JP2013134024A - Refrigeration cycle device - Google Patents
Refrigeration cycle device Download PDFInfo
- Publication number
- JP2013134024A JP2013134024A JP2011285562A JP2011285562A JP2013134024A JP 2013134024 A JP2013134024 A JP 2013134024A JP 2011285562 A JP2011285562 A JP 2011285562A JP 2011285562 A JP2011285562 A JP 2011285562A JP 2013134024 A JP2013134024 A JP 2013134024A
- Authority
- JP
- Japan
- Prior art keywords
- path
- refrigerant
- heat exchanger
- opening
- evaporator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B39/00—Evaporators; Condensers
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)
Abstract
Description
本発明は、冷媒を蒸発させる蒸発器として機能する熱交換器を備える冷凍サイクル装置に関する。 The present invention relates to a refrigeration cycle apparatus including a heat exchanger that functions as an evaporator for evaporating a refrigerant.
従来から、空気調和装置では、蒸発器および凝縮器として機能する熱交換器が用いられている。例えば、特許文献1には、図6に示すような凝縮器として機能する熱交換器100が開示されている。 Conventionally, in an air conditioner, a heat exchanger that functions as an evaporator and a condenser has been used. For example, Patent Document 1 discloses a heat exchanger 100 that functions as a condenser as shown in FIG.
熱交換器100は、入口121および出口122を有する冷媒経路120と、冷媒経路120に直交して多数取り付けられ拡大伝熱面として作用するフィン110とを含む。冷媒経路120における出口122近傍部分は相対的に細い配管で構成されており(細管部)、その他の部分は相対的に太い配管で構成されている(標準部)。 The heat exchanger 100 includes a refrigerant path 120 having an inlet 121 and an outlet 122, and fins 110 that are attached in large numbers orthogonal to the refrigerant path 120 and function as an enlarged heat transfer surface. The vicinity of the outlet 122 in the refrigerant path 120 is constituted by a relatively thin pipe (thin tube part), and the other part is constituted by a relatively thick pipe (standard part).
図示しない圧縮機から吐出された高温高圧のガス冷媒は、入口121から冷媒経路120に流入し、熱交換器100に供給される矢印Wで示す風と熱交換して漸次放熱しながら冷媒経路120の標準部を流れて凝縮し、高温高圧の液冷媒となる。高温高圧の液冷媒は、冷媒経路120におけるフィン110の風上側の部分に取り付けられた細管部を流れる。これにより、液冷媒はさらに冷却される。冷媒経路120の出口122から流出した液冷媒は、図示しない減圧器、蒸発器として機能する熱交換器を経て低温低圧のガス冷媒となり、低温低圧のガス冷媒は圧縮機へ再び吸入される。 A high-temperature and high-pressure gas refrigerant discharged from a compressor (not shown) flows into the refrigerant path 120 from the inlet 121, exchanges heat with the wind indicated by the arrow W supplied to the heat exchanger 100, and gradually radiates the refrigerant path 120. It is condensed by flowing through the standard part. The high-temperature and high-pressure liquid refrigerant flows through a thin tube portion attached to a portion of the refrigerant path 120 on the windward side of the fin 110. Thereby, the liquid refrigerant is further cooled. The liquid refrigerant that has flowed out of the outlet 122 of the refrigerant path 120 becomes a low-temperature and low-pressure gas refrigerant through a heat exchanger that functions as a decompressor and an evaporator (not shown), and the low-temperature and low-pressure gas refrigerant is sucked into the compressor again.
図6に示すように冷媒経路120の出口121近傍部分が細管で構成されていれば、液冷媒と空気の間の熱伝達率が向上して液冷媒の冷却度が上がり、空気調和装置の性能が向上する。しかも、従来から液冷媒の冷却度を上げることにより生じていた冷媒封入量の増加という問題を改善することができ、性能が高く、信頼度の高い空気調和装置を得ることができる。また、液冷媒側の熱交換部分の熱伝達率が高いので熱交換器全体の大きさを従来と同程度に保つことができる。 As shown in FIG. 6, if the vicinity of the outlet 121 of the refrigerant path 120 is configured by a thin tube, the heat transfer coefficient between the liquid refrigerant and the air is improved, the degree of cooling of the liquid refrigerant is increased, and the performance of the air conditioner Will improve. In addition, it is possible to improve the problem of an increase in the amount of refrigerant encapsulated, which has been caused by increasing the cooling degree of the liquid refrigerant, and to obtain an air conditioner with high performance and high reliability. Moreover, since the heat transfer coefficient of the heat exchange part on the liquid refrigerant side is high, the size of the entire heat exchanger can be maintained at the same level as the conventional one.
しかしながら、図6に示す熱交換器100は、蒸発器として用いることを想定したものではない。むしろ、熱交換器100を蒸発器として用いた場合には、冷媒の流入側に位置する細管部によって熱交換器100の性能が低下する。 However, the heat exchanger 100 shown in FIG. 6 is not assumed to be used as an evaporator. Rather, when the heat exchanger 100 is used as an evaporator, the performance of the heat exchanger 100 is degraded by the narrow tube portion located on the refrigerant inflow side.
本発明は、このような事情に鑑み、蒸発器として機能する熱交換器の性能を向上させることができる冷凍サイクル装置を提供することを目的とする。 An object of this invention is to provide the refrigerating-cycle apparatus which can improve the performance of the heat exchanger which functions as an evaporator in view of such a situation.
前記課題を解決するために、本発明の冷凍サイクル装置は、膨張手段側の第1開口から圧縮機側の第2開口まで延びる冷媒経路を有する、少なくとも蒸発器として機能する熱交換器を含む主回路と、前記熱交換器が蒸発器として機能するときの前記膨張手段の上流側または下流側で前記主回路から分岐して、前記冷媒経路の途中につながる分岐路と、を備え、前記冷媒経路は、前記第1開口を形成する第1経路、前記第1経路から分裂した複数の第2経路、および前記分岐路の下流端が接続された合流経路、を含み、前記第1開口から前記冷媒経路に流入する冷媒の質量流速をG[kg/(m2・s)]、前記第1経路の長さをL[m]、前記第1経路を構成する配管の内径をD[m]、前記第1開口から冷媒経路に流入する冷媒の液相の密度および粘度をそれぞれρl[kg/m3]およびμl[μPa・s]、前記第1開口から冷媒経路に流入する冷媒の気相の密度および粘度をそれぞれρg[kg/m3]およびμg[μPa・s]としたとき、1.60×103≦((μl/(G・D))0.25・(2・G2/(D・ρl)))・L≦4.64×104、且つ、1.55×104≦((μg/(G・D))0.25・(2・G2/(D・ρg)))・L≦4.17×105が成り立つ、ことを特徴とする。 In order to solve the above-described problems, a refrigeration cycle apparatus of the present invention includes a heat exchanger that functions as at least an evaporator having a refrigerant path extending from a first opening on the expansion means side to a second opening on the compressor side. A circuit, and a branch path branched from the main circuit on the upstream side or downstream side of the expansion means when the heat exchanger functions as an evaporator, and connected in the middle of the refrigerant path, the refrigerant path Includes a first path forming the first opening, a plurality of second paths split from the first path, and a merging path to which downstream ends of the branch paths are connected, and the refrigerant from the first opening. The mass flow rate of the refrigerant flowing into the path is G [kg / (m 2 · s)], the length of the first path is L [m], the inner diameter of the pipe constituting the first path is D [m], The density of the liquid phase of the refrigerant flowing into the refrigerant path from the first opening Each fine viscosity ρ l [kg / m 3] and μ l [μPa · s], the first opening, respectively the density and viscosity of the gas phase of the refrigerant flowing into the refrigerant passage from ρ g [kg / m 3] and When μ g [μPa · s] is set, 1.60 × 10 3 ≦ ((μ l / (G · D)) 0.25 · (2 · G 2 / (D · ρ l ))) · L ≦ 4. 64 × 10 4 and 1.55 × 10 4 ≦ ((μ g / (G · D)) 0.25 · (2 · G 2 / (D · ρ g ))) · L ≦ 4.17 × 10 5 Is true.
上記の構成によれば、主回路を循環する冷媒の一部が分岐路を通じて熱交換器の中間にインジェクションされるため、第1開口から冷媒経路に流入する冷媒の流量が減少する。その上で、第1経路を構成する配管の内径Dおよび長さLを適切に設定することにより、分岐路が設けられていない場合に比べて蒸発器として機能する熱交換器の性能を向上させることができる。 According to said structure, since a part of refrigerant | coolant which circulates through a main circuit is injected into the middle of a heat exchanger through a branch path, the flow volume of the refrigerant | coolant which flows in into a refrigerant path from 1st opening reduces. In addition, by appropriately setting the inner diameter D and the length L of the pipe constituting the first path, the performance of the heat exchanger functioning as an evaporator is improved as compared with the case where no branch path is provided. be able to.
以下、本発明の実施形態について、図面を参照しながら詳細に説明する。ただし、本発明は以下の実施形態によって限定されるものではない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. However, the present invention is not limited to the following embodiments.
図1に、本発明の一実施形態に係る冷凍サイクル装置1を示す。この冷凍サイクル装置1は、空気調和装置である。ただし、本発明の冷凍サイクル装置は必ずしも空気調和装置である必要はなく、冷凍機、暖房機、給湯機等であってもよい。 FIG. 1 shows a refrigeration cycle apparatus 1 according to an embodiment of the present invention. The refrigeration cycle apparatus 1 is an air conditioner. However, the refrigeration cycle apparatus of the present invention is not necessarily an air conditioner, and may be a refrigerator, a heater, a hot water heater, or the like.
具体的に、冷凍サイクル装置1は、冷媒を循環させる主回路2と、主回路2の一部と並列な分岐路3を備えている。冷媒としては、クロロフルオロカーボン(CFC)、ハイドロクロロフルオロカーボン(HCFC)またはハイドロフルオロカーボン(HFC)を用いることができる。中でも、R410Aが冷凍サイクル装置1に好適である。ただし、R407C、R134a、R32、イソブタン、プロパン、二酸化炭素などの冷媒を使用することも可能である。 Specifically, the refrigeration cycle apparatus 1 includes a main circuit 2 that circulates refrigerant, and a branch path 3 that is parallel to a part of the main circuit 2. As the refrigerant, chlorofluorocarbon (CFC), hydrochlorofluorocarbon (HCFC), or hydrofluorocarbon (HFC) can be used. Among these, R410A is suitable for the refrigeration cycle apparatus 1. However, it is also possible to use refrigerants such as R407C, R134a, R32, isobutane, propane and carbon dioxide.
主回路2は、圧縮機11、四方弁15、室内熱交換器14、膨張弁13および室外熱交換器12を含む。四方弁15は、流路21,26により圧縮機11の吸入口および吐出口に接続されているとともに、流路22,25により室外熱交換器12および室内熱交換器14に接続されている。また、室外熱交換器12および室内熱交換器14は、流路23,24により膨張弁13に接続されている。 The main circuit 2 includes a compressor 11, a four-way valve 15, an indoor heat exchanger 14, an expansion valve 13 and an outdoor heat exchanger 12. The four-way valve 15 is connected to the suction port and the discharge port of the compressor 11 by flow paths 21 and 26, and is connected to the outdoor heat exchanger 12 and the indoor heat exchanger 14 by flow paths 22 and 25. The outdoor heat exchanger 12 and the indoor heat exchanger 14 are connected to the expansion valve 13 by flow paths 23 and 24.
四方弁15は、暖房運転と冷房運転とで冷媒の流れ方向を切り替える。暖房運転時には圧縮機11から吐出された冷媒が室内熱交換器14に導かれ、冷房運転時には圧縮機11から吐出された冷媒が室外熱交換器12に導かれる。すなわち、暖房運転時には、室内熱交換器14が凝縮器として機能し、室外熱交換器12が蒸発器として機能する。一方、冷房運転時には、室外熱交換器12が凝縮器として機能し、室内熱交換器14が蒸発器として機能する。本実施形態では、室内熱交換器14が、分岐路3を通じて冷媒が注入されるように構成されている。 The four-way valve 15 switches the refrigerant flow direction between the heating operation and the cooling operation. During the heating operation, the refrigerant discharged from the compressor 11 is guided to the indoor heat exchanger 14, and during the cooling operation, the refrigerant discharged from the compressor 11 is guided to the outdoor heat exchanger 12. That is, during the heating operation, the indoor heat exchanger 14 functions as a condenser, and the outdoor heat exchanger 12 functions as an evaporator. On the other hand, during the cooling operation, the outdoor heat exchanger 12 functions as a condenser, and the indoor heat exchanger 14 functions as an evaporator. In the present embodiment, the indoor heat exchanger 14 is configured such that the refrigerant is injected through the branch path 3.
膨張弁13は、本発明の膨張手段の一例である。本発明の膨張手段としては、膨張弁13以外にも、膨張する冷媒から動力を回収する膨張機を採用することができる。 The expansion valve 13 is an example of the expansion means of the present invention. As the expansion means of the present invention, in addition to the expansion valve 13, an expander that recovers power from the expanding refrigerant can be employed.
室内熱交換器14は、図2に示すように、膨張手段13側の第1開口4aから圧縮機11側の第2開口4bまで延びる冷媒経路4を有している。すなわち、冷房運転時には、第1開口4aが冷媒の入口となり、第2開口4bが冷媒の出口となる。 As shown in FIG. 2, the indoor heat exchanger 14 has a refrigerant path 4 extending from the first opening 4a on the expansion means 13 side to the second opening 4b on the compressor 11 side. That is, during the cooling operation, the first opening 4a serves as the refrigerant inlet, and the second opening 4b serves as the refrigerant outlet.
分岐路3は、膨張弁13と室内熱交換器14の間の流路24から分岐して、冷媒経路4の途中につながっている。分岐路3には、冷房運転時のみに当該分岐路3に冷媒が流れるように逆止弁31が設けられている。すなわち、冷房運転時には主回路2を循環する冷媒の一部が分岐路3を通じて室内熱交換器14の中間にインジェクションされ、暖房運転時には室内熱交換器14の中間からの冷媒の流出が防止される。 The branch path 3 branches from a flow path 24 between the expansion valve 13 and the indoor heat exchanger 14 and is connected to the refrigerant path 4 in the middle. The branch path 3 is provided with a check valve 31 so that the refrigerant flows through the branch path 3 only during the cooling operation. That is, a part of the refrigerant circulating in the main circuit 2 is injected into the middle of the indoor heat exchanger 14 through the branch path 3 during the cooling operation, and the refrigerant is prevented from flowing out from the middle of the indoor heat exchanger 14 during the heating operation. .
分岐路3に流量制御弁を設置すればあらゆる条件でインジェクション流量(分岐路3を流れる冷媒流量)を最適に制御できるため、性能重視であれば流量制御弁を設置することが望ましい。一方、コスト重視で考えると、流量制御弁を設置せず、分岐路3をキャピラリーチューブなどで構成するほうが望ましい。ただし、キャピラリーチューブを用いる場合は、自由に制御できないため、予め最適制御したい条件で最適化を行った仕様のものを設置することになり、その他の条件ではインジェクション流量は成り行きになる。 If a flow rate control valve is installed in the branch path 3, the injection flow rate (refrigerant flow rate through the branch path 3) can be optimally controlled under all conditions. On the other hand, considering cost, it is preferable not to install a flow control valve and to configure the branch path 3 with a capillary tube or the like. However, when a capillary tube is used, it cannot be freely controlled. Therefore, a capillary tube having specifications optimized in advance under optimum control conditions is installed, and the injection flow rate is likely to occur under other conditions.
次に、図2を参照して、室内熱交換器14の構成を詳細に説明する。なお、以下では、説明の便宜のために、冷房運転時の冷媒の流れ方向に基づいて、第1開口4a側を上流側、第2開口4b側を下流側という。 Next, the configuration of the indoor heat exchanger 14 will be described in detail with reference to FIG. In the following, for convenience of explanation, the first opening 4a side is referred to as the upstream side and the second opening 4b side is referred to as the downstream side based on the refrigerant flow direction during the cooling operation.
冷媒経路4は、第1開口4aを形成する第1経路41と、第1経路群4Aと、中間経路44と、第2経路群4Bとを含む。第1経路群4Aと第2経路群4Bは、中間経路44によって連結されている。中間経路44には冷媒を減圧させる除湿弁6が設けられており、分岐路3の下流端は除湿弁6の上流側で中間経路44に接続されている。すなわち、中間経路44は、本発明の合流経路に相当する。 The refrigerant path 4 includes a first path 41 that forms the first opening 4a, a first path group 4A, an intermediate path 44, and a second path group 4B. The first path group 4A and the second path group 4B are connected by an intermediate path 44. The intermediate path 44 is provided with a dehumidifying valve 6 that depressurizes the refrigerant. The downstream end of the branch path 3 is connected to the intermediate path 44 on the upstream side of the dehumidifying valve 6. That is, the intermediate path 44 corresponds to the merge path of the present invention.
第1経路群4Aは、第1経路41から分裂した複数(図例では2つ)の第2経路42と、各第2経路42からさらに分裂した複数(図例では4つ)の第3経路43を含む。第3経路43は、中間経路44の上流端に収束している。なお、第3経路43が省略される代わりに第2経路42の数が増やされ、第2経路42が中間経路44の上流端に収束していてもよい。 The first path group 4A includes a plurality of (two in the illustrated example) second paths 42 split from the first path 41, and a plurality of (four in the illustrated example) third paths further split from each second path 42. 43. The third path 43 converges at the upstream end of the intermediate path 44. Instead of omitting the third path 43, the number of the second paths 42 may be increased, and the second path 42 may converge at the upstream end of the intermediate path 44.
第2経路群4Bは中間経路44から分裂した複数(図例では3つ)の末端経路45を含み、末端経路45は第2開口4bに収束している。 The second path group 4B includes a plurality of (three in the illustrated example) end paths 45 split from the intermediate path 44, and the end paths 45 converge to the second opening 4b.
第1経路41、第2経路42、第3経路43および末端経路45は、それぞれ、図示しない所定の間隔で配列されたファンを貫通する複数のヘアピン管51,52,53,55で主に構成される。各経路において、ヘアピン管の端部同士はベンド管で連結される。全てのヘアピン管51,52,53,55は、内周面に複数の螺旋状の溝が形成された溝付管であることが好ましい。 The first path 41, the second path 42, the third path 43, and the end path 45 are mainly composed of a plurality of hairpin tubes 51, 52, 53, and 55 that pass through fans arranged at predetermined intervals (not shown). Is done. In each path, the ends of the hairpin tubes are connected by a bend tube. All the hairpin tubes 51, 52, 53, 55 are preferably grooved tubes in which a plurality of spiral grooves are formed on the inner peripheral surface.
室内熱交換器14はシロッコファン7を有しており、第3経路43を構成するヘアピン管53および末端経路45を構成するヘアピン管55は、シロッコファン7を取り囲むように配置されている。第2経路42を構成するヘアピン管52は、シロッコファン7により生み出される風方向において、第3経路43を構成するヘアピン管53の風上側に配置されており、第1経路41を構成するヘアピン管51は、第2経路42を構成するヘアピン管52のさらに風上側に配置されている。 The indoor heat exchanger 14 has the sirocco fan 7, and the hairpin tube 53 constituting the third path 43 and the hairpin tube 55 constituting the terminal path 45 are arranged so as to surround the sirocco fan 7. The hairpin tube 52 constituting the second path 42 is arranged on the windward side of the hairpin tube 53 constituting the third path 43 in the wind direction generated by the sirocco fan 7, and the hairpin tube constituting the first path 41. 51 is arranged further on the windward side of the hairpin tube 52 constituting the second path 42.
第1経路41を構成する配管は、第2経路42を構成する配管と同じ太さであってもよいし、それよりも太くてもよい。ただし、第1経路41を構成する配管は、第2経路42を構成する配管よりも細いことが好ましい。また、第1経路41を構成する配管は、第1開口4aにつながる流路24を構成する配管よりも細いことが好ましい。 The pipe constituting the first path 41 may be the same thickness as the pipe constituting the second path 42 or may be thicker than that. However, it is preferable that the pipe constituting the first path 41 is thinner than the pipe constituting the second path 42. Moreover, it is preferable that the piping which comprises the 1st path | route 41 is thinner than the piping which comprises the flow path 24 connected to the 1st opening 4a.
次に、分岐路3を通じたインジェクションにより蒸発器性能が向上するメカニズムについて説明する。 Next, a mechanism for improving the evaporator performance by the injection through the branch path 3 will be described.
図3は、管内強制対流沸騰の伝熱様式である。強制対流沸騰の伝熱様式はこの図で示されるように乾き度Xによって3つの領域に区分できる。第1の領域は、サブクールおよび気相の割合が少ない低乾き度域で、熱伝達が主として伝熱表面における核沸騰に支配される。第2の領域は、壁面上に薄い液膜を有し、管中心部を蒸気が流れる環状流である高乾き度域で、加熱熱流束が高くないときには、伝熱面に沿って流れる液膜の対流熱伝達と液膜表面からの蒸発が支配的になる領域である。第3の領域は、壁面が乾いたドライアウト後の噴霧流領域で、気相中には多量の液滴を含んでいる。第3の噴霧流領域は、この図で示すように熱伝達率が極めて悪い。従って、実用上は第1および第2の領域が用いられる。 FIG. 3 shows the heat transfer mode of forced convection boiling in the tube. The heat transfer mode of forced convection boiling can be divided into three regions by dryness X as shown in this figure. The first region is a low dryness region where the proportion of subcool and gas phase is small, and heat transfer is mainly controlled by nucleate boiling on the heat transfer surface. The second region has a thin liquid film on the wall surface, and is a high dryness region that is an annular flow in which steam flows through the center of the tube. When the heating heat flux is not high, the liquid film that flows along the heat transfer surface This is the region where convective heat transfer and evaporation from the liquid film surface dominate. The third region is a spray flow region after dry-out where the wall surface is dry, and the gas phase contains a large amount of droplets. The third spray flow region has a very poor heat transfer coefficient as shown in this figure. Therefore, in practice, the first and second regions are used.
この冷媒乾き度と熱伝達率の関係から、室内熱交換器14に供給される冷媒の一部を室内熱交換器14の中間にインジェクションすることで、冷媒経路4における分岐路3が冷媒経路4につながる合流位置Mよりも上流側を流れる主流冷媒の流量が減り、より蒸発しやすい状態となる。その結果、合流位置Mでの主流冷媒の乾き度は増加し、冷媒熱伝達率は増加する。ただし、ドライアウト後は熱伝達率が急激に低下するため、インジェクション流量を増やしすぎると冷媒熱伝達率は低下してしまう。そのため、最適なインジェクション流量に制御することが重要である。また、インジェクションすることで合流位置Mでの主流冷媒の圧力損失も低減できるため、空気と冷媒の温度差を大きくすることができ、蒸発性能を向上することができる。これを実現するには、第1経路41を構成する配管の内径Dおよび長さLを適切に設定することが重要となる。なお、配管が溝付管である場合は、配管の内径Dとは溝付管の内部空間の断面積の4倍をぬれ縁長さ(管を断面で見た場合の流体が接している壁面の長さ)で割った値、いわゆる水力直径(等価直径とも呼ばれる)をいう。 From the relationship between the refrigerant dryness and the heat transfer coefficient, a part of the refrigerant supplied to the indoor heat exchanger 14 is injected into the middle of the indoor heat exchanger 14 so that the branch path 3 in the refrigerant path 4 becomes the refrigerant path 4. The flow rate of the main-stream refrigerant flowing upstream from the merge position M connected to is reduced, and the state becomes easier to evaporate. As a result, the dryness of the mainstream refrigerant at the merge position M increases and the refrigerant heat transfer coefficient increases. However, since the heat transfer coefficient rapidly decreases after dryout, the refrigerant heat transfer coefficient decreases if the injection flow rate is increased too much. Therefore, it is important to control to an optimal injection flow rate. Moreover, since the pressure loss of the mainstream refrigerant | coolant in the merge position M can also be reduced by injecting, the temperature difference between air and a refrigerant | coolant can be enlarged and evaporation performance can be improved. In order to realize this, it is important to appropriately set the inner diameter D and the length L of the pipes constituting the first path 41. When the pipe is a grooved pipe, the inner diameter D of the pipe is 4 times the cross-sectional area of the inner space of the grooved pipe, and the wetting edge length (the wall in contact with the fluid when the pipe is viewed in cross section) The length divided by the so-called hydraulic diameter (also called the equivalent diameter).
さらに、第1経路41を構成する配管が第2経路42を構成する配管よりも細い場合には、凝縮性能と蒸発性能の両方を向上させることができる。特許文献1に開示された、図6に示す凝縮器として機能する熱交換器100では、冷媒経路120の出口122近傍部分を細管で構成することにより、液冷媒と空気の間の熱伝達率が向上して液冷媒の冷却度が上がり、空気調和装置の性能が向上する。しかしながら、熱交換器100が蒸発器として機能するときは、冷媒の流入側に位置する細管によって冷媒の圧力損失が増加し、冷媒の蒸発温度が低下する。そのため、圧縮機動力増加を招き、冷凍サイクル装置全体での性能が低下するという課題があった。しかし、蒸発器入口に細管を用いた場合でも、分岐路3を組み合わせることで従来の課題であった蒸発器入口での冷媒圧力損失を低下させることができ、また冷媒側の熱伝達率の向上も期待できる。 Furthermore, when the piping which comprises the 1st path | route 41 is thinner than the piping which comprises the 2nd path | route 42, both condensation performance and evaporation performance can be improved. In the heat exchanger 100 functioning as the condenser shown in FIG. 6 disclosed in Patent Document 1, the heat transfer coefficient between the liquid refrigerant and the air can be increased by configuring the vicinity of the outlet 122 of the refrigerant path 120 with a thin tube. This improves the cooling degree of the liquid refrigerant and improves the performance of the air conditioner. However, when the heat exchanger 100 functions as an evaporator, the pressure loss of the refrigerant increases due to the thin tubes located on the refrigerant inflow side, and the refrigerant evaporation temperature decreases. Therefore, there was a problem that the compressor power was increased and the performance of the entire refrigeration cycle apparatus was deteriorated. However, even when a thin tube is used at the evaporator inlet, the refrigerant pressure loss at the evaporator inlet, which has been a conventional problem, can be reduced by combining the branch path 3, and the heat transfer coefficient on the refrigerant side is improved. Can also be expected.
図5に、第1経路41を構成する配管の直径Dと第1経路41の長さLを変化させたときの蒸発器性能を試算した結果を示す。蒸発器性能のみに着目した理由は次の通りである。 FIG. 5 shows a result of a trial calculation of the evaporator performance when the diameter D of the pipe constituting the first path 41 and the length L of the first path 41 are changed. The reason for focusing only on the evaporator performance is as follows.
凝縮器出口に細管を用いた場合、凝縮器出口は液冷媒単相であるため、冷媒圧力は低下するが、冷媒温度はほとんど変化しない。そのため、冷媒圧力損失増加による凝縮性能低下はほとんど無く、管を細径化するに従って凝縮性能は向上する。故に、凝縮性能には着目する必要は無い。一方で、蒸発器入口の管を細径化すると、蒸発器での冷媒圧力損失が増加し蒸発性能が低下する。蒸発器へのインジェクションによって従来以上の性能向上を図ることが本発明の趣旨であり、これが蒸発器性能のみに着目した理由である。 When a thin tube is used at the outlet of the condenser, the outlet of the condenser is a liquid refrigerant single phase, so that the refrigerant pressure is reduced, but the refrigerant temperature is hardly changed. Therefore, there is almost no decrease in condensation performance due to an increase in refrigerant pressure loss, and the condensation performance improves as the diameter of the pipe is reduced. Therefore, it is not necessary to pay attention to the condensation performance. On the other hand, if the diameter of the evaporator inlet pipe is reduced, the refrigerant pressure loss in the evaporator increases and the evaporation performance decreases. The purpose of the present invention is to improve the performance more than before by injection into the evaporator, and this is the reason why attention is paid only to the evaporator performance.
計算条件は、空気の乾球温度:27[℃]、湿球温度:[19℃]、室内熱交換器14に供給される風の速度:[1.5m/s]、冷媒:R410A、全体の冷媒循環量:84[kg/h]である。第1開口4aでの冷媒の温度を17.5[℃](冷房定格条件)、乾き度Xを0.12とし、そのときの第1開口4aでの液相の物性値と気相の物性値を汎用ソフトのRefprop7(NIST)にてそれぞれ算出した。その結果、液相の密度ρl=1063[kg/m3]、液相の粘度μl=123[μPa・s]、気相の密度ρg=64[kg/m3]、気相の粘度μg=14[μPa・s]となった。 The calculation conditions are: dry bulb temperature of air: 27 [° C.], wet bulb temperature: [19 ° C.], speed of wind supplied to the indoor heat exchanger 14: [1.5 m / s], refrigerant: R410A, overall Refrigerant circulation rate: 84 [kg / h]. The temperature of the refrigerant in the first opening 4a is 17.5 [° C.] (cooling rated condition), the dryness X is 0.12, and the physical property value of the liquid phase and the physical property of the gas phase in the first opening 4a at that time The values were calculated using general-purpose software Refprop7 (NIST). As a result, the liquid phase density ρ l = 1063 [kg / m 3 ], the liquid phase viscosity μ l = 123 [μPa · s], the gas phase density ρ g = 64 [kg / m 3 ], The viscosity was μ g = 14 [μPa · s].
計算では、第1経路41を構成する配管の外径D’が7mm、5mm、4mmと異なる3つのモデル1〜3を作成した。また、モデル1〜3では、外径D’に応じた最適な冷媒経路4の構成、インジェクション流量を設定した。また、モデル1〜3では、第1経路41中のヘアピン管の数を、それぞれ、4本、5本、6本とした。 In the calculation, three models 1 to 3 having outer diameters D ′ of the pipes constituting the first path 41 being different from 7 mm, 5 mm, and 4 mm were created. In Models 1 to 3, the optimum refrigerant path 4 configuration and injection flow rate were set according to the outer diameter D '. In Models 1 to 3, the number of hairpin tubes in the first path 41 was 4, 5, and 6, respectively.
具体的に、第1経路41を構成する配管の肉厚t[m]、内径D[m]および長さL[m]、ならびに第1開口4aから冷媒経路4に流入する冷媒の質量流速G[kg/(m2・s)]は、表1に示すとおりとした。 Specifically, the wall thickness t [m], the inner diameter D [m], and the length L [m] of the pipe constituting the first path 41, and the mass flow rate G of the refrigerant flowing into the refrigerant path 4 from the first opening 4a. [Kg / (m 2 · s)] was as shown in Table 1.
図5に示すように、第1経路41を構成する配管の内径Dおよび長さLを最適に設計すれば、蒸発器性能が最も高くなる。その最適状態から内径Dを小さくするとともに長さLを大きくすると、蒸発器性能は次第に減少し、状況Aとなったときには分岐路3が設けられていない現行品と同程度になる。一方、最適状態から内径Dを大きくするとともに長さLを小さくすると、蒸発器性能は次第に減少し、状況Bとなったときには分岐路3が設けられていない現行品と同程度になる。 As shown in FIG. 5, if the inner diameter D and the length L of the pipe constituting the first path 41 are optimally designed, the evaporator performance is the highest. When the inner diameter D is decreased and the length L is increased from the optimum state, the evaporator performance gradually decreases, and when the situation A is reached, it becomes the same level as the current product in which the branch path 3 is not provided. On the other hand, when the inner diameter D is increased and the length L is decreased from the optimum state, the evaporator performance gradually decreases, and when the situation B is reached, it becomes the same level as the current product in which the branch path 3 is not provided.
状況Aでは、F(l)=1.60×103、F(g)=1.55×104である。状況Bでは、F(l)=4.64×104、F(g)=4.17×105である。F(l)およびF(g)は次式により定義される。 In situation A, F (l) = 1.60 × 10 3 and F (g) = 1.55 × 10 4 . In situation B, F (l) = 4.64 × 10 4 and F (g) = 4.17 × 10 5 . F (l) and F (g) are defined by the following equations.
F(l)=((μl/(G・D))0.25・(2・G2/(D・ρl)))・L
F(g)=((μg/(G・D))0.25・(2・G2/(D・ρg)))・L
F (l) = ((μ l / (G · D)) 0.25 · (2 · G 2 / (D · ρ l ))) · L
F (g) = ((μ g / (G · D)) 0.25 · (2 · G 2 / (D · ρ g))) · L
上記の式は、図4に示す気液二相状態のR410Aが配管内を流れる際の圧力損失を表す式の項を取り出したもので、それぞれ液相と気相の冷媒圧力損失に関係する物理的な量になっている。なお、図4に示す式は、以下の論文から引用した。 The above equation is obtained by extracting the terms of the equation representing the pressure loss when R410A in the gas-liquid two-phase state shown in FIG. 4 flows in the pipe, and the physics related to the refrigerant pressure loss in the liquid phase and the gas phase, respectively. Amount. The formula shown in FIG. 4 is cited from the following paper.
タイトル:Carbon Dioxide and R410a Flow Boiling Heat Transfer,
Pressure Drop, and Flow Pattern in Horizontal Tubes
at Low Temperatures
著 者:C. Y. Park and P. S. Hrnjak
公 開 日:January 2007
所 属:Air Conditioning and Refrigeration Center
University of Illinois
Department of Mechanical Science & Engineering
Title: Carbon Dioxide and R410a Flow Boiling Heat Transfer,
Pressure Drop, and Flow Pattern in Horizontal Tubes
at Low Temperatures
Author: CY Park and PS Hrnjak
Open Date: January 2007
Affiliation: Air Conditioning and Refrigeration Center
University of Illinois
Department of Mechanical Science & Engineering
すなわち、内径Dおよび長さLを、1.60×103≦F(l)≦4.64×104、且つ、1.55×104≦F(g)≦4.17×105が成り立つように設計すれば、蒸発器性能を従来よりも向上させることができる。これにより、例えば、凝縮器の出口に細管を用いた場合においても蒸発器の性能を向上させることができる。 That is, the inner diameter D and the length L are 1.60 × 10 3 ≦ F (l) ≦ 4.64 × 10 4 and 1.55 × 10 4 ≦ F (g) ≦ 4.17 × 10 5. If it is designed to hold, the evaporator performance can be improved as compared with the prior art. Thereby, for example, even when a thin tube is used at the outlet of the condenser, the performance of the evaporator can be improved.
例えば、冷媒としてCFC、HCFCまたはHFCを用いた場合は、738≦L/D≦2075が成り立つように内径Dおよび長さLを選定することができる。なお、上記式の下限値および上限値は、それぞれ、モデル1のL,D、モデル3のL,Dを用いて算出した。また、第1経路41を構成する配管の外径D’は、例えば4mm以上7mm以下である。 For example, when CFC, HCFC, or HFC is used as the refrigerant, the inner diameter D and the length L can be selected so that 738 ≦ L / D ≦ 2075 is satisfied. In addition, the lower limit value and the upper limit value of the above formula were calculated using L and D of model 1 and L and D of model 3, respectively. Further, the outer diameter D ′ of the pipes constituting the first path 41 is, for example, not less than 4 mm and not more than 7 mm.
冷媒をR410AからR134aに変更すると、第1開口4aでの物性値は、液相の密度ρl=1510[kg/m3]、液相の粘度μl=197[μPa・s]、気相の密度ρg=32[kg/m3]、気相の粘度μg=12[μPa・s]となった。冷媒をR410AからR32に変更すると、第1開口4aでの物性値は、液相の密度ρl=964[kg/m3]、液相の粘度μl=115[μPa・s]、気相の密度ρg=46[kg/m3]、気相の粘度μg=13[μPa・s]となった。R134aおよびR32を用いたときのモデル1〜3における質量流速Gは、表2に示すとおりである。 When the refrigerant is changed from R410A to R134a, the physical properties at the first opening 4a are as follows: liquid phase density ρ l = 1510 [kg / m 3 ], liquid phase viscosity μ l = 197 [μPa · s], gas phase Density ρ g = 32 [kg / m 3 ], and the viscosity of the gas phase μ g = 12 [μPa · s]. When the refrigerant is changed from R410A to R32, the physical property values at the first opening 4a are as follows: liquid phase density ρ l = 964 [kg / m 3 ], liquid phase viscosity μ l = 115 [μPa · s], gas phase Density ρ g = 46 [kg / m 3 ] and the viscosity of the gas phase μ g = 13 [μPa · s]. The mass flow rates G in Models 1 to 3 when using R134a and R32 are as shown in Table 2.
なお、前記実施形態では、蒸発器性能を向上させる対象の熱交換器が、運転条件によって凝縮器として機能したり蒸発器として機能したりする空気調和装置の室内熱交換器であったが、本発明の熱交換器はこれに限られるものではない。例えば、本発明の熱交換器は、蒸発器としてのみ機能するエコキュート(ヒートポンプ式給湯器)の熱交換器であってもよい。この場合でも、前記実施形態と同様に、蒸発器性能を従来よりも向上させる効果が得られる。 In the above embodiment, the target heat exchanger for improving the evaporator performance is an indoor heat exchanger of an air conditioner that functions as a condenser or functions as an evaporator depending on operating conditions. The heat exchanger of the invention is not limited to this. For example, the heat exchanger of the present invention may be an eco-cute (heat pump type water heater) heat exchanger that functions only as an evaporator. Even in this case, the effect of improving the evaporator performance as compared with the prior art can be obtained as in the above embodiment.
<変形例>
本発明の合流経路は、必ずしも中間経路44である必要はない。例えば、分岐路3の下流端が分岐して第3経路43に接続されており、第3経路43が本発明の合流経路の役割を果たしてもよい。
<Modification>
The merging path of the present invention does not necessarily need to be the intermediate path 44. For example, the downstream end of the branch path 3 may be branched and connected to the third path 43, and the third path 43 may serve as the merge path of the present invention.
分岐路3は、膨張弁13と室外熱交換器12の間の流路23から分岐していてもよい。この場合、膨張弁13で減圧される前の液相の冷媒が室内蒸発器14にインジェクションされる。このようにしても、第1開口4aから冷媒経路4に流入する冷媒流量の減少により、合流位置Mよりも上流側で冷媒乾き度を上昇させることができる。 The branch path 3 may branch from the flow path 23 between the expansion valve 13 and the outdoor heat exchanger 12. In this case, the liquid-phase refrigerant before being decompressed by the expansion valve 13 is injected into the indoor evaporator 14. Even in this case, the refrigerant dryness can be increased on the upstream side of the merging position M due to the decrease in the flow rate of the refrigerant flowing into the refrigerant path 4 from the first opening 4a.
1 冷凍サイクル装置
11 圧縮機
12 室外熱交換器
13 膨張弁(膨張手段)
14 室内熱交換器
2 主回路
3 分岐路
4 冷媒経路
4A 第1経路群
4B 第2経路群
41 第1経路
42 第2経路
43 第3経路
44 中間経路(合流経路)
45 末端経路
6 除湿弁
DESCRIPTION OF SYMBOLS 1 Refrigeration cycle apparatus 11 Compressor 12 Outdoor heat exchanger 13 Expansion valve (expansion means)
14 indoor heat exchanger 2 main circuit 3 branch path 4 refrigerant path 4A first path group 4B second path group 41 first path 42 second path 43 third path 44 intermediate path (merging path)
45 End route 6 Dehumidification valve
Claims (6)
前記熱交換器が蒸発器として機能するときの前記膨張手段の上流側または下流側で前記主回路から分岐して、前記冷媒経路の途中につながる分岐路と、を備え、
前記冷媒経路は、前記第1開口を形成する第1経路、前記第1経路から分裂した複数の第2経路、および前記分岐路の下流端が接続された合流経路、を含み、
前記第1開口から前記冷媒経路に流入する冷媒の質量流速をG[kg/(m2・s)]、前記第1経路の長さをL[m]、前記第1経路を構成する配管の内径をD[m]、前記第1開口から冷媒経路に流入する冷媒の液相の密度および粘度をそれぞれρl[kg/m3]およびμl[μPa・s]、前記第1開口から冷媒経路に流入する冷媒の気相の密度および粘度をそれぞれρg[kg/m3]およびμg[μPa・s]としたとき、
1.60×103≦((μl/(G・D))0.25・(2・G2/(D・ρl)))・L≦4.64×104、且つ、1.55×104≦((μg/(G・D))0.25・(2・G2/(D・ρg)))・L≦4.17×105が成り立つ、請求項1に記載の冷凍サイクル装置。 A main circuit including at least a heat exchanger functioning as an evaporator, having a refrigerant path extending from the first opening on the expansion means side to the second opening on the compressor side;
A branch path branched from the main circuit on the upstream side or downstream side of the expansion means when the heat exchanger functions as an evaporator, and connected to the middle of the refrigerant path,
The refrigerant path includes a first path that forms the first opening, a plurality of second paths split from the first path, and a merging path to which the downstream ends of the branch paths are connected,
The mass flow rate of the refrigerant flowing into the refrigerant path from the first opening is G [kg / (m 2 · s)], the length of the first path is L [m], and the pipes constituting the first path The inner diameter is D [m], the density and viscosity of the liquid phase of the refrigerant flowing into the refrigerant path from the first opening are ρ l [kg / m 3 ] and μ l [μPa · s], respectively, and the refrigerant from the first opening When the density and viscosity of the gas phase of the refrigerant flowing into the path are ρ g [kg / m 3 ] and μ g [μPa · s], respectively,
1.60 × 10 3 ≦ ((μ l / (G · D)) 0.25 · (2 · G 2 / (D · ρ l ))) · L ≦ 4.64 × 10 4 and 1.55 × 10 4 ≦ ((μ g / (G · D)) 0.25 · (2 · G 2 / (D · ρ g))) · L ≦ 4.17 × 10 5 holds, the refrigeration cycle according to claim 1 apparatus.
738≦L/D≦2075が成り立つ、請求項1に記載の冷凍サイクル装置。 The refrigerant is chlorofluorocarbon, hydrochlorofluorocarbon or hydrofluorocarbon,
The refrigeration cycle apparatus according to claim 1, wherein 738 ≦ L / D ≦ 2075 is established.
前記合流経路は、前記第1経路群と前記第2経路群とを連結する、除湿弁が設けられた中間経路であり、
前記分岐路の下流端は、前記熱交換器が蒸発器として機能するときの前記除湿弁の上流側で前記中間経路に接続されている、請求項5に記載の冷凍サイクル装置。 The refrigerant path includes a first path group including the plurality of second paths, and a second path group including a plurality of terminal paths that converge to the outlet,
The merging path is an intermediate path provided with a dehumidification valve that connects the first path group and the second path group.
The refrigeration cycle apparatus according to claim 5, wherein a downstream end of the branch path is connected to the intermediate path on the upstream side of the dehumidification valve when the heat exchanger functions as an evaporator.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011285562A JP2013134024A (en) | 2011-12-27 | 2011-12-27 | Refrigeration cycle device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011285562A JP2013134024A (en) | 2011-12-27 | 2011-12-27 | Refrigeration cycle device |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2013134024A true JP2013134024A (en) | 2013-07-08 |
Family
ID=48910835
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011285562A Pending JP2013134024A (en) | 2011-12-27 | 2011-12-27 | Refrigeration cycle device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2013134024A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019020068A (en) * | 2017-07-19 | 2019-02-07 | 株式会社前川製作所 | Heat exchanger |
WO2019180817A1 (en) * | 2018-03-20 | 2019-09-26 | 三菱電機株式会社 | Heat exchanger, refrigeration cycle device, and air conditioning device |
WO2020148826A1 (en) * | 2019-01-16 | 2020-07-23 | 三菱電機株式会社 | Air conditioner |
JP2020134107A (en) * | 2019-02-26 | 2020-08-31 | 三菱電機株式会社 | Heat exchanger and air conditioner including the same |
Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4530775Y1 (en) * | 1967-12-30 | 1970-11-25 | ||
JPH06221605A (en) * | 1993-01-28 | 1994-08-12 | Sanyo Electric Co Ltd | Air-conditioner |
JPH10103886A (en) * | 1996-09-30 | 1998-04-24 | Mitsubishi Electric Corp | Heat exchanger and refrigerating/air-conditioning device for non-azeotropic mixture refrigerant |
JP2001065953A (en) * | 1999-08-31 | 2001-03-16 | Mitsubishi Electric Corp | Air conditioner and control method of the same |
JP2002323272A (en) * | 2001-04-24 | 2002-11-08 | Denso Corp | Evaporator |
JP2003014337A (en) * | 2001-06-29 | 2003-01-15 | Hitachi Ltd | Heat exchanger for air conditioner |
JP2003343942A (en) * | 2002-05-23 | 2003-12-03 | Denso Corp | Evaporator |
JP2005241245A (en) * | 2005-05-27 | 2005-09-08 | Mitsubishi Electric Corp | Air conditioning device |
JP2007255730A (en) * | 2006-03-20 | 2007-10-04 | Mitsubishi Electric Corp | Air conditioner |
JP2008020150A (en) * | 2006-07-14 | 2008-01-31 | Kobelco & Materials Copper Tube Inc | Return bend tube, and fin and tube type heat exchanger |
JP2008249326A (en) * | 2008-07-18 | 2008-10-16 | Denso Corp | Evaporator |
JP2009222360A (en) * | 2008-03-18 | 2009-10-01 | Daikin Ind Ltd | Heat exchanger |
JP2010060267A (en) * | 2008-08-07 | 2010-03-18 | Sanden Corp | Heat exchanger and heat pump apparatus using the same |
WO2010116730A1 (en) * | 2009-04-07 | 2010-10-14 | サンデン株式会社 | Heat exchanger and method for producing the same |
US20110259040A1 (en) * | 2008-11-17 | 2011-10-27 | Industrie Ilpea S.P.A. | Refrigeration circuit |
-
2011
- 2011-12-27 JP JP2011285562A patent/JP2013134024A/en active Pending
Patent Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4530775Y1 (en) * | 1967-12-30 | 1970-11-25 | ||
JPH06221605A (en) * | 1993-01-28 | 1994-08-12 | Sanyo Electric Co Ltd | Air-conditioner |
JPH10103886A (en) * | 1996-09-30 | 1998-04-24 | Mitsubishi Electric Corp | Heat exchanger and refrigerating/air-conditioning device for non-azeotropic mixture refrigerant |
JP2001065953A (en) * | 1999-08-31 | 2001-03-16 | Mitsubishi Electric Corp | Air conditioner and control method of the same |
JP2002323272A (en) * | 2001-04-24 | 2002-11-08 | Denso Corp | Evaporator |
JP2003014337A (en) * | 2001-06-29 | 2003-01-15 | Hitachi Ltd | Heat exchanger for air conditioner |
JP2003343942A (en) * | 2002-05-23 | 2003-12-03 | Denso Corp | Evaporator |
JP2005241245A (en) * | 2005-05-27 | 2005-09-08 | Mitsubishi Electric Corp | Air conditioning device |
JP2007255730A (en) * | 2006-03-20 | 2007-10-04 | Mitsubishi Electric Corp | Air conditioner |
JP2008020150A (en) * | 2006-07-14 | 2008-01-31 | Kobelco & Materials Copper Tube Inc | Return bend tube, and fin and tube type heat exchanger |
JP2009222360A (en) * | 2008-03-18 | 2009-10-01 | Daikin Ind Ltd | Heat exchanger |
JP2008249326A (en) * | 2008-07-18 | 2008-10-16 | Denso Corp | Evaporator |
JP2010060267A (en) * | 2008-08-07 | 2010-03-18 | Sanden Corp | Heat exchanger and heat pump apparatus using the same |
US20110259040A1 (en) * | 2008-11-17 | 2011-10-27 | Industrie Ilpea S.P.A. | Refrigeration circuit |
WO2010116730A1 (en) * | 2009-04-07 | 2010-10-14 | サンデン株式会社 | Heat exchanger and method for producing the same |
Non-Patent Citations (1)
Title |
---|
JPN6015038301; C. Y. Park and P. S. Hrnjak: 'Carbon Dioxide and R410a Flow Boiling HeatTransfer, Pressure Drop, and Flow Pattern in Horizontal Tu' ACRC TR-258 , 200701, p.xiii-xiv, p.105-115, Air Conditioning and Refrigeration Center; Univers * |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019020068A (en) * | 2017-07-19 | 2019-02-07 | 株式会社前川製作所 | Heat exchanger |
JP7072790B2 (en) | 2017-07-19 | 2022-05-23 | 株式会社前川製作所 | Heat exchanger |
WO2019180817A1 (en) * | 2018-03-20 | 2019-09-26 | 三菱電機株式会社 | Heat exchanger, refrigeration cycle device, and air conditioning device |
CN111886459A (en) * | 2018-03-20 | 2020-11-03 | 三菱电机株式会社 | Heat exchanger, refrigeration cycle device, and air conditioner |
JPWO2019180817A1 (en) * | 2018-03-20 | 2021-01-07 | 三菱電機株式会社 | Heat exchanger, refrigeration cycle device and air conditioner |
WO2020148826A1 (en) * | 2019-01-16 | 2020-07-23 | 三菱電機株式会社 | Air conditioner |
CN113272598A (en) * | 2019-01-16 | 2021-08-17 | 三菱电机株式会社 | Air conditioner |
JPWO2020148826A1 (en) * | 2019-01-16 | 2021-09-09 | 三菱電機株式会社 | Air conditioner |
CN113272598B (en) * | 2019-01-16 | 2022-08-19 | 三菱电机株式会社 | Air conditioner |
JP2020134107A (en) * | 2019-02-26 | 2020-08-31 | 三菱電機株式会社 | Heat exchanger and air conditioner including the same |
JP7386613B2 (en) | 2019-02-26 | 2023-11-27 | 三菱電機株式会社 | Heat exchanger and air conditioner equipped with it |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6058219B2 (en) | Air conditioner | |
JP6045695B2 (en) | Air conditioner | |
JP4832355B2 (en) | Refrigeration air conditioner | |
JP6109303B2 (en) | Heat exchanger and refrigeration cycle apparatus | |
WO2007017969A1 (en) | Air conditioner and method of producing air conditioner | |
JP4428341B2 (en) | Refrigeration cycle equipment | |
JP2013134024A (en) | Refrigeration cycle device | |
JPWO2017199393A1 (en) | Outdoor unit and refrigeration cycle apparatus including the same | |
EP2578966A1 (en) | Refrigeration device and cooling and heating device | |
JP5646257B2 (en) | Refrigeration cycle equipment | |
JP7118247B2 (en) | air conditioner | |
JP2012237518A (en) | Air conditioner | |
JP2009127882A (en) | Heat exchanger, indoor unit, and air conditioner | |
WO2014203500A1 (en) | Air conditioner | |
JP7123238B2 (en) | refrigeration cycle equipment | |
JP4710869B2 (en) | Air conditioner | |
EP4083558B1 (en) | Heat exchanger and refrigeration cycle device | |
JP5942248B2 (en) | Refrigeration cycle equipment | |
JP6925508B2 (en) | Heat exchanger, refrigeration cycle device and air conditioner | |
JPWO2017149642A1 (en) | Refrigeration cycle equipment | |
JP2016095039A (en) | Refrigeration cycle device | |
JP7112168B2 (en) | Heat exchanger and refrigeration cycle equipment | |
JP2012167912A (en) | Air conditioner | |
TW201945671A (en) | Air conditioner characterized in reducing heat loss of a four-way valve and improving COP by heating a gas-liquid two-phase refrigerant flowing out of an evaporator to a gas single phase before reaching the four-way valve | |
WO2024204255A1 (en) | Refrigeration cycle device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20141217 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20150123 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20150916 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150929 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20160308 |