JP2009222360A - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
JP2009222360A
JP2009222360A JP2008070356A JP2008070356A JP2009222360A JP 2009222360 A JP2009222360 A JP 2009222360A JP 2008070356 A JP2008070356 A JP 2008070356A JP 2008070356 A JP2008070356 A JP 2008070356A JP 2009222360 A JP2009222360 A JP 2009222360A
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchanger
heat transfer
transfer tube
outer diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008070356A
Other languages
Japanese (ja)
Inventor
Hirokazu Fujino
宏和 藤野
Takashi Yoshioka
俊 吉岡
Takashi Doi
隆司 土井
Masaaki Kitazawa
昌昭 北澤
Haruo Nakada
春男 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2008070356A priority Critical patent/JP2009222360A/en
Priority to CN2009801097035A priority patent/CN101978236B/en
Priority to EP09722156.8A priority patent/EP2267392A4/en
Priority to BRPI0908721-4A priority patent/BRPI0908721A2/en
Priority to US12/922,259 priority patent/US20110011126A1/en
Priority to PCT/JP2009/054999 priority patent/WO2009116478A1/en
Publication of JP2009222360A publication Critical patent/JP2009222360A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0477Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat exchanger suitable for a refrigerant circuit using a single refrigerant composed of a refrigerant whose molecular formula is expressed by C<SB>3</SB>H<SB>m</SB>F<SB>n</SB>(m=1-5, n=1-5, and m+n=6) and having one double bond in the molecular structure, or a mixed refrigerant including the single refrigerant. <P>SOLUTION: In the heat exchanger 10, a relation between a distance S between centers of vertically adjacent heat transfer tubes and an outer diameter D of the heat transfer tube is expressed as 2.5<S/D<3.5. A relation between length L of a refrigerant route and the outer diameter D of the heat transfer tube is expressed as 0.28×D<SP>1.17</SP><L<1.10×D<SP>1.17</SP>. An outdoor heat exchanger 4 and an indoor heat exchanger 6 are designed based on the relational expressions. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、熱交換器、特に、低圧冷媒を使用する冷媒回路に適した熱交換器に関する。   The present invention relates to a heat exchanger, and more particularly to a heat exchanger suitable for a refrigerant circuit using a low-pressure refrigerant.

地球環境保護の観点から、空気調和装置の冷媒回路に使用される冷媒は、地球温暖化係数が低く、オゾン層の破壊に寄与しないことが求められており、実際、その要求に対応した冷媒も開発されている(例えば、特許文献1参照)。   From the viewpoint of protecting the global environment, the refrigerant used in the refrigerant circuit of the air conditioner is required to have a low global warming potential and not contribute to the destruction of the ozone layer. It has been developed (see, for example, Patent Document 1).

特許文献1に開示されている冷媒(C3mn)は、理論上のCOPが比較的高く、且つ地球温暖化係数が低い特性を有している。しかしながら、本冷媒は、沸点が比較的高く、いわゆる低圧冷媒であるので、熱交換器での圧力損失の影響により圧縮機の入力が増大し、運転効率を低下させる可能性がある。
特開平4−110388号公報
The refrigerant (C 3 H m F n ) disclosed in Patent Document 1 has characteristics that a theoretical COP is relatively high and a global warming potential is low. However, since this refrigerant has a relatively high boiling point and is a so-called low-pressure refrigerant, there is a possibility that the input of the compressor is increased due to the pressure loss in the heat exchanger and the operation efficiency is lowered.
JP-A-4-110388

本発明の課題は、分子式が、C3mn(但し、m=1〜5,n=1〜5、且つm+n=6)で示され且つ分子構造中に二重結合を1個有する冷媒から成る単一冷媒又は前記単一冷媒を含む混合冷媒を使用する冷媒回路に適した熱交換器を提供することにある。 An object of the present invention is that the molecular formula is represented by C 3 H m F n (where m = 1 to 5, n = 1 to 5, and m + n = 6) and has one double bond in the molecular structure. An object of the present invention is to provide a heat exchanger suitable for a refrigerant circuit using a single refrigerant composed of a refrigerant or a mixed refrigerant containing the single refrigerant.

第1発明に係る熱交換器は、分子式がC3mn(但し、m=1〜5,n=1〜5、且つm+n=6)で示され且つ分子構造中に二重結合を1個有する有機化合物から成る単一冷媒又は前記単一冷媒を含む混合冷媒を使用する冷媒回路の熱交換器であって、複数の伝熱管と複数の板状フィンとを備えている。伝熱管は、冷媒が流通するための1つ又は複数の冷媒経路を形成している。板状フィンは、所定の間隔を隔てて積み重なるように配列され、複数の伝熱管がほぼ垂直に貫通している。鉛直方向に隣り合う伝熱管同士の中心間距離Sと伝熱管の外径Dとの関係は、2.5<S/D<3.5であり、冷媒経路の長さLと伝熱管の外径Dとの関係は、0.28×D1.17<L<1.10×D1.17である。 The heat exchanger according to the first invention has a molecular formula represented by C 3 H m F n (where m = 1 to 5, n = 1 to 5, and m + n = 6) and has a double bond in the molecular structure. A heat exchanger for a refrigerant circuit that uses a single refrigerant composed of one organic compound or a mixed refrigerant containing the single refrigerant, and includes a plurality of heat transfer tubes and a plurality of plate-like fins. The heat transfer tube forms one or a plurality of refrigerant paths through which the refrigerant flows. The plate-like fins are arranged so as to be stacked at a predetermined interval, and a plurality of heat transfer tubes penetrate substantially vertically. The relationship between the center-to-center distance S between the heat transfer tubes adjacent in the vertical direction and the outer diameter D of the heat transfer tube is 2.5 <S / D <3.5, and the length L of the refrigerant path and the outside of the heat transfer tube The relationship with the diameter D is 0.28 × D 1.17 <L <1.10 × D 1.17 .

上記冷媒は、低圧冷媒であるので、伝熱管内での圧力損失の影響を受け易いが、この熱交換器では、冷媒経路長さL、伝熱管の外径D及び伝熱管の中心間距離Sとの関係を上記関係式に当てはまるようにすることで、伝熱管内での冷媒の圧力損失の影響を最小限に抑えることができる。   Since the refrigerant is a low-pressure refrigerant, it is susceptible to pressure loss in the heat transfer tube. However, in this heat exchanger, the refrigerant path length L, the outer diameter D of the heat transfer tube, and the center distance S of the heat transfer tube. Is applied to the above relational expression, the influence of the pressure loss of the refrigerant in the heat transfer tube can be minimized.

第2発明に係る熱交換器は、第1発明に係る熱交換器であって、冷媒が、2,3,3,3−テトラフルオロ−1−プロペンから成る単一冷媒又は前記単一冷媒を含む混合冷媒である。   A heat exchanger according to a second invention is the heat exchanger according to the first invention, wherein the refrigerant is a single refrigerant consisting of 2,3,3,3-tetrafluoro-1-propene or the single refrigerant. It is a mixed refrigerant containing.

2,3,3,3−テトラフルオロ−1−プロペンから成る単一冷媒又は前記単一冷媒を含む混合冷媒は、低圧冷媒であるので、伝熱管内での圧力損失の影響を受け易いが、この熱交換器では、冷媒経路長さL、伝熱管の外径D及び伝熱管の中心間距離Sとの関係を上記関係式に当てはまるようにすることで、伝熱管内での冷媒の圧力損失の影響を最小限に抑えることができる。   Since the single refrigerant composed of 2,3,3,3-tetrafluoro-1-propene or the mixed refrigerant containing the single refrigerant is a low-pressure refrigerant, it is susceptible to the pressure loss in the heat transfer tube, In this heat exchanger, the relationship between the refrigerant path length L, the outer diameter D of the heat transfer tube, and the center-to-center distance S of the heat transfer tube is applied to the above relational expression, so that the pressure loss of the refrigerant in the heat transfer tube Can be minimized.

第3発明に係る熱交換器は、第1発明に係る熱交換器であって、冷媒が、2,3,3,3−テトラフルオロ−1−プロペンとジフルオロメタンとを含む混合冷媒である。   A heat exchanger according to a third invention is the heat exchanger according to the first invention, wherein the refrigerant is a mixed refrigerant containing 2,3,3,3-tetrafluoro-1-propene and difluoromethane.

2,3,3,3−テトラフルオロ−1−プロペンとジフルオロメタンとを含む混合冷媒は、低圧冷媒であるので、伝熱管内での圧力損失の影響を受け易いが、この熱交換器では、冷媒経路長さL、伝熱管の外径D及び伝熱管の中心間距離Sとの関係を上記関係式に当てはまるようにすることで、伝熱管内での冷媒の圧力損失の影響を最小限に抑えることができる。   Since the mixed refrigerant containing 2,3,3,3-tetrafluoro-1-propene and difluoromethane is a low-pressure refrigerant, it is easily affected by pressure loss in the heat transfer tube. In this heat exchanger, The relationship between the refrigerant path length L, the heat transfer tube outer diameter D and the heat transfer tube center-to-center distance S is applied to the above relational expression, thereby minimizing the effect of refrigerant pressure loss in the heat transfer tube. Can be suppressed.

第4発明に係る熱交換器は、第1発明に係る熱交換器であって、冷媒が、2,3,3,3−テトラフルオロ−1−プロペンとペンタフルオロエタンとを含む混合冷媒である。
2,3,3,3−テトラフルオロ−1−プロペンとペンタフルオロエタンとを含む混合冷媒は、低圧冷媒であるので、伝熱管内での圧力損失の影響を受け易いが、この熱交換器では、冷媒経路長さL、伝熱管の外径D及び伝熱管の中心間距離Sとの関係を上記関係式に当てはまるようにすることで、伝熱管内での冷媒の圧力損失の影響を最小限に抑えることができる。
A heat exchanger according to a fourth aspect is the heat exchanger according to the first aspect, wherein the refrigerant is a mixed refrigerant containing 2,3,3,3-tetrafluoro-1-propene and pentafluoroethane. .
Since the mixed refrigerant containing 2,3,3,3-tetrafluoro-1-propene and pentafluoroethane is a low-pressure refrigerant, it is easily affected by pressure loss in the heat transfer tube. In this heat exchanger, The relationship between the refrigerant path length L, the heat transfer tube outer diameter D, and the heat transfer tube center-to-center distance S is applied to the above relational expression, thereby minimizing the effect of refrigerant pressure loss in the heat transfer tube. Can be suppressed.

第1発明、第2発明、第3発明及び第4発明のいずれか1つに係る熱交換器では、冷媒経路長さL、伝熱管の外径D及び伝熱管の中心間距離Sとの関係を上記関係式に当てはまるようにすることで、伝熱管内での冷媒の圧力損失の影響を最小限に抑えることができる。   In the heat exchanger according to any one of the first invention, the second invention, the third invention, and the fourth invention, the relationship between the refrigerant path length L, the outer diameter D of the heat transfer tube, and the center-to-center distance S of the heat transfer tube. Is applied to the above relational expression, the influence of the pressure loss of the refrigerant in the heat transfer tube can be minimized.

<冷媒回路>
図1は、空気調和装置の冷媒回路である。空気調和装置1は、圧縮機2、四路切換弁3、室外熱交換器4、膨張弁5および室内熱交換器6を、冷媒配管で連結した冷凍回路を有する。図1において、実線と破線の矢印は冷媒の流れ方向を示しており、空気調和装置1は、四路切換弁3で冷媒の流れ方向を切り換えることにより、暖房運転と冷房運転を切り換えることができる。冷房運転時においては、室外熱交換器4が凝縮器となり、室内熱交換器6が蒸発器となる。また、暖房運転時においては、室外熱交換器4が蒸発器となり、室内熱交換器6が凝縮器となる。
<Refrigerant circuit>
FIG. 1 is a refrigerant circuit of an air conditioner. The air conditioner 1 has a refrigeration circuit in which a compressor 2, a four-way switching valve 3, an outdoor heat exchanger 4, an expansion valve 5, and an indoor heat exchanger 6 are connected by a refrigerant pipe. In FIG. 1, solid and broken arrows indicate the flow direction of the refrigerant, and the air conditioner 1 can switch between the heating operation and the cooling operation by switching the flow direction of the refrigerant with the four-way switching valve 3. . During the cooling operation, the outdoor heat exchanger 4 serves as a condenser, and the indoor heat exchanger 6 serves as an evaporator. In the heating operation, the outdoor heat exchanger 4 serves as an evaporator and the indoor heat exchanger 6 serves as a condenser.

冷媒回路には、HFO−1234yf(2,3,3,3−テトラフルオロ−1−プロペン)とHFC−32(ジフルオロメタン)の2種類の有機化合物からなる混合冷媒が充填されている。本実施形態で使用される冷媒は、78.2質量%のHFO−1234yfと、21.8質量%のHFC−32とから成る混合冷媒である。なお、HFO−1234yfの化学式は、CF3CFCH2で表され、HFC−32の化学式は、CH22で表される。 The refrigerant circuit is filled with a mixed refrigerant composed of two types of organic compounds, HFO-1234yf (2,3,3,3-tetrafluoro-1-propene) and HFC-32 (difluoromethane). The refrigerant used in this embodiment is a mixed refrigerant composed of 78.2% by mass of HFO-1234yf and 21.8% by mass of HFC-32. The chemical formula of HFO-1234yf is represented by CF 3 CFCH 2 , and the chemical formula of HFC-32 is represented by CH 2 F 2 .

<熱交換器の構造>
図2は、本発明の実施形態に係る熱交換器の正面図である。図2において、熱交換器10は、クロスフィンタイプの熱交換器であり、図1で示した室外熱交換器4及び室内熱交換器6の基本モデルとなっている。熱交換器10は、フィン11と伝熱管12とを備えている。フィン11は、薄いアルミニウム製の平板であり、一枚のフィン11には複数の貫通孔が形成されている。伝熱管12は、フィン11の貫通孔に挿入される直管12aと、隣り合う直管12aの端部同士を連結する第1U字管12b及び第2U字管12cとから成る。直管12aと第1U字管12bとは一体に形成されており、第2U字管12cは、直管12aがフィン11の貫通孔に挿入された後で、溶接などによって直管12aの端部に連結される。
<Structure of heat exchanger>
FIG. 2 is a front view of the heat exchanger according to the embodiment of the present invention. In FIG. 2, a heat exchanger 10 is a cross fin type heat exchanger, and is a basic model of the outdoor heat exchanger 4 and the indoor heat exchanger 6 shown in FIG. The heat exchanger 10 includes fins 11 and heat transfer tubes 12. The fin 11 is a thin aluminum flat plate, and a plurality of through holes are formed in one fin 11. The heat transfer tube 12 includes a straight tube 12a that is inserted into the through hole of the fin 11, and a first U-shaped tube 12b and a second U-shaped tube 12c that connect ends of adjacent straight tubes 12a. The straight pipe 12a and the first U-shaped pipe 12b are integrally formed, and the second U-shaped pipe 12c has an end portion of the straight pipe 12a by welding or the like after the straight pipe 12a is inserted into the through hole of the fin 11. Connected to

(伝熱管の管外径及び中心間距離と熱交換器性能との関係)
図3は、図2のA−A線で切断したときの熱交換器の断面図である。図3において、直管12aの管外径はDであり、鉛直方向に隣り合う伝熱管12の中心間距離はSである。一般に、中心間距離Sが小さいほどフィン効率は向上するが、通風抵抗が増大する。逆に、中心間距離Sが大きいほどフィン効率は低下するが、通風抵抗も減少する。なお、フィン効率とは、フィンの全伝熱面から放熱される実際の放熱量と、フィンの全伝熱面が冷媒の温度に等しいと仮定した場合に放熱される放熱量との比である。
(Relationship between tube outer diameter and center distance of heat transfer tube and heat exchanger performance)
FIG. 3 is a cross-sectional view of the heat exchanger when cut along line AA in FIG. 2. In FIG. 3, the pipe outer diameter of the straight pipe 12 a is D, and the distance between the centers of the heat transfer pipes 12 adjacent in the vertical direction is S. In general, the smaller the center-to-center distance S, the better the fin efficiency, but the ventilation resistance increases. Conversely, as the center-to-center distance S increases, the fin efficiency decreases, but the ventilation resistance also decreases. The fin efficiency is a ratio between the actual heat radiation amount radiated from the entire heat transfer surface of the fin and the heat radiation amount radiated when it is assumed that the total heat transfer surface of the fin is equal to the temperature of the refrigerant. .

また、中心間距離Sが一定の場合、管外径Dが大きいほどフィン効率は向上するが、通風抵抗が増大する。逆に、管外径Dが小さいほどフィン効率は低下するが、通風抵抗も減少する。つまり、管外径Dと中心間距離Sとの間には、熱交換器性能を高めるための最適条件が存在する。   In addition, when the center-to-center distance S is constant, the fin efficiency increases as the pipe outer diameter D increases, but the ventilation resistance increases. Conversely, the smaller the pipe outer diameter D, the lower the fin efficiency, but the lower the ventilation resistance. That is, there is an optimum condition for improving the heat exchanger performance between the pipe outer diameter D and the center-to-center distance S.

図4は、送風機動力が一定でD=7mmのときの、S/Dと熱交換器性能との関係を示すグラフである。図4において、熱交換器性能は、2.5<S/D<3.5の範囲で高い値を示しており、その範囲外では、熱交換器性能は低下している。つまり、図4は、HFO−1234yfとHFC−32との混合冷媒を使用する冷媒回路の室外熱交換器4及び室内熱交換器6では、外径Dと中心間距離Sとの関係が、2.5<S/D<3.5となるときに、最適な熱交換器性能が得られることを示唆している。   FIG. 4 is a graph showing the relationship between S / D and heat exchanger performance when the fan power is constant and D = 7 mm. In FIG. 4, the heat exchanger performance shows a high value in a range of 2.5 <S / D <3.5, and outside the range, the heat exchanger performance is degraded. That is, FIG. 4 shows that the relationship between the outer diameter D and the center-to-center distance S is 2 in the outdoor heat exchanger 4 and the indoor heat exchanger 6 of the refrigerant circuit using the mixed refrigerant of HFO-1234yf and HFC-32. .5 <S / D <3.5 suggests that optimum heat exchanger performance can be obtained.

(熱交換器の冷媒経路長さと熱交換器性能との関係)
図5(a)は、図2の熱交換器の冷媒経路を1つとしたときの熱交換器の概念図であり、(b)は、図2の熱交換器の冷媒経路を2つとしたときの熱交換器の概念図であり、(c)は、図2の熱交換器の冷媒経路を途中から2つに分岐したときの熱交換器の概念図である。
(Relationship between refrigerant path length of heat exchanger and heat exchanger performance)
FIG. 5A is a conceptual diagram of the heat exchanger when the refrigerant path of the heat exchanger in FIG. 2 is one, and FIG. 5B is the case where the refrigerant path of the heat exchanger in FIG. 2 is two. It is a conceptual diagram of this heat exchanger, (c) is a conceptual diagram of a heat exchanger when the refrigerant path of the heat exchanger of FIG. 2 is branched into two from the middle.

図5(a)において、熱交換器10は、1つの冷媒経路を有しているので、1パス熱交換器101と呼ぶ。仮に、熱交換器10が6本の伝熱管12を有し、1本の伝熱管12の長さをHとした場合、1パス熱交換器101の冷媒経路長さは、約6Hである。   In FIG. 5 (a), the heat exchanger 10 has one refrigerant path, and is therefore called a one-pass heat exchanger 101. If the heat exchanger 10 has six heat transfer tubes 12 and the length of one heat transfer tube 12 is H, the refrigerant path length of the one-pass heat exchanger 101 is about 6H.

図5(b)において、熱交換器10は、分流器90によって、2つの冷媒経路が形成されているので、2パス熱交換器102と呼ぶ。2パス熱交換器102の冷媒経路長さは、1パス熱交換器101の半分、約3Hに相当する。   In FIG. 5B, the heat exchanger 10 is called a two-pass heat exchanger 102 because two refrigerant paths are formed by the flow divider 90. The refrigerant path length of the two-pass heat exchanger 102 corresponds to half of the one-pass heat exchanger 101, about 3H.

図5(c)において、熱交換器10は、1つの冷媒経路が途中から分流器90を介して2つの冷媒経路に分岐しているので、1−2パス熱交換器103呼ぶ。1−2パス熱交換器103は、共通の冷媒経路と独立した冷媒経路とが存在するので、冷媒経路長さを単純に計算することができない。そこで、1−2パス熱交換器103の実際の圧力損失を求めて、仮に1つの冷媒経路であったらならば、どのくらいの長さの冷媒経路の圧力損失に相当するのかを求めて、その値を冷媒経路長さとする。   In FIG. 5C, the heat exchanger 10 is referred to as a 1-2 pass heat exchanger 103 because one refrigerant path is branched into two refrigerant paths through the flow divider 90 from the middle. Since the 1-2 pass heat exchanger 103 has a common refrigerant path and an independent refrigerant path, the refrigerant path length cannot be simply calculated. Therefore, the actual pressure loss of the 1-2 pass heat exchanger 103 is obtained, and if it is one refrigerant path, the length of the refrigerant path corresponding to the pressure loss of the refrigerant path is obtained and the value is obtained. Is the refrigerant path length.

図6は、冷媒経路長さと圧力損失との関係を示すグラフである。例えば、図5(c)の1−2パス熱交換器103における冷媒の圧力損失がpのとき、グラフより、冷媒経路長さは3.6Hとなる。このように、1つの基本となる熱交換器10から冷媒経路長さの異なる、1パス熱交換器101、2パス熱交換器102、及び1−2パス熱交換器103を造ることができる。言い換えると、冷媒経路長さは、冷媒経路の数量を変更することによって設定することができる。   FIG. 6 is a graph showing the relationship between the refrigerant path length and the pressure loss. For example, when the pressure loss of the refrigerant in the 1-2 pass heat exchanger 103 in FIG. 5C is p, the refrigerant path length is 3.6H from the graph. In this way, the one-pass heat exchanger 101, the two-pass heat exchanger 102, and the 1-2-pass heat exchanger 103 having different refrigerant path lengths can be made from one basic heat exchanger 10. In other words, the refrigerant path length can be set by changing the quantity of refrigerant paths.

次に、冷媒経路長さと熱交換器性能との関係について説明する。ちなみに、熱交換器性能Qは、熱還流率K、伝熱面積A、及び空気と冷媒との温度差dTを用いて、Q=KA×dTの式で表される。還流率Kは、空気側熱抵抗と冷媒側熱抵抗との合成抵抗の逆数である。合成抵抗1/Kは、空気側熱伝達率ha、冷媒側熱伝達率hr、及び内外伝熱面積比Rを用いて、1/K=1/ha+R/hrの式で表される。   Next, the relationship between the refrigerant path length and the heat exchanger performance will be described. Incidentally, the heat exchanger performance Q is expressed by the equation Q = KA × dT using the heat reflux rate K, the heat transfer area A, and the temperature difference dT between air and the refrigerant. The recirculation rate K is the reciprocal of the combined resistance of the air-side thermal resistance and the refrigerant-side thermal resistance. The combined resistance 1 / K is expressed by the equation 1 / K = 1 / ha + R / hr using the air-side heat transfer coefficient ha, the refrigerant-side heat transfer coefficient hr, and the internal / external heat transfer area ratio R.

冷媒経路の数を減らして冷媒経路長さを長くしたとき、1つの冷媒経路を流れる冷媒量が増え、冷媒側熱伝達率hrが向上するが、圧力損失の増加によって、熱交換器入口での蒸発温度が高くなるので、空気と冷媒との温度差dTが小さくなり、熱交換器性能Qは低下する。   When the number of refrigerant paths is reduced and the refrigerant path length is increased, the amount of refrigerant flowing through one refrigerant path is increased and the refrigerant side heat transfer coefficient hr is improved. Since the evaporation temperature increases, the temperature difference dT between the air and the refrigerant decreases, and the heat exchanger performance Q decreases.

一方、冷媒経路の数を増やして冷媒経路長さを短くしたとき、圧力損失が減少し、熱交換器入口での蒸発温度が低くなり、空気と冷媒との温度差dTが大きくなるが、1つの冷媒経路を流れる冷媒量が減少するので、冷媒側熱伝達率hrが低下し、熱交換器性能Qが低下する。   On the other hand, when the number of refrigerant paths is increased to shorten the refrigerant path length, the pressure loss is reduced, the evaporation temperature at the heat exchanger inlet is lowered, and the temperature difference dT between the air and the refrigerant is increased. Since the amount of refrigerant flowing through one refrigerant path is reduced, the refrigerant side heat transfer coefficient hr is lowered, and the heat exchanger performance Q is lowered.

つまり、HFO−1234yfとHFC−32との混合冷媒を使用する冷媒回路の室外熱交換器4及び室内熱交換器6は、従来冷媒(例えば、410A冷媒)に対応した室外熱交換器及び室内熱交換器で代用することはできず、最適な熱交換器性能を実現するため、伝熱管外径Dと冷媒経路長さLとの関係を明確にした上で設計することが必要である。   That is, the outdoor heat exchanger 4 and the indoor heat exchanger 6 of the refrigerant circuit using the mixed refrigerant of HFO-1234yf and HFC-32 are the outdoor heat exchanger and the indoor heat corresponding to the conventional refrigerant (for example, 410A refrigerant). In order to achieve optimum heat exchanger performance, it is necessary to design after clarifying the relationship between the heat transfer tube outer diameter D and the refrigerant path length L.

図7は、D=7mmのときの、冷媒経路長さと、冷媒側熱伝達率及び圧力損失との関係を示すグラフであり、図8は、D=7mmのときの、冷媒経路長さと、熱交換器性能を示すグラフである。図7に示す通り、冷媒経路長さが短くなるほど、圧力損失は減少しているが、冷媒側熱伝達率も低下している。その結果、図8に示すように、冷媒側熱伝達率の低下によって、熱交換器性能も低下している。一方、冷媒経路長さを長くしていくと、熱交換器性能は、一旦、ピークを迎え、その後下降する。つまり、図8は、伝熱管外径に適した冷媒経路長さが存在することを示唆している。   FIG. 7 is a graph showing the relationship between the refrigerant path length when D = 7 mm, the refrigerant-side heat transfer coefficient and the pressure loss, and FIG. 8 shows the refrigerant path length and heat when D = 7 mm. It is a graph which shows exchanger performance. As shown in FIG. 7, as the refrigerant path length becomes shorter, the pressure loss decreases, but the refrigerant-side heat transfer coefficient also decreases. As a result, as shown in FIG. 8, the heat exchanger performance is also lowered due to the decrease in the refrigerant side heat transfer coefficient. On the other hand, when the refrigerant path length is increased, the heat exchanger performance once reaches a peak and then decreases. That is, FIG. 8 suggests that there is a refrigerant path length suitable for the heat transfer tube outer diameter.

図9は、伝熱管外径Dに対する冷媒経路長さLをプロットしたグラフである。図9において、四角形の黒点は、伝熱管外径に対する最適冷媒経路長さを示しており、伝熱管外径に対する冷媒経路長さの下限値は、y=0.28x1.17の直線上にあり、上限値は、y=1.10x1.17の直線上にある。つまり、HFO−1234yfとHFC−32との混合冷媒を使用する冷媒回路の室外熱交換器4及び室内熱交換器6では、冷媒経路長さLが、0.28×D1.17<L<1.10×D1.17の範囲に設定されることによって、最適な熱交換器性能が得られることを示唆している。 FIG. 9 is a graph plotting the refrigerant path length L against the heat transfer tube outer diameter D. FIG. In FIG. 9, square black dots indicate the optimum refrigerant path length with respect to the outer diameter of the heat transfer tube, and the lower limit value of the refrigerant path length with respect to the outer diameter of the heat transfer tube is on a straight line y = 0.28 × 1.17 . The upper limit is on a straight line y = 1.10 × 1.17 . That is, in the outdoor heat exchanger 4 and the indoor heat exchanger 6 of the refrigerant circuit using the mixed refrigerant of HFO-1234yf and HFC-32, the refrigerant path length L is 0.28 × D 1.17 <L <1. It is suggested that optimal heat exchanger performance can be obtained by setting the range of 10 × D 1.17 .

<冷媒回路に使用される冷媒>
(単一冷媒)
上記実施形態では、冷媒として、HFO−1234yfとHFC−32の2種類の有機化合物からなる混合冷媒を使用しているが、それに限定されるものではない。例えば、図10は、本実施形態に係る熱交換器を含む冷媒回路に使用される冷媒の成分表であり、HFO−1234yfのような、分子式がC3mn(但し、m=1〜5,n=1〜5、且つm+n=6)で示され且つ分子構造中に二重結合を1個有する有機化合物から成る単一冷媒を使用してもよい。
<Refrigerant used in refrigerant circuit>
(Single refrigerant)
In the said embodiment, although the mixed refrigerant | coolant which consists of two types of organic compounds of HFO-1234yf and HFC-32 is used as a refrigerant | coolant, it is not limited to it. For example, FIG. 10 is a component table of the refrigerant used in the refrigerant circuit including the heat exchanger according to the present embodiment, and the molecular formula is C 3 H m F n (where m = 1), such as HFO-1234yf. ˜5, n = 1 to 5 and m + n = 6), and a single refrigerant composed of an organic compound having one double bond in the molecular structure may be used.

具体的には、図10の上段に示す、HFO−1225ye(1,2,3,3,3−ペンタフルオロ−1−プロペン、化学式:CF3−CF=CHF)、HFO−1234ze(1,3,3,3−テトラフルオロ−1−プロペン、化学式:CF3−CH=CHF)、HFO−1234ye(1,2,3,3−テトラフルオロ−1−プロペン、化学式:CHF2−CF=CHF)、HFO−1243zf(3,3,3−トリフルオロ−1−プロペン、化学式:CF3−CH=CH2)、1,2,2−トリフルオロ−1−プロペン、化学式:CH3−CF=CF2)、2−フルオロ−1−プロペン、(化学式:CH3−CF=CH2)等が挙げられる。なお、説明の便宜上、それらの単一冷媒を基本冷媒として区分する。 Specifically, HFO-1225ye (1,2,3,3,3-pentafluoro-1-propene, chemical formula: CF 3 —CF═CHF), HFO-1234ze (1,3) shown in the upper part of FIG. , 3,3-tetrafluoro-1-propene, chemical formula: CF 3 —CH═CHF), HFO-1234ye (1,2,3,3-tetrafluoro-1-propene, chemical formula: CHF 2 —CF═CHF) , HFO-1243zf (3,3,3-trifluoro-1-propene, chemical formula: CF 3 —CH═CH 2 ), 1,2,2-trifluoro-1-propene, chemical formula: CH 3 —CF═CF 2 ), 2-fluoro-1-propene, (chemical formula: CH 3 —CF═CH 2 ) and the like. For convenience of explanation, these single refrigerants are classified as basic refrigerants.

(混合冷媒)
また、上記基本冷媒のいずれか1つと、図10に示す第2成分のいずれか1つとから成る混合冷媒を使用してもよい。例えば、22質量%のHFC−32との混合冷媒である。さらに、HFC−32の割合は、6質量%以上30質量%以下であればよく、好ましくは、13質量%以上23質量%以下であればよく、更に好ましくは、21質量%以上23質量%以下であればよい。
(Mixed refrigerant)
Moreover, you may use the mixed refrigerant | coolant which consists of any one of the said basic refrigerant | coolants and any one of the 2nd component shown in FIG. For example, it is a mixed refrigerant with 22% by mass of HFC-32. Furthermore, the ratio of HFC-32 may be 6% by mass or more and 30% by mass or less, preferably 13% by mass or more and 23% by mass or less, and more preferably 21% by mass or more and 23% by mass or less. If it is.

また、上記基本冷媒のいずれか1つと、10質量%以上のHFC−125(ペンタフルオロエタン、CF3−CHF2)との混合冷媒でもよく、さらに、HFC−125の割合は、10質量%以上20質量%以下であれば好ましい。 Further, it may be a mixed refrigerant of any one of the above basic refrigerants and 10% by mass or more of HFC-125 (pentafluoroethane, CF 3 —CHF 2 ), and the ratio of HFC-125 is 10% by mass or more. If it is 20 mass% or less, it is preferable.

また、上記基本冷媒のいずれか1つと、HFC−134(1,1,2,2−テトラフルオロエタン、CHF2−CHF2)、HFC−134a(1,1,1,2−テトラフルオロエタン、CH2F−CF3)、HFC−143a(1,1,1−トリフルオロエタン、CH3CF3)、HFC−152a(1,1−ジフルオロエタン、CHF2−CH3)、HFC−161(フルオロエタン、CH3−CH2F)、HFC−227ea(1,1,1,2,3,3,3−ヘプタフルオロプロパン、CF3−CHF−CF3)、HFC−236ea(1,1,1,2,3,3−ヘキサフルオロプロパン、CF3−CHF−CHF2)、HFC−236fa(1,1,1,3,3,3−ヘキサフルオロエタン、CF3−CH2−CF3)、及びHFC−365mfc(1,1,1,3,3−ペンタフルオロブタン、CF3−CH2CF2−CH3)のいずれか1つとの混合冷媒でもよい。 Further, any one of the above basic refrigerants, HFC-134 (1,1,2,2-tetrafluoroethane, CHF 2 -CHF 2 ), HFC-134a (1,1,1,2-tetrafluoroethane, CH 2 F-CF 3), HFC-143a (1,1,1- trifluoroethane, CH 3 CF 3), HFC -152a (1,1- difluoroethane, CHF 2 -CH 3), HFC -161 ( fluoro ethane, CH 3 -CH 2 F), HFC-227ea (1,1,1,2,3,3,3- heptafluoropropane, CF 3 -CHF-CF 3) , HFC-236ea (1,1,1 , 2,3,3-hexafluoropropane, CF 3 —CHF—CHF 2 ), HFC-236fa (1,1,1,3,3,3-hexafluoroethane, CF 3 —CH 2 —CF 3 ), And HFC 365mfc (1,1,1,3,3-pentafluorobutane, CF 3 -CH 2 CF 2 -CH 3) of may be any one of the mixed refrigerant.

また、上記の混合冷媒は、上記基本冷媒のいずれか1つとHFC系冷媒との混合冷媒であるが、それに限定されるものではなく、上記基本冷媒のいずれか1つと、炭化水素系冷媒との混合冷媒であってもよい。   The mixed refrigerant is a mixed refrigerant of any one of the basic refrigerants and an HFC-based refrigerant, but is not limited thereto, and any one of the basic refrigerants and a hydrocarbon-based refrigerant. A mixed refrigerant may be used.

具体的には、上記基本冷媒のいずれか1つと、メタン(CH4)、エタン(CH3−CH3)、プロパン(CH3−CH2−CH3)、プロペン(CH3−CH=CH2)、ブタン(CH3−CH2−CH2−CH3)、イソブタン(CH3−CH(CH3)−CH3)、ペンタン(CH3−CH2−CH2−CH2−CH3)、2−メチルブタン(CH3−CH(CH3)−CH2−CH3)、及びシクロペンタン(cyclo−C510)のいずれか1つとの混合冷媒でもよい。 Specifically, any one of the above basic refrigerants, methane (CH 4 ), ethane (CH 3 —CH 3 ), propane (CH 3 —CH 2 —CH 3 ), propene (CH 3 —CH═CH 2). ), Butane (CH 3 —CH 2 —CH 2 —CH 3 ), isobutane (CH 3 —CH (CH 3 ) —CH 3 ), pentane (CH 3 —CH 2 —CH 2 —CH 2 —CH 3 ), A mixed refrigerant with any one of 2-methylbutane (CH 3 —CH (CH 3 ) —CH 2 —CH 3 ) and cyclopentane (cyclo-C 5 H 10 ) may be used.

また、上記基本冷媒のいずれか1つと、ジメチルエーテル(CH3−O−CH3)、ビス−トリフルオロメチル−サルファイド(CF3−S−CF3)、二酸化炭素(CO2)、及びヘリウム(He)のいずれか1つとの混合冷媒でもよい。 In addition, any one of the above basic refrigerants, dimethyl ether (CH 3 —O—CH 3 ), bis-trifluoromethyl sulfide (CF 3 —S—CF 3 ), carbon dioxide (CO 2 ), and helium (He) Or a mixed refrigerant with any one of the above.

また、上記実施形態では、冷媒として、HFO−1234yfとHFC−32の2種類の冷媒から成る混合冷媒を使用しているが、上記基本冷媒のいずれか1つと、上記第2成分のいずれか2つとから成る混合冷媒を使用してもよい。例えば、52質量%のHFO−1234yfと、23質量%のHFC−32と、25質量%のHFC−125から成る混合冷媒が好ましい。   Moreover, in the said embodiment, although the mixed refrigerant | coolant which consists of two types of refrigerant | coolants of HFO-1234yf and HFC-32 is used as a refrigerant | coolant, any one of the said basic refrigerant | coolants and any two of said 2nd components are used. A mixed refrigerant consisting of one may be used. For example, a mixed refrigerant composed of 52% by mass of HFO-1234yf, 23% by mass of HFC-32, and 25% by mass of HFC-125 is preferable.

<特徴>
熱交換器10は、分子式がC3mn(但し、m=1〜5,n=1〜5、且つm+n=6)で示され且つ分子構造中に二重結合を1個有する有機化合物から成る単一冷媒又は前記単一冷媒を含む混合冷媒を使用する冷媒回路の熱交換器として使用される。熱交換器10は、複数の伝熱管12と複数の板状フィン11とを備えている。伝熱管12は、冷媒が流通するための1つ又は複数の冷媒経路を形成している。板状フィン11は、空気の流れ方向とほぼ平行に配置され複数の伝熱管がほぼ垂直に貫通している。鉛直方向に隣り合う伝熱管同士の中心間距離Sと伝熱管の外径Dとの関係は、2.5<S/D<3.5であり、冷媒経路の長さLと伝熱管の外径Dとの関係は、0.28×D1.17<L<1.10×D1.17である。その結果、伝熱管内での冷媒の圧力損失の影響が最小限に抑えられる。なお、使用される具体的な冷媒は、2,3,3,3−テトラフルオロ−1−プロペンから成る単一冷媒又は前記単一冷媒を含む混合冷媒、又は2,3,3,3−テトラフルオロ−1−プロペンとジフルオロメタンとを含む混合冷媒、又は2,3,3,3−テトラフルオロ−1−プロペンとペンタフルオロエタンとを含む混合冷媒である。
<Features>
The heat exchanger 10 is an organic compound having a molecular formula of C 3 H m F n (where m = 1 to 5, n = 1 to 5, and m + n = 6) and having one double bond in the molecular structure. It is used as a heat exchanger of a refrigerant circuit using a single refrigerant composed of a compound or a mixed refrigerant containing the single refrigerant. The heat exchanger 10 includes a plurality of heat transfer tubes 12 and a plurality of plate-like fins 11. The heat transfer tube 12 forms one or a plurality of refrigerant paths through which the refrigerant flows. The plate-like fins 11 are arranged substantially parallel to the air flow direction, and a plurality of heat transfer tubes penetrates substantially vertically. The relationship between the center-to-center distance S between the heat transfer tubes adjacent in the vertical direction and the outer diameter D of the heat transfer tube is 2.5 <S / D <3.5, and the length L of the refrigerant path and the outside of the heat transfer tube The relationship with the diameter D is 0.28 × D 1.17 <L <1.10 × D 1.17 . As a result, the influence of the pressure loss of the refrigerant in the heat transfer tube is minimized. The specific refrigerant used is a single refrigerant composed of 2,3,3,3-tetrafluoro-1-propene, a mixed refrigerant containing the single refrigerant, or 2,3,3,3-tetra It is a mixed refrigerant containing fluoro-1-propene and difluoromethane, or a mixed refrigerant containing 2,3,3,3-tetrafluoro-1-propene and pentafluoroethane.

以上のように、本発明は、低圧冷媒を使用する冷媒回路の熱交換器に有用である。   As described above, the present invention is useful for a heat exchanger of a refrigerant circuit that uses a low-pressure refrigerant.

空気調和装置の冷媒回路。Air conditioner refrigerant circuit. 本発明の実施形態に係る熱交換器の正面図。The front view of the heat exchanger which concerns on embodiment of this invention. 図2のA−A線で切断したときの熱交換器の断面図。Sectional drawing of a heat exchanger when cut | disconnecting by the AA line of FIG. 送風機動力が一定でD=7mmのときの、S/Dと熱交換器性能との関係を示すグラフ。The graph which shows the relationship between S / D and a heat exchanger performance when fan power is constant and D = 7mm. (a)図2の熱交換器の冷媒経路を1つとしたときの熱交換器の概念図。(b)図2の熱交換器の冷媒経路を2つとしたときの熱交換器の概念図。(c)図2の熱交換器の冷媒経路を途中から2つとしたときの熱交換器の概念図。(A) The conceptual diagram of a heat exchanger when the refrigerant path of the heat exchanger of FIG. 2 is made into one. (B) The conceptual diagram of a heat exchanger when the refrigerant path of the heat exchanger of FIG. 2 is two. (C) The conceptual diagram of a heat exchanger when the refrigerant path of the heat exchanger of FIG. 2 is two from the middle. 冷媒経路長さと圧力損失との関係を示すグラフ。The graph which shows the relationship between refrigerant path length and pressure loss. D=7mmのときの、冷媒経路長さと、冷媒側熱伝達率及び圧力損失との関係を示すグラフ。The graph which shows the relationship between refrigerant | coolant path | route length, a refrigerant | coolant side heat transfer rate, and a pressure loss when D = 7mm. D=7mmのときの、冷媒経路長さと、熱交換器性能を示すグラフ。The graph which shows the refrigerant | coolant path length and heat exchanger performance in case D = 7mm. 伝熱管外径Dに対する冷媒経路長さLをプロットしたグラフ。The graph which plotted the refrigerant | coolant path | route length L with respect to the heat exchanger tube outer diameter D. FIG. 本実施形態に係る熱交換器を含む冷媒回路に使用される冷媒の成分表。The refrigerant | coolant component table used for the refrigerant circuit containing the heat exchanger which concerns on this embodiment.

符号の説明Explanation of symbols

4 室外熱交換器
6 室内熱交換器
10 熱交換器
11 板状フィン
12 伝熱管
4 Outdoor Heat Exchanger 6 Indoor Heat Exchanger 10 Heat Exchanger 11 Plate Fin 12 Heat Transfer Tube

Claims (4)

分子式がC3mn(但し、m=1〜5,n=1〜5、且つm+n=6)で示され且つ分子構造中に二重結合を1個有する有機化合物から成る単一冷媒又は前記単一冷媒を含む混合冷媒を使用する冷媒回路の熱交換器であって、
前記冷媒が流通するための1つ又は複数の冷媒経路を形成する複数の伝熱管(12)と、
所定の間隔を隔てて積み重なるように配列され、前記複数の伝熱管(12)がほぼ垂直に貫通する複数の板状フィン(11)と、
を備え、
鉛直方向に隣り合う前記伝熱管(12)同士の中心間距離Sと前記伝熱管(12)の外径Dとの関係が、
2.5<S/D<3.5、
であり、
前記冷媒経路の長さLと前記伝熱管(12)の外径Dとの関係が、
0.28×D1.17<L<1.10×D1.17
である、
熱交換器(4,6,10)。
Single refrigerant comprising an organic compound having a molecular formula of C 3 H m F n (where m = 1 to 5, n = 1 to 5, and m + n = 6) and having one double bond in the molecular structure Or a heat exchanger of a refrigerant circuit using a mixed refrigerant containing the single refrigerant,
A plurality of heat transfer tubes (12) forming one or more refrigerant paths for the refrigerant to circulate;
A plurality of plate-like fins (11) arranged so as to be stacked at a predetermined interval, and through which the plurality of heat transfer tubes (12) penetrate substantially vertically;
With
The relationship between the center-to-center distance S between the heat transfer tubes (12) adjacent in the vertical direction and the outer diameter D of the heat transfer tubes (12) is as follows.
2.5 <S / D <3.5,
And
The relationship between the length L of the refrigerant path and the outer diameter D of the heat transfer tube (12) is
0.28 × D 1.17 <L <1.10 × D 1.17 ,
Is,
Heat exchanger (4, 6, 10).
前記冷媒が、2,3,3,3−テトラフルオロ−1−プロペンから成る単一冷媒又は前記単一冷媒を含む混合冷媒である、
請求項1に記載の熱交換器(4,6,10)。
The refrigerant is a single refrigerant composed of 2,3,3,3-tetrafluoro-1-propene or a mixed refrigerant containing the single refrigerant.
The heat exchanger (4, 6, 10) according to claim 1.
前記冷媒が、2,3,3,3−テトラフルオロ−1−プロペンとジフルオロメタンとを含む混合冷媒である、
請求項1に記載の熱交換器(4,6,10)。
The refrigerant is a mixed refrigerant containing 2,3,3,3-tetrafluoro-1-propene and difluoromethane.
The heat exchanger (4, 6, 10) according to claim 1.
前記冷媒が、2,3,3,3−テトラフルオロ−1−プロペンとペンタフルオロエタンとを含む混合冷媒である、
請求項1に記載の熱交換器(4,6,10)。
The refrigerant is a mixed refrigerant containing 2,3,3,3-tetrafluoro-1-propene and pentafluoroethane.
The heat exchanger (4, 6, 10) according to claim 1.
JP2008070356A 2008-03-18 2008-03-18 Heat exchanger Pending JP2009222360A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2008070356A JP2009222360A (en) 2008-03-18 2008-03-18 Heat exchanger
CN2009801097035A CN101978236B (en) 2008-03-18 2009-03-16 Heat exchanger
EP09722156.8A EP2267392A4 (en) 2008-03-18 2009-03-16 Heat exchanger
BRPI0908721-4A BRPI0908721A2 (en) 2008-03-18 2009-03-16 heat exchanger
US12/922,259 US20110011126A1 (en) 2008-03-18 2009-03-16 Heat exchanger
PCT/JP2009/054999 WO2009116478A1 (en) 2008-03-18 2009-03-16 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008070356A JP2009222360A (en) 2008-03-18 2008-03-18 Heat exchanger

Publications (1)

Publication Number Publication Date
JP2009222360A true JP2009222360A (en) 2009-10-01

Family

ID=41090881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008070356A Pending JP2009222360A (en) 2008-03-18 2008-03-18 Heat exchanger

Country Status (6)

Country Link
US (1) US20110011126A1 (en)
EP (1) EP2267392A4 (en)
JP (1) JP2009222360A (en)
CN (1) CN101978236B (en)
BR (1) BRPI0908721A2 (en)
WO (1) WO2009116478A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011093521A1 (en) 2010-01-27 2011-08-04 Daikin Industries, Ltd. Refrigerant composition comprising difluoromethane (hfc32) and 2,3,3,3-tetrafluoropropene (hfo1234yf)
JP2013134024A (en) * 2011-12-27 2013-07-08 Panasonic Corp Refrigeration cycle device
WO2014038604A1 (en) * 2012-09-04 2014-03-13 ダイキン工業株式会社 Method for filling mixed refrigerant containing 2,3,3,3-tetrafluoropropene
JPWO2016009565A1 (en) * 2014-07-18 2017-04-27 三菱電機株式会社 Refrigeration cycle equipment

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5176624B2 (en) * 2008-03-18 2013-04-03 ダイキン工業株式会社 Refrigeration equipment
WO2013160951A1 (en) * 2012-04-26 2013-10-31 三菱電機株式会社 Heat exchanger, method for manufacturing heat exchanger, and air conditioner

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS633188A (en) * 1986-06-23 1988-01-08 Matsushita Refrig Co Fin tube type heat exchanger
JPH04110388A (en) * 1990-08-31 1992-04-10 Daikin Ind Ltd Fluid for heat transfer
JP2003343942A (en) * 2002-05-23 2003-12-03 Denso Corp Evaporator
JP2006512426A (en) * 2002-10-25 2006-04-13 ハネウェル・インターナショナル・インコーポレーテッド Compositions containing fluorine-substituted olefins
WO2007002625A2 (en) * 2005-06-24 2007-01-04 Honeywell International Inc. Compositions containing fluorine substituted olefins

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08247576A (en) * 1995-03-14 1996-09-27 Toshiba Corp Air-conditioner
TW340180B (en) * 1995-09-14 1998-09-11 Sanyo Electric Co Heat exchanger having corrugated fins and air conditioner having the same
JP2001091183A (en) * 1999-07-21 2001-04-06 Matsushita Refrig Co Ltd Fin tube type heat exchanger
JP2001304783A (en) * 2000-04-14 2001-10-31 Daikin Ind Ltd Outdoor heat exchanger, indoor heat exchanger and air conditioner
JP2002147981A (en) * 2000-11-07 2002-05-22 Kobe Steel Ltd Heat exchanger tube and finned tube heat exchanger
US6460372B1 (en) * 2001-05-04 2002-10-08 Carrier Corporation Evaporator for medium temperature refrigerated merchandiser
US6857288B2 (en) * 2002-02-28 2005-02-22 Lg Electronics Inc. Heat exchanger for refrigerator
US9796848B2 (en) * 2002-10-25 2017-10-24 Honeywell International Inc. Foaming agents and compositions containing fluorine substituted olefins and methods of foaming
US20040089839A1 (en) * 2002-10-25 2004-05-13 Honeywell International, Inc. Fluorinated alkene refrigerant compositions
US7279451B2 (en) * 2002-10-25 2007-10-09 Honeywell International Inc. Compositions containing fluorine substituted olefins
US9005467B2 (en) * 2003-10-27 2015-04-14 Honeywell International Inc. Methods of replacing heat transfer fluids
US20080121837A1 (en) * 2003-10-27 2008-05-29 Honeywell International, Inc. Compositions containing fluorine substituted olefins
US7833433B2 (en) * 2002-10-25 2010-11-16 Honeywell International Inc. Heat transfer methods using heat transfer compositions containing trifluoromonochloropropene
JP4110388B2 (en) * 2003-01-10 2008-07-02 荒川化学工業株式会社 Cleaning agent and rinsing agent for gold-plated parts, cleaning method and rinsing method
DE602004023952D1 (en) * 2003-08-06 2009-12-17 Shell Int Research SUPPORT FOR A TUBE BUNDLE
JP2006317010A (en) * 2004-08-09 2006-11-24 Kiyoshi Yanagimachi Heat exchanger block
US8420706B2 (en) * 2005-06-24 2013-04-16 Honeywell International Inc. Foaming agents, foamable compositions, foams and articles containing halogen substituted olefins, and methods of making same
CA2513989C (en) * 2005-07-27 2007-02-06 Aker Kvaerner Canada Inc. Improved heat exchanger
US7740057B2 (en) * 2007-02-09 2010-06-22 Xi'an Jiaotong University Single shell-pass or multiple shell-pass shell-and-tube heat exchanger with helical baffles

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS633188A (en) * 1986-06-23 1988-01-08 Matsushita Refrig Co Fin tube type heat exchanger
JPH04110388A (en) * 1990-08-31 1992-04-10 Daikin Ind Ltd Fluid for heat transfer
JP2003343942A (en) * 2002-05-23 2003-12-03 Denso Corp Evaporator
JP2006512426A (en) * 2002-10-25 2006-04-13 ハネウェル・インターナショナル・インコーポレーテッド Compositions containing fluorine-substituted olefins
WO2007002625A2 (en) * 2005-06-24 2007-01-04 Honeywell International Inc. Compositions containing fluorine substituted olefins

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011093521A1 (en) 2010-01-27 2011-08-04 Daikin Industries, Ltd. Refrigerant composition comprising difluoromethane (hfc32) and 2,3,3,3-tetrafluoropropene (hfo1234yf)
JP2015034296A (en) * 2010-01-27 2015-02-19 ダイキン工業株式会社 Refrigerant composition containing difluoromethane (hfc32) and 2,2,3,3-tetrafluoropropene (hfo1234yf)
US9758709B2 (en) 2010-01-27 2017-09-12 Daikin Industries, Ltd. Refrigerant composition comprising difluoromethane (HFC32) and 2,3,3,3-tetrafluoropropene (HFO1234yf)
EP3284796A1 (en) 2010-01-27 2018-02-21 Daikin Industries, Ltd. Refrigerant composition comprising difluoromethane (hfc32) and 2,3,3,3-tetrafluoropropene (hfo1234yf)
US10619082B2 (en) 2010-01-27 2020-04-14 Daikin Industries, Ltd. Refrigerant composition comprising difluoromethane (HFC32) and 2,3,3,3-tetrafluoropropene (HFO1234yf)
EP3783083A1 (en) 2010-01-27 2021-02-24 Daikin Industries, Ltd. Refrigerant composition comprising difluoromethane (hfc32) and 2,3,3,3-tetrafluoropropene (hfo1234yf)
JP2013134024A (en) * 2011-12-27 2013-07-08 Panasonic Corp Refrigeration cycle device
WO2014038604A1 (en) * 2012-09-04 2014-03-13 ダイキン工業株式会社 Method for filling mixed refrigerant containing 2,3,3,3-tetrafluoropropene
US9528735B2 (en) 2012-09-04 2016-12-27 Daikin Industries, Ltd. Method for filling mixed refrigerant containing 2,3,3,3-tetrafluoropropene
JPWO2016009565A1 (en) * 2014-07-18 2017-04-27 三菱電機株式会社 Refrigeration cycle equipment

Also Published As

Publication number Publication date
BRPI0908721A2 (en) 2020-08-11
CN101978236A (en) 2011-02-16
WO2009116478A1 (en) 2009-09-24
EP2267392A4 (en) 2014-03-26
EP2267392A1 (en) 2010-12-29
US20110011126A1 (en) 2011-01-20
CN101978236B (en) 2012-09-05

Similar Documents

Publication Publication Date Title
JP7284405B2 (en) refrigeration cycle equipment
JP5423089B2 (en) Refrigeration equipment
JP6065429B2 (en) Air conditioner
WO2009110228A1 (en) Refrigerating apparatus
WO2009116478A1 (en) Heat exchanger
JP6418284B1 (en) Composition containing refrigerant, use thereof, refrigeration method using the same, and refrigerator including the same
JP2009257652A (en) Refrigerating apparatus
JP2009133500A (en) Air conditioner
WO2019124329A1 (en) Refrigerant cycling device
JP5239427B2 (en) Method for updating air conditioner
JP2011106770A (en) Heat exchanger and refrigerating cycle device
JP6393895B2 (en) Refrigeration cycle equipment
JP2009222356A (en) Refrigeration device and refrigerant filling method
JP6293557B2 (en) Refrigeration cycle equipment
JP5689033B2 (en) Fin tube type heat exchanger and refrigeration cycle apparatus using the same
JP6181401B2 (en) Dual refrigeration equipment
WO2017145713A1 (en) Heat exchange unit
WO2021176651A1 (en) Heat exchanger and air conditioner
WO2015125525A1 (en) Heat exchanger and refrigerating cycle device
JPWO2021205536A5 (en)
JP2011144953A (en) Fin and tube type heat exchanger and air conditioning device using the same
Li et al. Optimization of a Residential Air Source Heat Pump using Refrigerants with GWP< 150 for Improved Performance and Reduced Emission
JP2014196869A (en) Cascade refrigeration system
JP2010096366A (en) Outdoor unit for air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120424

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121218