JP2009069366A - Display device and method of manufacturing the same - Google Patents
Display device and method of manufacturing the same Download PDFInfo
- Publication number
- JP2009069366A JP2009069366A JP2007236434A JP2007236434A JP2009069366A JP 2009069366 A JP2009069366 A JP 2009069366A JP 2007236434 A JP2007236434 A JP 2007236434A JP 2007236434 A JP2007236434 A JP 2007236434A JP 2009069366 A JP2009069366 A JP 2009069366A
- Authority
- JP
- Japan
- Prior art keywords
- display device
- electrode
- particles
- color
- cell
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
Abstract
Description
少なくとも1方は透明な基板間に、帯電した微粒子が液体、液晶またはガス媒体中に分散された分散系が挟まれてセルを構成しており、該微粒子を横電界で移動させて、分散状態の該微粒子の量を変調することによって該セルの基板に垂直方向の光透過性を変化させる横電界粒子移動型表示装置において、電界を印加するために網状駆動電極と共通電極が設けられており、該網状駆動電極の上下方向両面および/ないし左右方向両面に堆積するように構成されていることを特徴とした表示装置であって、高精細小型パネルをライトバルブとした拡大投射表示、小型からメートルサイズの直視型表示装置、薄型フレキシブルな白黒およびフルカラー電子ペーパ表示、基本セルないし基本パネルを2次元状に多数配列した数10メートルを超える超大型表示装置まで広範囲の表示サイズに適用でき、また反射専用、透過専用あるいは反射、透過両用に適用可能な表示装置とその製造法に関するものである。 At least one of them forms a cell by sandwiching a dispersion system in which charged fine particles are dispersed in a liquid, liquid crystal, or gas medium between transparent substrates, and the fine particles are moved by a transverse electric field to form a dispersed state. In a horizontal electric field particle movement type display device that changes the light transmittance in the vertical direction to the substrate of the cell by modulating the amount of the fine particles, a mesh drive electrode and a common electrode are provided for applying an electric field. The display device is configured to be deposited on both the upper and lower surfaces and / or the left and right surfaces of the mesh drive electrode, and is an enlarged projection display using a high-definition small panel as a light valve. Meter-size direct-view display, thin flexible black-and-white and full-color electronic paper display, more than a few tens of meters with two-dimensional array of basic cells or basic panels Applicable to a wide range of display sizes to large display devices, also reflection only, transmission only, or reflective, to a display device and its manufacturing method applicable to transflective.
従来の薄型表示装置の代表は液晶表示装置であり、モノクロはじめ赤(R)、緑(G)、青(B)の3色カラーフィルタを設けてそれに対応した液晶層を、透過率を変化させるシャッターとして動作させ、R,G,B光の加色法によってフルカラーを実現している。背後に白色バックライトが設けられたものは透過型カラー液晶装置であり、液晶TV、パソコンモニター、携帯電話の表示装置など広く利用されている。しかるに液晶表示装置の重大なる難点の1つは偏光板を用いることによる50%を超える光ロスである。 A typical thin display device is a liquid crystal display device, which is provided with a three-color filter of monochrome, red (R), green (G), and blue (B), and changes the transmittance of the corresponding liquid crystal layer. It is operated as a shutter, and a full color is realized by a color adding method of R, G, B light. A transmissive color liquid crystal device provided with a white backlight behind is widely used for liquid crystal TVs, personal computer monitors, mobile phone display devices, and the like. However, one of the serious difficulties of the liquid crystal display device is an optical loss exceeding 50% due to the use of the polarizing plate.
他の表示装置として透明液体ないしガス体に分散された微粒子を表示面に対して水平方向に移動集積させることによって光線透過性を変化させる横電界粒子移動型表示法が提案されている(特許文献1〜13)。
その構成は図1(A),(B)に示す通り、透明カウンター電極3を設けた透明基板1と、コレクト電極4を設けた基板2との間に微粒子分散系が挟まれており、電極3と電極4間に電圧を印加して粒子をカウンター電極3上に堆積させるか、面積の小さいコレクト電極4上に集積させるかによってセルの光透過率を変えることを特徴としている。すなわち微粒子が黒色光吸収性の場合(A)で暗状態、(B)で明状態になる。図1(C),(D)は透明カウンター電極3がコレクト電極4と同一面上に形成されている場合であり、動作は(A)、(B)と同じである。
As another display device, there has been proposed a horizontal electric field particle movement display method in which light transmittance is changed by moving and accumulating fine particles dispersed in a transparent liquid or gas body in a horizontal direction with respect to a display surface (Patent Document). 1-13).
As shown in FIGS. 1A and 1B, a fine particle dispersion system is sandwiched between a transparent substrate 1 provided with a transparent counter electrode 3 and a substrate 2 provided with a collect electrode 4. The light transmittance of the cell is changed depending on whether particles are deposited on the counter electrode 3 by applying a voltage between the electrode 3 and the electrode 4 or accumulated on the collect electrode 4 having a small area. That is, when the fine particles are black light-absorbing, the dark state is obtained in (A) and the light state is obtained in (B). FIGS. 1C and 1D show a case where the transparent counter electrode 3 is formed on the same plane as the collect electrode 4, and the operation is the same as (A) and (B).
他の構成は図2に示されている。ここではコレクト電極4が網目状電極よりなり、粒子を透明カウンター電極3上に堆積させるかないしは粒子分散状態で暗状態、網目状コレクト電極4上に堆積させた時明状態となる。 Another configuration is shown in FIG. Here, the collect electrode 4 is formed of a mesh electrode, and the particles are deposited on the transparent counter electrode 3, or in a dark state when dispersed, and in a bright state when deposited on the mesh collect electrode 4.
図1および図2の如き電極構成及び表示モードでは駆動電圧の上昇、応答速度の低下を来たすという重大な問題を抱えていた。更に電子シャッターとして最重要な光線透過率、光線遮断率についても十分考慮されていなかった。従来の図1の構成では両端のコレクト電極4の中間辺り(すなわちセル中央部)にある粒子は電界が弱い上に、明暗時にこれらの粒子をコレクト電極上ないしカウンター電極中央部までもたらすには長い距離を移動させる必要があり、明、暗の切替時間(応答速度)が極端に悪化する問題があった。また不均一電界中で面積の大きいベタ透明カウンター電極上に粒子を均一に堆積させることが困難であるため、コントラストに優れた表示を実現することが難かしかった。
図2の如き電極構成及び表示モードでは確かに画素面内で電界強度を均一化した点で優れている。また暗状態を必ずしも粒子をカウンター電極に集積した状態ではなく、粒子がほぼ均一に分散した状態を用いていることも応答性改善に繋がる。しかしながら分散粒子量、電極構成、コレクト電極幅、電極ピッチ、セル厚等について実用面からの検討がなされておらず、高コントラスト、高透過率、低電圧駆動、高速応答を実現する条件も提示されていなかったために実用性に乏しいものであった。
The electrode configuration and display mode as shown in FIG. 2 are excellent in that the electric field strength is surely made uniform in the pixel plane. In addition, the use of a state in which particles are not uniformly accumulated on the counter electrode but a state in which particles are dispersed substantially uniformly is also used for improving the responsiveness. However, there has been no practical study on the amount of dispersed particles, electrode configuration, collect electrode width, electrode pitch, cell thickness, etc., and conditions for achieving high contrast, high transmittance, low voltage drive, and high-speed response are also presented. It was not practical because it was not.
表示装置では応答速度は早いことが望ましい。粒子移動表示法の場合実用的な応答速度を実現するには通常0.2〜2V/μm程度の電界強度が必要である。表示装置の画素は用途によって種々のサイズが存在する。拡大投射に用いるライトバルブでは小型、高精細が要求されるから画素サイズは10μm以下の場合もある。一方屋内外に設置される公衆ディスプレイではセンチメートルオーダの画素になる場合もある。本願では粒子ディスプレイをあらゆるサイズの画素に適用し、尚且つ実用的な駆動電圧で透過率、コントラスト、応答速度等ディスプレイとしての重要な特性を最適化することによって実用性を向上させたものである。 It is desirable for the display device to have a high response speed. In the case of the particle movement display method, an electric field strength of about 0.2 to 2 V / μm is usually required to realize a practical response speed. There are various sizes of pixels of a display device depending on applications. Since the light valve used for enlarged projection requires small size and high definition, the pixel size may be 10 μm or less. On the other hand, in a public display installed indoors or outdoors, there are cases where the pixels are in the order of centimeters. In this application, the particle display is applied to pixels of all sizes, and the practical characteristics are improved by optimizing important characteristics as a display such as transmittance, contrast, and response speed with a practical driving voltage. .
上記課題を解決するために、本発明は従来同様横電界を用いる粒子移動表示法であるが、応答速度を向上させ、駆動電圧を低減させると共に特に透過率とコントラストを向上させる新規なセル構成を提案するものであり、発明者の特願2007−506602の改良に関するものである。 In order to solve the above-mentioned problems, the present invention is a particle movement display method using a horizontal electric field as in the prior art, but it has a novel cell configuration that improves the response speed, reduces the driving voltage, and particularly improves the transmittance and contrast. This is a proposal and relates to the improvement of the inventor's Japanese Patent Application No. 2007-506602.
本発明の基本セルの構成は図3(A)に示す通り、ガラス、プラスチックなど少なくとも一方は透明な2枚の基板1,2間に設けられた隔壁20によりセル8が構成され、該セル内には透明媒体に微粒子5が分散された分散系7が充填されており、細線からなる一対の電極6−1、6−2が基板に接することなく基板1,2間に介在され、セルの全面に設けられてセル8が構成されている。
図3(A)のようにセル8中にカーボンブラックなどの黒色光吸収性の微粒子5が均一に分散された状態では透明基板2から入射した光は、微粒子5の隠ぺい力が十分ならば黒色となる。
As shown in FIG. 3A, the basic cell of the present invention has a cell 8 constituted by a partition wall 20 provided between two substrates 1 and 2 that are transparent at least one of glass, plastic and the like. Is filled with a dispersion system 7 in which fine particles 5 are dispersed in a transparent medium, and a pair of electrodes 6-1 and 6-2 made of fine wires are interposed between the substrates 1 and 2 without contacting the substrate, A cell 8 is formed on the entire surface.
As shown in FIG. 3A, when black light-absorbing fine particles 5 such as carbon black are uniformly dispersed in the cell 8, the light incident from the transparent substrate 2 is black if the hiding power of the fine particles 5 is sufficient. It becomes.
図3(B)のように電極6−1と6−2間にDC電圧を印加すれば、主として電極6−1,6−2で形成される電気力線に沿って微粒子5が移動し、正に帯電している場合負極の電極6−1の周りに集積する。電極6−2に透明なものを用いておれば、粒子が集積した線状電極6−1以外の領域は光を遮るものがなく透明となる。ここで6−1、6−2間に逆極性の適切なDC電圧パルスないしAC電圧を印加すれば6−1上の微粒子は電極を離れてセル8中に拡散分布し、セル8は再び不透明となる。このようにセル8内の分散状態の粒子量(したがって6−1へ集積させる粒子量)を変えることによってセル8の基板に垂直方向の透過率を連続的に変化でき集積状態の粒子は電圧を切って後もその状態を維持するため表示はメモリ性を有する。分散系7は透明な液体、透明液晶体、ガス体中に正または負に帯電した微粒子が分散されたものから成り、分散媒が液体や液晶の場合は粒子の移動は電気泳動と呼ばれる。電極6−1、6−2の形状は図4に示すように、櫛型、渦型、網目状など種々の形が用いられるがいずれも細線から構成されていることが共通している。細線の断面は短形、板状、楕円状など種々の形状が可能であり、平面形状は短形、円形、六角形など任意である。 If a DC voltage is applied between the electrodes 6-1 and 6-2 as shown in FIG. 3B, the fine particles 5 move mainly along the lines of electric force formed by the electrodes 6-1 and 6-2, When positively charged, it accumulates around the negative electrode 6-1. If a transparent material is used for the electrode 6-2, the region other than the linear electrode 6-1 on which particles are accumulated is transparent without any light blocking. Here, if an appropriate DC voltage pulse or AC voltage having a reverse polarity is applied between 6-1 and 6-2, the fine particles on 6-1 leave the electrode and diffuse in the cell 8, and the cell 8 becomes opaque again. It becomes. In this way, by changing the amount of dispersed particles in the cell 8 (and hence the amount of particles accumulated in the 6-1), the transmittance in the direction perpendicular to the substrate of the cell 8 can be continuously changed. The display has a memory property in order to maintain the state after being cut. The dispersion system 7 includes a transparent liquid, a transparent liquid crystal body, and a gas body in which positively or negatively charged fine particles are dispersed. When the dispersion medium is a liquid or liquid crystal, the movement of the particles is called electrophoresis. As shown in FIG. 4, the electrodes 6-1 and 6-2 have various shapes such as a comb shape, a vortex shape, and a mesh shape. The cross-section of the thin wire can be various shapes such as a short shape, a plate shape, and an oval shape, and the planar shape is arbitrary such as a short shape, a circle shape, and a hexagon shape.
本発明では粒子を集積する電極6−1を駆動電極、他方の電極6−2を共通電極と呼ぶ。細線状の駆動電極がセル全面に存在し、共通電極6−2との間の強いエッジ電界で粒子は集積、分散を繰り返すことが出来る。勿論粒子は両電極で形成される垂直電界と水平電界の合成で集積、分散を果たすが、水平電界成分が不可欠であるため従来の垂直電界型粒子移動表示法と区別するために便宜上本願の粒子移動型表示法を水平(横)電界型粒子移動表示法と名づけている。電極間ピッチを適切に選べば、セルの周辺のみに電極を設けた図1の場合に較べて特に画素が大きくなった場合応答速度が向上する。また粒子を移動させる電界強度は6−1と6−2の電極間距離、駆動電圧で決まるからセルサイズに拘わらず低電圧でも十分な電界を作用させることが可能になり、低電圧駆動で高速応答を実現できることになる。本願は粒子を堆積させる駆動電極を基板表面に設けずに基板間に設けたことによって粒子は駆動電極の表裏両面および/ないしは左右両面に付着することが可能となったため、粒子集積状態(明状態)で光を遮蔽する駆動電極部の光線遮断断面積を減じ、セルの光透過率を向上させたことを特徴としている。 In the present invention, the electrode 6-1 for accumulating particles is called a drive electrode, and the other electrode 6-2 is called a common electrode. Thin line-like driving electrodes are present on the entire surface of the cell, and particles can be repeatedly accumulated and dispersed by a strong edge electric field between the common electrodes 6-2. Of course, the particles are accumulated and dispersed by the synthesis of the vertical and horizontal electric fields formed by both electrodes. However, since the horizontal electric field component is indispensable, the particles of the present application are used for convenience to distinguish them from the conventional vertical electric field type particle movement display method. The moving display method is named the horizontal (lateral) electric field type particle movement display method. If the pitch between the electrodes is appropriately selected, the response speed is improved particularly when the pixels are larger than in the case of FIG. 1 in which electrodes are provided only in the periphery of the cell. In addition, since the electric field strength for moving the particles is determined by the distance between the electrodes 6-1 and 6-2 and the driving voltage, a sufficient electric field can be applied even at a low voltage regardless of the cell size. A response can be realized. In this application, since the drive electrode for depositing particles is not provided on the surface of the substrate but is provided between the substrates, the particles can adhere to both the front and back surfaces and / or the left and right surfaces. ), The light blocking cross-sectional area of the drive electrode portion for shielding light is reduced, and the light transmittance of the cell is improved.
細線状の網状電極はアルミ、クロム、金、タンタルなどの金属やITO(インジウム錫酸化物)などを蒸着やスパッタで設けてフォト処理でパタン化した薄膜や、電鋳で設けた細線、導電性塗料を印刷、インクジェット描画などで設けた導電性厚膜などが利用できる。 The thin wire mesh electrode is a thin film formed by vapor deposition or sputtering of metal such as aluminum, chromium, gold, tantalum, etc., ITO (Indium Tin Oxide), etc., and patterned by photo treatment, thin wire provided by electroforming, conductivity A conductive thick film provided with a paint by printing, ink jet drawing or the like can be used.
図3では粒子は正か負の単一極性のものを用いるとして説明した。確かに従来の図1の構成では粒子は単一極性でないと満足な明透過率および表示コントラストが得られないことは明白であり、単粒子系の使用が必須条件であった。しかるに図3の構成で粒子の分散状態を暗状態とする本願の場合、正負粒子が混在した双極性分散系が有効に利用できる。すなはち明状態で正負粒子は電極6−1、6−2両方の特に上下面に多量に堆積し、幅の狭い電極を適切なピッチで設け、細線電極に粒子を十分に厚く堆積すれば透過率の高い明状態を実現できる。双極性分散系を用いる場合は共通電極6−2も透明なものを用いる必要がなく電極材料の選択自由度が増す。(0010)で粒子を集積する電極を駆動電極と定義した。これはあくまでも正しいが共通電極も粒子を集積する場合もあることは注意すべきで、この場合は共通電極も駆動電極となる。 In FIG. 3, it is assumed that the particles have positive or negative single polarity. Certainly, in the conventional configuration shown in FIG. 1, it is clear that satisfactory bright transmittance and display contrast cannot be obtained unless the particles have a single polarity, and the use of a single particle system was an essential condition. However, in the case of the present application in which the particle dispersion state is the dark state with the configuration of FIG. 3, a bipolar dispersion system in which positive and negative particles are mixed can be used effectively. In other words, in a bright state, a large amount of positive and negative particles are deposited on both the upper and lower surfaces of both the electrodes 6-1 and 6-2, a narrow electrode is provided at an appropriate pitch, and the particles are deposited sufficiently thick on the thin wire electrode. A bright state with high transmittance can be realized. When the bipolar dispersion system is used, it is not necessary to use a transparent common electrode 6-2, and the degree of freedom in selecting an electrode material is increased. In (0010), an electrode for accumulating particles was defined as a drive electrode. It should be noted that although this is just correct, the common electrode may accumulate particles, and in this case, the common electrode also serves as the drive electrode.
図3のように網状電極を基板間に設けるには一例として図5に示すように基板2に金属ないしITOなど電極6を成膜(A)、図4に示すような網状にパタン化(6−1,6−2の材料が異なる場合は再度成膜&パタン化)して基板2上に網状電極対を形成(B)、ついでセル単位で網状電極部の下部をエッチングで掘り下げる(C)、高さがセルギャップdの約1/2の隔壁を設けた他方の基板1と位置合わせしてこの間に粒子分散系を挟み込んで図3の如きセル(D)が形成できる。ただし網状電極の支えは画素周辺の隔壁部のみであるから画素サイズに応じて十分な強度を確保する必要がある。図3の網状駆動電極に粒子を細幅で厚くおよび/ないしギャップ方向に広面積に薄く粒子を堆積した時、堆積時の透過率向上にはより有利になる。勿論電極形成の容易さから後に述べるスペクト比の小さな断面形状の駆動電極、共通電極を基板1、2のいずれかに直接設けてもよい。 For example, in order to provide a mesh electrode between the substrates as shown in FIG. 3, an electrode 6 such as metal or ITO is formed on the substrate 2 as shown in FIG. 5 (A) and patterned into a mesh as shown in FIG. When the materials of -1,6-2 are different, film formation and patterning are performed again to form a mesh electrode pair on the substrate 2 (B), and then the lower part of the mesh electrode portion is etched by cell (C). A cell (D) as shown in FIG. 3 can be formed by aligning with the other substrate 1 provided with a partition wall having a height of about ½ of the cell gap d and sandwiching the particle dispersion system therebetween. However, since the mesh electrode is supported only by the partition wall around the pixel, it is necessary to ensure sufficient strength according to the pixel size. When the particles are deposited on the mesh drive electrode of FIG. 3 to be thin and thick and / or thin in a wide area in the gap direction, it is more advantageous for improving the transmittance at the time of deposition. Of course, for ease of electrode formation, a drive electrode and a common electrode having a small cross-sectional shape, which will be described later, may be directly provided on either of the substrates 1 and 2.
図6には図3の如きセルを形成する他の方法について示す。図6(A)はあらかじめフォトエッチングやマイクロエンボスによってセル状に窪みを設けた基板2を用いるものであり、図6(B)は基板2上に格子状の隔壁20を印刷、成膜とフォトエッチなどによって形成したものである。図6(A),(B)の隔壁に図4に示すような網状電極対シートを貼り付ければ一気に図5(C)の状態を実現できる。あとは図5(D)と同様に図6(A),(B)状に構成された基板1との間に分散系7を封入して表示シートを構成できる。網状電極対シートはあらかじめ補助基板上に形成したものを図6のような窪みを設けた基板2に転写して形成してもよい。 FIG. 6 shows another method for forming the cell as shown in FIG. 6A uses the substrate 2 in which depressions are formed in a cell shape by photoetching or microembossing in advance, and FIG. 6B prints a grid-like partition wall 20 on the substrate 2 to form a film and photo It is formed by etching or the like. If a mesh electrode pair sheet as shown in FIG. 4 is attached to the partition walls shown in FIGS. 6A and 6B, the state shown in FIG. 5C can be realized at once. After that, similarly to FIG. 5D, the display system can be configured by enclosing the dispersion system 7 between the substrate 1 configured in FIGS. 6A and 6B. The mesh electrode pair sheet may be formed by transferring what is previously formed on the auxiliary substrate to the substrate 2 provided with the depressions as shown in FIG.
微粒子を駆動電極に集積した時共通電極表面や上下基板内面に固着して残存することはセルの明状態の光透過性を阻害するゆえに好ましくない。従ってセルのこの部分には微粒子の固着を妨げるようフッ素化合物などの低表面張力物質のコーティングあるいは粒子の帯電と同極性に帯電するような表面処理がなされていることが望ましい。また分散媒が液体の場合は微粒子と液体の比重は出来るだけ近接していることが粒子の沈降や浮上を生じさせにくいことから望ましい。 When the fine particles are integrated on the drive electrode, it is not preferable that the fine particles remain firmly attached to the surface of the common electrode or the inner surfaces of the upper and lower substrates because the light transmittance in the bright state of the cell is inhibited. Therefore, it is desirable that this portion of the cell is coated with a low surface tension substance such as a fluorine compound or surface treatment so as to be charged with the same polarity as the charged particles so as to prevent the fine particles from sticking. Further, when the dispersion medium is a liquid, it is desirable that the specific gravity of the fine particles and the liquid be as close as possible because it is difficult for the particles to settle or float.
本発明で暗状態を作り出す粒子分散状態とはブラウン運動により比重差に拘わらず液体中に安定に微粒子が均一分散したコロイド状態は勿論、基板1,2内面のいずれかないし両面に一部ないし殆どの粒子がゆるく付着した状態、粒子が互いにゆるく凝集し、両基板間に3次元網目構造を形成している状態も含むものである。また微粒子は1種類である必要はなく、光学的特性を最適化するため各種のものが混在していてもよい。 In the present invention, the particle dispersion state that creates a dark state is a colloid state in which fine particles are stably dispersed uniformly in the liquid regardless of the specific gravity due to Brownian motion. In which the particles are loosely adhered, and the particles are loosely aggregated with each other to form a three-dimensional network structure between the two substrates. The fine particles need not be of one type, and various types of fine particles may be mixed in order to optimize the optical characteristics.
微粒子5は通常光吸収性のものが使用されるが、二酸化チタンのように白色反射性のものを用いることも可能である。粒子に白色反射性のものを用いた反射型表示装置の場合、セル8の背面基板2側をたとえば黒色にしておけば、微粒子分散状態で明状態、電極に粒子を集積した状態で暗状態となる。粒子が隠蔽性の高い有色粒子の場合、粒子分散状態で粒子の色、基板2ないし透明基板2の下部を粒子と異なる対比色にしておけば電極への粒子集積状態での反射色はほぼ対比色となる。 The fine particles 5 are usually light-absorbing, but it is also possible to use white reflective ones such as titanium dioxide. In the case of a reflective display device using white reflective particles, if the back substrate 2 side of the cell 8 is black, for example, a bright state in a fine particle dispersed state and a dark state in a state where particles are accumulated on an electrode. Become. If the particles are colored particles with high hiding properties, the color of the particles in the dispersed state and the reflection color in the state of particle accumulation on the electrode are almost comparable if the lower part of the substrate 2 or the transparent substrate 2 is different from the particles. Become a color.
本願の如き受動型表示装置では表示性能を決するものは、透過率、コントラスト、色純度、応答速度、解像度、視野角などであり、装置としては駆動電圧、消費電力も重要な要素となる。
図3の如き表示装置で透過コントラストは粒子分散状態(暗)の透過率と粒子集積状態(明)の透過率で決定される。特に十分な暗状態を作り出すことがコントラスト向上には必須用件となる。コントラスト1000:1、100:1、10:1以上を実現するにはセルの粒子分散状態での透過率は各々0.1%(光学濃度3以上)、1%(光学濃度2以上)、10%未満(光学濃度1以上)である必要がある。本願のセル構成では分散系の粒子濃度を増せば分散状態の透過率を上記値にすることは極めて容易である。しかし粒子濃度を増すと一般に粒子の移動速度が遅くなる、明状態の透過率が悪化しやすいなどの障害が発生するから不必要に粒子濃度を上げるのは得策ではない。
In a passive display device such as the present application, what determines display performance is transmittance, contrast, color purity, response speed, resolution, viewing angle, and the like, and driving voltage and power consumption are also important factors for the device.
In the display device as shown in FIG. 3, the transmission contrast is determined by the transmittance in the particle dispersion state (dark) and the transmittance in the particle accumulation state (bright). In particular, creating a sufficiently dark state is an essential requirement for improving contrast. In order to achieve a contrast of 1000: 1, 100: 1, 10: 1 or more, the transmittance in the particle dispersion state of the cell is 0.1% (optical density 3 or higher), 1% (optical density 2 or higher), 10 % (Optical density of 1 or more). In the cell configuration of the present application, it is very easy to set the transmittance in the dispersed state to the above value by increasing the particle concentration of the dispersed system. However, increasing the particle concentration generally causes problems such as slowing of the moving speed of the particles and easy deterioration of the light transmittance, so it is not a good idea to increase the particle concentration unnecessarily.
図7を用いて本表示装置での粒子集積時の明状態でのセル透過率について述べる。十分ないんぺい性が得られる濃度に微粒子を分散させた分散系中の粒子をすべて上基板に集積したと想定(粒子が双極性であってもとにかく全粒子を片側基板に集積したと想定)しこの時の粒子層の厚みをh、画素の面積をSとする(A)。1画素の表示面から見た粒子を堆積させる電極の総面積をΔsとし、分散粒子をすべてΔsの上下に仮に短形状に集積したとした明状態では、電極上の粒子層の厚みeはh*S/Δs/2となる(B)。明状態はS−Δsを最大化すなわちΔsを最小化することで実現される。Δs/Sを駆動電極の面積率と定義する。面積率を10%、20%とすればほぼ90%、80%の透過率を実現できることになる。
しかしながらこの時のΔs上の粒子層の厚みeは各々hの5倍、2.5倍になる。すなわち極小の面積の駆動電極に出来るだけ厚く粒子を積み上げれば高透過率と高コントラストを実現できることになる。
The cell transmittance in the bright state at the time of particle accumulation in this display device will be described with reference to FIG. Assume that all the particles in a dispersion system in which fine particles are dispersed at a concentration that provides sufficient penetration are accumulated on the upper substrate (assuming that all particles are accumulated on one side substrate anyway even if the particles are bipolar). The thickness of the particle layer at this time is h, and the area of the pixel is S (A). In a bright state where the total area of the electrode on which particles are deposited as viewed from the display surface of one pixel is Δs and all the dispersed particles are accumulated in a short shape above and below Δs, the thickness e of the particle layer on the electrode is h. * S / Δs / 2 (B). The bright state is realized by maximizing S-Δs, that is, minimizing Δs. Δs / S is defined as the area ratio of the drive electrode. If the area ratio is 10% and 20%, a transmittance of about 90% and 80% can be realized.
However, the thickness e of the particle layer on Δs at this time is 5 times and 2.5 times that of h, respectively. That is, high transmittance and high contrast can be realized if particles are stacked as thick as possible on a drive electrode having a minimum area.
粒子を堆積させる駆動電極の断面形状は極めて重要である。駆動電極の断面を短形として表示面と平行方向のサイズをΔRLCx、垂直方向の厚みをΔRLCyとし、ΔRLCx/ΔRLCyをアスペクト比と名づける。図7(B)、(C)では各々ΔRLCx、ΔRLCyが基板に平行と考えている。仮にS=200μ、h=2μ、1画素内にΔRLCx=20μの駆動電極(ΔRLCy=0.2μとする。従って図7(B),(C)でのアスペクト比は各々100、0.01である)がn=2本設けてあるとすれば、図7(B)ではS×h=ΔRLCx×2×e×2より堆積粒子層厚e=5μ、粒子堆積時の画素透過率は(S−ΔRLCx×2)/SよりT=80%。一方図7(C)ではe=5μ、粒子堆積時の画素透過率は(S−(ΔRLCy+2e)×2)/SよりT=89.8%となりアスペクト比の小さい網状電極にセル厚方向に広面積に粒子を付着させることが透過率向上に有利となる。 The cross-sectional shape of the drive electrode on which the particles are deposited is extremely important. The cross section of the drive electrode is short, the size parallel to the display surface is ΔRLCx, the thickness in the vertical direction is ΔRLCy, and ΔRLCx / ΔRLCy is named the aspect ratio. 7B and 7C, ΔRLCx and ΔRLCy are considered to be parallel to the substrate, respectively. S = 200μ, h = 2μ, and ΔRLCx = 20μ drive electrode in one pixel (ΔRLCy = 0.2μ. Therefore, the aspect ratios in FIGS. 7B and 7C are 100 and 0.01, respectively. In FIG. 7 (B), the deposited particle layer thickness e = 5μ and the pixel transmittance during particle deposition is (S) in FIG. 7 (B) from S × h = ΔRLCx × 2 × e × 2. -T = 80% from ΔRLCx × 2) / S. On the other hand, in FIG. 7C, e = 5μ, and the pixel transmittance during particle deposition is T = 89.8% from (S− (ΔRLCy + 2e) × 2) / S. It is advantageous for improving the transmittance to adhere the particles to a large area.
本発明で粒子を堆積させる電極を両基板1,2に接しない構成を推奨しているのは電極の上下両面に出来るだけ厚く粒子を堆積させるか、アスペクト比の小さな駆動電極の両側面に出来るだけ広面積に粒子を集積させて粒子集積状態でのセルの透過率を向上させるためである。またhが小すなわち隠ぺい力の高い粒子を用いるほど薄い粒子層で上記高パフォーマンスが実現できることが期待できる。隠ぺい力は粒子そのものの特性は勿論、粒径が深く関与し、隠ぺい力が高くなる粒径を選ぶべきである。 In the present invention, it is recommended that the electrode for depositing particles is not in contact with both substrates 1 and 2 so that the particles can be deposited as thick as possible on both the upper and lower surfaces of the electrode, or on both sides of the drive electrode with a small aspect ratio. This is because particles are accumulated only in a wide area to improve the transmittance of the cell in the particle accumulation state. Moreover, it can be expected that the above high performance can be realized with a thin particle layer as h is small, that is, particles with high hiding power are used. The concealing force should be selected so that the particle size is deeply related and the concealing force becomes high, as well as the characteristics of the particles themselves.
極小の面積率は図4の如き細線状の電極を利用して実現でき、駆動電極幅と厚みは製造の容易さ、電極の機械的強度、信頼性および集積粒子層の安定性を考慮して最小幅で形成すべきである。線幅50μm以下、ライトバルブ等では数μm以下で用いるのが望ましい。たとえば100μm幅の画素に5μm幅の駆動電極を4本設けても面積率20%であり、電極をより細線化することによって面積率を10%以下にすることは可能である。
粒子濃度を下げれば一般に粒子の移動速度は速くなり、分散系を厚くすれば低粒子濃度(g/cm3)でも隠ぺい性を高めることができる。しかしながら電極から遠のくほど粒子に作用する電界が弱まり、かつ電極に集積するには粒子は長い距離を移動する必要があり応答が遅くなる。経験上セルギャップdは電極ピッチpの0.4〜3.0倍程度に選ぶと電界の波及性が確保され従ってオン(明)、オフ(暗)時の応答性が確保できる。
The minimum area ratio can be realized by using a thin wire electrode as shown in FIG. 4, and the drive electrode width and thickness are considered in consideration of ease of manufacture, electrode mechanical strength, reliability, and stability of the integrated particle layer. Should be formed with minimum width. It is desirable to use a line width of 50 μm or less and a light valve or the like of several μm or less. For example, even if four 5 μm wide drive electrodes are provided in a 100 μm wide pixel, the area ratio is 20%, and the area ratio can be reduced to 10% or less by making the electrodes thinner.
If the particle concentration is lowered, the particle moving speed is generally increased, and if the dispersion is thickened, the hiding property can be enhanced even at a low particle concentration (g / cm 3). However, the farther away from the electrode, the weaker the electric field acting on the particles, and in order to accumulate on the electrodes, the particles need to travel a long distance, resulting in a slower response. From experience, if the cell gap d is selected to be about 0.4 to 3.0 times the electrode pitch p, the spillability of the electric field is ensured, and therefore the response at the time of on (bright) and off (dark) can be secured.
電気泳動での粒子移動で実用的な応答性実現には先述の通り0.2〜2V/μm程度の電界強度が必要であり、画素サイズに係らずこの電界強度は確保したい。図4(A)に示す電極ピッチpを5〜100μm程度に選び、セルギャップdを電極ピッチpの0.4〜3.0倍(2μm〜300μm)にすれば、対向電極間電圧1V〜200Vで上記電界強度0.2〜2V/μmがほぼ確保できる。直視型ディスプレイに限れば電極ピッチは20〜50μm程度、セルギャップ8〜150μm、印加電圧4〜100Vが実用的である。公衆表示の超大型ディスプレイで画素が数mm〜数cmのものでも電極ピッチを上記20〜50μm程度で構成すれば十分低電圧で駆動できることになる。 As described above, an electric field strength of about 0.2 to 2 V / μm is necessary to realize a practical response by moving particles by electrophoresis, and it is desired to secure this electric field strength regardless of the pixel size. When the electrode pitch p shown in FIG. 4A is selected to be about 5 to 100 μm and the cell gap d is set to 0.4 to 3.0 times (2 μm to 300 μm) of the electrode pitch p, the voltage between the counter electrodes is 1 V to 200 V. Thus, the electric field strength of 0.2 to 2 V / μm can be almost secured. If it is limited to a direct-view display, an electrode pitch of about 20 to 50 μm, a cell gap of 8 to 150 μm, and an applied voltage of 4 to 100 V are practical. Even if it is a very large display for public display and has pixels of several mm to several centimeters, it can be driven with a sufficiently low voltage if the electrode pitch is made about 20 to 50 μm.
一方ライトバルブのような小型高精細パネルで画素サイズが10μm程度では駆動電極をセル中央に1本、共通電極を隔壁部に設けた電極ピッチ約5μmで用いればよい。
以上、電極ピッチ、セル厚は駆動電圧、応答速度に深く係り、それぞれの実用的な値を示した。
On the other hand, when the pixel size is about 10 μm in a small high-definition panel such as a light valve, it may be used at an electrode pitch of about 5 μm with one drive electrode at the center of the cell and a common electrode in the partition wall.
As described above, the electrode pitch and the cell thickness are deeply related to the driving voltage and the response speed, and show practical values of each.
ちなみに特許文献2では400μm幅の電極が1000μmの間隙で配置される実例が記載されているから櫛状電極のピッチは1400μmであり、電極の面積率=Δs/S=400/1400=28.5%となる。100μmのセルギャップに100〜300Vを印加して55%の透過率と110のコントラストが報告されている。セルギャップの電極ピッチに対する割合は100/1400=7.1%で極めて小さく帯状電極間中央部の電界は極度に弱くなってしまう。最大電界強度1〜3v/μmであるが、これはあくまでも対向している電極間の電界であって帯状電極間中央部では粒子に作用する電界は図1(A)と同様極めて低下せざるを得ず応答速度の低下をきたし電界均一化がなされているとは言い難い。また櫛形電極は基板上に設けられており、粒子を電極の両面に堆積させることが出来ず明透過率が不利にならざるを得なかった。 Incidentally, since Patent Document 2 describes an example in which electrodes having a width of 400 μm are arranged with a gap of 1000 μm, the pitch of the comb-like electrodes is 1400 μm, and the electrode area ratio = Δs / S = 400/1400 = 28.5. %. A transmittance of 55% and a contrast of 110 have been reported by applying 100 to 300 V to a cell gap of 100 μm. The ratio of the cell gap to the electrode pitch is 100/1400 = 7.1%, which is extremely small, and the electric field at the central portion between the strip electrodes is extremely weak. Although the maximum electric field strength is 1 to 3 v / μm, this is only an electric field between the electrodes facing each other, and the electric field acting on the particles in the central portion between the strip electrodes must be extremely reduced as in FIG. It is difficult to say that the response speed is lowered and the electric field is made uniform. Further, since the comb-shaped electrode is provided on the substrate, particles cannot be deposited on both surfaces of the electrode, and the light transmittance has to be disadvantageous.
以上述べた通り、駆動電圧の低減、応答速度の向上は電極ピッチとそれに対応したセル厚の設定により、透過率、コントラストの向上はΔsの低減、上下方向への粒子堆積層厚の増大、左右方向への粒子堆積面積の増大、分散粒子の選定、分散粒子量の最適化によって実現できると言える。 As described above, the drive voltage is reduced and the response speed is improved by setting the electrode pitch and the corresponding cell thickness, and the transmittance and contrast are improved by Δs, the particle deposition layer thickness is increased in the vertical direction, This can be realized by increasing the particle deposition area in the direction, selecting the dispersed particles, and optimizing the amount of dispersed particles.
本発明で用いる電極構成は図3、図4に示したものの他、種々の形式が利用可能である。図8(A)は共通電極を両基板内面に、駆動電極と対向した位置に設けた場合を示す。基板間に介在するのは共通電極だけであるから電極として図4の駆動電極形状のほか図9に示すように櫛型、渦型、網目状など種々の閉じられた形状の電極も使用できる。本願では図4、図9に示すような細線からなる面状電極を総称して網状駆動電極と名づける。駆動電極が共通電極に挟まれる構成であり、図3の場合より粒子に垂直方向の強い電界を印加でき、粒子を駆動電極両面に厚く堆積させるのに有効である。この場合共通電極は不透明であってもよい。 In addition to the electrode configurations used in the present invention shown in FIGS. 3 and 4, various types can be used. FIG. 8A shows a case where the common electrode is provided on the inner surfaces of both substrates at a position facing the drive electrode. Since only the common electrode intervenes between the substrates, electrodes of various closed shapes such as a comb shape, a vortex shape, and a mesh shape as shown in FIG. In the present application, planar electrodes made of fine wires as shown in FIGS. 4 and 9 are collectively referred to as a mesh drive electrode. The drive electrode is sandwiched between the common electrodes, and a stronger electric field in the vertical direction can be applied to the particles than in the case of FIG. 3, which is effective for depositing the particles thickly on both sides of the drive electrode. In this case, the common electrode may be opaque.
図8(B)は図8(A)の駆動電極と共通電極を半ピッチずらして構成してある。図では粒子を単一極性として示しているから共通電極は透明が望ましいが双極性粒子系を用いる場合は共通電極は不透明でよい。 FIG. 8B is configured by shifting the drive electrode and the common electrode of FIG. 8A by a half pitch. In the figure, since the particles are shown as having a single polarity, the common electrode is preferably transparent. However, when using a bipolar particle system, the common electrode may be opaque.
図8(C)は駆動電極に対応して両基板に交互に共通電極を設けたもので、やはり駆動電極の両面に粒子を堆積することが出来る。図8(C)以下では粒子の図示は省略している。本構成では双極性分散系、単極性分散系に拘わらず共通電極は不透明でよい。 In FIG. 8C, a common electrode is alternately provided on both substrates corresponding to the drive electrode, and particles can be deposited on both sides of the drive electrode. In FIG. 8C and subsequent figures, illustration of the particles is omitted. In this configuration, the common electrode may be opaque regardless of the bipolar dispersion system or the unipolar dispersion system.
図8(D)は図3の駆動電極、共通電極対を2層分散系中に内在させてもので1層目と2層目の電極配置は半ピッチずらせている。
共通電極も不透明でよく、双極性分散系を用いれば分散系内のすべての電極の上下に粒子を堆積でき、堆積層は実質的に4層になるから明状態の透過率向上に大きく寄与する。
In FIG. 8D, although the drive electrode and common electrode pair of FIG. 3 are included in the two-layer dispersion system, the electrode arrangement of the first layer and the second layer is shifted by a half pitch.
The common electrode may also be opaque, and if a bipolar dispersion system is used, particles can be deposited above and below all the electrodes in the dispersion system, and the deposited layers are substantially four layers, greatly contributing to the improvement of the transmittance in the bright state. .
図8(E)は駆動電極、共通電極共複数の電極層が分散系内に挿入されているもので、セル構成は複雑化するが等価的に狭い駆動電極に出来るだけ厚く粒子を積み上げて、明状態の透過率を向上させるのには有効な方法である。双極性分散系を用いれば実質的に堆積粒子層を8層にでき明状態の透過率を更に向上し易い。 In FIG. 8E, the drive electrode and the common electrode both have a plurality of electrode layers inserted into the dispersion system. The cell configuration is complicated, but the particles are stacked as thick as possible on the equivalently narrow drive electrode. This is an effective method for improving the transmittance in the bright state. If a bipolar dispersion system is used, the number of deposited particle layers can be substantially eight, and the transmittance in the bright state can be further improved.
図8(F)は図8(A)の共通電極の1つを透明ベタ電極に置き換えたものである。下側の共通電極は不透明でよい。図8(A)の共通電極の2つ共透明ベタ電極に置き換えた構成てもかまわない。 FIG. 8F shows one of the common electrodes in FIG. 8A replaced with a transparent solid electrode. The lower common electrode may be opaque. The configuration may be such that two of the common electrodes in FIG. 8A are replaced with a transparent solid electrode.
以上図8のすべての構成で網状駆動電極の断面はアスペクト比の小さなものを選び電極左右に広面積に粒子を堆積することによってセルの明状態の更なる透過率向上がはかれる。 In all the configurations shown in FIG. 8, the cross section of the mesh drive electrode is selected to have a small aspect ratio, and particles are deposited in a wide area on the left and right sides of the electrode, thereby further improving the transmittance in the bright state of the cell.
以上、図8の各電極構成で駆動電極、共通電極の各々が同一面上にない場合であっても隔壁内部や隔壁表面ないしパネル周辺部において互いに電気的に結合されており、セルは駆動電極、共通電極の2端子素子として動作させるよう構成されている。 As described above, even when the drive electrode and the common electrode are not on the same plane in each electrode configuration of FIG. 8, the cells are electrically coupled to each other in the partition wall surface, the partition wall surface, or the panel peripheral portion. And configured to operate as a two-terminal element of a common electrode.
本発明で共通電極がベタ電極からなる図8(F)を除き、駆動電極と共通電極の電極間ピッチPとは駆動電極と共通電極の最短距離を意味する。共通電極がベタ電極の図8(F)の場合はピッチPは駆動電極のピッチを意味する。 Except for FIG. 8F where the common electrode is a solid electrode in the present invention, the pitch P between the drive electrode and the common electrode means the shortest distance between the drive electrode and the common electrode. When the common electrode is a solid electrode in FIG. 8F, the pitch P means the pitch of the drive electrodes.
粒子の光学反射性が互いに異なりかつ帯電極性も異なる双極性分散系を用いることは垂直電界型粒子移動表示法の基本構成の1つである。
本願の横電界型表示法で有効に活用される双極性分散系では粒子の光学反射性が異なっている必要はない。共に黒色光吸収性であっても、共に白色光散乱性であってもかまわない。特に分散媒がガス体から成るエアロゾル分散系では摩擦帯電で互いに異なる帯電極性のものが混在している方が粒子の帯電安定性に優れた分散系が実現できる点で双極性分散系は好都合である。
One of the basic components of the vertical electric field type particle movement display method is to use a bipolar dispersion system in which the optical reflectivity of the particles is different from each other and the charging polarity is different.
In the bipolar dispersion system effectively used in the lateral electric field type display method of the present application, the optical reflectivity of the particles does not need to be different. Both may be black light absorbing or both may be white light scattering. In particular, in the case of an aerosol dispersion system in which the dispersion medium is composed of a gas body, a bipolar dispersion system is advantageous in that a dispersion system having different charging polarities due to triboelectric charging can be realized in that a dispersion system having excellent particle charging stability can be realized. is there.
粒子集積状態から粒子分散状態を作り出すために駆動電極と共通電極間に印加する電圧波形の例を図10に示す。分散系が単粒子系の場合粒子が駆動電極を離れる極性の適切なパルス幅の逆電圧を印加(A)。単粒子系、双粒子系に拘わらず次第に高周波化するAC電圧(B),波高値の減衰するAC電圧(C)。また(B),(C)の組み合わせも有効である。 FIG. 10 shows an example of a voltage waveform applied between the drive electrode and the common electrode in order to create a particle dispersion state from the particle accumulation state. When the dispersion system is a single particle system, a reverse voltage having an appropriate pulse width with which the particles leave the drive electrode is applied (A). An AC voltage (B) that gradually increases in frequency regardless of a single particle system or a twin particle system, and an AC voltage (C) that attenuates the peak value. A combination of (B) and (C) is also effective.
図3で粒子を隔壁20によってセル内部に閉じ込めるのは微粒子が隣のセルに移動するのを妨げ各画素内の粒子濃度を一定に維持するためである。またセルを小さく構成する限り分散媒と粒子の比重差は障害にならないというメリットも発生する。 In FIG. 3, the particles are confined inside the cell by the partition wall 20 in order to prevent the fine particles from moving to the adjacent cell and to maintain the particle concentration in each pixel constant. Further, as long as the cell is made small, there is a merit that the specific gravity difference between the dispersion medium and the particles does not become an obstacle.
基板にフィルムを用いたフレキシブルシートディスプレイの場合は特に、両基板は隔壁を通じて各々接着していることが好ましい。 Particularly in the case of a flexible sheet display using a film as a substrate, it is preferable that both substrates are bonded to each other through a partition wall.
分散系を隔壁でセル内に閉じ込める代わりに、分散系をカプセル粒子の内部に閉じ込めてもよい。図11にカプセル粒子を用いた本発明の表示装置を示す。基板2上にカプセル粒子がバインダー樹脂に分散されたインキを塗布し、表面に平滑層を塗布するなどして平滑化してのち、図4に示すような電極対を形成する。ついでカプセル粒子を塗布した基板1のカプセル粒子面をバインダー層を介して電極面に貼り付けることによって表示シートが形成される。図にはスペーサ材の図示は省略してあるが、ほぼ球状のカプセル粒子を適切なサイズのスペーサ材を用いて図のような直方体に変形させた方が開口率にすぐれた表示シートになり得る。図11の表示シートでは電極は分散系に直接接していないが、図3と同様、粒子は電極の表裏両面側に集積させまたカプセル粒子内に分散させることが出来るから表示シートの透過率を変調することが可能である。ただし電極と分散系の間にカプセル壁とバインダー樹脂層が介在することにより、電圧減衰を生じ、駆動電圧の上昇に繋がるからこれら絶縁性ないし半導電性層はできるだけ薄く保つことが望ましい。図11で上基板1を用いずに、カプセル粒子層の上に電極対を形成した段階でこの上にカプセル粒子を敷き詰め、剛体基板を被せてカプセル粒子を変形させ、UV照射や加温するなどしてバインダーを硬化してもよくその後剛体基板を剥離してもよい。最上層に保護膜を塗布すれば単一基板の表示シートが形成できる。 Instead of confining the dispersion system in the cell with the partition walls, the dispersion system may be confined inside the capsule particles. FIG. 11 shows a display device of the present invention using capsule particles. An ink in which capsule particles are dispersed in a binder resin is applied on the substrate 2 and smoothed by applying a smooth layer on the surface, and then an electrode pair as shown in FIG. 4 is formed. Next, a display sheet is formed by attaching the capsule particle surface of the substrate 1 coated with the capsule particles to the electrode surface through a binder layer. Although the illustration of the spacer material is omitted in the figure, a display sheet having a higher aperture ratio can be obtained by transforming the substantially spherical capsule particles into a rectangular parallelepiped as shown in the figure using a spacer material of an appropriate size. . In the display sheet of FIG. 11, the electrode is not in direct contact with the dispersion system, but as in FIG. 3, the particles can be accumulated on both the front and back sides of the electrode and dispersed in the capsule particles, thereby modulating the transmittance of the display sheet. Is possible. However, since the capsule wall and the binder resin layer are interposed between the electrode and the dispersion system, the voltage is attenuated and the driving voltage is increased. Therefore, it is desirable to keep these insulating or semiconductive layers as thin as possible. In FIG. 11, without using the upper substrate 1, the capsule particles are spread on the capsule particle layer at the stage where the electrode pair is formed, and the capsule particles are deformed by covering the rigid substrate, and UV irradiation or heating is performed. Then, the binder may be cured or the rigid substrate may be peeled off. If a protective film is applied to the uppermost layer, a single substrate display sheet can be formed.
カプセル粒子を用いるパネル構成は図3の構成のみでなく図9(A)〜(F)のすべての構成に適用可能であることは言うまでもない。 It goes without saying that the panel configuration using the capsule particles is applicable not only to the configuration of FIG. 3 but also to all the configurations of FIGS.
本発明でセルとは、隔壁やカプセルで分散系を閉じ込めた領域を言う。一対の電極は1つのセルに設けられる場合もあれば、多数のセルに対して1組設けられる場合もある。画素とは図4に示すような一対の電極を有する領域を言うから1個のセルの場合もあれば多数のセルから成る場合もある。 In the present invention, a cell refers to a region in which a dispersion system is confined by a partition wall or a capsule. The pair of electrodes may be provided in one cell or may be provided in one set for many cells. A pixel refers to a region having a pair of electrodes as shown in FIG. 4 and may be a single cell or a number of cells.
図3ないし図11の如きセルを3層積み重ねることによってフルカラー表示パネルを構成できる。ただし3層の微粒子5は各々C(シアン),M(マゼンタ),Y(イエロー)色のものが用いられる。図12にC,M,Yカプセル粒子系を用いるフルカラー表示パネルの断面を示す。ここでは1画素は4×4×6のカプセル粒子から構成されており、各色変調用の電極は図4に示すような面状電極対が用いられると想定している。C,Y,M粒子が適度に分散状態にあり、C粒子が電極集積状態にあれば、その部分はR(赤)、C,M粒子が適度に分散状態でY粒子が電極集積状態では同じく減法混色によりB(青)、Y,C粒子が分散状態ではG(緑)となる。勿論C粒子、M粒子、Y粒子のみ分散状態では夫々C,M,Y色となる。C,M,Yパネルに加えて、より完全に光を遮断するために白-黒に変調できる第4の色変調層が追加され4層構成をとる場合もある。またセルの積層順序は任意に選択可能である。白色バックライト13オフ、オンの状態では白色拡散板兼白色バックライトにより反射カラーパネルないし透過カラーパネルとして使用できる。マルチカラー表示では色の異なる分散系の2層構成でもかまわない。 A full-color display panel can be constructed by stacking three layers of cells as shown in FIGS. However, the three layers of fine particles 5 are C (cyan), M (magenta), and Y (yellow). FIG. 12 shows a cross section of a full-color display panel using a C, M, Y capsule particle system. Here, one pixel is composed of 4 × 4 × 6 capsule particles, and it is assumed that a pair of planar electrodes as shown in FIG. 4 is used for each color modulation electrode. If C, Y, and M particles are in a moderately dispersed state and C particles are in an electrode-integrated state, the portion is the same when R (red), C and M particles are in a moderately dispersed state, and Y particles are in an electrode-integrated state. By subtractive color mixing, B (blue), Y, and C particles become G (green) in a dispersed state. Of course, only C particles, M particles, and Y particles have C, M, and Y colors in a dispersed state, respectively. In addition to the C, M, and Y panels, a fourth color modulation layer that can be modulated to white-black in order to block light more completely may be added to form a four-layer structure. Further, the cell stacking order can be arbitrarily selected. When the white backlight 13 is turned off, it can be used as a reflective color panel or a transmissive color panel with a white diffuser and white backlight. In multi-color display, a two-layer structure of dispersed systems having different colors may be used.
図12の色変調層3層積層型表示装置では画素サイズにくらべて各色変調層の厚さが厚い場合、反射で見た時視角が制約される。図12において表示装置を反射で使用する場合下基板は白色反射板で構成される。表示装置に入射した光線のうち基板垂線からの角度θを越えた方向から見ると反射光線は3層すべてを通過していないから正しい色を見ることが出来ない。正しい色は角度θ以内に限られる。画素サイズをSとし、一般にn層積層ではq=S/(2×n×tan(θ))となる。θ=60度(tan(θ)=1.73)ではq=S/10.38より、画素サイズが0.1mm、1mmの場合q≒、9.6μm、96μm、θ=80度(tan(θ)=5.65)の時q≒2.9μm、29μmとなる。すなわち積層型反射表示装置は間に入る光変調層を極力薄くしないと視野角に優れた表示を実現することが困難になる。この点カプセル粒子を積み重ねた図12の構成のカラーパネルは、図3や図11の単色パネルを3枚積層するのに比べて間に入る基板を削減できるから視角特性上有利になる。 In the color modulation layer three-layer stacked display device of FIG. 12, when the thickness of each color modulation layer is larger than the pixel size, the viewing angle is limited when viewed in reflection. In FIG. 12, when the display device is used for reflection, the lower substrate is formed of a white reflector. When viewed from a direction exceeding the angle θ from the substrate normal among the light rays incident on the display device, the reflected light does not pass through all three layers, so that the correct color cannot be seen. The correct color is limited to an angle θ. The pixel size is S, and generally q = S / (2 × n × tan (θ)) in an n-layer stack. When θ = 60 degrees (tan (θ) = 1.73), q = S / 10.38, so that when the pixel size is 0.1 mm, 1 mm, q≈, 9.6 μm, 96 μm, θ = 80 degrees (tan (θ ) = 5.65), q≈2.9 μm and 29 μm. That is, in the multilayer reflective display device, it is difficult to realize a display with an excellent viewing angle unless the light modulation layer interposed therebetween is made as thin as possible. The color panel having the configuration shown in FIG. 12 in which the capsule particles are stacked is advantageous in view angle characteristics because the number of intervening substrates can be reduced as compared with the case where three single-color panels shown in FIGS. 3 and 11 are stacked.
セルを多数積層する表示装置において注意すべきは、界面反射である。屈折率が異なる界面では必ず界面反射が生じる。図12の積層型表示セルでは特に多数の層から成るから各層は着色粒子以外は出来るだけ透明性が高いのは勿論、分散媒、カプセル壁、バインダー樹脂、基板など屈折率のできるだけ等しい材料で構成し、不要な界面反射を軽減することが重要である。 In a display device in which a large number of cells are stacked, attention should be paid to interface reflection. Interface reflection always occurs at interfaces having different refractive indexes. In the multilayer display cell of FIG. 12, each layer is made of a material having the same refractive index as possible, such as a dispersion medium, a capsule wall, a binder resin, and a substrate, as well as being transparent as much as possible except for colored particles. It is important to reduce unnecessary interface reflection.
多数の画素から構成される表示装置の駆動法には(1)スタチック(2)単純マトリクス (3)2端子アクティブマトリクス(4)3端子アクティブマトリクス などがある。 There are (1) static (2) simple matrix (3) two-terminal active matrix (4) three-terminal active matrix and the like as driving methods for a display device composed of a large number of pixels.
図13は単純マトリクス構成のパネルを製造する工程の1例を示す。ガラス、プラスチックなどの基板2にたとえばカプセル粒子層を形成してのち、アルミ、クロム、金などの電極薄膜を蒸着やスパッタで設け、フォトエッチプロセスで図13(A)に示すように列電極Ciおよびこれに連なった駆動電極6−1を形成する。次に少なくとも列電極の所定箇所に絶縁層23を形成して後、共通電極6−2、行電極Riを形成する(B)。こうして得られた電極膜上にカプセル粒子層を形成し、この上に保護のための基板1を設けて単純マトリクス表示パネルが構成される。列電極Ciに信号を、線状共通電極Riに走査信号を加えて線順次で表示が果たされる。パネル構成が単純であるから低コストで製造できるメリットがあるが、各画素には閾値特性が要求されるため通常、表示容量の大きい用途には使えない。 FIG. 13 shows an example of a process for manufacturing a panel having a simple matrix configuration. After forming a capsule particle layer, for example, on a substrate 2 such as glass or plastic, an electrode thin film such as aluminum, chromium, or gold is provided by vapor deposition or sputtering, and a column electrode Ci as shown in FIG. And the drive electrode 6-1 connected to this is formed. Next, the insulating layer 23 is formed at least at a predetermined position of the column electrode, and then the common electrode 6-2 and the row electrode Ri are formed (B). A capsule matrix layer is formed on the electrode film thus obtained, and a protective substrate 1 is provided thereon to constitute a simple matrix display panel. A signal is applied to the column electrode Ci, and a scanning signal is applied to the linear common electrode Ri, so that display is performed in a line sequential manner. Although the panel configuration is simple, there is an advantage that it can be manufactured at a low cost. However, since each pixel is required to have a threshold characteristic, it cannot normally be used for applications with a large display capacity.
表示容量を拡大するにはアクティブマトリクス(以下AMと略称する)構成を採用する必要がある。図14は陽極酸化膜が金属電極間に挟まれたいわゆるMIM(Metal Insulator Metal)素子からなる2端子AMアレーの製造工程を示す。下基板の必要箇所にカプセル粒子層を形成、この上にアルミ、タンタルなどの金属薄膜で平行線状列電極Ciを形成して後、列電極Ciを陽極酸化して表面に酸化膜を形成(A)。ついで金属膜を蒸着ないしスパッタによって設け、たとえば櫛型駆動電極6−1を形成(B)。駆動電極と列電極が交差する領域に2端子素子21が形成される。次に列電極の、少なくとも後に行電極と交差する箇所に絶縁層23を形成して後、共通電極6−2、走査電極Riを形成(C)することによって2端子AMアレーが形成される。こうして得られた電極付き基板と他の絶縁性基板との間にカプセル粒子を挟み込んで表示パネルが構成される。MIMの代りに、電極6−1とCiの交点部に酸化亜鉛のような半導体を樹脂に分散した非直線抵抗素子を挟み込んでも2端子AMアレーを形成できる。 In order to increase the display capacity, it is necessary to adopt an active matrix (hereinafter abbreviated as AM) configuration. FIG. 14 shows a manufacturing process of a two-terminal AM array composed of a so-called MIM (Metal Insulator Metal) element in which an anodized film is sandwiched between metal electrodes. A capsule particle layer is formed in a necessary portion of the lower substrate, a parallel line column electrode Ci is formed on the metal thin film such as aluminum or tantalum, and then the column electrode Ci is anodized to form an oxide film on the surface ( A). Then, a metal film is provided by vapor deposition or sputtering to form, for example, a comb drive electrode 6-1 (B). A two-terminal element 21 is formed in a region where the drive electrode and the column electrode intersect. Next, the insulating layer 23 is formed at least at a position where the column electrode intersects the row electrode later, and then the common electrode 6-2 and the scanning electrode Ri are formed (C) to form a two-terminal AM array. A display panel is formed by sandwiching capsule particles between the substrate with electrodes thus obtained and another insulating substrate. Instead of MIM, a two-terminal AM array can also be formed by sandwiching a non-linear resistance element in which a semiconductor such as zinc oxide is dispersed in a resin at the intersection of electrodes 6-1 and Ci.
次に各画素にTFTスイッチング素子を設けたAMパネルの構成を示す。
カプセル粒子を敷き詰め表面を平滑化した基板上に図15に示すようなTFT(Thin film Transistor)3端子素子AMアレーを形成する。信号線Ciとは絶縁層で分離された駆動電極6−1はドレイン(D)電極に接続されており、ソース(S)電極は列電極Ciの1部からなり、S,D間には半導体、ゲート絶縁膜が積層されている。列電極部に層間絶縁膜を設けてのち行電極Ri(ゲート電極)を設けて3端子AMアレーが形成されている。共通電極6−2は列電極、行電極と絶縁層で隔てられて、列電極ないし行電極同様パネル全体に張り巡らされており、全画素共通の1端子としてパネル外に取り出される。こうして得られたカプセル粒子層、TFTからなるAMアレー層と透明絶縁性基板との間に更にカプセル粒子を挟み込んで表示パネルが構成される。図15ではTFTはスタッガー型で示したが、逆スタッガー型TFTも勿論可能である。勿論TFTアレーを基板2に設け、その上にカプセル粒子層を形成し、図4の如き電極対を形成して後、各画素の駆動電極をスルーホールにより対応するTFTアレーの各ドレイン電極と接続し、ついでこの上にカプセル粒子層を形成してもよい。全画素共通の共通電極電位に対して、
正ないし負電圧を列電極Ciに、ゲート電極Riに選択パルスを順次印加することによって駆動電極側に粒子を集積するか、カプセル内に粒子を分散するかを選択でき所望の画像を表示できる。
Next, a configuration of an AM panel in which each pixel is provided with a TFT switching element is shown.
A TFT (Thin Film Transistor) 3-terminal element AM array as shown in FIG. 15 is formed on a substrate on which capsule particles are spread and the surface is smoothed. The drive electrode 6-1 separated from the signal line Ci by an insulating layer is connected to a drain (D) electrode, and the source (S) electrode is a part of the column electrode Ci, and a semiconductor between S and D is a semiconductor. The gate insulating film is laminated. A three-terminal AM array is formed by providing an interlayer insulating film in the column electrode portion and then providing a row electrode Ri (gate electrode). The common electrode 6-2 is separated from the column electrode and the row electrode by an insulating layer, and extends over the entire panel like the column electrode or the row electrode, and is taken out of the panel as one terminal common to all pixels. A display panel is configured by further sandwiching capsule particles between the capsule particle layer thus obtained, the AM array layer made of TFTs, and the transparent insulating substrate. Although the TFT is shown as a staggered type in FIG. 15, an inverted staggered type TFT is of course possible. Of course, a TFT array is provided on the substrate 2, a capsule particle layer is formed thereon, an electrode pair as shown in FIG. 4 is formed, and then the drive electrode of each pixel is connected to each drain electrode of the corresponding TFT array through a through hole. Then, a capsule particle layer may be formed thereon. For the common electrode potential common to all pixels,
By sequentially applying a positive or negative voltage to the column electrode Ci and a selection pulse to the gate electrode Ri, it is possible to select whether the particles are accumulated on the drive electrode side or the particles are dispersed in the capsule, and a desired image can be displayed.
図12のような色変調層積層構成のアクティブマトリクスパネルを製造する方法として大きくは3つの方法が可能である。すなわち(1)C,M,Yカプセル粒子駆動用AMアレーはすべて基板2に形成(開口率向上のため隔壁ないしスペーサ部の下に設けられていることが望ましい)されており、(0044)で述べたように、(イ)1色目カプセル粒子層形成⇒(ロ)駆動・共通電極対形成⇒(ハ)駆動電極を下部の対応するドレイン端子とスルーホール接続⇒(ニ)1色目カプセル粒子層形成(1色目光変調層完成)というふうに残り2色についても上記(イ)〜(ニ)を繰り返すことによって図12の如きパネル構成を実現 (2)(イ)基板に1色目カプセル粒子層形成⇒(ロ)この上に1色目TFTアレー、駆動電極、共通電極形成⇒(ハ)1色目カプセル粒子層形成 以上(イ)〜(ハ)を他の色変調層で繰り返す (3)あらかじめ色粒子、TFTアレー、色粒子の3層で構成された単色アクティブマトリクスを形成した転写用剛体基板から、接着層を設けた最終基板側に順次転写して3層を積層
以上いずれの方法に於ても導体の積み上げには導体ペーストのインクジェット描画法やアディティブ法として広く用いられている電解ないし無電解メッキ法などが利用できる。
There are roughly three methods for manufacturing an active matrix panel having a color modulation layer laminated structure as shown in FIG. That is, (1) the AM array for driving C, M, Y capsule particles is all formed on the substrate 2 (preferably provided under the partition wall or spacer for improving the aperture ratio). As described, (a) formation of the first color capsule particle layer ⇒ (b) formation of the drive / common electrode pair ⇒ (c) connection of the drive electrode to the corresponding drain terminal at the bottom ⇒ (d) first color capsule particle layer The formation of the panel as shown in FIG. 12 is realized by repeating the above (a) to (d) for the remaining two colors, such as formation (completion of the first color light modulation layer). (2) (a) First color capsule particle layer on the substrate Formation ⇒ (b) First color TFT array, drive electrode, common electrode formation on this ⇒ (C) First color capsule particle layer formation Repeat steps (a) to (C) above with other color modulation layers (3) Color in advance Particle, TFT array, Three layers are laminated by transferring sequentially from the rigid substrate for transfer formed with a single color active matrix composed of three layers of colored particles to the final substrate side provided with an adhesive layer.
In any of the above methods, the conductor can be piled up by an electrolysis or electroless plating method widely used as an ink-jet drawing method or an additive method of a conductor paste.
以上述べたようなたとえば縦M画素、横N画素からなる基本パネルを縦m枚、横n枚並べることによってM×m×N×n画素からなる大型表示システムを構成することが可能である。それぞれパネル間の隙間を出来る限り狭くするよう各パネルの電極は薄いFPCなどを用いてパネル面と垂直方向にパネル背面に引き出し、背面基板ないしバックライトの背後に設けた駆動回路と接続して駆動するように構成される。このような基本パネルを用いて、数10mサイズの反射、透過両用の低電力、高精細フルカラー大型表示システムを構成することが可能になる。 As described above, for example, a large display system composed of M × m × N × n pixels can be configured by arranging basic panels composed of M vertical pixels and N horizontal pixels and arranging m vertical and n horizontal panels. In order to make the gap between the panels as narrow as possible, the electrodes of each panel are pulled out to the back of the panel in a direction perpendicular to the panel surface using a thin FPC, etc., and connected to the driving circuit provided on the back substrate or backlight. Configured to do. By using such a basic panel, it is possible to construct a low power, high-definition full-color large-sized display system for both reflection and transmission having a size of several tens of meters.
図16はプロジェクターなどに用いる、シリコン基板を用いたAM反射型ライトバルブを示す。シリコン基板15上にFET素子からなるAMアレーを形成(A)、画素部のシリコンをエッチングで掘り下げ半セル形成(B)、反射膜形成(C)、半セル分に樹脂埋め込み(D)、駆動・共通電極形成(E)(各電極は対応するFETアレー端子と接続)、駆動・共通電極下の埋め込み樹脂をエッチング除去(F)、画素を囲むように隔壁形成(G)、透明基板との間のセルに分散系充填(H) 以上で隔壁構成型反射ライトバルブが形成される。たとえば1インチサイズでフルHD(1920×1440画素)のライトバルブを構成する場合、画素ピッチはほぼ11μm程度になる。数μm幅の駆動電極を画素中央に1本、両サイドに透明共通電極を設けセル厚を数ミクロンとすれば、10V以下で駆動できるライトバルブが構成可能である。隔壁20を絶縁性黒色にするか上基板と隔壁の間に黒色膜を形成することが望ましい。
図16の方法はシリコン基板を用いるライトバルブの形成だけでなくガラス基板、プラスチックシート基板などを用いた本発明の表示パネルの形成に適用できることは言うまでもない。
FIG. 16 shows an AM reflection type light valve using a silicon substrate for use in a projector or the like. An AM array made of FET elements is formed on the silicon substrate 15 (A), the silicon in the pixel portion is dug by etching to form a half cell (B), a reflective film is formed (C), a resin is embedded in the half cell (D), and driving -Common electrode formation (E) (each electrode is connected to the corresponding FET array terminal), driving-Embedded resin under the common electrode is removed by etching (F), partition walls are formed so as to surround the pixels (G), and transparent substrate Filling the cell in the meantime with the dispersion system (H) The partition structure type reflection light valve is formed by the above. For example, when a light valve of 1 inch size and full HD (1920 × 1440 pixels) is configured, the pixel pitch is about 11 μm. If a drive electrode having a width of several μm is provided at the center of the pixel, a transparent common electrode is provided on both sides and the cell thickness is set to several microns, a light valve that can be driven at 10 V or less can be constructed. It is desirable to make the partition wall 20 insulative black or to form a black film between the upper substrate and the partition wall.
It goes without saying that the method of FIG. 16 can be applied not only to the formation of a light valve using a silicon substrate but also to the formation of a display panel of the present invention using a glass substrate, a plastic sheet substrate or the like.
図16の反射型ライトバルブの構成はLCOS(liquid-crystal-on-silicon)と称する液晶ライトバルブでの液晶を微粒子分散系に置き換えることによって構成される。LCOSと同様、超高圧水銀ランプなどの白色光源をダイクロイックミラーやプリズムでR,G,B光に分離し各色光を図16のライトバルブに照射して得たR,G,B色光像をレンズを用いてスクリーン上に拡大投射、合成してフルカラー像を得ることが出来る。光源にLEDや半導体レーザを用いれば小型プロジェクターを構成できる。フロントプロジェクターは勿論、途中で光路を折り曲げてリアプロジェクターも可能である。画素ピッチはモノクロの1/3になるが前面にカラーフィルタを設けることによって単板カラーライトバルブを構成することも可能であり、図12の如き3層積層パネルを構成すれば光利用率の高い単板式カラーライトバルブが構成可能である。分散系は隔壁型、カプセル型いずれを用いてもよい。反射型は光線が分散系層を2度通過するから分散系の粒子濃度が透過型の1/2でよく高速応答が可能である。 The reflection type light valve of FIG. 16 is configured by replacing the liquid crystal in a liquid crystal light valve called LCOS (liquid-crystal-on-silicon) with a fine particle dispersion system. Similar to LCOS, a white light source such as an ultra-high pressure mercury lamp is separated into R, G, B light by a dichroic mirror or prism, and R, G, B color light images obtained by irradiating each color light to the light valve in FIG. A full color image can be obtained by magnifying and synthesizing the image on a screen. If an LED or a semiconductor laser is used as the light source, a small projector can be configured. In addition to the front projector, a rear projector is possible by bending the optical path along the way. Although the pixel pitch is 1/3 of monochrome, it is possible to construct a single-plate color light valve by providing a color filter on the front surface, and if a three-layer laminated panel as shown in FIG. A single-plate color light bulb can be configured. As the dispersion system, either a partition wall type or a capsule type may be used. In the reflection type, the light beam passes through the dispersion layer twice, so that the particle concentration of the dispersion system is ½ that of the transmission type, and a high-speed response is possible.
上記シリコン基板の代りに、石英などの耐熱性ガラスにポリシリコンなどでAMアレーを構成したAM基板を用いれば、単板式あるいは3板式高精細透過型ライトバルブを構成することが可能である。 If an AM substrate in which an AM array is formed of polysilicon or the like on a heat-resistant glass such as quartz is used instead of the silicon substrate, a single-plate or three-plate high-definition transmission type light valve can be configured.
図17にR,G,B並置カラーフィルタを用いる透過型フルカラーパネルの断面図を示す。現在の液晶カラーパネルのライトバルブとしての液晶を、白黒に透過率を変調できる微粒子を分散した分散系7に置き替えることによって構成している。すなわちX−Yマトリクス構成のAMアレー13cが形成された透明ガラス基板2の画素部を図6(A)のようにエッチング等で凹みを設けカプセル粒子を配置して後駆動、共通電極対を設け、対応するAM素子と接続し、さらにストライプ状あるいはドット状にR,G,Bカラーフィルタ13a、ブラックマトリクス13bが設けられた透明基板1との間にカプセル粒子を配置して構成されている。各画素の電極は図3、図9に示す構成が選択できる。 FIG. 17 shows a cross-sectional view of a transmissive full color panel using R, G, B juxtaposed color filters. The liquid crystal as the light valve of the current liquid crystal color panel is replaced with a dispersion system 7 in which fine particles capable of modulating transmittance in black and white are dispersed. That is, the pixel portion of the transparent glass substrate 2 on which the AM array 13c having the XY matrix configuration is formed is provided with a recess by etching or the like as shown in FIG. The capsule particles are arranged between the transparent substrate 1 connected to the corresponding AM element and further provided with the R, G, B color filters 13a and the black matrix 13b in stripes or dots. The configuration shown in FIGS. 3 and 9 can be selected for the electrodes of each pixel.
図17では隣り合う画素にR,G,Bカラーフィルタを設ける構成について述べたが、カラーフィルタを用いる代りに各セルの分散媒をR,G,Bに着色してもよい。但し各色セルをストライプ状ないしドット状に色分けして設ける必要がある。 Although the configuration in which the R, G, and B color filters are provided in adjacent pixels has been described in FIG. 17, the dispersion medium of each cell may be colored in R, G, and B instead of using the color filters. However, it is necessary to provide each color cell in a stripe shape or a dot shape.
図17のカラーぱnえルはR,G,B並置カラーフィルタないしR、G,B着色液を用いているため光変調素子への白色入射光の2/3をロスする欠点があるが、現状確立しているTFTアレーの量産プロセスと設備がほぼそのまま利用できる利点があり、小型から100インチを超える大型までサイズを問わず製造可能である。液晶カラーパネルの場合と違って、視角拡大フィルム、偏光板、配向膜、配向処理プロセスなどは不要であり、プロセスの簡易化、部材の低減化に加えて、偏光板が不要であることからより明るく、広視角の表示を実現することができる。 Although the color panel shown in FIG. 17 uses R, G, B juxtaposed color filters or R, G, B colored liquids, there is a disadvantage that 2/3 of the white incident light to the light modulation element is lost. The presently established TFT array mass production process and equipment have the advantage that they can be used almost as they are, and they can be manufactured in any size from small to over 100 inches. Unlike liquid crystal color panels, viewing angle widening films, polarizing plates, alignment films, alignment processing processes, etc. are unnecessary, and in addition to simplifying the process and reducing the number of components, polarizing plates are unnecessary. Bright display with a wide viewing angle can be realized.
電子値札やメッセージ表示などでは必ずしもフルカラー表示でなくてもよい用途もある。図18では1層の分散系でカラーフィルタを用いることなくマルチカラー表示を行う例について述べる。透明分散媒中に色と移動速度の異なる微粒子が混合分散された分散系が用いられる。すなわち電極6−1,6−2間にDC電圧を印加(第一パルス)して粒子を一方の電極に堆積(同極性粒子の場合)(図18(A))させれば、セルは透明(反射で見る場合反射板が白色なら白色)に見える。ここで適切な幅ないし波高値の逆極性DCパルス(第二パルス)を印加すれば、移動速度の速い粒子(第一粒子:赤色とする)がまず電極を離れ分散状態になるからここでパルスを止めればセルは移動速度の速い粒子の分散状態である赤色に見える(図18(B))。第二パルスより幅ないし波高値の大なる逆極性パルスの場合では第一粒子は対向電極6−2に集積してしまい、分散系には速度の遅い第二粒子(黒色とする)のみ分散していることになり、セルはほぼ黒色に見える(図18(C))。電極間に適切なAC電圧を印加すれば第一、第二粒子が共に分散状態になるからこれらの混合色である赤黒色が提示される。すなわち単層パネルで4色の色が選択できることになる。色の異なる微粒子が異極性でも移動速度が異なっていれば利用可能である。 There are uses for electronic price tags, message displays, and the like that do not necessarily require full color display. FIG. 18 describes an example in which multi-color display is performed without using a color filter in a single-layer dispersion system. A dispersion system in which fine particles having different colors and moving speeds are mixed and dispersed in a transparent dispersion medium is used. That is, if a DC voltage is applied between the electrodes 6-1 and 6-2 (first pulse) and particles are deposited on one electrode (in the case of particles of the same polarity) (FIG. 18A), the cell is transparent. (If the reflector is white when viewed in reflection, it looks white). If a reverse polarity DC pulse (second pulse) with an appropriate width or peak value is applied here, particles with a fast moving speed (first particle: red) first leave the electrode and become dispersed. If is stopped, the cell appears red, which is a dispersed state of particles having a high moving speed (FIG. 18B). In the case of a reverse polarity pulse having a width or peak value larger than that of the second pulse, the first particles are accumulated on the counter electrode 6-2, and only the second particles having a slow speed (black) are dispersed in the dispersion system. Thus, the cell appears almost black (FIG. 18C). If an appropriate AC voltage is applied between the electrodes, the first and second particles are both dispersed, and a red-black color, which is a mixture of these, is presented. That is, four colors can be selected on the single-layer panel. Even if fine particles having different colors have different polarities, they can be used as long as their moving speeds are different.
図18では粒子の移動速度の違いを利用して多色表示する例について述べたが、電極に堆積した粒子を逆極性電圧の印加で電極から脱着させるのに粒子ならびに電極の性質により閾値電圧が存在する場合がある。異なる色の微粒子のこの閾値性の違いは有効に利用可能である。第一、第二粒子の閾値を各々V1、V2(V1>V2)とし、V1>V>V2の電圧Vでは第二粒子のみ分散させることが出来、V>V1の電圧Vでは主として第一粒子のみの分散状態を生じさせることが出来るからである。またV>V1のAC電圧で混合分散色を得ることができ、泳動速度の違いと併せて閾値性の違いも粒子の選択的分散に有効に活用でき、簡単な構成のパネルでマルチカラー表示が可能となる。 FIG. 18 describes an example in which multicolor display is performed using the difference in the moving speed of particles. However, in order to desorb particles deposited on an electrode from the electrode by applying a reverse polarity voltage, the threshold voltage depends on the properties of the particles and the electrodes. May exist. This threshold property difference between different color microparticles can be used effectively. The threshold values of the first and second particles are V1 and V2 (V1> V2), respectively. When the voltage V is V1> V> V2, only the second particles can be dispersed. When the voltage V is V> V1, the first particles are mainly used. This is because only a dispersed state can be produced. In addition, a mixed dispersion color can be obtained with an AC voltage of V> V1, and a difference in threshold value as well as a difference in migration speed can be effectively utilized for selective dispersion of particles, and a multi-color display can be achieved with a simple configuration panel. It becomes possible.
薄いフィルム基板を用いて両基板に電極を有するパネルや積層パネルを形成する場合、フィルムの温度や張力による伸縮等のため両基板や各パネルの位置合わせが困難化する。両フィルム基板をあらかじめガラスなどの剛体基板に単個取りあるいは多数個取りを想定したサイズで貼り付けておき、分散系層形成、電極、スイッチ素子、隔壁、スペーサなどの形成プロセスを実施して後、他方のフィルム基板との間に分散系層を挟み込んでフィルムパネルを形成し、しかる後剛体基板からパネルを剥離する法をとれば、フィルムの薄さ、伸縮性から生じる電極の上下位置合わせなどのプロセスの困難性は軽減する。 When a thin film substrate is used to form a panel or a laminated panel having electrodes on both substrates, alignment of both substrates and each panel becomes difficult due to expansion and contraction due to film temperature and tension. After both film substrates are pasted on a rigid substrate such as glass in a size that assumes single-piece or multiple-piece production, and after forming the dispersion layer, electrodes, switch elements, partition walls, spacers, etc. If a method of peeling the panel from the rigid substrate is formed by sandwiching the dispersion layer between the other film substrate and then removing the panel from the rigid substrate, the vertical alignment of the electrodes resulting from the thinness of the film and the elasticity, etc. The difficulty of the process is reduced.
パネル自体がフレキシブルであっても駆動回路、バッテリなどを搭載すると表示パネルのペーパライク性が損なわれてしまいがちである。本発明の表示パネルはメモリ性があるから一旦表示を更新すればドライバを切り離しても表示は維持される。従ってパネル電極端子部あるいは信号供給回路部を露出しておき、表示を更新する時のみ信号供給源に接続する、パネル/信号源分離方式を取ることもでき、ドライバを実装していない分低コストでパネルのフレキシブル性を確保できる。 Even if the panel itself is flexible, if a drive circuit, a battery, or the like is mounted, the paper-like property of the display panel tends to be impaired. Since the display panel of the present invention has a memory property, once the display is updated, the display is maintained even if the driver is disconnected. Therefore, it is possible to adopt a panel / signal source separation method in which the panel electrode terminal portion or the signal supply circuit portion is exposed and connected to the signal supply source only when the display is updated, and the cost is low because no driver is mounted. This ensures the flexibility of the panel.
本発明で使用する光変調素子の透明基板としてプラスチックフィルムを使用するとロールツーロールで連続量産できる特徴が発揮できる。
図19はロールツーロールでカプセル粒子系を用いて単純マトリクス構成のパネルを製造する例を示す。上下フィルムに各々印刷でカプセル粒子層を形成。下基板の粒子層上に図4の如き電極対を印刷。ついで上基板のカプセル粒子層と下基板の電極層の間に気泡が残らないようバインダー樹脂で接着してロール状パネルが形成される。UV照射などでバインダーを硬化してのちパンチングなどで切断して1色用フィルムパネルを一括複数枚連続生産することが可能である。低温プロセスが可能な有機TFTなどのAM形成プロセスはロールツーロールプロセスには相性がよく、勿論本願のロールツーロールパネル形成に有効に適応可能である。電極パタンやAM形成などの工程もロールツーロールで形成すれば正に理想的なロールツーロール量産工法になり得る。
When a plastic film is used as the transparent substrate of the light modulation element used in the present invention, the feature of continuous mass production by roll-to-roll can be exhibited.
FIG. 19 shows an example of manufacturing a panel having a simple matrix structure using a capsule particle system in a roll-to-roll manner. Capsule particle layers are formed by printing on the upper and lower films. An electrode pair as shown in FIG. 4 is printed on the particle layer of the lower substrate. Next, a roll-shaped panel is formed by bonding with a binder resin so that no bubbles remain between the capsule particle layer on the upper substrate and the electrode layer on the lower substrate. It is possible to produce a plurality of single-color film panels at once by curing the binder by UV irradiation or the like and then cutting it by punching or the like. An AM forming process such as an organic TFT capable of a low temperature process is compatible with a roll-to-roll process, and of course can be effectively applied to the roll-to-roll panel formation of the present application. If processes such as electrode patterning and AM formation are also formed by roll-to-roll, it can be an ideal roll-to-roll mass production method.
フィルム材料としてはビニル系のポリエチレン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリプロピレン、ポリスチレン、フッ素樹脂系など、またポリエステル系のポリカーボネート、ポリエチレンテレフタレートなど、ポリアミド系のナイロン、耐熱性エンジニアリングプラスチックとしてのポリイミド、ポリスルフォン、ポリエーテルスルフォン、ポリフェニレンサルファイド、ポリエーテルケトン、ポリエーテルイミドなど種々のものが利用できる。 Film materials include vinyl polyethylene, polyvinyl chloride, polyvinylidene chloride, polypropylene, polystyrene, fluororesin, polyester polycarbonate, polyethylene terephthalate, polyamide nylon, heat-resistant engineering plastic, polyimide, poly Various materials such as sulfone, polyether sulfone, polyphenylene sulfide, polyether ketone, and polyetherimide can be used.
ポリマーフィルムは一般にガラス等にくらべてガスを透過しやすい。フィルムを使用した表示装置でフィルムが外気に曝されて水分などが分散系に入り込み特性を劣化させる場合が生じる。従ってフィルムパネルの信頼性を向上するためにはフィルム表面にガスバリア層を設けるのが有効である。ガスバリア層としては酸化ケイ素、窒化ケイ素などの薄膜、およびこれらの膜とビニルアルコール含有重合体などの有機膜との積層膜が有効なことが知られている。 In general, a polymer film is more permeable to gas than glass. In a display device using a film, the film may be exposed to the outside air and moisture may enter the dispersion system to deteriorate the characteristics. Therefore, in order to improve the reliability of the film panel, it is effective to provide a gas barrier layer on the film surface. As the gas barrier layer, it is known that thin films such as silicon oxide and silicon nitride, and laminated films of these films and organic films such as vinyl alcohol-containing polymers are known.
本発明の光変調素子では隔壁部分は光線透過率は変化しないから、光線透過方向のこの部分の幅は出来るだけ狭いことが望ましい。逆にこの部分が透明性であると光り抜けを生じ光変調素子の光線遮断力を低下させ純黒が得られなくなるからこの部分を黒色光吸収性にするか光反射性にすることが望ましい。1000:1以上の透過率変調を達成するには隔壁部を含む微粒子分散状態でのセルの光透過率を0.1%未満に押さえ込む必要があるが、隔壁部からの光り抜けを必要ならブラックマトリクス(BM)層を設けて防止した上でセルに含有される微粒子の濃度を選定することによって達成可能である。 In the light modulation element of the present invention, since the light transmittance of the partition wall portion does not change, it is desirable that the width of this portion in the light transmission direction is as narrow as possible. On the contrary, if this part is transparent, light is lost and the light blocking power of the light modulation element is reduced, so that pure black cannot be obtained. Therefore, it is desirable to make this part black light absorbing or light reflecting. In order to achieve a transmittance modulation of 1000: 1 or more, it is necessary to suppress the light transmittance of the cell in the fine particle dispersion state including the partition wall to less than 0.1%. This can be achieved by providing a matrix (BM) layer and preventing it, and then selecting the concentration of fine particles contained in the cell.
本発明に使用する材料について述べる。
微粒子としては先述の通りできるだけ隠ぺい力の高いものが望ましい。白黒用にはカーボンブラック、ピグメントブラック、黒鉛などまたはこれらが樹脂に埋め込まれたいわゆるトナーが使用できる。C,M,Y微粒子としては印刷インキ、カラー複写機用トナー、インクジェット用インキなどに用いられているアゾ系、フタロシアニン系、ニトロ系、ニトロソ系など各種有機顔料や酸化鉄、カドミウムエロー、カドミウムレッドなどの無機顔料など多様なものを用いることが出来る。Y色微粒子としてはハンザイエロー、ベンジジンイエロー、キノリンイエローなど、M色微粒子としてはピグメントレッド、ローダミンB、ローズベンガル、ジメチルキナクリドンなど、C色微粒子としてはアニリンブルー、フタロシアニンブルー、ピグメントブルーKなど、黒色微粒子としてはC,M,Y微粒子を混合して用いてもよい。
The material used for this invention is described.
As described above, it is desirable that the fine particles have as high a hiding power as possible. For black and white, carbon black, pigment black, graphite or the like, or a so-called toner in which these are embedded in a resin can be used. C, M, Y fine particles include various organic pigments such as azo, phthalocyanine, nitro, nitroso, etc. used in printing ink, color copier toner, ink jet ink, iron oxide, cadmium yellow, and cadmium red. Various things such as inorganic pigments can be used. Y color fine particles such as Hansa Yellow, Benzidine Yellow, and Quinoline Yellow, M Color Fine Particles such as Pigment Red, Rhodamine B, Rose Bengal, and Dimethylquinacridone, and C Color Fine Particles such as aniline blue, phthalocyanine blue, and Pigment Blue K are black. As the fine particles, C, M, and Y fine particles may be mixed and used.
微粒子は単体ばかりではなく帯電性や色調を最適化するため染料、顔料およびいくつかの色材を樹脂や液体と共に内包したカプセル微粒子を使用してもよい。粒子の形状は球形はじめ針状、棒状、鱗片状など異方形状のものは本願のように線状電極を用いる場合適したものと言える。何故なら分散状態では粒子はあらゆる方向を向いており、光線吸収能、光散乱能が高く、電極に集積した状態では針状や棒状粒子は電極に平行に配列しやすく、鱗片状では互いに重なり易いから、共に吸収ないし散乱断面積が減じコントラストが高まり易いからである。微粒子のサイズは5nm〜5μm程度が望ましい。微粒子は原子や分子レベルでの表面コートで表面変性したり、分散剤、界面活性剤等を用いて荷電性付与および良分散性がはかられ、電界で集積させた粒子層も逆電界で速やかに再分散されるように調整されている必要がある。 The fine particles are not limited to simple substances but may be capsule fine particles containing dyes, pigments and some color materials together with resins and liquids in order to optimize chargeability and color tone. Particles having an anisotropic shape such as a spherical shape, a needle shape, a rod shape, and a scale shape can be said to be suitable when a linear electrode is used as in the present application. This is because particles are oriented in all directions in a dispersed state, and have a high light absorption ability and light scattering ability. Needle-like and rod-like particles are likely to be arranged in parallel to the electrode when they are accumulated on the electrode, and easily overlap each other in the shape of a scale. This is because both the absorption or scattering cross section is reduced and the contrast is easily increased. The size of the fine particles is desirably about 5 nm to 5 μm. Fine particles can be surface-modified by surface coating at the atomic or molecular level, or can be charged and have good dispersibility using a dispersant, surfactant, etc. Must be adjusted to be redistributed.
本願図3のパネルでは駆動電極6−1、共通電極6−2は共に分散系に露出しているとして説明したが、粒子堆積の均一性向上、付着力制御、閾値性制御などの目的で導電性、半導電性あるいは絶縁性の皮膜で被覆する場合もある。 In the panel of FIG. 3 of the present application, it has been described that the drive electrode 6-1 and the common electrode 6-2 are both exposed to the dispersion system. In some cases, it is coated with a conductive, semiconductive or insulating film.
屋外用では強力な光に曝されることになるから、使用する材料(基板、接着剤、微粒子、分散媒、分散剤、カプセル壁材料、バインダー樹脂、隔壁材料、電極、AMなど)には特に耐光性、耐熱性に優れたものを用いる必要がある。屋外用途では紫外線吸収剤を内蔵したフィルムないしは表面にコートして用いるのが望ましい。見易さ改善には反射防止膜も有用である。 Because it will be exposed to strong light for outdoor use, it is especially suitable for the materials used (substrate, adhesive, fine particles, dispersion medium, dispersant, capsule wall material, binder resin, partition material, electrode, AM, etc.) It is necessary to use one that is excellent in light resistance and heat resistance. For outdoor use, it is desirable to use a film or surface coated with a UV absorber. An antireflection film is also useful for improving visibility.
媒体が液体の場合シリコン系、石油系やハロゲン化炭化水素など多種類の高絶縁性溶媒が利用できる。液晶も有用な微粒子分散媒体であり、液晶の誘電異方性により粒子の電極からの脱着に閾値特性が発現することが知られており、単純マトリクスパネルの構成に有効に利用できる。 When the medium is liquid, various types of highly insulating solvents such as silicon-based, petroleum-based and halogenated hydrocarbons can be used. Liquid crystals are also a useful fine particle dispersion medium, and it is known that threshold characteristics are exhibited in the desorption of particles from electrodes due to the dielectric anisotropy of the liquid crystals, and can be effectively used for the construction of simple matrix panels.
非直線素子材料としては先述の通りTa,Alなどの薄膜を陽極酸化して他方の金属で挟み込んだMIMや、カルコゲナイト系化合物、酸化亜鉛などの半導体が利用でき、TFT材料としてはa−Si、a-InGaZnO、ポリシリコンなどの無機半導体またペンタセン、ポリフルオレン、ポリフェキシルチオフェンなどの低分子や高分子の有機半導体が用いられる。 As the non-linear element material, as described above, a semiconductor such as MIM, a chalcogenite compound, zinc oxide, etc., in which a thin film of Ta, Al or the like is anodized and sandwiched with the other metal can be used, and a-Si, Inorganic semiconductors such as a-InGaZnO and polysilicon, and low molecular and high molecular organic semiconductors such as pentacene, polyfluorene, and polyhexylthiophene are used.
本発明は次のような効果を奏する。
帯電した微粒子を横電界で移動させて、光透過性を変化させる表示装置であって、電極構成、セル中の微粒子量、電極ピッチ、セル厚、駆動電極面積率に検討を加えたことによって低電圧で高コントラスト、高透過率を達成し、拡大投射用高精細小型ライトバルブ、小型からメートルサイズの直視型表示装置、薄型フレキシブルな白黒およびフルカラー電子ペーパ、数10メートルを超える超大型表示装置まで広範囲の表示サイズに適用可能となり、反射専用、透過専用あるいは反射、透過両用に適用可能な表示装置が実現した。
The present invention has the following effects.
This is a display device that changes the light transmittance by moving charged fine particles in a horizontal electric field, and has been reduced by examining the electrode configuration, the amount of fine particles in the cell, the electrode pitch, the cell thickness, and the drive electrode area ratio. Achieves high contrast and high transmittance with voltage, high-definition small light valve for enlarged projection, small to metric size direct-view display, thin flexible black-and-white and full-color electronic paper, ultra-large display exceeding tens of meters Applicable to a wide range of display sizes, a display device that can be used exclusively for reflection, transmission only, or both reflection and transmission has been realized.
1 透明上基板
2 下基板
3 カウンター電極
4 コレクト電極
5 微粒子
6 電極
6−1 駆動電極
6−2 共通電極
7 分散系
8 セル
9 スペーサ
10 カプセル粒子
11 接着剤
12 白色拡散板
13 白色バックライト
13a カラーフィルタ
13b ブラックマトリクス
13c X−Yアクティブマトリクスアレー
13d 3色用X−Yアクティブマトリクスアレー
14 反射板
15 シリコン基板
16 バインダー
17 バックライトユニット
18 C1,C2,C3,……… 列電極端子
19 R1,R2,R3,……… 行電極端子
20 隔壁
21 2端子素子
22 TFT素子
23 絶縁膜
24 積層セル
25 FETアレー
26 樹脂
27 反射膜
28 半セル
DESCRIPTION OF SYMBOLS 1 Transparent upper substrate 2 Lower substrate 3 Counter electrode 4 Collect electrode 5 Fine particle 6 Electrode 6-1 Drive electrode 6-2 Common electrode 7 Dispersion system 8 Cell 9 Spacer 10 Capsule particle 11 Adhesive 12 White diffuser plate 13 White backlight 13a Color Filter 13b Black matrix 13c XY active matrix array 13d Three-color XY active matrix array 14 Reflector 15 Silicon substrate 16 Binder 17 Backlight unit 18 C1, C2, C3,... Column electrode terminal 19 R1, R2 , R3,..., Row electrode terminal 20 partition wall 21 two-terminal element 22 TFT element 23 insulating film 24 laminated cell 25 FET array 26 resin 27 reflective film 28 half cell
Claims (16)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007236434A JP2009069366A (en) | 2007-09-12 | 2007-09-12 | Display device and method of manufacturing the same |
PCT/JP2008/002523 WO2009034715A1 (en) | 2007-09-12 | 2008-09-11 | Particle movement type display device and its manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007236434A JP2009069366A (en) | 2007-09-12 | 2007-09-12 | Display device and method of manufacturing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009069366A true JP2009069366A (en) | 2009-04-02 |
JP2009069366A5 JP2009069366A5 (en) | 2010-01-28 |
Family
ID=40605711
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007236434A Pending JP2009069366A (en) | 2007-09-12 | 2007-09-12 | Display device and method of manufacturing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2009069366A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011008050A (en) * | 2009-06-26 | 2011-01-13 | Ricoh Co Ltd | Image display element and image display |
CN111679466A (en) * | 2020-06-19 | 2020-09-18 | 昆山龙腾光电股份有限公司 | Display panel with switchable viewing angles, display device and viewing angle switching method |
CN114450627A (en) * | 2019-09-30 | 2022-05-06 | Lg伊诺特有限公司 | Light path control member and display having the same |
-
2007
- 2007-09-12 JP JP2007236434A patent/JP2009069366A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011008050A (en) * | 2009-06-26 | 2011-01-13 | Ricoh Co Ltd | Image display element and image display |
CN114450627A (en) * | 2019-09-30 | 2022-05-06 | Lg伊诺特有限公司 | Light path control member and display having the same |
CN114450627B (en) * | 2019-09-30 | 2023-09-29 | Lg伊诺特有限公司 | Light path control member and display having the same |
CN111679466A (en) * | 2020-06-19 | 2020-09-18 | 昆山龙腾光电股份有限公司 | Display panel with switchable viewing angles, display device and viewing angle switching method |
CN111679466B (en) * | 2020-06-19 | 2023-05-23 | 昆山龙腾光电股份有限公司 | Display panel with switchable viewing angles, display device and viewing angle switching method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5308719B2 (en) | Display device and manufacturing method thereof | |
US10254452B2 (en) | Reflector and display device having the same | |
WO2011058725A1 (en) | Display device and method of manufacture thereof | |
US20100172016A1 (en) | Electrophoretic display having high reflectance and contrast | |
JP2007279641A (en) | Reflective display device | |
JP2021015311A (en) | Display device | |
US20070268446A1 (en) | Liquid crystal device and method for forming the same | |
TWI795334B (en) | Method for producing a display and method of integrating electrophoretic displays | |
JP5464264B2 (en) | Electrophoretic display device and electronic apparatus | |
TW200809359A (en) | Method for manufacturing electro-optical device and electro-optical device | |
JP2009069366A (en) | Display device and method of manufacturing the same | |
JP2007298894A (en) | Display device, its manufacturing method and display system | |
KR20120113734A (en) | Reflective display | |
JP5572282B2 (en) | Display device and manufacturing method thereof | |
JP5109424B2 (en) | Reflective display device | |
WO2013031361A1 (en) | Liquid-crystal display panel and liquid-crystal display device | |
WO2007132636A1 (en) | Operative reflection/absorption plate and display element using same | |
JP4129480B1 (en) | Optical image storage method and display sheet used therefor | |
CN113759631A (en) | Display panel, preparation method thereof and display device | |
JP2008015161A (en) | Display device | |
JP2009025460A (en) | Reflective type display device and driving method thereof | |
JP4728952B2 (en) | Image display device using image display sheet and electronic paper including image display device | |
KR101858547B1 (en) | Electrofluicid display device having laplace barrier | |
JP2007304449A (en) | Optical modulation element | |
KR101545922B1 (en) | Electrophoretic Display Device and Method for fabricating the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090119 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090126 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090127 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090206 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090220 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090225 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20091203 |