JP2012207278A - Method for manufacturing grain-oriented electromagnetic steel sheet - Google Patents
Method for manufacturing grain-oriented electromagnetic steel sheet Download PDFInfo
- Publication number
- JP2012207278A JP2012207278A JP2011074313A JP2011074313A JP2012207278A JP 2012207278 A JP2012207278 A JP 2012207278A JP 2011074313 A JP2011074313 A JP 2011074313A JP 2011074313 A JP2011074313 A JP 2011074313A JP 2012207278 A JP2012207278 A JP 2012207278A
- Authority
- JP
- Japan
- Prior art keywords
- mass
- annealing
- steel sheet
- grain
- primary recrystallization
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 38
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 27
- 239000010959 steel Substances 0.000 title claims abstract description 27
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 23
- 238000000137 annealing Methods 0.000 claims abstract description 63
- 238000001953 recrystallisation Methods 0.000 claims abstract description 41
- 229910052711 selenium Inorganic materials 0.000 claims abstract description 8
- 229910052717 sulfur Inorganic materials 0.000 claims abstract description 8
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 5
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 4
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 4
- 229910001224 Grain-oriented electrical steel Inorganic materials 0.000 claims description 23
- 230000008569 process Effects 0.000 claims description 23
- 239000012298 atmosphere Substances 0.000 claims description 15
- 239000000203 mixture Substances 0.000 claims description 8
- 238000005097 cold rolling Methods 0.000 claims description 6
- 229910052787 antimony Inorganic materials 0.000 claims description 5
- 229910052785 arsenic Inorganic materials 0.000 claims description 4
- 229910052797 bismuth Inorganic materials 0.000 claims description 4
- 229910052804 chromium Inorganic materials 0.000 claims description 4
- 229910052732 germanium Inorganic materials 0.000 claims description 4
- 229910052750 molybdenum Inorganic materials 0.000 claims description 4
- 229910052759 nickel Inorganic materials 0.000 claims description 4
- 229910052698 phosphorus Inorganic materials 0.000 claims description 4
- 229910052718 tin Inorganic materials 0.000 claims description 4
- 229910052719 titanium Inorganic materials 0.000 claims description 4
- 229910052720 vanadium Inorganic materials 0.000 claims description 4
- 229910052758 niobium Inorganic materials 0.000 claims description 3
- 229910052714 tellurium Inorganic materials 0.000 claims description 3
- 239000012535 impurity Substances 0.000 claims description 2
- 230000003647 oxidation Effects 0.000 claims description 2
- 238000007254 oxidation reaction Methods 0.000 claims description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 abstract description 48
- 229910052742 iron Inorganic materials 0.000 abstract description 23
- 230000000630 rising effect Effects 0.000 abstract description 12
- 230000002829 reductive effect Effects 0.000 abstract description 4
- 229910052799 carbon Inorganic materials 0.000 abstract description 3
- 230000001590 oxidative effect Effects 0.000 abstract description 2
- 239000003795 chemical substances by application Substances 0.000 abstract 1
- 238000010438 heat treatment Methods 0.000 description 18
- 239000000047 product Substances 0.000 description 17
- 238000005261 decarburization Methods 0.000 description 16
- 230000000694 effects Effects 0.000 description 11
- 229910052760 oxygen Inorganic materials 0.000 description 9
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 7
- 239000003112 inhibitor Substances 0.000 description 7
- 239000001301 oxygen Substances 0.000 description 7
- 238000002791 soaking Methods 0.000 description 5
- 239000011248 coating agent Substances 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 239000011261 inert gas Substances 0.000 description 4
- 230000036961 partial effect Effects 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 239000013078 crystal Substances 0.000 description 3
- 239000000835 fiber Substances 0.000 description 3
- 238000009413 insulation Methods 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- 229910000976 Electrical steel Inorganic materials 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- 229910010413 TiO 2 Inorganic materials 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 2
- 239000010452 phosphate Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000009749 continuous casting Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000011162 core material Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 238000005098 hot rolling Methods 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Landscapes
- Soft Magnetic Materials (AREA)
- Manufacturing Of Steel Electrode Plates (AREA)
Abstract
Description
本発明は、方向性電磁鋼板の製造方法に関し、具体的には、製品コイルの全長に亘って鉄損特性に優れる方向性電磁鋼板の有利な製造方法に関するものである。 The present invention relates to a method for manufacturing a grain-oriented electrical steel sheet, and more particularly to an advantageous method for producing a grain-oriented electrical steel sheet having excellent iron loss characteristics over the entire length of a product coil.
電磁鋼板には、大別して、方向性電磁鋼板と無方向性電磁鋼板とがあり、変圧器や発電機等の鉄心材料として広く用いられている。特に、前者の方向性電磁鋼板は、結晶方位がゴス方位と呼ばれる{110}<001>方位に高度に集積しているため、変圧器や発電機におけるエネルギーロスを低減するのに有効な磁気特性を有している。従来、方向性電磁鋼板の鉄損を低減する技術としては、板厚の低減や、Si含有量の増加、結晶方位の配向性向上、鋼板への張力付与、鋼板表面の平滑化、二次再結晶粒の細粒化などが知られている。 The electromagnetic steel sheet is roughly classified into a directional electromagnetic steel sheet and a non-oriented electromagnetic steel sheet, which are widely used as iron core materials for transformers and generators. In particular, the former grain-oriented electrical steel sheet is highly integrated in the {110} <001> orientation, which is called the Goss orientation, and is therefore effective in reducing energy loss in transformers and generators. have. Conventionally, techniques for reducing iron loss of grain-oriented electrical steel sheets include reduction of sheet thickness, increase of Si content, improvement of orientation of crystal orientation, application of tension to the steel sheet, smoothing of the surface of the steel sheet, secondary re-treatment. Crystal grain refinement is known.
上記鉄損低減技術のうちで、二次再結晶粒を微細化する技術としては、脱炭焼鈍時に急速加熱する方法や、脱炭焼鈍直前に急速加熱処理し、一次再結晶集合組織を改善する方法が知られている。例えば、特許文献1には、最終板厚まで圧延されたストリップを脱炭焼鈍する前に、雰囲気酸素濃度500ppm以下で、加熱速度100℃/秒以上で800〜950℃に急速加熱処理し、脱炭焼鈍工程の前部領域の温度を急速加熱での到達温度よりも低い775〜840℃とし、引き続く後部領域の温度を前部領域よりも高い815〜875℃で脱炭焼鈍を施すことで低鉄損の方向性電磁鋼板を得る技術が、特許文献2には、最終板厚まで圧延されたストリップを脱炭焼鈍する直前に、PH2O/PH2が0.2以下の非酸化性雰囲気中で100℃/秒以上の加熱速度で700℃以上の温度へ加熱処理することにより、低鉄損の方向性電磁鋼板を得る技術が開示されている。 Among the above iron loss reduction techniques, the secondary recrystallized grains can be refined by a method of rapid heating during decarburization annealing or rapid heat treatment immediately before decarburization annealing to improve the primary recrystallization texture. The method is known. For example, in Patent Document 1, before decarburizing and annealing a strip that has been rolled to the final plate thickness, a rapid heat treatment is performed at 800 to 950 ° C. at an atmospheric oxygen concentration of 500 ppm or less and a heating rate of 100 ° C./second or more. The temperature of the front region in the carbon annealing process is set to 775-840 ° C. which is lower than the ultimate temperature in the rapid heating, and the temperature of the subsequent rear region is lowered by performing decarburization annealing at 815-875 ° C. which is higher than the front region. A technique for obtaining a directional electrical steel sheet with iron loss is disclosed in Patent Document 2 in a non-oxidizing atmosphere in which PH 2 O / PH 2 is 0.2 or less immediately before decarburizing and annealing a strip rolled to a final thickness. In particular, a technique for obtaining a grain-oriented electrical steel sheet having a low iron loss by heat treatment at a heating rate of 100 ° C./second or more to a temperature of 700 ° C. or more is disclosed.
また、特許文献3には、脱炭焼鈍工程の昇温段階の少なくとも600℃以上の温度域を95℃/s以上の昇温速度で800℃以上に加熱し、かつ、この温度域の雰囲気が体積分率で10−6〜10−1の酸素を含有する不活性ガスで構成され、脱炭焼鈍の均熱時における雰囲気の構成成分をH2とH2OもしくはH2、H2Oと不活性ガスとし、かつ、H2O分圧のH2分圧に対する比PH2O/PH2を0.05〜0.75とし、また、単位面積当り雰囲気流量を、0.01Nm3/min・m2から1Nm3/min・m2の範囲とする皮膜特性と磁気特性に優れる電磁鋼板を得る技術が、また、特許文献4には、脱炭焼鈍工程の昇温段階の少なくとも650℃以上の温度域を100℃/s以上の昇温速度で800℃以上に加熱し、かつこの温度域の雰囲気を体積分率で10−6〜10−2の酸素を含有する不活性ガスとし、一方、脱炭焼鈍の均熱時における雰囲気の構成成分をH2とH2O、もしくはH2とH2Oと不活性ガスとし、かつH2O分圧のH2分圧に対する比PH2O/PH2を0.15〜0.65とすることで皮膜特性と磁気特性に優れる方向性電磁鋼板を得る技術が開示されている。 Patent Document 3 discloses that a temperature range of at least 600 ° C. in the temperature rising stage of the decarburization annealing process is heated to 800 ° C. or higher at a temperature rising rate of 95 ° C./s or more, and the atmosphere in this temperature range is It is composed of an inert gas containing oxygen at a volume fraction of 10 −6 to 10 −1 , and the constituents of the atmosphere during soaking of decarburization annealing are H 2 and H 2 O or H 2 and H 2 O. An inert gas is used, and the ratio PH 2 O / PH 2 of the H 2 O partial pressure to the H 2 partial pressure is set to 0.05 to 0.75, and the atmospheric flow rate per unit area is set to 0.01 Nm 3 / min. A technique for obtaining an electromagnetic steel sheet having excellent coating properties and magnetic properties in the range of m 2 to 1 Nm 3 / min · m 2 is also disclosed in Patent Document 4, which is at least 650 ° C. or higher in the temperature raising stage of the decarburization annealing process. Temperature range of 800 ° C or higher at a rate of temperature increase of 100 ° C / s or higher And an atmosphere in this temperature range is an inert gas containing oxygen of 10 −6 to 10 −2 in volume fraction, while the constituent components of the atmosphere during soaking of decarburization annealing are H 2 By using H 2 O, or H 2 and H 2 O and an inert gas, and the ratio PH 2 O / PH 2 of the H 2 O partial pressure to the H 2 partial pressure is 0.15 to 0.65, the film characteristics And a technology for obtaining a grain-oriented electrical steel sheet having excellent magnetic properties.
上記特許文献1〜4に記載された技術を適用することによって、それなりに二次再結晶粒が細粒化され、鉄損の低減を図ることができる。しかしながら、上記従来技術では、素材成分の変動や一次再結晶焼鈍以前の工程における製造条件の変動等の影響を受けて、製品コイル内での細粒化効果にばらつきがあり、製品コイルの全長に亘って安定的に鉄損低減効果を得ることが難しいという問題があった。 By applying the techniques described in Patent Documents 1 to 4, secondary recrystallized grains are finely divided as such, and iron loss can be reduced. However, in the above-mentioned conventional technology, there is a variation in the fine graining effect in the product coil due to the influence of fluctuations in the raw material components and the production conditions in the process before the primary recrystallization annealing. There was a problem that it was difficult to stably obtain the iron loss reduction effect.
本発明は、従来技術が抱える上記問題点に鑑みてなされたものであり、その目的は、製品コイル全長に亘って安定的に二次再結晶粒を細粒化し、もって、コイル全長に亘って低鉄損化することができる方向性電磁鋼板の製造方法を提案することにある。 The present invention has been made in view of the above-mentioned problems of the prior art, and the object thereof is to stably refine the secondary recrystallized grains over the entire length of the product coil, and thus over the entire length of the coil. The object is to propose a method of manufacturing a grain-oriented electrical steel sheet capable of reducing iron loss.
発明者らは、上記課題を解決するべく、一次再結晶焼鈍における昇温過程に着目し、製品コイル全長に亘って安定的に二次再結晶粒を細かくする技術を追求した結果、一次再結晶焼鈍の昇温過程を低温域と高温域とに分け、低温域を急速昇温するとともに、高温域では逆に昇温速度を緩めてやることが有効であることを知見した。すなわち、一次再結晶の昇温速度を高めることで二次再結晶粒が細粒化することは従来から知られているが、発明者らは、さらに検討した結果、一次再結晶焼鈍の昇温過程において、回復が起こる低温域の昇温速度を、通常の脱炭焼鈍における昇温速度よりも高くしてやるとともに、一次再結晶が起こる高温域の昇温速度を、上記低温域の昇温速度の50%以下とすることで、素材成分や前工程の製造条件の変動があっても、製品コイル全長に亘って安定して二次再結晶粒を微細化することができることを知見し、本発明を開発するに至った。 In order to solve the above problems, the inventors have focused on the temperature rising process in the primary recrystallization annealing, and have pursued a technique for stably making secondary recrystallized grains over the entire length of the product coil. It was found that it is effective to divide the temperature rising process of annealing into a low temperature region and a high temperature region, to rapidly increase the temperature in the low temperature region, and conversely to slow the temperature increase rate in the high temperature region. That is, it has been conventionally known that the secondary recrystallized grains become finer by increasing the temperature increase rate of the primary recrystallization. In the process, the temperature rise rate in the low temperature region where recovery occurs is made higher than the temperature rise rate in normal decarburization annealing, and the temperature rise rate in the high temperature region where primary recrystallization occurs is Knowing that the secondary recrystallized grains can be refined stably over the entire length of the product coil even when there are fluctuations in the raw material components and the manufacturing conditions of the previous process, by making it 50% or less, the present invention Led to the development.
すなわち、本発明は、C:0.001〜0.20mass%、Si:1.0〜5.0mass%、Mn:0.03〜1.0mass%、SおよびSeのうちから選ばれる1種または2種の合計:0.005〜0.040mass%、sol.Al:0.003〜0.050mass%、N:0.0010〜0.020mass%を含有し、残部がFeおよび不可避的不純物からなる成分組成の鋼スラブを熱間圧延し、1回もしくは中間焼鈍を挟む2回以上の冷間圧延を施して最終板厚とし、一次再結晶焼鈍し、その後、MgOを主成分とする焼鈍分離剤を塗布して最終仕上焼鈍を施す方向性電磁鋼板の製造方法において、上記一次再結晶焼鈍の昇温過程における300〜600℃間の昇温速度S1を100℃/s以上、600〜700℃間の昇温速度S2を30〜(0.5×S1)℃/sの範囲とすることを特徴とする方向性電磁鋼板の製造方法である。 That is, this invention is 1 type chosen from C: 0.001-0.20mass%, Si: 1.0-5.0mass%, Mn: 0.03-1.0mass%, S and Se or Total of two types: 0.005 to 0.040 mass%, sol. A steel slab containing Al: 0.003-0.050 mass%, N: 0.0010-0.020 mass%, with the balance being composed of Fe and inevitable impurities, hot-rolled, and once or intermediate annealing A method for producing grain-oriented electrical steel sheet that is subjected to cold rolling at least twice with a final thickness obtained by primary recrystallization annealing, followed by final finishing annealing by applying an annealing separator mainly composed of MgO In the temperature increase process of the primary recrystallization annealing, the temperature increase rate S 1 between 300 to 600 ° C. is 100 ° C./s or more, and the temperature increase rate S 2 between 600 to 700 ° C. is 30 to (0.5 × S 1 ) A method for producing a grain-oriented electrical steel sheet, characterized in that the temperature is in the range of ° C / s.
本発明の方向性電磁鋼板の製造方法は、上記一次再結晶焼鈍の昇温過程の300〜700℃間における雰囲気の酸化ポテンシャルPH2O/PH2を0.05以下とすることを特徴とする。 The method for producing a grain-oriented electrical steel sheet according to the present invention is characterized in that the oxidation potential P H2O / P H2 of the atmosphere during the temperature raising process of the primary recrystallization annealing is between 300 and 700 ° C. is 0.05 or less.
また、本発明の方向性電磁鋼板の製造方法は、上記成分組成に加えてさらに、Cu:0.01〜0.2mass%、Ni:0.01〜0.5mass%、Cr:0.01〜0.5mass%、Sb:0.01〜0.1mass%、Sn:0.01〜0.5mass%、Mo:0.01〜0.5mass%およびBi:0.001〜0.1mass%のうちから選ばれる1種または2種以上を含有することを特徴とする。 Moreover, in addition to the said component composition, the manufacturing method of the grain-oriented electrical steel sheet of this invention is further Cu: 0.01-0.2mass%, Ni: 0.01-0.5mass%, Cr: 0.01- Of 0.5 mass%, Sb: 0.01-0.1 mass%, Sn: 0.01-0.5 mass%, Mo: 0.01-0.5 mass% and Bi: 0.001-0.1 mass% It contains 1 type or 2 types or more chosen from these.
また、本発明の方向性電磁鋼板の製造方法は、上記成分組成に加えてさらに、B:0.001〜0.01mass%、Ge:0.001〜0.1mass%、As:0.005〜0.1mass%、P:0.005〜0.1mass%、Te:0.005〜0.1mass%、Nb:0.005〜0.1mass%、Ti:0.005〜0.1mass%およびV:0.005〜0.1mass%のうちから選ばれる1種または2種以上を含有することを特徴とする。 Moreover, in addition to the said component composition, the manufacturing method of the grain-oriented electrical steel sheet of this invention is further B: 0.001-0.01mass%, Ge: 0.001-0.1mass%, As: 0.005-. 0.1 mass%, P: 0.005-0.1 mass%, Te: 0.005-0.1 mass%, Nb: 0.005-0.1 mass%, Ti: 0.005-0.1 mass%, and V : It contains 1 type, or 2 or more types chosen from 0.005-0.1 mass%, It is characterized by the above-mentioned.
本発明によれば、方向性電磁鋼板の製品コイル全長に亘って二次再結晶粒を細粒化し、低鉄損化することができるので、製品歩留まりを大幅に向上することができると共に、変圧器等の鉄損特性の向上にも大きく寄与する。 According to the present invention, since the secondary recrystallized grains can be refined over the entire length of the product coil of the grain-oriented electrical steel sheet and the iron loss can be reduced, the product yield can be greatly improved, This greatly contributes to the improvement of the iron loss characteristics of the vessel.
本発明の方向性電磁鋼板の成分組成について説明する。
C:0.001〜0.10mass%
Cは、ゴス方位粒の発生に有用な成分であり、かかる作用を有効に発揮させるためには0.001mass%以上の含有を必要とする。しかし、Cを0.10mass%超え添加すると、脱炭焼鈍しても脱炭不足を起こすようになるので、Cは0.001〜0.10mass%の範囲とする。
The component composition of the grain-oriented electrical steel sheet of the present invention will be described.
C: 0.001 to 0.10 mass%
C is a component useful for the generation of goth-oriented grains, and needs to be contained in an amount of 0.001 mass% or more in order to effectively exhibit such action. However, if C is added in excess of 0.10 mass%, decarburization is insufficient even after decarburization annealing, so C is set in the range of 0.001 to 0.10 mass%.
Si:1.0〜5.0mass%
Siは、鋼の電気抵抗を高めて、鉄損を低減するとともに、鉄のBCC組織(フェライト組織)を安定化させて高温熱処理を可能とするのに必要な成分であり、少なくとも1.0mass%以上の添加を必要とする。しかし、5.0mass%を超えて添加すると、冷間圧延することが困難となる。よって、Siは1.0〜5.0mass%に限定した。
Si: 1.0-5.0 mass%
Si is a component necessary to increase the electrical resistance of steel, reduce iron loss, stabilize the BCC structure (ferrite structure) of iron, and enable high-temperature heat treatment, and is at least 1.0 mass%. The above addition is required. However, if added over 5.0 mass%, it is difficult to cold-roll. Therefore, Si was limited to 1.0 to 5.0 mass%.
Mn:0.01〜1.0mass%
Mnは、鋼の熱間脆性を防止するのに有効な成分であると共に、SやSeと結合してMnSやMnSe等の析出物を形成し、抑制剤(インヒビター)として作用する有用な成分である。しかし、Mnの含有量が0.01mass%より少ないと、上記効果が得られず、一方、1.0mass%を超えて添加すると、MnSe等の析出物が粗大化し、インヒビターとしての機能が失われるため、Mnは0.01〜1.0mass%の範囲とする。
Mn: 0.01 to 1.0 mass%
Mn is an effective component for preventing hot brittleness of steel, and is a useful component that combines with S and Se to form precipitates such as MnS and MnSe, and acts as an inhibitor. is there. However, if the Mn content is less than 0.01 mass%, the above effect cannot be obtained. On the other hand, if it exceeds 1.0 mass%, precipitates such as MnSe are coarsened and the function as an inhibitor is lost. Therefore, Mn is in the range of 0.01 to 1.0 mass%.
sol.Al:0.003〜0.050mass%
Alは、鋼中でAlNを形成し、分散第二相としてインヒビターの作用をする有用成分である。しかし、sol.Alとしての添加量が0.003mass%に満たないと、AlN析出量が十分に確保できないため上記効果が得られず、一方、0.050mass%を超えて添加すると、AlNが粗大化してインヒビターとしての作用が失われてしまう。よって、Alは、sol.Alで0.003〜0.050mass%の範囲とする。
sol. Al: 0.003 to 0.050 mass%
Al is a useful component that forms AlN in steel and acts as an inhibitor as a dispersed second phase. However, sol. If the addition amount as Al is less than 0.003 mass%, the above effect cannot be obtained because the precipitation amount of AlN cannot be sufficiently secured. On the other hand, if the addition amount exceeds 0.050 mass%, AlN becomes coarse and becomes an inhibitor. Will be lost. Therefore, Al is sol. The range of 0.003 to 0.050 mass% is made of Al.
N:0.0010〜0.020mass%
Nは、Alと同様に、AlNを形成するために必要な成分である。しかし、N添加量が0.0010mass%を下回ると、十分なAlNが形成されないため、上記効果が得られず、一方、0.020mass%を超えて添加すると、スラブ加熱時にふくれ等を生じて表面欠陥を引き起こすようになる。よって、Nは0.001〜0.020mass%の範囲とする。
N: 0.0010-0.020 mass%
N, like Al, is a component necessary for forming AlN. However, if the amount of N added is less than 0.0010 mass%, sufficient AlN is not formed, and thus the above effect cannot be obtained. On the other hand, if the amount added exceeds 0.020 mass%, blistering or the like occurs during slab heating. Causes defects. Therefore, N is set to a range of 0.001 to 0.020 mass%.
SおよびSe:1種又は2種の合計で0.01〜0.05mass%
SおよびSeは、MnやCuと結合してMnSe,MnS,Cu2−xSe、Cu2−xSを形成して鋼中に分散第二相として析出し、インヒビター作用を発揮する有用成分である。しかし、SおよびSeの合計含有量が0.01mass%に満たないと、上記添加効果に乏しく、一方、0.05mass%を超えて添加すると、スラブ加熱時の固溶が不完全となる他、表面欠陥を引き起こす原因ともなる。よって、単独添加、複合添加のいずれの場合でも合計添加量は0.01〜0.05mass%の範囲とする。
S and Se: 0.01-0.05 mass% in total of 1 type or 2 types
S and Se are useful components that combine with Mn and Cu to form MnSe, MnS, Cu 2-x Se, Cu 2-x S and precipitate as a dispersed second phase in the steel, exhibiting an inhibitory action. is there. However, if the total content of S and Se is less than 0.01 mass%, the above-described addition effect is poor. On the other hand, if it exceeds 0.05 mass%, solid solution during slab heating becomes incomplete, It can also cause surface defects. Therefore, the total addition amount is in the range of 0.01 to 0.05 mass% in both cases of single addition and composite addition.
本発明の方向性電磁鋼板は、上記必須とする成分に加えてさらに、Cu:0.01〜0.2mass%、Ni:0.01〜0.5mass%、Cr:0.01〜0.5mass%、Sb:0.01〜0.1mass%、Sn:0.01〜0.5mass%、Mo:0.01〜0.5mass%およびBi:0.001〜0.1mass%のうちから選ばれる1種または2種以上を添加することができる。
これらの元素は、いずれも結晶粒界や表面に偏析しやすい元素であり、補助的なインヒビターとして作用し、磁気特性のさらなる向上を図るのに有効な成分である。これらの元素の添加量が、上記下限値未満では、二次再結晶過程の高温域での一次粒の粗大化を抑制する効果が不足し、十分な添加効果が得られず、一方、上記上限値を超える添加は、被膜外観の不良や二次再結晶不良が発生しやすくする。よって、上記成分を添加する場合には、上記範囲とするのが好ましい。
In addition to the essential components, the grain-oriented electrical steel sheet of the present invention further includes Cu: 0.01 to 0.2 mass%, Ni: 0.01 to 0.5 mass%, Cr: 0.01 to 0.5 mass. %, Sb: 0.01 to 0.1 mass%, Sn: 0.01 to 0.5 mass%, Mo: 0.01 to 0.5 mass%, and Bi: 0.001 to 0.1 mass% 1 type (s) or 2 or more types can be added.
All of these elements are elements that are easily segregated at the grain boundaries and the surface, and act as auxiliary inhibitors, and are effective components for further improving the magnetic properties. If the addition amount of these elements is less than the above lower limit value, the effect of suppressing the coarsening of primary grains in the high temperature region of the secondary recrystallization process is insufficient, and a sufficient addition effect cannot be obtained. Addition exceeding the value tends to cause poor appearance of the film and poor secondary recrystallization. Therefore, when adding the said component, it is preferable to set it as the said range.
また、本発明の方向性電磁鋼板は、上記成分に加えてさらに、B:0.001〜0.01mass%、Ge:0.001〜0.1mass%、As:0.005〜0.1mass%、P:0.005〜0.1mass%、Te:0.005〜0.1mass%、Nb:0.005〜0.1mass%、Ti:0.005〜0.1mass%およびV:0.005〜0.1mass%から選ばれる1種または2種以上を添加することができる。これらの元素を上記範囲で添加することにより、インヒビター効果(抑制力)がより強化されて、ゴス方位への集積度がより向上し、高い磁束密度を安定して得ることができる。 In addition to the above components, the grain-oriented electrical steel sheet of the present invention further includes B: 0.001 to 0.01 mass%, Ge: 0.001 to 0.1 mass%, As: 0.005 to 0.1 mass%. , P: 0.005 to 0.1 mass%, Te: 0.005 to 0.1 mass%, Nb: 0.005 to 0.1 mass%, Ti: 0.005 to 0.1 mass%, and V: 0.005. One or more selected from ˜0.1 mass% can be added. By adding these elements in the above range, the inhibitor effect (suppression force) is further strengthened, the degree of integration in the Goth direction is further improved, and a high magnetic flux density can be stably obtained.
次に、本発明に係る方向性電磁鋼板の製造方法について説明する。
本発明の方向性電磁鋼板は、上記に説明した成分組成を有する鋼を従来公知の精錬プロセスで溶製し、連続鋳造法または造塊−分塊圧延法等を用いて鋼素材(鋼スラブ)とし、その後、上記鋼スラブを熱間圧延して熱延板とし、必要に応じて熱延板焼鈍を施した後、1回もしくは中間焼鈍を挟む2回以上の冷間圧延を施して最終板厚の冷延板とし、一次再結晶焼鈍し、その後、MgOを主成分とする焼鈍分離剤を塗布して最終仕上焼鈍を施した後、必要に応じて、絶縁被膜の塗布・焼付けを兼ねた平坦化焼鈍を経る一連の工程からなる製造方法で製造することができるが、上記一次再結晶焼鈍工程以外の製造条件については、従来公知の条件を採用することができ、特に制限はない。
以下、最終冷間圧延後の一次再結晶焼鈍の条件について説明する。
Next, the manufacturing method of the grain-oriented electrical steel sheet according to the present invention will be described.
The grain-oriented electrical steel sheet of the present invention is a steel material (steel slab) produced by melting steel having the above-described component composition by a conventionally known refining process and using a continuous casting method or an ingot-bundling rolling method. After that, the steel slab is hot-rolled to obtain a hot-rolled sheet, and if necessary, hot-rolled sheet annealing is performed, and then the final sheet is subjected to cold rolling twice or more sandwiching one or intermediate annealing. A thick cold-rolled sheet, primary recrystallized annealing, and after applying final finishing annealing by applying an annealing separator mainly composed of MgO, and also as required to apply and bake insulation coating Although it can manufacture with the manufacturing method which consists of a series of processes which pass flattening annealing, conventionally well-known conditions can be employ | adopted about manufacturing conditions other than the said primary recrystallization annealing process, and there is no restriction | limiting in particular.
Hereinafter, conditions for primary recrystallization annealing after the final cold rolling will be described.
一次再結晶焼鈍の条件、特に昇温過程における昇温速度は、先述したように、二次再結晶組織に大きな影響を及ぼすため、厳密な制御が必要とされる。そこで、本発明においては、二次再結晶粒を製品コイル全長に亘って安定的に微細化し、製品コイル内の鉄損特性に優れる領域の比率を高めるため、上記昇温過程を、回復が進行する低温域と一次再結晶が起こる高温域とに分け、それぞれの領域の昇温速度を適正に制御する必要がある。具体的には、一次再結晶の前駆過程である回復が起こる低温域(300〜600℃)の昇温速度S1を通常の焼鈍よりも高い100℃/s以上とするとともに、一次再結晶が起こる高温域(600〜700℃)の昇温速度S2を30℃/s以上かつ低温域の50%以下とする必要がある。これにより、鋼成分や、一次再結晶焼鈍以前の製造条件の変動素材が変動した場合にも、安定的に鉄損低減効果を得ることができる。 The conditions for primary recrystallization annealing, particularly the rate of temperature increase in the temperature increasing process, have a great influence on the secondary recrystallized structure as described above, and therefore must be strictly controlled. Therefore, in the present invention, the secondary recrystallized grains are stably refined over the entire length of the product coil, and the above temperature rising process is recovered in order to increase the ratio of the region having excellent iron loss characteristics in the product coil. It is necessary to divide it into a low temperature region where the recrystallization occurs and a high temperature region where primary recrystallization occurs, and to appropriately control the temperature rising rate of each region. Specifically, the temperature increase rate S 1 in the low temperature region (300 to 600 ° C.) where recovery, which is a precursor process of primary recrystallization, is set to 100 ° C./s or higher, which is higher than that of normal annealing, and the primary recrystallization is performed. and a high temperature range (600 to 700 ° C.) the heating rate S 2 30 ℃ / s or more to occur there must be 50% or less of the low temperature range. Thereby, even when the steel component and the fluctuation material of the manufacturing conditions before the primary recrystallization annealing change, the iron loss reduction effect can be stably obtained.
ここで、ゴス方位{110}<001>の二次再結晶核は、圧延組織において歪エネルギーが蓄積され易い{111}繊維組織中に生じる変形帯の中に存在することが知られている。なお、上記変形帯とは、{111}繊維組織の中でも特に歪エネルギーが蓄積された領域のことを意味する。
一次再結晶焼鈍の低温域(300〜600℃)での昇温速度S1が100℃/s未満の場合には、歪エネルギーが極めて高い変形帯では、優先的に回復(歪エネルギーの緩和)が生じるため、ゴス方位{110}<001>の再結晶を促進させることができない。これに対して、S1を100℃/s以上とした場合には、変形組織を歪エネルギーが高い状態のままで高温まで保持することができるので、比較的低温(600℃近傍)でゴス方位{110}<001>の再結晶を促進することができる。
Here, it is known that secondary recrystallized nuclei with Goss orientation {110} <001> exist in a deformation band generated in a {111} fiber structure in which strain energy is easily accumulated in a rolled structure. In addition, the said deformation | transformation zone means the area | region where strain energy was accumulate | stored especially among {111} fiber structures.
Low temperature region of the primary recrystallization annealing when (300 to 600 ° C.) heating rate S 1 at is lower than 100 ° C. / s, in the very high deformation band strain energy, (relaxation of strain energy) preferentially recovered Therefore, recrystallization in the Goss direction {110} <001> cannot be promoted. On the contrary, when the S 1 and 100 ° C. / s or more, since the strain energy deformed tissue can be held up to a high temperature remains high, the Goss orientation at a relatively low temperature (600 ° C. vicinity) {110} <001> recrystallization can be promoted.
また、二次再結晶したゴス方位{110}<001>の粒径を、目的とする大きさに制御するためには、ゴス方位{110}<001>に蚕食される{111}組織の量を適正範囲に制御することが需要である。すなわち、{111}方位が多すぎると、二次再結晶粒の成長が進み易く、ゴス方位{110}<001>が多数あっても、それぞれが成長する前に1つの組織が粗大化し、粗大粒となるおそれがあり、逆に、少なすぎると二次再結晶粒の成長が進み難く、二次再結晶不良となるおそれがある。
{111}方位は、変形帯ほどではないものの、周囲に比べて歪エネルギーの高い{111}繊維組織から再結晶して生じるため、600℃までの昇温速度S1を100℃/s以上として加熱する本発明のヒートサイクルでは、ゴス方位{110}<001>に次いで再結晶を起こし易い結晶方位である。
そのため、一次再結晶が生じる高温(700℃以上)まで、S2に規定する昇温速度より高い速度で加熱すると、ゴス方位{110}<001>や、その次に再結晶が進行し易い{111}方位の再結晶が抑制されたままになり、一次再結晶後の集合組織はランダム化する。その結果、600〜700℃をS2に規定する昇温速度より低い速度で加熱する場合に比べて、ゴス方位{110}<001>の再結晶組織が少なくなり、二次再結晶粒の微細化効果が損なわれたり、{111}方位が少なくなり、二次再結晶粒が十分に成長しなかったりする。逆に、600〜700℃をS2に規定する昇温速度よりも低くした場合には、上記温度範囲で再結晶し易い{111}方位が増加し、二次再結晶粒が粗大化するおそれがある。
In addition, in order to control the grain size of the Goss orientation {110} <001> that has been recrystallized secondarily, the amount of {111} texture that is phagocytosed in the Goss orientation {110} <001>. It is a demand to control the temperature within an appropriate range. That is, if there are too many {111} orientations, the growth of secondary recrystallized grains tends to proceed, and even if there are many Goss orientations {110} <001>, one structure becomes coarse before each grows. On the contrary, if the amount is too small, the growth of secondary recrystallized grains is difficult to proceed, which may result in secondary recrystallization failure.
{111} orientation, although not as much as deformation zone, to produce recrystallized from strain high energy {111} fiber structure than the surrounding, the heating rate S 1 to 600 ° C. as 100 ° C. / s or higher In the heat cycle of the present invention to be heated, the crystal orientation is likely to cause recrystallization next to the Goth orientation {110} <001>.
Therefore, when heated to a high temperature (700 ° C. or higher) at which primary recrystallization occurs at a rate higher than the rate of temperature specified in S 2 , Goss orientation {110} <001> and recrystallization is likely to proceed next { 111} orientation recrystallization remains suppressed, and the texture after primary recrystallization is randomized. As a result, the 600 to 700 ° C. as compared with the case of heating at a lower rate than heating rate specified in S 2, the Goss orientation {110} recrystallization texture of <001> is reduced, the secondary recrystallized grains of the fine Or the {111} orientation decreases, and secondary recrystallized grains do not grow sufficiently. Conversely, if the 600 to 700 ° C. and lower than the Atsushi Nobori rate specified in S 2 is the crystallization easily in a temperature range {111} orientation is increased, the secondary recrystallized grains become coarse afraid There is.
一般に、一次再結晶焼鈍は、脱炭焼鈍と兼ねて行われることが多いが、本発明においても、脱炭焼鈍と兼ねた一次再結晶焼鈍とすることができる。この場合、脱炭雰囲気中で、急速加熱してもよいが、その場合には、酸化性の低い雰囲気とした方が安定的に低鉄損を得ることができる。これは、昇温過程で脱炭が生じてしまうと、二次再結晶粒の微細化に不利な一次再結晶組織となってしまうためである。したがって、本発明においては、昇温過程の300〜700℃間の雰囲気の酸素ポテンシャルPH2O/PH2は0.05以下に制御するのが好ましい。 In general, primary recrystallization annealing is often performed in combination with decarburization annealing, but in the present invention, primary recrystallization annealing can also be performed as decarburization annealing. In this case, rapid heating may be performed in a decarburizing atmosphere, but in that case, a low iron loss can be stably obtained when the atmosphere is less oxidizable. This is because if decarburization occurs in the temperature rising process, a primary recrystallized structure that is disadvantageous for the refinement of secondary recrystallized grains will result. Therefore, in the present invention, the oxygen potential P H2O / P H2 in the atmosphere between 300 and 700 ° C. in the temperature raising process is preferably controlled to 0.05 or less.
なお、一次再結晶焼鈍におけるその他の条件、例えば、均熱温度、均熱時間、均熱時の雰囲気、冷却速度等の条件については、常法にしたがって行えばよく、特に制限はない。また、鋼スラブ中のC含有量が30massppm以下である場合には、特に脱炭焼鈍を行う必要がなく、最終冷間圧延後、通常の一次再結晶焼鈍を行えばよい。 In addition, about other conditions in primary recrystallization annealing, for example, conditions, such as soaking temperature, soaking time, the atmosphere at the time of soaking, and a cooling rate, it may carry out in accordance with a conventional method, and there is no restriction | limiting in particular. Moreover, when C content in steel slab is 30 massppm or less, it is not necessary to perform decarburization annealing in particular, and normal primary recrystallization annealing may be performed after the final cold rolling.
C:0.06mass%、Si:3.3mass%、Mn:0.08mass%、S:0.023mass%、sol.Al:0.03mass%、N:0.007mass%、Cu:0.2mass%およびSb:0.02mass%を含有する鋼スラブを1430℃×30分加熱後、熱間圧延して板厚2.2mmの熱延板とし、1000℃×1分の熱延板焼鈍を施した後、冷間圧延して中間板厚1.5mmとし、1100℃×2分の中間焼鈍を施した後、最終冷間圧延して板厚0.23mmの冷延板とした。その後、昇温条件(300〜600℃間の昇温速度S1、600〜700℃間の昇温速度S2およびを300〜700℃間の雰囲気の酸素ポテンシャルPH2O/PH2)を表1のように種々に変化させて加熱し、840℃で2分間均熱保持する脱炭焼鈍を兼ねた一次再結晶焼鈍を施した後、MgOを主成分とし、TiO2を10mass%含有する水スラリー状の焼鈍分離剤を塗布・乾燥し、コイルに巻き取り、最終仕上焼鈍し、リン酸塩系の絶縁張力コーティングの塗布・焼付と鋼帯の平坦化を兼ねた平坦化焼鈍を施して製品コイルとした。 C: 0.06 mass%, Si: 3.3 mass%, Mn: 0.08 mass%, S: 0.023 mass%, sol. A steel slab containing Al: 0.03 mass%, N: 0.007 mass%, Cu: 0.2 mass%, and Sb: 0.02 mass% is heated at 1430 ° C. for 30 minutes and then hot-rolled to obtain a sheet thickness of 2. 2 mm hot-rolled sheet, 1000 ° C. × 1 minute hot-rolled sheet annealed, then cold rolled to an intermediate sheet thickness of 1.5 mm, 1100 ° C. × 2 minute intermediate annealed, and finally cooled Cold rolling was performed by hot rolling to a sheet thickness of 0.23 mm. Then, the temperature rise conditions (temperature rise rate S 1 between 300 to 600 ° C., temperature rise rate S 2 between 600 to 700 ° C. and oxygen potential P H2O / P H2 in the atmosphere between 300 to 700 ° C.) are shown in Table 1. As shown in FIG. 1, after performing primary recrystallization annealing that also serves as decarburization annealing that is heated at 840 ° C. for 2 minutes, and then MgCl is the main component and TiO 2 is contained at 10 mass%. The product coil is coated and dried, wound into a coil, and finally annealed, followed by flattening annealing that combines the application and baking of phosphate-based insulation tension coating and the flattening of the steel strip. It was.
斯くして得られた製品コイルの長さ方向から一定間隔で連続的に試験片を採取し、コイル全長にわたる鉄損を測定し、製品コイル全長に対する鉄損W17/50が0.80W/kg以下となる部分の比率(%)を求めた。
表1に上記測定の結果を併記した。これから、昇温速度が本発明に適合する一次再結晶焼鈍を施した発明例の鋼板は、いずれもW17/50≦0.80W/kgとなる部分の比率がコイル全長の70%以上となっていること、さらに、昇温過程の300〜700℃間の雰囲気の酸素ポテンシャルPH2O/PH2を0.05以下とした場合には、さらに低鉄損部分の比率が高めることができることがわかる。
Test pieces were continuously collected at regular intervals from the length direction of the product coil thus obtained, the iron loss over the entire length of the coil was measured, and the iron loss W 17/50 relative to the total length of the product coil was 0.80 W / kg. The ratio (%) of the following parts was obtained.
Table 1 shows the results of the above measurements. From this, in the steel sheets of the inventive examples subjected to primary recrystallization annealing suitable for the temperature rise rate according to the present invention, the ratio of the portions where W 17/50 ≦ 0.80 W / kg is 70% or more of the total coil length. Furthermore, when the oxygen potential P H2O / P H2 of the atmosphere between 300 and 700 ° C. in the temperature raising process is set to 0.05 or less, the ratio of the low iron loss part can be further increased. .
表2に示した各種成分組成を有する鋼スラブを1430℃×30分加熱後、熱間圧延して板厚2.2mmの熱延板とし、1000℃×1分の熱延板焼鈍を施した後、冷間圧延して板厚1.5mmとし、1100℃×2分の中間焼鈍を施し、さらに、冷間圧延して最終板厚0.23mmの冷延板とし、電解エッチングにより磁区細分化のために線状溝を形成した。次いで、上記冷延板に、昇温過程における300〜700℃間の雰囲気の酸素ポテンシャルPH2O/PH2を0.03とし、300〜600℃間の昇温速度S1を200℃/s、600〜700℃間の昇温速度S2を50℃/sとして700℃まで昇温したのち、700〜840℃間を10℃/sの平均昇温速度で昇温し、PH2O/PH2が0.4の雰囲気で840℃×2分の脱炭焼鈍を兼ねた一次再結晶焼鈍を施した後、MgOを主成分とし、TiO2を10mass%添加した水スラリー状の焼鈍分離剤を塗布・乾燥し、コイルに巻き取り、最終仕上焼鈍を施し、リン酸塩系の絶縁張力コーティングの塗布・焼付けと鋼帯の平坦化を兼ねた平坦化焼鈍を施して製品コイルとした。 Steel slabs having various component compositions shown in Table 2 were heated at 1430 ° C. for 30 minutes, and then hot rolled to form a hot-rolled sheet having a thickness of 2.2 mm and subjected to hot-rolled sheet annealing at 1000 ° C. for 1 minute. After that, it is cold-rolled to a sheet thickness of 1.5 mm, subjected to intermediate annealing at 1100 ° C. × 2 minutes, and further cold-rolled to obtain a cold-rolled sheet having a final sheet thickness of 0.23 mm. For this purpose, a linear groove was formed. Then, the oxygen potential P H2O / P H2 of the atmosphere between 300 and 700 ° C. in the temperature rising process is set to 0.03, and the temperature rising rate S 1 between 300 to 600 ° C. is set to 200 ° C./s. After the temperature was raised to 700 ° C. 600 to 700 of the heating rate S 2 between ° C. as 50 ° C. / s, the temperature was raised at an average heating rate of 10 ° C. / s between 700~840 ℃, P H2O / P H2 After subjecting to primary recrystallization annealing that also serves as decarburization annealing at 840 ° C for 2 minutes in an atmosphere of 0.4, a water slurry annealing separator containing MgO as the main component and 10 mass% of TiO 2 is applied. -Dried, wound around the coil, and subjected to final finish annealing, and then applied flattening annealing that combines application and baking of phosphate-based insulation tension coating and flattening of the steel strip to obtain a product coil.
斯くして得られた製品コイルの長さ方向から一定間隔で連続的にエプスタイン試験片を採取した後、窒素雰囲気中で800℃×3hの歪取焼鈍を施してから、エプスタイン試験法で鉄損W17/50を測定し、製品コイル全長に対する鉄損W17/50が0.80W/kg以下となる部分の比率(%)を求め、結果を表2に併記した。これらの結果から、本発明に適合する成分組成の冷延板を、本発明に適合する条件で一次再結晶焼鈍することにより、製品コイル全長に亘って低鉄損の方向性電磁鋼板を製造し得ることがわかる。特に、インヒビター効果のあるCu,Ni,Cr,Sb,Sn,MoおよびBiのうちから選ばれる1種または2種以上、あるいはさらに、B,Ge,As,P,Te,Nb,TiおよびVのうちから選ばれる1種または2種以上を追加添加した場合には、鉄損W17/50が0.80W/kgの比率が高い製品コイルを安定して製造することができる。 After collecting Epstein test pieces continuously at regular intervals from the length direction of the product coil obtained in this way, after applying strain relief annealing at 800 ° C. × 3 h in a nitrogen atmosphere, the iron loss was measured by the Epstein test method. W 17/50 was measured, the ratio (%) of the portion where the iron loss W 17/50 with respect to the total length of the product coil was 0.80 W / kg or less was determined, and the results are also shown in Table 2. From these results, a cold-rolled sheet having a component composition suitable for the present invention is subjected to primary recrystallization annealing under conditions suitable for the present invention, thereby producing a low iron loss directional electrical steel sheet over the entire length of the product coil. I know you get. In particular, one, two or more selected from Cu, Ni, Cr, Sb, Sn, Mo and Bi having an inhibitor effect, or B, Ge, As, P, Te, Nb, Ti and V When one or more selected from among these are additionally added, a product coil having a high iron loss W 17/50 ratio of 0.80 W / kg can be stably produced.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011074313A JP5760590B2 (en) | 2011-03-30 | 2011-03-30 | Method for producing grain-oriented electrical steel sheet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011074313A JP5760590B2 (en) | 2011-03-30 | 2011-03-30 | Method for producing grain-oriented electrical steel sheet |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012207278A true JP2012207278A (en) | 2012-10-25 |
JP5760590B2 JP5760590B2 (en) | 2015-08-12 |
Family
ID=47187269
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011074313A Active JP5760590B2 (en) | 2011-03-30 | 2011-03-30 | Method for producing grain-oriented electrical steel sheet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5760590B2 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013039193A1 (en) * | 2011-09-16 | 2013-03-21 | Jfeスチール株式会社 | Process for producing grain-oriented electromagnetic steel sheet with excellent core loss characteristics |
WO2013058239A1 (en) * | 2011-10-20 | 2013-04-25 | Jfeスチール株式会社 | Oriented electromagnetic steel sheet and method for manufacturing same |
WO2014049770A1 (en) * | 2012-09-27 | 2014-04-03 | Jfeスチール株式会社 | Process for producing grain-oriented electromagnetic steel sheet |
JP2014091855A (en) * | 2012-11-05 | 2014-05-19 | Jfe Steel Corp | Production method of directional electromagnetic steel plate |
CN104018068A (en) * | 2014-06-12 | 2014-09-03 | 国家电网公司 | Method for preparing high-magnetic-induction oriented silicon steel with thickness of 0.18mm |
US9290824B2 (en) | 2011-08-18 | 2016-03-22 | Jfe Steel Corporation | Method of producing grain-oriented electrical steel sheet |
KR101659808B1 (en) * | 2015-05-20 | 2016-09-26 | 주식회사 포스코 | Non-orientied electrical steel sheets and method for manufacturing the same |
WO2018207873A1 (en) * | 2017-05-12 | 2018-11-15 | Jfeスチール株式会社 | Oriented magnetic steel sheet and method for manufacturing same |
JP2019178378A (en) * | 2018-03-30 | 2019-10-17 | 日本製鉄株式会社 | Manufacturing method of oriented electromagnetic steel sheet |
KR20200035755A (en) * | 2018-09-27 | 2020-04-06 | 주식회사 포스코 | Grain oriented electrical steel sheet method for manufacturing the same |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58151423A (en) * | 1982-03-05 | 1983-09-08 | Kawasaki Steel Corp | Manufacture of unidirectional silicon steel plate with superior magnetic characteristic |
JPH08188824A (en) * | 1995-01-06 | 1996-07-23 | Nippon Steel Corp | Production of grain oriented silicon steel sheet with ultrahigh magnetic flux density |
WO1998046801A1 (en) * | 1997-04-16 | 1998-10-22 | Acciai Speciali Terni S.P.A. | New process for the production at low temperature of grain oriented electrical steel |
JP2000355717A (en) * | 1999-06-15 | 2000-12-26 | Kawasaki Steel Corp | Grain oriented silicon steel sheet excellent in coating film characteristic and magnetic property and its production |
JP2008001979A (en) * | 2006-05-24 | 2008-01-10 | Nippon Steel Corp | Process for producing grain-oriented magnetic steel sheet and decarburization/annealing furnace used for the production method |
WO2008129490A2 (en) * | 2007-04-18 | 2008-10-30 | Centro Sviluppo Materiali S.P.A. | Process for the production of a grain oriented magnetic strip |
JP2010236013A (en) * | 2009-03-31 | 2010-10-21 | Jfe Steel Corp | Method for producing grain-oriented magnetic steel sheet |
-
2011
- 2011-03-30 JP JP2011074313A patent/JP5760590B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58151423A (en) * | 1982-03-05 | 1983-09-08 | Kawasaki Steel Corp | Manufacture of unidirectional silicon steel plate with superior magnetic characteristic |
JPH08188824A (en) * | 1995-01-06 | 1996-07-23 | Nippon Steel Corp | Production of grain oriented silicon steel sheet with ultrahigh magnetic flux density |
WO1998046801A1 (en) * | 1997-04-16 | 1998-10-22 | Acciai Speciali Terni S.P.A. | New process for the production at low temperature of grain oriented electrical steel |
JP2000355717A (en) * | 1999-06-15 | 2000-12-26 | Kawasaki Steel Corp | Grain oriented silicon steel sheet excellent in coating film characteristic and magnetic property and its production |
JP2008001979A (en) * | 2006-05-24 | 2008-01-10 | Nippon Steel Corp | Process for producing grain-oriented magnetic steel sheet and decarburization/annealing furnace used for the production method |
WO2008129490A2 (en) * | 2007-04-18 | 2008-10-30 | Centro Sviluppo Materiali S.P.A. | Process for the production of a grain oriented magnetic strip |
JP2010236013A (en) * | 2009-03-31 | 2010-10-21 | Jfe Steel Corp | Method for producing grain-oriented magnetic steel sheet |
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9290824B2 (en) | 2011-08-18 | 2016-03-22 | Jfe Steel Corporation | Method of producing grain-oriented electrical steel sheet |
JP2013064178A (en) * | 2011-09-16 | 2013-04-11 | Jfe Steel Corp | Method for producing grain-oriented electromagnetic steel sheet excellent in iron loss characteristic |
WO2013039193A1 (en) * | 2011-09-16 | 2013-03-21 | Jfeスチール株式会社 | Process for producing grain-oriented electromagnetic steel sheet with excellent core loss characteristics |
JPWO2013058239A1 (en) * | 2011-10-20 | 2015-04-02 | Jfeスチール株式会社 | Oriented electrical steel sheet and manufacturing method thereof |
WO2013058239A1 (en) * | 2011-10-20 | 2013-04-25 | Jfeスチール株式会社 | Oriented electromagnetic steel sheet and method for manufacturing same |
US9805851B2 (en) | 2011-10-20 | 2017-10-31 | Jfe Steel Corporation | Grain-oriented electrical steel sheet and method of producing the same |
JP5610084B2 (en) * | 2011-10-20 | 2014-10-22 | Jfeスチール株式会社 | Oriented electrical steel sheet and manufacturing method thereof |
KR101737871B1 (en) | 2012-09-27 | 2017-05-19 | 제이에프이 스틸 가부시키가이샤 | Method for producing grain-oriented electrical steel sheet |
JPWO2014049770A1 (en) * | 2012-09-27 | 2016-08-22 | Jfeスチール株式会社 | Method for producing grain-oriented electrical steel sheet |
WO2014049770A1 (en) * | 2012-09-27 | 2014-04-03 | Jfeスチール株式会社 | Process for producing grain-oriented electromagnetic steel sheet |
JP2014091855A (en) * | 2012-11-05 | 2014-05-19 | Jfe Steel Corp | Production method of directional electromagnetic steel plate |
CN104018068A (en) * | 2014-06-12 | 2014-09-03 | 国家电网公司 | Method for preparing high-magnetic-induction oriented silicon steel with thickness of 0.18mm |
CN104018068B (en) * | 2014-06-12 | 2017-01-11 | 国家电网公司 | Method for preparing high-magnetic-induction oriented silicon steel with thickness of 0.18mm |
KR101659808B1 (en) * | 2015-05-20 | 2016-09-26 | 주식회사 포스코 | Non-orientied electrical steel sheets and method for manufacturing the same |
JPWO2018207873A1 (en) * | 2017-05-12 | 2019-11-07 | Jfeスチール株式会社 | Oriented electrical steel sheet and manufacturing method thereof |
WO2018207873A1 (en) * | 2017-05-12 | 2018-11-15 | Jfeスチール株式会社 | Oriented magnetic steel sheet and method for manufacturing same |
KR20190137127A (en) * | 2017-05-12 | 2019-12-10 | 제이에프이 스틸 가부시키가이샤 | Grain oriented electrical steel sheet and its manufacturing method |
RU2718438C1 (en) * | 2017-05-12 | 2020-04-06 | ДжФЕ СТИЛ КОРПОРЕЙШН | Textured electrical steel sheet and method of its production |
KR102329385B1 (en) | 2017-05-12 | 2021-11-19 | 제이에프이 스틸 가부시키가이샤 | Grain-oriented electrical steel sheet and method for producing the same |
US11578377B2 (en) | 2017-05-12 | 2023-02-14 | Jfe Steel Corporation | Grain-oriented electrical steel sheet and method for producing the same |
JP2019178378A (en) * | 2018-03-30 | 2019-10-17 | 日本製鉄株式会社 | Manufacturing method of oriented electromagnetic steel sheet |
JP7214974B2 (en) | 2018-03-30 | 2023-01-31 | 日本製鉄株式会社 | Manufacturing method of grain-oriented electrical steel sheet |
KR20200035755A (en) * | 2018-09-27 | 2020-04-06 | 주식회사 포스코 | Grain oriented electrical steel sheet method for manufacturing the same |
KR102119095B1 (en) | 2018-09-27 | 2020-06-04 | 주식회사 포스코 | Grain oriented electrical steel sheet method for manufacturing the same |
Also Published As
Publication number | Publication date |
---|---|
JP5760590B2 (en) | 2015-08-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5748029B2 (en) | Method for producing grain-oriented electrical steel sheet | |
JP5760590B2 (en) | Method for producing grain-oriented electrical steel sheet | |
JP5610084B2 (en) | Oriented electrical steel sheet and manufacturing method thereof | |
JP5360272B2 (en) | Method for producing grain-oriented electrical steel sheet | |
JP5842400B2 (en) | Method for producing grain-oriented electrical steel sheet | |
JP4126479B2 (en) | Method for producing non-oriented electrical steel sheet | |
JP5991484B2 (en) | Manufacturing method of low iron loss grain oriented electrical steel sheet | |
WO2012086534A1 (en) | Process for production of non-oriented electromagnetic steel sheet | |
JP5679090B2 (en) | Method for producing grain-oriented electrical steel sheet | |
JP6191826B2 (en) | Method for producing grain-oriented electrical steel sheet with excellent magnetic properties | |
JP6838601B2 (en) | Low iron loss directional electromagnetic steel sheet and its manufacturing method | |
JP2013064178A (en) | Method for producing grain-oriented electromagnetic steel sheet excellent in iron loss characteristic | |
JP2013047382A (en) | Method of producing grain-oriented electromagnetic steel sheet | |
JP2017020059A (en) | Grain-oriented electromagnetic steel sheet and method for producing the same | |
JP6436316B2 (en) | Method for producing grain-oriented electrical steel sheet | |
JP2015200002A (en) | Method for producing grain oriented magnetic steel sheet | |
JPWO2020218329A1 (en) | Manufacturing method of grain-oriented electrical steel sheet | |
JP6011063B2 (en) | Manufacturing method of low iron loss grain oriented electrical steel sheet | |
JPWO2019131853A1 (en) | Low iron loss grain-oriented electrical steel sheet and its manufacturing method | |
JP2003253341A (en) | Process for manufacturing grain-oriented magnetic steel sheet showing excellent magnetic property | |
JP6947147B2 (en) | Manufacturing method of grain-oriented electrical steel sheet | |
JP2014194073A (en) | Method for manufacturing oriented electromagnetic steel sheet | |
JP2015212403A (en) | Method for manufacturing nonoriented electromagnetic steel sheet | |
JP5712652B2 (en) | Method for producing grain-oriented electrical steel sheet | |
JP2023554123A (en) | Non-oriented electrical steel sheet and its manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20140220 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20141117 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20141125 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150122 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150512 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150525 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5760590 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |