池パック1側での電池残量管理を行っても良い。この場合、昇圧チョッパ15の動作原理上、電池パック1側の電流センサは省略することができないが、電池電圧については、電源側電圧と昇圧チョッパ15の変調率から計算することができるため、電圧検出器を省略することが可能となる。   In the present embodiment, the remaining amount management of the battery may be performed by the control unit 7 of the step-up / step-down chopper 15, the charge / discharge power amount to the battery is passed to the battery pack 1, and the remaining battery amount on the battery pack 1 side is passed. Management may be performed. In this case, the current sensor on the battery pack 1 side cannot be omitted due to the operating principle of the boost chopper 15, but the battery voltage can be calculated from the power supply side voltage and the modulation factor of the boost chopper 15. The detector can be omitted.

[4.他の実施形態]
本発明は上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。
[4. Other Embodiments]
The present invention is not limited to the above-described embodiments as they are, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage. In addition, various inventions can be formed by appropriately combining a plurality of components disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, constituent elements over different embodiments may be appropriately combined.

たとえば、図5に示すように、電池パック1に、電池パック1側の電流を直接制御できる電流型交直電力変換器17を接続した場合には、第1実施形態と同じ方法にて、直接、電池パック1側の電力量を演算することができる。この場合、電流型交直電力変換器17による損失分を考慮せずとも、演算部72により電池パック1への充放電電力量を求めることができる。また、積分演算により蓄積された誤差の修正については、演算部72において第1実施形態と同じ演算が使用できる。   For example, as shown in FIG. 5, when the current type AC / DC power converter 17 capable of directly controlling the current on the battery pack 1 side is connected to the battery pack 1, the same method as in the first embodiment, The amount of power on the battery pack 1 side can be calculated. In this case, the charge / discharge power amount to the battery pack 1 can be obtained by the calculation unit 72 without considering the loss due to the current-type AC / DC power converter 17. For correction of the error accumulated by the integration calculation, the calculation unit 72 can use the same calculation as in the first embodiment.

更に、前記各実施の形態において、交直電力変換器の停止時には、電池の開路電圧により充放電電力量を補正するもできる。   Furthermore, in each said embodiment, when an AC / DC power converter stops, charging / discharging electric energy can also be correct | amended with the open circuit voltage of a battery.

1…電池パック
2…直流フィルタコンデンサ
3…電圧型交直電力変換器
4…交流フィルタコンデンサ
5…電源側電流検出器
6…電源側電圧検出器
7…制御部
71…監視部
72…演算部
8…信号線
9…電池電圧検出器
10…交流電源系統
12…昇圧リアクトル
13…スイッチング素子
14…フィルタコンデンサ
15…昇圧チョッパ
16…直流電源系統
17…電流型交直電力変換器
DESCRIPTION OF SYMBOLS 1 ... Battery pack 2 ... DC filter capacitor 3 ... Voltage type AC / DC power converter 4 ... AC filter capacitor 5 ... Power source side current detector 6 ... Power source side voltage detector 7 ... Control part 71 ... Monitoring part 72 ... Calculation part 8 ... Signal line 9 ... Battery voltage detector 10 ... AC power supply system 12 ... Boosting reactor 13 ... Switching element 14 ... Filter capacitor 15 ... Boosting chopper 16 ... DC power supply system 17 ... Current type AC / DC power converter

Claims (8)

交流電源系統に接続された電圧型の交直電力変換器と、この交直電力変換器に直結された電池パックとを有し、前記交直電力変換器が電源側の電流を制御する制御部を備えている二次電池システムにおいて、
前記交直電力変換器には、電源側の電流を検出する電流検出器と、電源側の電圧を検出する電圧検出器を備え、
前記制御部には、前記電源側の電流検出器と電圧検出器が検出した電流値と電圧値に基づいて電池パックへの充放電電力量を計算する演算部が設けられていることを特徴とする電池残量の監視機能を有する二次電池システム。
A voltage-type AC / DC power converter connected to the AC power supply system; and a battery pack directly connected to the AC / DC power converter, the AC / DC power converter including a control unit for controlling a current on the power source side. In the secondary battery system
The AC / DC power converter includes a current detector that detects a current on the power supply side, and a voltage detector that detects a voltage on the power supply side,
The control unit is provided with a calculation unit that calculates a charge / discharge power amount to the battery pack based on a current value and a voltage value detected by the current detector and the voltage detector on the power source side. Secondary battery system having a function of monitoring the remaining battery power.
前記電池パックに充放電を行う交直電力変換器が複数台接続され、前記演算部は複数台の交直電力変換器で得られた電力量に基づいて電池パックへの充放電量を演算することを特徴とする請求項1に記載の電池残量の監視機能を有する二次電池システム。   A plurality of AC / DC power converters that charge / discharge are connected to the battery pack, and the calculation unit calculates the charge / discharge amount to the battery pack based on the amount of power obtained by the plurality of AC / DC power converters. The secondary battery system which has the monitoring function of the battery remaining amount of Claim 1 characterized by the above-mentioned. 前記演算部は、電池パックに対する充放電電力量を演算する際に、交直電力変換器の効率を補正する演算を行うことを特徴とする請求項1または請求項2に記載の電池残量の監視機能を有する二次電池システム。   The battery remaining amount monitoring according to claim 1, wherein the calculation unit performs a calculation for correcting the efficiency of the AC / DC power converter when calculating the charge / discharge power amount for the battery pack. A secondary battery system having a function. 前記演算部は、電池側電圧が急変した際には、これに応じ充放電電力量を補正しすることを特徴とする請求項1または請求項2に記載の電池残量の監視機能を有する二次電池システム。   The said calculating part correct | amends charging / discharging electric energy according to this, when battery side voltage changes suddenly, The monitoring function of the remaining battery level of Claim 1 or Claim 2 characterized by the above-mentioned. Next battery system. 前記演算部は、電力変換器での損失計算に用いるパラメータを記録したテーブルを備え、充放電量の補正を行った際に前記パラメータの修正を行うことを特徴とする請求項1または請求項2に記載の電池残量の監視機能を有する二次電池システム。   The said calculating part is provided with the table which recorded the parameter used for the loss calculation in a power converter, and correct | amends the said parameter when correcting charge / discharge amount, The Claim 1 or Claim 2 characterized by the above-mentioned. A secondary battery system having a function of monitoring the remaining battery capacity described in 1. 直流電源系統に接続された昇降圧チョッパ型の電力変換器と、この電力変換器に直結された電池パックとを有し、前記電力変換器が電池電流を制御する制御部を備えている二次電池システムにおいて、
前記電力変換器には、電池パック側の電圧を検出する電圧検出器と、電池パック側の電流を検出する電流検出器を備え、
前記制御部には、前記電流検出器と電圧検出器が検出した電流値と電圧値に基づいて電池パックへの充放電電力量を計算する演算部が設けられていることを特徴とする電池残量の監視機能を有する二次電池システム。
A secondary battery having a step-up / step-down chopper type power converter connected to a DC power supply system and a battery pack directly connected to the power converter, the power converter including a control unit for controlling battery current. In battery systems,
The power converter includes a voltage detector that detects a voltage on the battery pack side, and a current detector that detects a current on the battery pack side,
The control unit is provided with a calculation unit for calculating a charge / discharge power amount to the battery pack based on a current value and a voltage value detected by the current detector and the voltage detector. A secondary battery system having an amount monitoring function.
直流電源系統に接続された昇降圧チョッパ型の電力変換器と、この電力変換器に直結された電池パックとを有し、前記電力変換器が電池電流を制御する制御部を備えている二次電池システムにおいて、
前記電力変換器には電源側の電圧を検出する電圧検出器と、電力変換器の変調率を取得する制御部と、前記電圧検出器からの電圧と制御部からの変調率に基づいて電池パックへの充放電電力量を計算する演算部が設けられていることを特徴とする電池残量の監視機能を有する二次電池システム。
A secondary battery having a step-up / step-down chopper type power converter connected to a DC power supply system and a battery pack directly connected to the power converter, the power converter including a control unit for controlling battery current. In battery systems,
The power converter includes a voltage detector that detects a voltage on the power supply side, a control unit that acquires a modulation rate of the power converter, a battery pack based on the voltage from the voltage detector and the modulation rate from the control unit A secondary battery system having a battery remaining amount monitoring function, characterized in that an arithmetic unit for calculating a charge / discharge power amount is provided.
交流電源系統に接続された電流型の交直電力変換器と、この交直電力変換器に直結された電池パックとを有し、前記交直電力変換器が電池パック側の電流を制御する制御部を備えている二次電池システムにおいて、
前記交直電力変換器には、電池パック側の電流を検出する電流検出器と、電池パック側の電圧を検出する電圧検出器を備え、
前記制御部には、前記電池パック側の電流検出器と電圧検出器が検出した電流値と電圧値に基づいて電池パックへの充放電電力量を計算する演算部が設けられていることを特徴とする電池残量の監視機能を有する二次電池システム。
A current-type AC / DC power converter connected to the AC power supply system; and a battery pack directly connected to the AC / DC power converter, the AC / DC power converter including a controller that controls a current on the battery pack side. Secondary battery system
The AC / DC power converter includes a current detector that detects a current on the battery pack side, and a voltage detector that detects a voltage on the battery pack side,
The control unit is provided with a calculation unit that calculates a charge / discharge power amount to the battery pack based on a current value and a voltage value detected by the current detector and the voltage detector on the battery pack side. A secondary battery system having a function for monitoring the remaining battery level.
JP2012099519A 2012-04-25 2012-04-25 Secondary battery system having function for monitoring battery residual capacity Pending JP2013228244A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012099519A JP2013228244A (en) 2012-04-25 2012-04-25 Secondary battery system having function for monitoring battery residual capacity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012099519A JP2013228244A (en) 2012-04-25 2012-04-25 Secondary battery system having function for monitoring battery residual capacity

Publications (1)

Publication Number Publication Date
JP2013228244A true JP2013228244A (en) 2013-11-07

Family

ID=49676018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012099519A Pending JP2013228244A (en) 2012-04-25 2012-04-25 Secondary battery system having function for monitoring battery residual capacity

Country Status (1)

Country Link
JP (1) JP2013228244A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150372525A1 (en) * 2013-03-15 2015-12-24 Peregrine Semiconductor Corporation Capacitance Discharge Limiter
CN105576786A (en) * 2015-11-25 2016-05-11 帝发技术(无锡)有限公司 Vehicle charger
US9537472B2 (en) 2013-03-15 2017-01-03 Peregrine Semiconductor Corporation Integrated switch and self-activating adjustable power limiter
CN110441693A (en) * 2019-07-22 2019-11-12 南方电网科学研究院有限责任公司 Direct current measuring and calculating method and device for electric quantity of battery pack and storage medium
CN110441692A (en) * 2019-07-22 2019-11-12 南方电网科学研究院有限责任公司 Battery pack electric quantity alternating current measuring and calculating method and device and storage medium
US10680590B2 (en) 2013-03-15 2020-06-09 Psemi Corporation Integrated switch and self-activating adjustable power limiter
JP2020150759A (en) * 2019-03-15 2020-09-17 株式会社デンソー Power control device
JP2021035126A (en) * 2019-08-21 2021-03-01 東芝エネルギーシステムズ株式会社 Battery capacity estimation device, battery capacity estimation method, and program
CN113711420A (en) * 2019-04-26 2021-11-26 株式会社电装 Battery monitoring device

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9490647B2 (en) * 2013-03-15 2016-11-08 Peregrine Semiconductor Corporation Capacitance discharge limiter
US9537472B2 (en) 2013-03-15 2017-01-03 Peregrine Semiconductor Corporation Integrated switch and self-activating adjustable power limiter
US20150372525A1 (en) * 2013-03-15 2015-12-24 Peregrine Semiconductor Corporation Capacitance Discharge Limiter
US10680590B2 (en) 2013-03-15 2020-06-09 Psemi Corporation Integrated switch and self-activating adjustable power limiter
CN105576786A (en) * 2015-11-25 2016-05-11 帝发技术(无锡)有限公司 Vehicle charger
CN105576786B (en) * 2015-11-25 2017-10-17 帝发技术(无锡)有限公司 Vehicle charger
JP2020150759A (en) * 2019-03-15 2020-09-17 株式会社デンソー Power control device
JP7151570B2 (en) 2019-03-15 2022-10-12 株式会社デンソー power controller
CN113711420A (en) * 2019-04-26 2021-11-26 株式会社电装 Battery monitoring device
CN113711420B (en) * 2019-04-26 2024-03-15 株式会社电装 Battery monitoring device
CN110441692A (en) * 2019-07-22 2019-11-12 南方电网科学研究院有限责任公司 Battery pack electric quantity alternating current measuring and calculating method and device and storage medium
CN110441693A (en) * 2019-07-22 2019-11-12 南方电网科学研究院有限责任公司 Direct current measuring and calculating method and device for electric quantity of battery pack and storage medium
JP2021035126A (en) * 2019-08-21 2021-03-01 東芝エネルギーシステムズ株式会社 Battery capacity estimation device, battery capacity estimation method, and program
JP7346155B2 (en) 2019-08-21 2023-09-19 東芝エネルギーシステムズ株式会社 Battery capacity estimation device, battery capacity estimation method, and program

Similar Documents

Publication Publication Date Title
JP2013228244A (en) Secondary battery system having function for monitoring battery residual capacity
KR101315654B1 (en) Charge state estimation apparatus
CN113740751A (en) Battery internal resistance detection device and method
JP4531113B2 (en) Power converter
US11258113B2 (en) Management device, and electricity storage system
KR101860697B1 (en) Power control system and control method thereof
JP2010193704A (en) Robust ac chassis fault detection using pwm sideband harmonics
JP6199064B2 (en) Method and system for detecting defects on a DC power bus of a power converter
CN113711420A (en) Battery monitoring device
US20160336792A1 (en) Power conversion system, power converter, and method for diagnosing state of power storage device
JP2023086798A (en) Battery monitoring device
JP6186892B2 (en) Fuel cell system mounted on vehicle
CN109792206B (en) Conversion device, equipment and control method
JP2012205391A (en) Inverter device and method of estimating capacitance of smooth capacitor
KR101398224B1 (en) Current detecting apparatus for low voltage dc-dc converter of electric vehicle
JP7097741B2 (en) Current detection system, power storage system
JP2010261807A (en) Storage battery deterioration determination method and charge/discharge control device
JP5566490B1 (en) Vehicle charging control device
JP2015008561A (en) Low-loss power conversion device and method of controlling the same
JP6402038B2 (en) Power control device
JP5147897B2 (en) Rectifier circuit inspection device, rectifier circuit inspection method
JP2012177614A (en) Acceleration detector
JP2011149726A (en) Device for measuring state of charge
JP2022152883A (en) Processing device, power conversion device and processing method
JP5842777B2 (en) Power storage system