JP6436316B2 - Method for producing grain-oriented electrical steel sheet - Google Patents
Method for producing grain-oriented electrical steel sheet Download PDFInfo
- Publication number
- JP6436316B2 JP6436316B2 JP2016000317A JP2016000317A JP6436316B2 JP 6436316 B2 JP6436316 B2 JP 6436316B2 JP 2016000317 A JP2016000317 A JP 2016000317A JP 2016000317 A JP2016000317 A JP 2016000317A JP 6436316 B2 JP6436316 B2 JP 6436316B2
- Authority
- JP
- Japan
- Prior art keywords
- mass
- annealing
- steel sheet
- grain
- oriented electrical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910001224 Grain-oriented electrical steel Inorganic materials 0.000 title claims description 25
- 238000004519 manufacturing process Methods 0.000 title claims description 21
- 238000000137 annealing Methods 0.000 claims description 147
- 229910000831 Steel Inorganic materials 0.000 claims description 73
- 239000010959 steel Substances 0.000 claims description 73
- 238000005261 decarburization Methods 0.000 claims description 56
- 238000000034 method Methods 0.000 claims description 40
- 238000010438 heat treatment Methods 0.000 claims description 38
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 26
- 229910052760 oxygen Inorganic materials 0.000 claims description 26
- 239000001301 oxygen Substances 0.000 claims description 26
- 230000008569 process Effects 0.000 claims description 20
- 229910052757 nitrogen Inorganic materials 0.000 claims description 18
- 238000002791 soaking Methods 0.000 claims description 18
- 238000004458 analytical method Methods 0.000 claims description 12
- 230000002950 deficient Effects 0.000 claims description 8
- 239000000203 mixture Substances 0.000 claims description 8
- 229910052710 silicon Inorganic materials 0.000 claims description 6
- 239000012535 impurity Substances 0.000 claims description 5
- 229910052748 manganese Inorganic materials 0.000 claims description 4
- 229910052787 antimony Inorganic materials 0.000 claims description 3
- 229910052802 copper Inorganic materials 0.000 claims description 3
- 229910052750 molybdenum Inorganic materials 0.000 claims description 3
- 229910052698 phosphorus Inorganic materials 0.000 claims description 3
- 229910052711 selenium Inorganic materials 0.000 claims description 3
- 229910052718 tin Inorganic materials 0.000 claims description 3
- 229910052720 vanadium Inorganic materials 0.000 claims description 3
- 229910052759 nickel Inorganic materials 0.000 claims description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 92
- 229910052742 iron Inorganic materials 0.000 description 29
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 20
- 239000010410 layer Substances 0.000 description 19
- 238000001953 recrystallisation Methods 0.000 description 19
- 230000000694 effects Effects 0.000 description 15
- 230000003647 oxidation Effects 0.000 description 15
- 238000007254 oxidation reaction Methods 0.000 description 15
- 239000003112 inhibitor Substances 0.000 description 12
- 229910052839 forsterite Inorganic materials 0.000 description 10
- HCWCAKKEBCNQJP-UHFFFAOYSA-N magnesium orthosilicate Chemical compound [Mg+2].[Mg+2].[O-][Si]([O-])([O-])[O-] HCWCAKKEBCNQJP-UHFFFAOYSA-N 0.000 description 10
- 239000000463 material Substances 0.000 description 9
- 230000001590 oxidative effect Effects 0.000 description 9
- 229910004298 SiO 2 Inorganic materials 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 7
- 239000000047 product Substances 0.000 description 6
- 238000000746 purification Methods 0.000 description 6
- 239000011248 coating agent Substances 0.000 description 5
- 238000000576 coating method Methods 0.000 description 5
- 238000005097 cold rolling Methods 0.000 description 5
- 238000000354 decomposition reaction Methods 0.000 description 5
- 238000005098 hot rolling Methods 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 238000011161 development Methods 0.000 description 4
- 230000018109 developmental process Effects 0.000 description 4
- 230000004907 flux Effects 0.000 description 4
- 238000003303 reheating Methods 0.000 description 4
- 239000002344 surface layer Substances 0.000 description 4
- 230000009471 action Effects 0.000 description 3
- 230000004888 barrier function Effects 0.000 description 3
- 238000009749 continuous casting Methods 0.000 description 3
- 239000011162 core material Substances 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 229910000976 Electrical steel Inorganic materials 0.000 description 2
- 230000032683 aging Effects 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 229910052758 niobium Inorganic materials 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000000630 rising effect Effects 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003610 charcoal Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000009503 electrostatic coating Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- 238000005240 physical vapour deposition Methods 0.000 description 1
- 238000005554 pickling Methods 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 150000003376 silicon Chemical class 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Images
Landscapes
- Manufacturing Of Steel Electrode Plates (AREA)
- Soft Magnetic Materials (AREA)
- Manufacture Of Motors, Generators (AREA)
Description
本発明は、方向性電磁鋼板の製造方法に関し、特に、鉄損特性に優れる方向性電磁鋼板の製造方法にするものである。 The present invention relates to a method for producing a grain-oriented electrical steel sheet, and particularly to a method for producing a grain-oriented electrical steel sheet having excellent iron loss characteristics.
電磁鋼板は、変圧器やモーターの鉄心材料等として広く用いられている軟磁性材料であり、中でも方向性電磁鋼板は、結晶方位がGoss方位と呼ばれる{110}<001>方位に高度に集積していることで、優れた磁気特性を示すため、主として大型変圧器の鉄心材料等として使用されている。そのため、従来における方向性電磁鋼板の主な開発課題は、変圧器の無負荷損(エネルギーロス)を低減するため、鋼板を励磁した際に生じる損失すなわち鉄損を低減するということにあった。 Electrical steel sheets are soft magnetic materials that are widely used as iron core materials for transformers and motors. Among them, grain oriented electrical steel sheets are highly integrated in the {110} <001> orientation, in which the crystal orientation is called the Goss orientation. Therefore, in order to show excellent magnetic properties, it is mainly used as a core material for large transformers. Therefore, the main development subject of the conventional grain-oriented electrical steel sheet is to reduce the loss caused when the steel sheet is excited, that is, the iron loss in order to reduce the no-load loss (energy loss) of the transformer.
方向性電磁鋼板の製造方法としては、AlNやMnS、MnSeまたはCuSなどのインヒビタと呼ばれる微細な析出物を利用する方法が一般的である。この方法は、上記インヒビタを鋼中に微細に分散させ、仕上焼鈍時の粒成長を抑制することによって、Goss方位のみを優先的に二次再結晶させるものである。 As a method for producing a grain-oriented electrical steel sheet, a method using a fine precipitate called an inhibitor such as AlN, MnS, MnSe, or CuS is generally used. In this method, the inhibitor is finely dispersed in the steel and the grain growth during finish annealing is suppressed, so that only the Goss orientation is preferentially recrystallized.
ところで、方向性電磁鋼板の製造方法では、一般に、素材鋼板中のCを磁気時効を起こさないレベルまで低減する脱炭焼鈍が行われている。この脱炭焼鈍では、焼鈍雰囲気を酸化性としているため、鋼板表面下には、SiやFeの酸化物を主体とする酸化物層が形成される(以降、この酸化物層を「サブスケール」と呼ぶ)。このサブスケールが形成された鋼板表面に、MgOを主体とする焼鈍分離剤を塗布した後、仕上焼鈍を施すことで、上記サブスケールとMgOとが反応して鋼板表面にフォルステライト(Mg2SiO4)層が形成される。このフォルステライト層は、製品板を積層して使用するときの絶縁被膜として、また、鋼板表面に引張張力を付与して鉄損を低減するなどの重要な役割を果たす。 By the way, generally in the manufacturing method of a grain-oriented electrical steel sheet, the decarburization annealing which reduces C in a raw steel plate to the level which does not raise | generate a magnetic aging is performed. In this decarburization annealing, since the annealing atmosphere is oxidizing, an oxide layer mainly composed of oxides of Si and Fe is formed under the steel sheet surface (hereinafter, this oxide layer is referred to as “subscale”). Called). After applying an annealing separator mainly composed of MgO to the steel plate surface on which the subscale is formed, the subscale and MgO react with each other by subjecting the steel plate surface to forsterite (Mg 2 SiO 2). 4 ) A layer is formed. This forsterite layer plays an important role as an insulating coating when a product plate is used by being laminated, and to reduce iron loss by applying tensile tension to the surface of the steel plate.
また、サブスケールは、仕上焼鈍中に、焼鈍雰囲気中に含まれる窒素が鋼中へ侵入するのを抑制するバリア作用を持つ。前述したインヒビタとしてAlNを用いる場合には、上記のバリア作用が弱いと、鋼中に窒素が容易に侵入し、高温でのAlNの分解が抑制されるため、Goss方位の二次再結晶が適正な温度で生じず、しかも、Goss方位からずれた粒も二次再結晶するようになるため、製品板の磁気特性が劣化してしまう。従って、インヒビタとしてAlNを用いる場合には、サブスケールを緻密にして、窒素の侵入に対するバリア作用を高めておくことが望ましい。 In addition, the subscale has a barrier action that suppresses nitrogen contained in the annealing atmosphere from entering the steel during the finish annealing. When AlN is used as the above-described inhibitor, if the above barrier action is weak, nitrogen easily penetrates into the steel and decomposition of AlN at high temperatures is suppressed, so that secondary recrystallization in the Goss orientation is appropriate. In addition, since the grains deviated from the Goss orientation are not regenerated at the proper temperature, and secondary recrystallization occurs, the magnetic properties of the product plate are deteriorated. Therefore, when AlN is used as an inhibitor, it is desirable to increase the barrier action against nitrogen intrusion by making the subscale dense.
サブスケールの形態を制御する方法としては、例えば、特許文献1には、中間焼鈍の雰囲気のPH2O/PH2を0.4〜2.0(酸化性)とすることで、Siの板厚方向のSi濃度勾配を抑制することで、続く脱炭焼鈍で形成されるサブスケール中のSiO2の割合が安定して高められるため、均一で密着性の良好なフォルステライト被膜が得られるこことが開示されている。
As a method for controlling the form of the subscale, for example, in
また、特許文献2には、最終冷間圧延前の鋼板表面の脱珪層を5μm以上100μm未満とし、脱炭焼鈍の雰囲気のPH2O/PH2の最大値を0.15以上0.60未満とし、脱炭焼鈍中の雰囲気の酸化性のPH2O/PH2の上昇量を0以上0.15未満として緻密なサブスケールを形成することによって、焼鈍中の局所的な追加酸化が抑制されて、均一なフォルステライト被膜が得られることが開示されている。 In Patent Document 2, the desiliconization layer on the surface of the steel plate before final cold rolling is set to 5 μm or more and less than 100 μm, and the maximum value of P H2O / PH 2 in the atmosphere of decarburization annealing is set to 0.15 or more and less than 0.60. and then, by forming a dense subscale increase amount of oxidizing P H2O / P H2 atmosphere in the decarburization annealing as 0 to less than 0.15, local additional oxidation during annealing is suppressed It is disclosed that a uniform forsterite film can be obtained.
しかしながら、これらの中間焼鈍の雰囲気や脱炭焼鈍の雰囲気を制御することでサブスケールの緻密さを制御する技術は、主としてフォルステライト被膜を均一に形成させることを目的とした技術であり、AlNのようなインヒビタの分解挙動を制御して磁気特性を向上させるものではない。 However, the technology for controlling the subscale density by controlling the atmosphere of the intermediate annealing and the decarburization annealing is a technology mainly for the purpose of uniformly forming the forsterite film. It does not improve the magnetic properties by controlling the decomposition behavior of such inhibitors.
また、特許文献3には、脱炭焼鈍前の鋼板表面に脱珪層を形成させ、この脱珪層につき板厚中心部のSi濃度に対するSi濃度の比を、最終冷延板の状態で鋼板表面から厚み方向1μmまでの領域では0.90以下に、かつ該Si濃度の比が0.98以下である領域を表面から厚み方向5μmまでに調整すること、および、上記脱炭焼鈍を、その均熱過程における雰囲気のPH2O/PH2を0.70未満で、かつ昇温過程における雰囲気のPH2O/PH2を上記均熱過程よりも低い値で行う技術が開示されている。この技術によれば、焼鈍分離剤に含まれるH2Oによる仕上焼鈍中におけるインヒビタの酸化・分解挙動が抑止され、被膜特性および磁気特性に優れる方向性電磁鋼板が得られるとされている。 Further, in Patent Document 3, a silicon removal layer is formed on the surface of a steel plate before decarburization annealing, and the ratio of Si concentration to the Si concentration at the center of the plate thickness of this silicon removal layer is determined in the state of the final cold rolled sheet. In the region from the surface to the thickness direction of 1 μm, adjusting the region where the Si concentration ratio is 0.98 or less from the surface to the thickness direction of 5 μm, and the decarburization annealing, A technique is disclosed in which the P H2O / P H2 of the atmosphere in the soaking process is less than 0.70, and the P H2O / P H2 of the atmosphere in the heating process is set to a value lower than that in the soaking process. According to this technique, it is said that the grain-oriented electrical steel sheet having excellent coating properties and magnetic properties can be obtained by suppressing the oxidation / decomposition behavior of the inhibitor during finish annealing with H 2 O contained in the annealing separator.
しかしながら、上記特許文献3に開示の技術は、インヒビタとしてAlNの他にMnSやMnSeなどを利用する場合において、インヒビタの仕上焼鈍中における酸化・分解挙動を制御する技術であり、AlNを主たるインヒビタとして用いる場合に、仕上焼鈍中に窒素が鋼中に侵入してAlNの分解に悪影響を及ぼす問題に対しては有効ではない。 However, the technique disclosed in Patent Document 3 is a technique for controlling the oxidation / decomposition behavior during finish annealing of an inhibitor when using MnS or MnSe in addition to AlN as an inhibitor. When used, it is not effective for the problem that nitrogen penetrates into steel during finish annealing and adversely affects the decomposition of AlN.
本発明は、従来技術が抱える上記問題点に鑑みてなされたものであり、その目的は、脱炭焼鈍後のサブスケールの形態を適正に制御し、仕上焼鈍中における窒素の鋼中への侵入を抑制することによって、安定して優れた鉄損特性を得ることができる方向性電磁鋼板の製造方法を提案することにある。 The present invention has been made in view of the above-mentioned problems of the prior art, and its purpose is to appropriately control the form of the subscale after decarburization annealing, and to penetrate nitrogen into the steel during finish annealing. It is to propose a method of manufacturing a grain-oriented electrical steel sheet capable of stably obtaining excellent iron loss characteristics by suppressing the above.
発明者らは、上記課題の解決に向け、仕上焼鈍中に窒素が鋼中に侵入するのを防止するのに有効なサブスケールの形態に着目して鋭意検討を行った。その結果、脱炭焼鈍において、鋼板表面下に緻密なサブスケールが形成されて、鋼板内部への窒素の侵入が抑制され、良好な鉄損特性が得られること、また、上記緻密なサブスケールを形成するためには、最終冷延前の中間焼鈍の加熱過程において、適正な酸化性雰囲気下で鋼板表面に脱珪層を形成することが有効であることを見出し、本発明を開発するに至った。 In order to solve the above-mentioned problems, the inventors have conducted intensive studies focusing on the form of a subscale effective for preventing nitrogen from entering into steel during finish annealing. As a result, in decarburization annealing, a dense subscale is formed below the steel sheet surface, nitrogen penetration into the steel sheet is suppressed, and good iron loss characteristics can be obtained. In order to form it, it has been found that it is effective to form a desiliconized layer on the steel sheet surface in an appropriate oxidizing atmosphere in the heating process of the intermediate annealing before the final cold rolling, and the present invention has been developed. It was.
すなわち、本発明は、C:0.002〜0.10mass%、Si:2.5〜6.0mass%、Mn:0.01〜0.8mass%、Al:0.010〜0.050mass%およびN:0.003〜0.020mass%を含有し、残部がFeおよび不可避的不純物からなるスラブを熱間圧延し、熱延板焼鈍し、中間焼鈍を挟む2回の冷間圧延し、脱炭焼鈍して鋼板表面にサブスケールを形成した後、鋼板表面にMgOを主体とする焼鈍分離剤を塗布し、仕上焼鈍する一連の工程からなる方向性電磁鋼板の製造方法において、上記中間焼鈍の加熱過程における700−900℃間の平均昇温速度を10℃/s以下、かつ、均熱過程の雰囲気の酸素ポテンシャル(PH2O/PH2)を0.20〜0.80の範囲とし、上記脱炭焼鈍の加熱過程における酸素ポテンシャル(PH2O/PH2)を0.20以上とすることを特徴する方向性電磁鋼板の製造方法を提案する。 That is, the present invention includes C: 0.002 to 0.10 mass%, Si: 2.5 to 6.0 mass%, Mn: 0.01 to 0.8 mass%, Al: 0.010 to 0.050 mass%, and N: 0.003 to 0.020 mass%, the remainder comprising Fe and inevitable impurities is hot-rolled, hot-rolled sheet annealed, cold-rolled twice with intermediate annealing in between, and decarburized In the method of manufacturing a grain-oriented electrical steel sheet comprising a series of steps of annealing and forming a sub-scale on the steel sheet surface, then applying an annealing separator mainly composed of MgO to the steel sheet surface, and finishing annealing, heating the intermediate annealing. The average heating rate between 700-900 ° C. in the process is 10 ° C./s or less, and the oxygen potential (P H2O / P H2 ) of the soaking process atmosphere is in the range of 0.20-0.80. Addition of charcoal annealing We propose a method for producing grain-oriented electrical steel sheets, characterized in that the oxygen potential (P H2O / P H2 ) in the thermal process is 0.20 or more.
本発明の上記方向性電磁鋼板の製造方法は、上記脱炭焼鈍後の鋼板表面をグロー放電発光分析したときに得られる板厚方向のFe発光強度プロファイルが鋼板表面下にFe欠乏領域を有し、かつ、上記Fe欠乏領域のFe発光強度の最小値をImin、バルク領域のFe発光強度をImax、上記IminとImaxの間で、Fe発光強度がImin+0.5×(Imax−Imin)となるまでの分析開始からの時間をt50(s)、Fe発光強度がImin+0.95×(Imax−Imin)となるまでの分析開始からの時間をt95(s)としたとき、上記t50とt95が、
t50/t95≦0.75
の関係を満たすことを特徴とする。
In the method for producing the grain-oriented electrical steel sheet according to the present invention, the Fe emission intensity profile in the thickness direction obtained when glow discharge emission analysis is performed on the steel sheet surface after the decarburization annealing has a Fe-deficient region below the steel sheet surface. and a minimum value of Fe emission intensity of the Fe-deficient region I min, the Fe emission intensity I max of the bulk region, the I min and between the I max, Fe emission intensity I min + 0.5 × (I max -I min) become until t 50 the time from the start of analysis of (s), Fe emission intensity I min + 0.95 × (the I max -I min) and the time from the start of analysis until t 95 When (s), t 50 and t 95 are
t 50 / t 95 ≦ 0.75
It is characterized by satisfying the relationship.
また、本発明の上記方向性電磁鋼板の製造方法は、上記脱炭焼鈍の加熱過程における500−700℃間の平均昇温速度を80℃/s以上とすることを特徴とする。 Moreover, the manufacturing method of the said grain-oriented electrical steel sheet of this invention makes the average temperature increase rate between 500-700 degreeC in the heating process of the said decarburization annealing set to 80 degrees C / s or more.
また、本発明の上記方向性電磁鋼板の製造方法に用いる上記スラブは、上記成分組成に加えてさらに、S:0.002〜0.03mass%およびSe:0.002〜0.03mass%のうちから選ばれる1種または2種を含有することを特徴とする。 Moreover, in addition to the said component composition, the said slab used for the manufacturing method of the said grain-oriented electrical steel sheet of this invention is further among S: 0.002-0.03mass% and Se: 0.002-0.03mass% It contains 1 type or 2 types chosen from these.
また、本発明の上記方向性電磁鋼板の製造方法に用いる上記スラブは、上記成分組成に加えてさらに、Cr:0.01〜0.50mass%、Cu:0.01〜0.50mass%、P:0.005〜0.50mass%、Ni:0.01〜1.50mass%、Sb:0.005〜0.50mass%、Sn:0.005〜0.50mass%、Mo:0.005〜0.100mass%、B:0.0002〜0.0025mass%、Nb:0.0010〜0.0100mass%およびV:0.001〜0.01mass%のうちから選ばれる1種または2種以上を含有することを特徴とする。 Moreover, in addition to the said component composition, the said slab used for the manufacturing method of the said grain-oriented electrical steel sheet of this invention is further Cr: 0.01-0.50mass%, Cu: 0.01-0.50mass%, P : 0.005-0.50 mass%, Ni: 0.01-1.50 mass%, Sb: 0.005-0.50 mass%, Sn: 0.005-0.50 mass%, Mo: 0.005-0 100% by mass, B: 0.0002 to 0.0025 mass%, Nb: 0.0010 to 0.0100 mass% and V: 0.001 to 0.01 mass%, or one or more selected from It is characterized by that.
本発明によれば、低鉄損の方向性電磁鋼板を安定して提供することが可能となる。 ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to provide a directional electrical steel sheet with a low iron loss stably.
まず、本発明を開発する契機となった実験について説明する。
C:0.06mass%、Si:3.0mass%、Mn:0.05mass%、Al:0.020mass%およびN:0.006mass%を含有し、残部がFeおよび不可避的不純物からなる成分組成を有する鋼スラブを1400℃の温度に再加熱した後、熱間圧延して板厚2.2mmmの熱延板とし、1100℃×60秒の熱延板焼鈍を施した後、冷間圧延して板厚1.5mmとし、1100℃×80秒の中間焼鈍を施し、2回目の冷間圧延で最終板厚0.23mmの冷延板とした。
なお、上記中間焼鈍では、加熱過程における700−900℃間の平均昇温速度を1〜50℃/sの範囲で種々に変化させ、また、均熱過程の雰囲気の酸素ポテンシャルPH2O/PH2を0.001〜3.0の範囲で種々に変化させた。
次いで、上記冷延板を、酸素ポテンシャルPH2O/PH2=0.40(一定)としたH2とN2の混合湿潤雰囲気中で850℃の温度に120秒熱間保持する一次再結晶焼鈍を兼ねた脱炭焼鈍を施した。
なお、上記脱炭焼鈍では、加熱過程における500−700℃間の平均昇温速度を20℃/s(一定)とし、かつ、上記温度区間における雰囲気の酸素ポテンシャルPH2O/PH2を0.01〜1.0の範囲で種々に変化させた。
First, an experiment that triggered the development of the present invention will be described.
C: 0.06 mass%, Si: 3.0 mass%, Mn: 0.05 mass%, Al: 0.020 mass% and N: 0.006 mass%, with the balance being composed of Fe and inevitable impurities After reheating the steel slab having a temperature of 1400 ° C., it is hot-rolled to obtain a hot-rolled sheet having a thickness of 2.2 mm, subjected to hot-rolled sheet annealing of 1100 ° C. × 60 seconds, and then cold-rolled. The plate thickness was 1.5 mm, intermediate annealing was performed at 1100 ° C. for 80 seconds, and a cold rolled sheet having a final thickness of 0.23 mm was obtained by the second cold rolling.
In the intermediate annealing, the average temperature increase rate between 700 and 900 ° C. in the heating process is variously changed in the range of 1 to 50 ° C./s, and the oxygen potential P H2O / P H2 of the soaking process atmosphere. Was varied in the range of 0.001 to 3.0.
Next, the above-mentioned cold-rolled sheet is subjected to a primary recrystallization annealing in which the oxygen potential P H2O / P H2 = 0.40 (constant) is kept at a temperature of 850 ° C. for 120 seconds in a mixed wet atmosphere of H 2 and N 2 Decarburization annealing was also performed.
In the decarburization annealing, the average temperature increase rate between 500-700 ° C. in the heating process is 20 ° C./s (constant), and the oxygen potential P H2O / P H2 of the atmosphere in the temperature interval is 0.01 Various changes were made in the range of -1.0.
斯くして得た脱炭焼鈍後の鋼板の板幅中央部からサンプルを採取し、高周波グロー放電発光分析法GDSで、板厚方向のFe発光強度のプロファイルを得た。なお、上記GDS分析は、リガク製System3860を用い、放電電流:20mA、パージガスの流量:200ml/minの条件で行なった。 A sample was taken from the center of the plate width of the steel plate after decarburization annealing thus obtained, and a profile of Fe emission intensity in the plate thickness direction was obtained by high-frequency glow discharge emission analysis GDS. The GDS analysis was performed using a Rigaku System 3860 under conditions of a discharge current of 20 mA and a purge gas flow rate of 200 ml / min.
図1に、Fe発光強度プロファイルの測定結果の一例を示した。この図からわかるように、Fe発光強度は、最表面では低いが、深さが増すにつれて急激に増大して極大ピークを示した後、減少して最小値を示し、その後、徐々に増大して強度が一定のバルク領域に至る変化を示す。なお、本発明では、上記Fe発行強度の極大ピークから強度がバルク領域に至るまでのFe発光強度が低い領域を「Fe欠乏領域」と称することとする。 FIG. 1 shows an example of the measurement result of the Fe emission intensity profile. As can be seen from this figure, the Fe emission intensity is low on the outermost surface, but increases rapidly as the depth increases to show a maximum peak, then decreases to a minimum value, and then gradually increases. It shows the change to a bulk region where the intensity is constant. In the present invention, a region where the Fe emission intensity is low from the maximum peak of the Fe issue intensity to the bulk region is referred to as “Fe-deficient region”.
ここで、上記Fe発光強度プロファイルにおいて、Fe欠乏領域におけるFe発光強度の最小値をImin、バルク領域におけるFe発光強度の収束値をImaxと定義し、上記Imaxは以下のように定める。
Fe欠乏領域において、Fe発光強度がIminとなる測定開始からの時間をtmin、時間t>tminを満たす領域での時間tにおけるFe発光強度をI(t)、時間t〜t+(1/4)tminの間のFe発光強度の標準偏差をσ(t)としたとき、σ(t)/I(t)<0.01を満たす最小の時間tにおけるFe発光強度をImaxと定義する。
また、時間t>tminを満たす領域で、Fe発光強度がImin+0.50×(Imax−Imin)となる時間をt50、Imin+0.95×(Imax−Imin)となる時間をt95と規定し、両者の時間比を(t50/t95)で表すこととする。
Here, in the Fe emission intensity profile, the minimum value of the Fe emission intensity in the Fe-deficient region is defined as I min , and the convergence value of the Fe emission intensity in the bulk region is defined as I max, and the above I max is determined as follows.
In the Fe-deficient region, the time from the start of measurement at which Fe emission intensity becomes I min is t min , the Fe emission intensity at time t in the region satisfying time t> t min is I (t), and time t to t + (1 / 4) When the standard deviation of the Fe emission intensity during t min is σ (t), the Fe emission intensity at the minimum time t satisfying σ (t) / I (t) <0.01 is I max . Define.
In addition, in a region satisfying time t> t min , the time when the Fe emission intensity is I min + 0.50 × (I max −I min ) is t 50 and I min + 0.95 × (I max −I min ). the becomes time defined as t 95, and represent the time ratio of the both in the (t 50 / t 95).
次いで、上記脱炭焼鈍後の鋼板表面に、MgOを主体とする焼鈍分離剤を塗布し、乾燥した後、二次再結晶焼鈍と、1150℃で6時間保持する純化処理からなる仕上焼鈍を施した。
斯くして得た仕上焼鈍後の鋼板から試験片を採取し、JIS C2550に準拠し、磁束密度1.7T、励磁周波数50Hzにおける鉄損W17/50を測定した。
上記測定の結果を図2に示す。この図から、時間比(t50/t95)が小さくなるにつれて、鉄損W17/50が低減する傾向にあり、W17/50≦0.82W/kgの良好な鉄損が得られるのは、時間比(t50/t95)が0.75以下であることがわかる。
Next, after applying an annealing separator mainly composed of MgO to the surface of the steel sheet after the decarburization annealing and drying, a secondary recrystallization annealing and a finishing annealing consisting of a purification treatment held at 1150 ° C. for 6 hours are performed. did.
Test pieces were collected from the steel sheet after finish annealing thus obtained, and the iron loss W 17/50 at a magnetic flux density of 1.7 T and an excitation frequency of 50 Hz was measured in accordance with JIS C2550.
The result of the measurement is shown in FIG. From this figure, as the time ratio (t 50 / t 95 ) decreases, the iron loss W 17/50 tends to decrease, and a good iron loss of W 17/50 ≦ 0.82 W / kg can be obtained. Indicates that the time ratio (t 50 / t 95 ) is 0.75 or less.
時間比(t50/t95)を0.75以下に低減することで、良好な鉄損が得られる理由について、発明者らは以下のように考えている。
脱炭焼鈍板のGDS分析から得られるFe発光強度のプロファイルに存在するFe欠乏領域は、脱炭焼鈍中に鋼中のSiが内部酸化によってSiO2を主体とするサブスケールを形成したことに由来する。ここで、時間t95はサブスケールのほぼ全厚に対応し、t50はFeの欠乏量の大きさ、すなわち、SiO2が主体として存在する領域の厚さに対応すると考えることができる。
The inventors consider the reason why a good iron loss is obtained by reducing the time ratio (t 50 / t 95 ) to 0.75 or less as follows.
The Fe-deficient region in the Fe emission intensity profile obtained from the GDS analysis of the decarburized annealing plate originated from the fact that Si in the steel formed a sub-scale mainly composed of SiO 2 by internal oxidation during decarburization annealing. To do. Here, it can be considered that the time t 95 corresponds to almost the entire thickness of the subscale, and t 50 corresponds to the magnitude of Fe deficiency, that is, the thickness of the region mainly composed of SiO 2 .
そして、同一のt95に対してt50が小さいということは、同一厚みのサブスケールにおいて、SiO2が局所的に形成されている、すなわち、緻密なサブスケールが形成されているということを、逆に、t50が大きいということは、SiO2が広い領域で形成されている、すなわち、デンドライト状SiO2のように粗いサブスケールが形成されていることを示していると考えられる。
ここで、仕上焼鈍中にサブスケールを介して窒素が鋼中に侵入するのを防止し、良好な鉄損特性を得るためには、緻密なサブスケールの方が望ましい。そのため、t50/t95≦0.75となる条件で良好な鉄損が得られたと考えられる。
And, the fact that t 50 is small with respect to the same t 95 means that SiO 2 is locally formed in a sub-scale having the same thickness, that is, a dense sub-scale is formed. On the other hand, a large t 50 is considered to indicate that SiO 2 is formed in a wide region, that is, a rough subscale is formed like dendritic SiO 2 .
Here, in order to prevent nitrogen from entering the steel through the subscale during the finish annealing and to obtain good iron loss characteristics, a dense subscale is desirable. Therefore, it is considered that good iron loss was obtained under the condition of t 50 / t 95 ≦ 0.75.
次に、発明者らは、上記のような緻密なサブスケールを形成するための製造条件について検討した。
図3は、上記の実験で得られた脱炭焼鈍板の時間比(t50/t95)に及ぼす中間焼鈍の加熱過程の700−900℃間における昇温速度と、均熱過程の雰囲気の酸素ポテンシャルPH2O/PH2の影響を示したものである。この図から、中間焼鈍の雰囲気のPH2O/PH2が0.20〜0.80の範囲、かつ、700−900℃間の昇温速度が10℃/s以下の範囲で、時間比(t50/t95)が、本発明で目標としている0.75以下となることがわかる。
Next, the inventors examined production conditions for forming the above-described dense subscale.
FIG. 3 shows the heating rate between 700 and 900 ° C. in the heating process of the intermediate annealing, which affects the time ratio (t 50 / t 95 ) of the decarburized annealing plate obtained in the above experiment, and the atmosphere of the soaking process. This shows the influence of the oxygen potential P H2O / P H2 . From this figure, the range of P H2O / P H2 atmosphere for intermediate annealing is 0.20 to 0.80, and the range rate of temperature increase below 10 ° C. / s between 700-900 ° C., the time ratio (t 50 / t 95 ) is 0.75 or less, which is the target of the present invention.
また、図4は、同じく上記の実験で得られた脱炭焼鈍板の時間比(t50/t95)に及ぼす脱炭焼鈍の加熱過程における500−700℃間の雰囲気の酸素ポテンシャルPH2O/PH2の影響を示したものである。この図から、脱炭焼鈍における500−700℃間の雰囲気の酸素ポテンシャルPH2O/PH2を0.20以上とすることで、時間比(t50/t95)を本発明が目標とする0.75以下になることがわかる。
FIG. 4 shows the oxygen potential P H2O / atmosphere between 500-700 ° C. in the heating process of decarburization annealing on the time ratio (t 50 / t 95 ) of the decarburized annealing plate obtained in the same experiment. This shows the effect of PH2 . From this figure, by setting the oxygen potential P H2O / P H2 in the atmosphere between 500 and 700 ° C. in decarburization annealing to be 0.20 or more, the time ratio (t 50 / t 95 ) is the
中間焼鈍や脱炭焼鈍を上記条件にすることで、緻密なサブスケールを形成することができる理由について、発明者らは以下のように考えている。
脱炭焼鈍後に緻密なサブスケールを形成するためには、脱炭焼鈍の前に、鋼板表層にSi濃度が低下した脱珪層を形成することが望ましい。その理由は、脱珪層は、脱炭焼鈍中の内部酸化によるサブスケール形成を緩やかとし、ラメラ状の緻密なサブスケールの形成を促進するからである。そのためには、中間焼鈍時の雰囲気の酸素ポテンシャルPH2O/PH2を高めて酸化性とし、鋼板表層のSiを選択的に酸化させて脱珪層を形成することが望ましい。ただし、雰囲気の酸素ポテンシャルPH2O/PH2を高め過ぎると、中間焼鈍中にFeの酸化も促進されて外部スケールが成長するため、脱炭焼鈍時の内部酸化の妨げとなり、緻密なサブスケールが形成され難くなると考えられる。
The inventors consider the reason why a dense subscale can be formed by setting the intermediate annealing and decarburization annealing to the above-described conditions as follows.
In order to form a dense subscale after decarburization annealing, it is desirable to form a desiliconization layer having a reduced Si concentration on the steel sheet surface layer before decarburization annealing. The reason is that the desiliconized layer moderates the formation of subscales due to internal oxidation during the decarburization annealing and promotes the formation of lamella-like dense subscales. For this purpose, it is desirable to increase the oxygen potential P H2O / P H2 in the atmosphere during intermediate annealing to make it oxidizing, and selectively oxidize Si on the steel sheet surface layer to form a desiliconized layer. However, if the oxygen potential P H2O / P H2 in the atmosphere is increased too much, the oxidation of Fe is also promoted during the intermediate annealing and the external scale grows, which hinders the internal oxidation during the decarburization annealing, and the dense subscale It is thought that it becomes difficult to form.
また、脱珪反応は、700−900℃間で進行し易い。そのため、脱珪層の形成を促進して緻密なサブスケールを形成させ、仕上焼鈍中に窒素が鋼中に侵入するのを抑制するためには、上記温度区間に滞留する時間を十分に確保することが好ましいと考えられる。そのため、中間焼鈍の加熱過程における700−900℃間の平均昇温速度を10℃/s以下とすることで、脱珪が十分に進行することが可能となる。 Further, the desiliconization reaction easily proceeds between 700-900 ° C. Therefore, in order to promote the formation of the desiliconization layer to form a dense subscale and to suppress the ingress of nitrogen into the steel during the finish annealing, a sufficient time for staying in the temperature section is ensured. It is considered preferable. Therefore, desiliconization can sufficiently proceed by setting the average temperature increase rate between 700-900 ° C. in the heating process of the intermediate annealing to 10 ° C./s or less.
また、脱炭焼鈍の加熱過程における雰囲気の酸素ポテンシャルPH2O/PH2を0.20以上の酸化性とすることで、磁気特性が改善される理由については、加熱途中の酸化挙動が関係しているものと考えている。
すなわち、サブスケールの形成は、脱炭焼鈍の加熱過程における500℃以上の温度で進行するが、このとき、雰囲気の酸素ポテンシャルPH2O/PH2が十分に高いと、鋼板表層に緻密な初期酸化層が形成されて、800〜900℃程度の均熱温度での内部酸化の進行が抑制されるため、脱炭焼鈍後に緻密なサブスケールが形成される。一方、加熱過程における雰囲気の酸素ポテンシャルPH2O/PH2が低いと、緻密な初期酸化層が形成されず、均熱温度で急速に内部酸化が進行するために、デンドライト状の粗いサブスケールが形成される。
本発明は上記の新規な知見に基づき開発したものである。
The reason why the magnetic properties are improved by making the oxygen potential P H2O / P H2 of the atmosphere in the heating process of decarburization annealing more than 0.20 is related to the oxidation behavior during heating. I believe that.
That is, the formation of the subscale proceeds at a temperature of 500 ° C. or higher in the heating process of the decarburization annealing. At this time, if the oxygen potential P H2O / P H2 of the atmosphere is sufficiently high, a dense initial oxidation is performed on the steel sheet surface layer. Since a layer is formed and progress of internal oxidation at a soaking temperature of about 800 to 900 ° C. is suppressed, a dense subscale is formed after decarburization annealing. On the other hand, when the oxygen potential P H2O / P H2 of the atmosphere in the heating process is low, a dense initial oxide layer is not formed, and internal oxidation proceeds rapidly at a soaking temperature, so that a dendrite-like rough subscale is formed. Is done.
The present invention has been developed based on the above novel findings.
次に、本発明の方向性電磁鋼板の素材に用いる鋼素材(スラブ)の成分組成について説明する。
C:0.002〜0.10mass%
Cは、0.002mass%を下回ると、Cによる粒界強化効果が失われ、スラブ割れが生じるなどして、製造に支障をきたすようになる。一方、0.10mass%を超えると、脱炭焼鈍で、Cを磁気時効が起こらない0.005mass%以下に低減することが困難となる。よって、Cは0.002〜0.10mass%の範囲とする。好ましくは0.01〜0.08mass%の範囲である。
Next, the component composition of the steel material (slab) used for the material of the grain-oriented electrical steel sheet of the present invention will be described.
C: 0.002-0.10 mass%
When C is less than 0.002 mass%, the grain boundary strengthening effect due to C is lost, and slab cracking occurs, which causes problems in production. On the other hand, if it exceeds 0.10 mass%, it becomes difficult to reduce C to 0.005 mass% or less at which no magnetic aging occurs due to decarburization annealing. Therefore, C is in the range of 0.002 to 0.10 mass%. Preferably it is the range of 0.01-0.08 mass%.
Si:2.5〜6.0mass%
Siは、鋼の比抵抗を高め、鉄損を低減するのに必要な元素である。上記効果は、2.5mass%未満では十分ではなく、一方、6.0mass%を超えると、加工性が低下し、圧延して製造することが困難となる。よって、Siは2.5〜6.0mass%の範囲とする。好ましくは、2.9〜5.0mass%の範囲である。
Si: 2.5-6.0 mass%
Si is an element necessary for increasing the specific resistance of steel and reducing iron loss. If the effect is less than 2.5 mass%, it is not sufficient. On the other hand, if it exceeds 6.0 mass%, the workability deteriorates and it is difficult to roll and manufacture. Therefore, Si is set to a range of 2.5 to 6.0 mass%. Preferably, it is in the range of 2.9 to 5.0 mass%.
Mn:0.01〜0.8mass%
Mnは、鋼の熱間加工性を改善するために必要な元素である。上記効果は、0.01mass%未満では十分に得られず、一方、0.8mass%を超えると、製品板の磁束密度が低下するようになる。よって、Mnは0.01〜0.8mass%の範囲とする。好ましくは0.02〜0.50mass%の範囲である。
Mn: 0.01 to 0.8 mass%
Mn is an element necessary for improving the hot workability of steel. If the effect is less than 0.01 mass%, the effect is not sufficiently obtained. On the other hand, if it exceeds 0.8 mass%, the magnetic flux density of the product plate is lowered. Therefore, Mn is set to a range of 0.01 to 0.8 mass%. Preferably it is the range of 0.02-0.50 mass%.
Al:0.010〜0.050mass%、N:0.003〜0.020mass%
AlとNは、ともにインヒビタ形成元素として必要な元素である。いずれの元素も、上記下限値より少ないと、インヒビタ効果が十分に得られず、一方、上記上限値を超えると、固溶温度が高温化し、スラブ再加熱時に未固溶のまま残存するため、インヒビタ効果が十分に発現せずに磁気特性が劣化する。よって、Alは0.010〜0.050mass%、Nは0.003〜0.020mass%の範囲とする。好ましくは、Alは0.015〜0.035mass%、Nは0.005〜0.015mass%の範囲である。
Al: 0.010-0.050 mass%, N: 0.003-0.020 mass%
Both Al and N are elements necessary as inhibitor forming elements. If any element is less than the lower limit, the inhibitor effect cannot be sufficiently obtained.On the other hand, if the upper limit is exceeded, the solid solution temperature rises and remains undissolved during slab reheating. Inhibitor effect does not fully develop and magnetic properties deteriorate. Accordingly, Al is in the range of 0.010 to 0.050 mass%, and N is in the range of 0.003 to 0.020 mass%. Preferably, Al ranges from 0.015 to 0.035 mass%, and N ranges from 0.005 to 0.015 mass%.
なお、本発明に用いる鋼素材は、上記成分に加えてさらに、インヒビタ形成元素としてS:0.002〜0.03mass%およびSe:0.002〜0.03mass%のいずれか1種以上を含有することができる。それぞれ含有量が、上記下限値より少ないと、インヒビタ効果が十分に得られず、一方、上記上限値を超えると、固溶温度が高くなり、スラブ再加熱時に未固溶のまま残存し、磁気特性を劣化させる。 In addition to the above components, the steel material used in the present invention further contains any one or more of S: 0.002-0.03 mass% and Se: 0.002-0.03 mass% as inhibitor-forming elements. can do. If the respective contents are less than the lower limit value, the inhibitor effect cannot be sufficiently obtained.On the other hand, if the upper limit value is exceeded, the solid solution temperature becomes high, and remains undissolved during slab reheating. Degrading properties.
また、本発明に用いる鋼素材は、鉄損を低減する目的で、上記成分に加えてさらに、Cr:0.01〜0.50mass%、Cu:0.01〜0.50mass%およびP:0.005〜0.50mass%のうちから選ばれる1種または2種以上を含有することができる。それぞれの添加量が、上記下限値より少ないと、鉄損低減効果が小さく、一方、上記上限値を超えると、二次再結晶粒の発達が阻害され、却って磁気特性が低下するので、添加する場合は上記の範囲とすることが好ましい。 In addition to the above components, the steel material used in the present invention further has Cr: 0.01 to 0.50 mass%, Cu: 0.01 to 0.50 mass%, and P: 0 in addition to the above components. One or two or more selected from 0.005 to 0.50 mass% can be contained. If the amount of each additive is less than the above lower limit value, the effect of reducing iron loss is small. On the other hand, if the amount exceeds the above upper limit value, the development of secondary recrystallized grains is inhibited, and on the contrary, the magnetic properties are reduced. In such a case, the above range is preferable.
また、本発明に用いる鋼素材は、磁束密度を向上する目的で、上記成分に加えてさらに、Ni:0.01〜1.50mass%、Sb:0.005〜0.50mass%、Sn:0.005〜0.50mass%、Mo:0.005〜0.100mass%、B:0.0002〜0.0025mass%、Nb:0.0010〜0.0100mass%およびV:0.001〜0.01mass%のうちから選ばれる1種または2種以上を含有することができる。それぞれの元素の含有量が上記下限値より少ない場合には、磁束密度向上効果が小さく、一方、上記上限値を超えると、二次再結晶粒の発達が阻害され、却って磁気特性が低下するので、添加する場合は上記範囲とすることが好ましい。
Moreover, in order to improve the magnetic flux density, the steel material used in the present invention is further provided with Ni: 0.01 to 1.50 mass%, Sb: 0.005 to 0.50 mass%, and Sn: 0 in addition to the above components. 0.005-0.50 mass%, Mo: 0.005-0.100 mass%, B: 0.0002-0.0025 mass%, Nb: 0.0010-0.0100 mass%, and V: 0.001-0.01
本発明に用いる鋼素材は、上記成分以外の残部は、Feおよび不可避的不純物である。なお、本発明の効果を害しない範囲内であれば、他の成分の含有を拒むものではない。 In the steel material used in the present invention, the balance other than the above components is Fe and inevitable impurities. In addition, if it is in the range which does not impair the effect of this invention, inclusion of another component is not refused.
次に、本発明の方向性電磁鋼板の製造方法について説明する。
前述した成分組成を有する鋼を常法の精錬プロセスで溶製した後、常法の造塊−分塊圧延法または連続鋳造法で鋼素材(スラブ)を製造してもよい。あるいは、直接鋳造法で100mm以下の厚さの薄鋳片を製造してもよい。上記スラブは、常法に従い、1400℃程度の温度に再加熱した後、熱間圧延に供する。なお、薄鋳片の場合には、熱間圧延を省略してそのまま以降の工程に進めてもよい。
Next, the manufacturing method of the grain-oriented electrical steel sheet of this invention is demonstrated.
A steel material (slab) may be produced by a conventional ingot-bundling rolling method or continuous casting method after melting the steel having the above-described composition by a conventional refining process. Alternatively, a thin cast piece having a thickness of 100 mm or less may be manufactured by a direct casting method. The slab is subjected to hot rolling after reheating to a temperature of about 1400 ° C. according to a conventional method. In the case of a thin slab, the hot rolling may be omitted and the process may proceed as it is.
次いで、上記熱間圧延後の鋼板(熱延板)は、必要に応じて熱延板焼鈍を施す。この熱延板焼鈍は、良好な磁気特性を得るため、均熱温度を800〜1150℃の範囲とするのが好ましい。800℃未満では、熱間圧延で形成されたバンド組織が残留し、整粒の一次再結品組織を得ることが難しくなり、二次再結晶粒の成長が阻害される。一方、1150℃を超えると、熱延板焼鈍後の粒径が粗大化し過ぎて、やはり、整粒の一次再結晶組織を得ることが難しくなるからである。 Subsequently, the hot-rolled steel sheet (hot-rolled sheet) is subjected to hot-rolled sheet annealing as necessary. This hot-rolled sheet annealing preferably has a soaking temperature in the range of 800 to 1150 ° C. in order to obtain good magnetic properties. If it is less than 800 degreeC, the band structure | tissue formed by hot rolling will remain, it will become difficult to obtain the primary recrystallization structure | tissue of a sized particle, and the growth of a secondary recrystallized grain will be inhibited. On the other hand, when the temperature exceeds 1150 ° C., the grain size after the hot-rolled sheet annealing is excessively coarsened, so that it becomes difficult to obtain a primary recrystallized structure of sized particles.
熱間圧延後あるいは熱延板焼鈍後の鋼板は、その後、中間焼鈍を挟む2回の冷間圧延により最終板厚の冷延板とする。上記中間焼鈍の焼鈍温度は、900〜1200℃の範囲とするのが好ましい。900℃未満では、中間焼鈍後の再結品粒が細かくなり、さらに、一次再結晶後の組織におけるGoss核が減少して製品板の磁気特性が低下する。一方、1200℃を超えると、熱延板焼鈍と同様、結晶粒が粗大化し過ぎて、整粒の一次再結晶組織を得ることが難しくなる。 Thereafter, the steel sheet after hot rolling or after hot rolling sheet annealing is made into a cold rolled sheet having a final thickness by cold rolling twice with intermediate annealing. The annealing temperature of the intermediate annealing is preferably in the range of 900 to 1200 ° C. If the temperature is lower than 900 ° C., the recrystallized grains after the intermediate annealing become finer, and the Goss nuclei in the structure after the primary recrystallization are reduced to deteriorate the magnetic properties of the product plate. On the other hand, when it exceeds 1200 ° C., the crystal grains become too coarse as in the case of hot-rolled sheet annealing, and it becomes difficult to obtain a primary recrystallized structure of sized grains.
ここで、上記中間焼鈍で重要なことは、加熱過程の700−900℃間の平均昇温速度を10℃/s以下とし、かつ、焼鈍時の雰囲気の酸素ポテンシャルPH2O/PH2を0.20〜0.80の範囲(酸化性雰囲気)とする必要がある、ということである。
700−900℃間の平均昇温速度を10℃/s以下とする理由は、昇温速度が10℃/sより大きいと、脱珪が進行しやすい上記温度域での滞留時間が短くなって脱珪が不十分となり、脱炭焼鈍中に緻密なサブスケールを形成することができなくなることから、脱珪を十分に進行させるためである。好ましい昇温速度は7℃/s以下である。
Here, what is important in the intermediate annealing is that the average heating rate between 700 and 900 ° C. in the heating process is 10 ° C./s or less, and the oxygen potential P H2O / P H2 of the atmosphere at the time of annealing is 0.00. That is, it is necessary to set the range of 20 to 0.80 (oxidizing atmosphere).
The reason for setting the average temperature rising rate between 700-900 ° C. to 10 ° C./s or less is that when the temperature rising rate is higher than 10 ° C./s, the residence time in the above temperature range where desiliconization is likely to proceed is shortened. This is because desiliconization becomes insufficient, and it becomes impossible to form a dense subscale during decarburization annealing, so that desiliconization proceeds sufficiently. A preferable temperature increase rate is 7 ° C./s or less.
また、焼鈍時の雰囲気の酸素ポテンシャルPH2O/PH2を0.20〜0.80の範囲とするのは、鋼板表面に脱珪層を形成し、脱炭焼鈍時における内部酸化を緩やかに進行させることで、ラメラ状の密なサブスケールが形成するためである。PH2O/PH2が0.20未満では、脱珪が十分に進行せず、脱炭焼鈍時に緻密なサブスケールを形成することができない。一方、PH2O/PH2が0.80を超えて高くなり過ぎると、外部スケールが成長して、続く酸洗工程でのスケール除去が困難となったり、脱炭焼鈍で緻密なサブスケールを形成させたりすることが困難となる。好ましくは0.3〜0.6の範囲である。 In addition, the oxygen potential P H2O / P H2 of the atmosphere at the time of annealing is set to a range of 0.20 to 0.80 by forming a desiliconized layer on the surface of the steel sheet and gradually progressing internal oxidation at the time of decarburization annealing. This is because a lamellar dense subscale is formed. When P H2O / PH2 is less than 0.20, desiliconization does not proceed sufficiently, and a dense subscale cannot be formed during decarburization annealing. On the other hand, if P H2O / P H2 exceeds 0.80 and becomes too high, an external scale grows, making it difficult to remove the scale in the subsequent pickling process, or forming a dense subscale by decarburization annealing. It becomes difficult to let them. Preferably it is the range of 0.3-0.6.
次いで、最終板厚に圧延した冷延板は、均熱温度が700〜900℃の範囲の一次再結晶焼鈍を兼ねた脱炭焼鈍を施す。なお、鋼素材のC含有量が0.005mass%未満では、脱炭は不要であるが、サブスケールを形成させるために脱炭焼鈍を施す必要がある。
上記脱炭焼鈍の加熱過程における雰囲気は、酸素ポテンシャルPH2O/PH2が0.20以上の酸化性とする必要がある。加熱時の雰囲気を酸化性とすることで、鋼板表層に内部酸化層が形成され、この内部酸化層は、続く均熱過程における鋼板の内部酸化を急速に進行させるため、デンドライト状の粗いサブスケールが形成されるのを抑制する。PH2O/PH2が0.20未満であると、加熱過程で内部酸化層が十分に形成されないため、均熱過程で内部酸化が急速に進行し、粗いサブスケールが形成され、良好な鉄損が得られない。好ましくは0.3以上である。なお、PH2O/PH2の上限値は規定しないが、外部酸化によって鋼板表面にFeOやFe2O3などのスケールが形成されるのを防止するため、1.2以下とするのが好ましい。
Next, the cold-rolled sheet rolled to the final sheet thickness is subjected to decarburization annealing that also serves as primary recrystallization annealing in the range of a soaking temperature of 700 to 900 ° C. If the C content of the steel material is less than 0.005 mass%, decarburization is not necessary, but decarburization annealing is required to form a subscale.
The atmosphere in the heating process of the decarburization annealing needs to be oxidizable with an oxygen potential P H2O / PH2 of 0.20 or more. By making the atmosphere during heating oxidizable, an internal oxide layer is formed on the surface layer of the steel sheet, and this internal oxide layer rapidly advances the internal oxidation of the steel sheet in the subsequent soaking process. Is suppressed. If P H2O / P H2 is less than 0.20, the internal oxide layer is not sufficiently formed in the heating process, so that the internal oxidation proceeds rapidly in the soaking process, a rough subscale is formed, and good iron loss is achieved. Cannot be obtained. Preferably it is 0.3 or more. In addition, although the upper limit of P H2O / P H2 is not specified, it is preferably set to 1.2 or less in order to prevent scales such as FeO and Fe 2 O 3 from being formed on the steel sheet surface due to external oxidation.
なお、上記脱炭焼鈍における均熱過程の雰囲気の酸素ポテンシャルは、緻密なサブスケールを形成する観点から、0.2〜1.2の範囲(酸化性雰囲気)とするのが好ましい。
また、本発明に用いる鋼素材がCを0.005mass%以上含有している場合には、製品板が磁気時効を起こして磁気特性が劣化するのを防止するため、この脱炭焼鈍で脱炭し、Cを0.005mass%未満まで低減する必要がある。この脱炭処理は、700〜900℃の温度で水素窒素混合の湿潤雰囲気下で行うことが望ましく、斯かる観点からは酸素ポテンシャルPH2O/PH2は0.10〜0.70の範囲とするのが好ましい。
なお、この脱炭焼鈍は、一次再結晶焼鈍の均熱処理と兼ねて行ってもよいし、一次再結晶焼鈍と独立した工程として行っても良い。
The oxygen potential in the soaking process atmosphere in the decarburization annealing is preferably in the range of 0.2 to 1.2 (oxidizing atmosphere) from the viewpoint of forming a dense subscale.
In addition, when the steel material used in the present invention contains C in an amount of 0.005 mass% or more, the decarburization annealing is performed to prevent the product plate from being magnetically aged and deteriorating the magnetic properties. However, it is necessary to reduce C to less than 0.005 mass%. This decarburization treatment is desirably performed at a temperature of 700 to 900 ° C. in a wet atmosphere containing hydrogen and nitrogen. From this viewpoint, the oxygen potential P H2O / P H2 is set to a range of 0.10 to 0.70. Is preferred.
The decarburization annealing may be performed in combination with the soaking process of the primary recrystallization annealing, or may be performed as a process independent of the primary recrystallization annealing.
また、上記の脱炭焼鈍では、良好な磁気特性を得るためには、加熱過程の500−700℃間の平均昇温速度を80℃/s以上とするのが好ましい。500−700℃間の平均昇温速度を80℃/s以上とすることで、一次再結晶集合組織中のGoss方位が増大し、二次再結晶後の結晶粒が微細化して鉄損が改善される。より好ましくは100℃/s以上である。 In the decarburization annealing, in order to obtain good magnetic properties, it is preferable to set the average temperature increase rate between 500-700 ° C. in the heating process to 80 ° C./s or more. By setting the average temperature increase rate between 500-700 ° C. to 80 ° C./s or more, the Goss orientation in the primary recrystallization texture increases, the crystal grains after secondary recrystallization become finer, and iron loss is improved. Is done. More preferably, it is 100 ° C./s or more.
なお、脱炭焼鈍の昇温速度を高めることは、加熱過程の500−700℃間の滞留時間が短縮されるため、初期酸化層の形成には不利となるが、中間焼鈍における脱珪層の形成と、脱炭焼鈍の加熱過程の雰囲気を酸化性とすることを組み合わせることで、上記の問題点は解消される。 Increasing the rate of temperature increase in decarburization annealing is disadvantageous for the formation of the initial oxide layer because the residence time between 500-700 ° C. in the heating process is shortened. The above problem is solved by combining the formation and the oxidizing atmosphere of the heating process of decarburization annealing.
上記のようにして脱炭焼鈍した鋼板の表面下形成されたサブスケールは、GDS分析したときのFe発光強度のプロファイルにおける時間比(t50/t95)が0.75以下であること好ましい。前述したように時間比(t50/t95)は、サブスケールの粗密を表す指標であり、上記時間比が0.75より大きいと、粗いサブスケールであるため、仕上焼鈍中に窒素が鋼板中に侵入して良好な鉄損が得られなくなるからである。より好ましくは、0.72以下である。なお、上記GDS分析装置の機種は特に限定されるものではない。 The subscale formed under the surface of the steel sheet decarburized and annealed as described above preferably has a time ratio (t 50 / t 95 ) in the Fe emission intensity profile of 0.75 or less when analyzed by GDS. As described above, the time ratio (t 50 / t 95 ) is an index representing the density of the subscale. When the time ratio is greater than 0.75, the subscale is a coarse subscale. This is because good iron loss cannot be obtained due to penetration. More preferably, it is 0.72 or less. The model of the GDS analyzer is not particularly limited.
上記、脱炭焼鈍を施した鋼板は、鉄損特性やトランスの騒音を重視する場合には、MgOを主体とする焼鈍分離剤を鋼板表面に塗布、乾燥した後、仕上焼鈍を施して、Goss方位に高度に集積した二次再結晶組織を発達させるとともに、フォルステライト被膜を形成させるのが好ましい。一方、打抜加工性を重視し、フォルステライト被膜を形成させない場合には、焼鈍分離剤を適用しないか、あるいは、シリカやアルミナ等を主体とした焼鈍分離剤を用いて仕上焼鈍を施すのが好ましい。なお、フォルステライト被膜を形成させない場合には、焼鈍分離剤の塗布に、水分を持ち込まない静電塗布を用いて行うことも有効である。また、焼鈍分離剤の塗布に代えて、耐熱無機材料(シリカ、アルミナ、マイカ)のシートを、コイル巻取り時に鋼板間に巻き込んでもよい。 When the steel sheet subjected to decarburization annealing is important in terms of iron loss characteristics and transformer noise, an annealing separator mainly composed of MgO is applied to the surface of the steel sheet, dried, then subjected to finish annealing, and Goss. It is preferable to develop a secondary recrystallized structure highly accumulated in the orientation and to form a forsterite film. On the other hand, when emphasizing the punching processability and not forming the forsterite film, it is not necessary to apply an annealing separator or to perform a final annealing using an annealing separator mainly composed of silica, alumina or the like. preferable. In the case where the forsterite film is not formed, it is also effective to use an electrostatic coating that does not bring moisture into the annealing separator. Moreover, it may replace with application | coating of an annealing separator, and may wind the sheet | seat of a heat resistant inorganic material (a silica, an alumina, mica) between steel plates at the time of coil winding.
ここで、上記仕上焼鈍は、フォルステライト被膜を形成させない場合には、再結晶が起こる850〜950℃の温度域で数時間以上保持するだけで、焼鈍を完了することができる。一方、フォルステライト被膜を形成させる場合や、鉄損特性を重視し、純化処理を施す場合には、上記二次再結晶を起こさせた後、さらに、1200℃程度の温度まで昇温するのが好ましい。 Here, in the case where the forsterite film is not formed, the finish annealing can be completed only by holding for several hours or more in a temperature range of 850 to 950 ° C. where recrystallization occurs. On the other hand, when a forsterite film is formed or when iron loss characteristics are emphasized and a purification process is performed, after the secondary recrystallization is caused, the temperature is further increased to about 1200 ° C. preferable.
上記仕上焼鈍後の鋼板は、その後、水洗やブラッシング、酸洗等で、鋼板表面に付着した未反応の焼鈍分離剤を除去した後、平坦化焼鈍を施して形状矯正することが、鉄損の低減には有効である。これは、通常、仕上焼鈍はコイル状態で行うため、コイルの巻き癖が原因で、鉄損測定時に特性が劣化するのを防止するためである。 After the finish annealing, the steel sheet is then washed with water, brushed, pickled, etc. to remove unreacted annealing separator adhering to the steel sheet surface, and then flattened to correct the shape. It is effective for reduction. This is because the finish annealing is normally performed in a coil state, so that deterioration of characteristics at the time of measuring iron loss due to coil curling is prevented.
さらに、製品板の用途として、鋼板を積層して使用する場合には、上記平坦化焼鈍において、あるいは、その前工程または後工程において、鋼板表面に絶縁被膜を被成するのが有効である。特に、鉄損低減のためには、絶縁被膜として、鋼板に張力を付与する張力付与被膜を適用するのが好ましい。張力付与被膜の形成には、バインダを介して張力被膜を塗布する方法や、物理蒸着法、化学蒸着法等を用いて無機物を鋼板表層に蒸着させる方法を採用すると、被膜密着性に優れ、かつ、鉄損低減効果が大きい絶縁被膜を形成することができる。 Further, when using steel sheets in a laminated manner as an application of the product plate, it is effective to deposit an insulating film on the surface of the steel plate in the above-described flattening annealing, or in its pre-process or post-process. In particular, in order to reduce iron loss, it is preferable to apply a tension-imparting coating that imparts tension to the steel sheet as the insulating coating. For the formation of the tension-imparting film, if a method of applying a tension film through a binder, or a method of depositing an inorganic substance on the surface of a steel sheet using a physical vapor deposition method, a chemical vapor deposition method, etc., excellent film adhesion is obtained. Insulating film having a large iron loss reduction effect can be formed.
C:0.070mass%、Si:3.20mass%、Mn:0.09mass%、Al:0.025mass%およびN:0.012mass%を含有し、残部がFeおよび不可避的不純物からなる成分組成を有する鋼スラブを連続鋳造法で製造し、1420℃の温度に再加熱した後、熱間圧延して板厚2.4mmの熱延板とし、1000℃×50秒の熱延板焼鈍を施した後、冷間圧延して1.5mmの中間板厚とし、1100℃×20秒の中間焼鈍を施した後、2回目の冷間圧延して最終板厚0.23mmの冷延板とした。この際、上記中間焼鈍では、加熱過程の700−900℃間の昇温速度と、均熱過程の雰囲気の酸素ポテンシャルPH2O/PH2を種々に変化させた。
次いで、上記冷延板に、840℃の温度で100秒間脱炭を行う、一次再結晶焼鈍を兼ねた脱炭焼鈍を施した。この際、加熱過程における500−700℃間の昇温速度を種々に変化させるとともに、上記加熱過程における雰囲気の酸素ポテンシャルPH2O/PH2を種々に変化させた。なお、均熱時の雰囲気の酸素ポテンシャルPH2O/PH2は0.35とした。
C: 0.070 mass%, Si: 3.20 mass%, Mn: 0.09 mass%, Al: 0.025 mass% and N: 0.012 mass%, with the balance being composed of Fe and inevitable impurities A steel slab having a thickness of 2.4 mm was hot-rolled after being reheated to a temperature of 1420 ° C. by a continuous casting method, and subjected to hot-rolled sheet annealing at 1000 ° C. for 50 seconds. Thereafter, it was cold-rolled to an intermediate sheet thickness of 1.5 mm, subjected to intermediate annealing at 1100 ° C. × 20 seconds, and then cold-rolled for the second time to obtain a cold-rolled sheet having a final sheet thickness of 0.23 mm. At this time, in the intermediate annealing, the heating rate between 700 and 900 ° C. in the heating process and the oxygen potential P H2O / P H2 of the atmosphere in the soaking process were variously changed.
Next, the cold-rolled sheet was subjected to decarburization annealing that also served as primary recrystallization annealing, which was decarburized at a temperature of 840 ° C. for 100 seconds. At this time, the heating rate between 500-700 ° C. in the heating process was changed variously, and the oxygen potential P H2O / P H2 of the atmosphere in the heating process was changed variously. The oxygen potential P H2O / P H2 of the atmosphere during soaking was set to 0.35.
上記のようにして得た脱炭焼鈍後の鋼板の板幅中央部からサンプルを採取し、GDS分析を行い、板厚方向のFe発光強度のプロファイルを採取し、前述した方法で時間比(t50/t95)を求めた。 A sample is collected from the central part of the sheet width of the steel sheet after decarburization annealing obtained as described above, GDS analysis is performed, a profile of Fe emission intensity in the sheet thickness direction is collected, and the time ratio (t 50 / t95 ).
次いで、上記脱炭焼鈍後の鋼板表面にMgOを主体とした焼鈍分離剤を塗布、乾燥した後、二次再結晶焼鈍と1200℃×10時間の純化処理からなる仕上焼鈍を施した。なお、上記仕上焼鈍の雰囲気は、純化処理の1200℃保定時はH2、その他の昇温時(二次再結晶焼鈍を含む)および降温時はN2とした。 Next, an annealing separator mainly composed of MgO was applied to the surface of the steel sheet after the decarburization annealing and dried, and then a final annealing consisting of secondary recrystallization annealing and purification treatment at 1200 ° C. for 10 hours was performed. The atmosphere of the above-mentioned finish annealing was H 2 when the purification treatment was held at 1200 ° C., and N 2 when the temperature was raised (including secondary recrystallization annealing) and when the temperature was lowered.
上記のようにして得た仕上焼鈍後の鋼板から、鋼板幅方向に幅100mm×長さ280mmの試験片を各条件で10枚ずつ採取し、JIS C2556に記載の方法で鉄損W17/50を各試験片について測定し、平均値を求めた。
上記測定の結果を、中間焼鈍条件、脱炭焼鈍条件、時間比(t50/t95)の測定結果とともに、表1に示した。この表から、本発明に適合する条件で製造した方向性電磁鋼板は、優れた鉄損特性を有していることがわかる。
Ten test pieces each having a width of 100 mm and a length of 280 mm in the width direction of the steel plate were collected from the steel plate after finish annealing obtained as described above under each condition, and the iron loss W 17/50 was measured by the method described in JIS C2556. Was measured for each test piece, and the average value was determined.
The results of the above measurements are shown in Table 1 together with the measurement results of intermediate annealing conditions, decarburization annealing conditions, and time ratio (t 50 / t 95 ). From this table, it can be seen that the grain-oriented electrical steel sheet manufactured under conditions suitable for the present invention has excellent iron loss characteristics.
表2に記載した各種成分組成を有する鋼を溶製し、連続鋳造法で鋼スラブとした後、1400℃の温度に再加熱した後、熱間圧延して板厚2.2mmの熱延板とし、1050℃×30秒の熱延板焼鈍を施した後、冷間圧延して1.5mmの中間板厚とし、1100℃×20秒の中間焼鈍を施した。この際、上記中間焼鈍の加熱過程は、700−900℃間の昇温速度を3℃/s、均熱過程の雰囲気の酸素ポテンシャルPH2O/PH2を0.40の酸化性とした。その後、2回目の冷間圧延して最終板厚0.23mmの冷延板とした。
次いで、850℃の温度で150秒間脱炭を行う、一次再結晶焼鈍を兼ねた脱炭焼鈍を施した。この際、加熱過程における500−700℃間の昇温速度を20℃/s、100℃/sおよび200℃/sの3水準に変化させた。また、上記加熱過程における雰囲気の酸素ポテンシャルPH2O/PH2は0.40の酸化性とし、続く均熱過程における雰囲気の酸素ポテンシャルPH2O/PH2は0.40とした。
Steel having various composition described in Table 2 was melted and made into a steel slab by a continuous casting method, then reheated to a temperature of 1400 ° C., and then hot-rolled to a hot-rolled sheet having a thickness of 2.2 mm Then, after hot-rolled sheet annealing at 1050 ° C. for 30 seconds, it was cold-rolled to an intermediate sheet thickness of 1.5 mm and subjected to intermediate annealing at 1100 ° C. for 20 seconds. At this time, in the heating process of the intermediate annealing, the temperature increase rate between 700-900 ° C. was 3 ° C./s, and the oxygen potential P H2O / P H2 of the soaking process atmosphere was 0.40. Then, the cold rolling of the 2nd time was carried out, and it was set as the cold rolled sheet of final board thickness 0.23mm.
Next, decarburization annealing was performed, which also performed primary recrystallization annealing, which was decarburized at a temperature of 850 ° C. for 150 seconds. At this time, the heating rate between 500 and 700 ° C. in the heating process was changed to three levels of 20 ° C./s, 100 ° C./s and 200 ° C./s. Further, the oxygen potential P H2O / P H2 of the atmosphere in the heating process was set to 0.40 oxidizing property, and the oxygen potential P H2O / P H2 of the atmosphere in the subsequent soaking process was set to 0.40.
上記のようにして得た脱炭焼鈍後の鋼板の板幅中央部からサンプルを採取し、GDS分析を行ってFe発光強度のプロファイルを採取し、先述した方法で時間比(t50/t95)を求めたところ、いずれの鋼板も0.60〜0.70の範囲内であった。 A sample is collected from the central part of the sheet width of the steel sheet after decarburization annealing obtained as described above, GDS analysis is performed to collect a profile of Fe emission intensity, and the time ratio (t 50 / t 95 is determined by the method described above. ) Was found to be in the range of 0.60 to 0.70.
次いで、上記脱炭焼鈍後の鋼板表面にMgOを主体とした焼鈍分離剤を塗布、乾燥した後、二次再結晶焼鈍と1200℃×10時間の純化処理からなる仕上焼鈍を施した。なお、上記仕上焼鈍における雰囲気は、純化処理する1200℃保定時はH2、昇温時(二次再結晶焼鈍を含む)および降温時はN2とした。 Next, an annealing separator mainly composed of MgO was applied to the surface of the steel sheet after the decarburization annealing and dried, and then a final annealing consisting of secondary recrystallization annealing and purification treatment at 1200 ° C. for 10 hours was performed. The atmosphere in the finish annealing was H 2 at the time of maintaining at 1200 ° C. for purification, and N 2 at the time of temperature rise (including secondary recrystallization annealing) and at the time of temperature fall.
上記のようにして得た仕上焼鈍後の鋼板から、鋼板幅方向に幅100mm×長さ280mmの試験片を各条件で10枚ずつ採取し、JIS C2556に記載の方法で、それぞれの試験片の鉄損W17/50を測定し、平均値を求めた。その結果を表2に併記した。同表から、本発明に適合する成分組成の方向性電磁鋼板は、鉄損特性に優れていること、特に、脱炭焼鈍で80℃/s以上の急速加熱を行った方向性電磁鋼板は、より鉄損特性に優れていることがわかる。 Ten pieces of test pieces each having a width of 100 mm and a length of 280 mm in the width direction of the steel plate were collected from each of the steel plates after the finish annealing obtained as described above in each condition, and each test piece was subjected to the method described in JIS C2556. The iron loss W 17/50 was measured and the average value was determined. The results are also shown in Table 2. From the table, the grain-oriented electrical steel sheet having a component composition suitable for the present invention is excellent in iron loss characteristics, in particular, the grain-oriented electrical steel sheet subjected to rapid heating at 80 ° C./s or more by decarburization annealing, It can be seen that the iron loss characteristics are more excellent.
Claims (4)
上記中間焼鈍の加熱過程における700−900℃間の平均昇温速度を10℃/s以下、かつ、均熱過程の雰囲気の酸素ポテンシャル(PH2O/PH2)を0.20〜0.80の範囲とし、
上記脱炭焼鈍の加熱過程における酸素ポテンシャル(PH2O/PH2)を0.20以上とすることによって、
上記脱炭焼鈍後の鋼板表面をグロー放電発光分析したときに得られる板厚方向のFe発光強度プロファイルが鋼板表面下にFe欠乏領域を有し、かつ、上記Fe欠乏領域のFe発光強度の最小値をI min 、バルク領域のFe発光強度をI max 、上記I min とI max の間で、Fe発光強度がI min +0.5×(I max −I min )となるまでの分析開始からの時間をt 50 (s)、Fe発光強度がI min +0.95×(I max −I min )となるまでの分析開始からの時間をt 95 (s)としたとき、上記t 50 とt 95 が、
t 50 /t 95 ≦0.75
の関係を満たすようにすることを特徴する方向性電磁鋼板の製造方法。 C: 0.002-0.10 mass%, Si: 2.5-6.0 mass%, Mn: 0.01-0.8 mass%, Al: 0.010-0.050 mass%, and N: 0.003- A slab containing 0.020 mass%, the balance being Fe and inevitable impurities is hot-rolled, hot-rolled sheet annealed, cold-rolled twice with intermediate annealing, decarburized and annealed to the steel sheet surface After forming the subscale, applying an annealing separator mainly composed of MgO to the steel sheet surface, in the method for producing a grain-oriented electrical steel sheet comprising a series of steps of finish annealing,
The average heating rate between 700 and 900 ° C. in the heating process of the intermediate annealing is 10 ° C./s or less, and the oxygen potential (P H2O / P H2 ) of the atmosphere in the soaking process is 0.20 to 0.80. Range and
By setting the oxygen potential (P H2O / P H2 ) in the heating process of the decarburization annealing to 0.20 or more ,
The Fe emission intensity profile in the plate thickness direction obtained when glow discharge emission analysis of the steel sheet surface after decarburization annealing has a Fe deficient region below the steel sheet surface, and the minimum of the Fe emission intensity of the Fe deficient region The value is I min , the Fe emission intensity in the bulk region is I max , and from the start of analysis until the Fe emission intensity becomes I min + 0.5 × (I max −I min ) between the above I min and I max . When the time from the start of analysis until the time t 50 (s) and the Fe emission intensity become I min + 0.95 × (I max −I min ) is t 95 (s), the above t 50 and t 95 But,
t 50 / t 95 ≦ 0.75
A method for producing a grain-oriented electrical steel sheet characterized by satisfying the above relationship .
In addition to the above component composition, the slab further comprises Cr: 0.01 to 0.50 mass%, Cu: 0.01 to 0.50 mass%, P: 0.005 to 0.50 mass%, Ni: 0.01 -1.50 mass%, Sb: 0.005-0.50 mass%, Sn: 0.005-0.50 mass%, Mo: 0.005-0.100 mass%, B: 0.0002-0.0025 mass%, One or more types chosen from Nb: 0.0010-0.0100mass% and V: 0.001-0.01mass% are contained , The any one of Claims 1-3 characterized by the above-mentioned. The manufacturing method of the grain-oriented electrical steel sheet described in 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016000317A JP6436316B2 (en) | 2016-01-05 | 2016-01-05 | Method for producing grain-oriented electrical steel sheet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016000317A JP6436316B2 (en) | 2016-01-05 | 2016-01-05 | Method for producing grain-oriented electrical steel sheet |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017122247A JP2017122247A (en) | 2017-07-13 |
JP6436316B2 true JP6436316B2 (en) | 2018-12-12 |
Family
ID=59306819
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016000317A Active JP6436316B2 (en) | 2016-01-05 | 2016-01-05 | Method for producing grain-oriented electrical steel sheet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6436316B2 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019106976A1 (en) * | 2017-11-28 | 2019-06-06 | Jfeスチール株式会社 | Oriented electrical steel sheet and method for producing same |
JP7110642B2 (en) * | 2018-03-20 | 2022-08-02 | 日本製鉄株式会社 | Method for manufacturing grain-oriented electrical steel sheet |
US20210272728A1 (en) * | 2018-07-13 | 2021-09-02 | Nippon Steel Corporation | Grain oriented electrical steel sheet and producing method thereof |
EP3854892B1 (en) * | 2018-09-27 | 2024-06-05 | JFE Steel Corporation | Grain-oriented electrical steel sheet and method for producing same |
US11866812B2 (en) * | 2019-02-08 | 2024-01-09 | Nippon Steel Corporation | Grain oriented electrical steel sheet, forming method for insulation coating of grain oriented electrical steel sheet, and producing method for grain oriented electrical steel sheet |
JP7231888B2 (en) * | 2020-03-30 | 2023-03-02 | Jfeスチール株式会社 | Manufacturing method of grain-oriented electrical steel sheet |
CN112680656B (en) * | 2020-11-27 | 2023-04-14 | 中天钢铁集团有限公司 | Boron-containing steel for motor claw pole and low-cost smelting process thereof |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5935625A (en) * | 1982-08-18 | 1984-02-27 | Kawasaki Steel Corp | Manufacture of anisotropic silicon steel plate with high magnetic flux density and small iron loss |
JPS6096721A (en) * | 1983-10-31 | 1985-05-30 | Kawasaki Steel Corp | Manufacture of directional silicon steel sheet having very high magnetic flux density and low iron loss |
JPS61186418A (en) * | 1985-02-14 | 1986-08-20 | Kawasaki Steel Corp | Production of grain oriented silicon steel having extremely high magnetic flux density and low iron loss |
JPS6270525A (en) * | 1985-09-21 | 1987-04-01 | Nippon Steel Corp | Manufacture of grain oriented electrical sheet having good forsterite film |
JP5760504B2 (en) * | 2011-02-25 | 2015-08-12 | Jfeスチール株式会社 | Oriented electrical steel sheet and manufacturing method thereof |
JP5991484B2 (en) * | 2011-12-06 | 2016-09-14 | Jfeスチール株式会社 | Manufacturing method of low iron loss grain oriented electrical steel sheet |
-
2016
- 2016-01-05 JP JP2016000317A patent/JP6436316B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2017122247A (en) | 2017-07-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2595190C1 (en) | Method of making sheet of textured electrical steel | |
JP6436316B2 (en) | Method for producing grain-oriented electrical steel sheet | |
JP6354957B2 (en) | Oriented electrical steel sheet and manufacturing method thereof | |
KR100655678B1 (en) | Method for producing grain oriented magnetic steel sheet and grain oriented magnetic steel sheet | |
JP2002220642A (en) | Grain-oriented electromagnetic steel sheet with low iron loss and manufacturing method therefor | |
EP3144400A1 (en) | Method for producing oriented electromagnetic steel sheet | |
KR101683693B1 (en) | Method for producing grain-oriented electrical steel sheet | |
WO2017094797A1 (en) | Method for manufacturing grain-oriented electromagnetic steel sheet | |
KR102329385B1 (en) | Grain-oriented electrical steel sheet and method for producing the same | |
JP2017222898A (en) | Production method of grain oriented magnetic steel sheet | |
WO2011102456A1 (en) | Manufacturing method for grain-oriented electromagnetic steel sheet | |
JP2015200002A (en) | Method for producing grain oriented magnetic steel sheet | |
JP7063032B2 (en) | Manufacturing method of grain-oriented electrical steel sheet | |
JP6344263B2 (en) | Method for producing grain-oriented electrical steel sheet | |
JP2019099827A (en) | Manufacturing method of grain-oriented electromagnetic steel sheet | |
JP2003253341A (en) | Process for manufacturing grain-oriented magnetic steel sheet showing excellent magnetic property | |
JPWO2019131853A1 (en) | Low iron loss grain-oriented electrical steel sheet and its manufacturing method | |
JP5854234B2 (en) | Method for producing grain-oriented electrical steel sheet | |
JP7180694B2 (en) | Manufacturing method of grain-oriented electrical steel sheet | |
JP7365414B2 (en) | Grain-oriented electrical steel sheet and its manufacturing method | |
JP3743707B2 (en) | Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet | |
JP7159594B2 (en) | Manufacturing method of grain-oriented electrical steel sheet | |
JP5712652B2 (en) | Method for producing grain-oriented electrical steel sheet | |
JP5310510B2 (en) | Method for producing grain-oriented electrical steel sheet | |
JPH11241120A (en) | Production of grain-oriented silicon steel sheet having uniform forsterite film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20170824 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20180717 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20180801 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180925 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20181017 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20181030 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6436316 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |