JP2007209121A - Power system - Google Patents

Power system Download PDF

Info

Publication number
JP2007209121A
JP2007209121A JP2006025230A JP2006025230A JP2007209121A JP 2007209121 A JP2007209121 A JP 2007209121A JP 2006025230 A JP2006025230 A JP 2006025230A JP 2006025230 A JP2006025230 A JP 2006025230A JP 2007209121 A JP2007209121 A JP 2007209121A
Authority
JP
Japan
Prior art keywords
voltage
power supply
field effect
effect transistor
type field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006025230A
Other languages
Japanese (ja)
Inventor
Seigo Tezuka
征吾 手塚
Shigeji Yamashita
茂治 山下
Katsuya Inagaki
克哉 稲垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Telecom Networks Ltd
Original Assignee
Fujitsu Telecom Networks Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Telecom Networks Ltd filed Critical Fujitsu Telecom Networks Ltd
Priority to JP2006025230A priority Critical patent/JP2007209121A/en
Publication of JP2007209121A publication Critical patent/JP2007209121A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Dc-Dc Converters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent reverse current reliably and to enhance efficiency in a power system where each of a plurality of power supply sections is connected with a reverse current prevention section. <P>SOLUTION: In the power system for supplying a DC current to a load through a reverse current prevention section connected with the output terminal each of a plurality of power supply sections outputting a stabilized DC voltage, the reverse current prevention section comprises an n-type FET Q1 connected between an input terminal Tin connected with the power supply section and an output terminal Tout connected with a load, a comparison circuit COM for comparing the voltage between the source S and the drain D of the n-type FET Q1 and outputting a low level when the source voltage Vs is higher than the drain voltage Vd otherwise outputting a high level, and an n-type FET Q2 for control for turning on the gate G of the n-type FET Q1 by applying a voltage when the comparison circuit COM outputs a low level and turning off the gate G of the n-type FET Q1 without applying a voltage when the comparison circuit COM outputs a high level. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、低損失の逆流阻止手段を備えた電源装置に関する。   The present invention relates to a power supply device including a low-loss backflow prevention means.

低電圧且つ大電流の直流負荷に安定化直流電力を供給する電源装置は、複数個のスイッチング電源等からなる電源部を並列運転する構成が一般的である。その場合、内部障害発生等により出力電圧が低下した電源部に対して、正常な他の電源部から電流が逆流する問題があることになるから、この逆流を阻止する為のブロッキングダイオードを各電源部の出力端子に接続し、各電源部は、ブロッキングダイオードを介して負荷に安定化直流電力を供給する構成が知られている。このブロッキングダイオードを接続した電源装置の一例を図3に示すもので、電源部31,32は、例えば、スイッチング電源により構成し、負荷33にそれぞれブロッキングダイオードD1,D2を介して安定化直流電圧を印加するものである。各電源部31,32が正常の場合、ブロッキングダイオードD1,D2を介して矢印方向の電流を負荷33に供給する。又障害発生の電源部に対しては、ブロッキングダイオードの逆方向に電圧が印加されるから、逆流を阻止することができる。   A power supply device that supplies stabilized DC power to a low-voltage and large-current DC load generally has a configuration in which power supply units including a plurality of switching power supplies are operated in parallel. In that case, there is a problem that the current flows backward from other normal power supply units to the power supply unit whose output voltage has dropped due to an internal failure or the like. A configuration is known in which each power supply unit is connected to an output terminal of a unit and supplies stabilized DC power to a load via a blocking diode. An example of a power supply device to which the blocking diode is connected is shown in FIG. 3. The power supply units 31 and 32 are constituted by, for example, a switching power supply, and a stabilized DC voltage is applied to the load 33 via the blocking diodes D1 and D2, respectively. To be applied. When the power supply units 31 and 32 are normal, the current in the direction of the arrow is supplied to the load 33 via the blocking diodes D1 and D2. Further, since a voltage is applied in the reverse direction of the blocking diode to the faulty power supply unit, it is possible to prevent the reverse flow.

このブロッキングダイオードD1,D2の順方向に電流が流れる正常な状態に於いて、低電圧且つ大電流を負荷33に供給する場合に、ブロッキングダイオードD1,D2の順方向電圧降下に相当する電力損失が生じることになり、電源装置の効率を向上する点から、この電力損失を低減する必要がある。そこで、ブロッキングダイオードD1,D2を、オン抵抗の小さい電界効果トランジスタ(以下FETと略称する)に置換した構成が各種提案されている。例えば、負荷電流が大きい時にFETをオン状態として低抵抗状態とし、負荷電流が小さい時はFETをオフ状態として、内部の寄生ダイオード(ボディダイオード)の順方向特性により負荷電流を供給し、且つオフ状態として時の寄生ダイオードをブロッキングダイオードと同様に逆流阻止用として作用させる構成が提案されている(例えば、特許文献1参照)。   When a low voltage and a large current are supplied to the load 33 in a normal state where current flows in the forward direction of the blocking diodes D1 and D2, power loss corresponding to the forward voltage drop of the blocking diodes D1 and D2 is caused. In view of improving the efficiency of the power supply device, it is necessary to reduce this power loss. In view of this, various configurations have been proposed in which the blocking diodes D1 and D2 are replaced with field effect transistors (hereinafter abbreviated as FETs) having low on-resistance. For example, when the load current is large, the FET is turned on to be in a low resistance state, and when the load current is small, the FET is turned off, and the load current is supplied by the forward characteristics of the internal parasitic diode (body diode) and turned off. As a state, a configuration has been proposed in which a parasitic diode at the time acts as a backflow prevention like a blocking diode (see, for example, Patent Document 1).

又ブロッキングダイオードと並列にFETを接続し、このFETをオン状態として、ブロッキングダイオードとFETとの並列回路を介して負荷に直流電流を供給して、FETのオン抵抗がブロッキングダイオードの順方向抵抗に比較して小さいことにより、電力損失を低減し、障害発生によりオン状態のFETを介して逆流する場合、この逆流電流を検出してFETのゲート電圧を遮断してオフ状態とし、ブロッキングダイオードにより逆流を阻止する構成が提案されている(例えば、特許文献2参照)。
特開平03−103029号公報 特開2001−119950号公報
Also, an FET is connected in parallel with the blocking diode, the FET is turned on, and a direct current is supplied to the load through the parallel circuit of the blocking diode and the FET, so that the on-resistance of the FET becomes the forward resistance of the blocking diode. When compared with a smaller power loss, and when a reverse current flows back through the FET in the on state due to a failure, this reverse current is detected to shut off the gate voltage of the FET and turn it off. The structure which prevents this is proposed (for example, refer patent document 2).
Japanese Patent Laid-Open No. 03-103029 JP 2001-119950 A

負荷に印加する電圧は、1〜2V程度以下の低電圧化の傾向にあり、それに伴って電流は増大する傾向にある。従って、電源装置の出力電圧を低電圧とし、出力電流容量の増大又は電源部の並列数の増大を図ることになる。その場合に、前述のように、ダイオードの順方向抵抗分に比較して、オン抵抗値が小さいFETを用いた構成を適用することが考えられる。又電源部の出力電圧が1〜2V以下の低電圧とすることにより、FETのオン、オフ制御を迅速且つ確実に実行することが容易でなくなる問題がある。又ブロッキングダイオードの単体に比較して、FETとその駆動制御部分とを含む構成が大型化する問題がある。更に、FETは、p型とn型とがあり、p型はn型に比較してオン抵抗が大きく、且つ高価である問題がある。   The voltage applied to the load tends to be reduced to about 1 to 2 V or less, and the current tends to increase accordingly. Accordingly, the output voltage of the power supply device is set to a low voltage, and the output current capacity is increased or the number of power supply units in parallel is increased. In that case, as described above, it is conceivable to apply a configuration using an FET having a small on-resistance value compared to the forward resistance of the diode. Further, when the output voltage of the power supply unit is set to a low voltage of 1 to 2 V or less, there is a problem that it is not easy to quickly and surely execute the on / off control of the FET. Further, there is a problem that the configuration including the FET and its drive control portion is increased in size as compared with a single blocking diode. Furthermore, there are two types of FETs, p-type and n-type. The p-type has a problem that the on-resistance is large and expensive compared to the n-type.

本発明は、従来の問題点を解決するものであり、低電圧大電流の電源装置の小型化及び効率向上を図ることを目的とする。   An object of the present invention is to solve the conventional problems, and to reduce the size and improve the efficiency of a low-voltage, large-current power supply device.

本発明の電源装置は、安定化直流電圧を出力する複数の電源部の出力端子にそれぞれ逆流阻止部を介して負荷に直流電流を供給する電源装置に於いて、前記逆流阻止部は、前記電源部と接続する入力端子と、前記負荷と接続する出力端子との間に接続したn型電界効果トランジスタと、該n型電界効果トランジスタのソース・ドレイン間の電圧を比較して、ソース電圧がドレイン電圧より高い時にローレベル出力、低い時にハイレベル出力となる比較回路と、該比較回路のローレベル出力時に前記n型電界効果トランジスタのゲートに電圧を印加してオン状態とし、前記比較回路のハイレベル出力時に前記n型電界効果トランジスタのゲートに電圧を印加しないでオフ状態とする制御用n型電界効果トランジスタとを含む構成を備えている。   The power supply device of the present invention is a power supply device that supplies a direct current to a load via a backflow prevention unit to output terminals of a plurality of power supply units that output a stabilized DC voltage, wherein the backflow prevention unit includes the power supply unit. The n-type field effect transistor connected between the input terminal connected to the unit and the output terminal connected to the load is compared with the voltage between the source and drain of the n-type field effect transistor, and the source voltage is A comparison circuit that outputs a low level when the voltage is higher than the voltage, and a high level output when the voltage is lower, and a voltage is applied to the gate of the n-type field effect transistor when the comparison circuit outputs a low level. And a control n-type field effect transistor that is turned off without applying a voltage to the gate of the n-type field effect transistor during level output.

又前記逆流阻止部は、前記比較回路の動作電圧及び前記n型電界効果トランジスタと制御用n型電界効果トランジスタの動作電圧とを供給する端子と、前記電源部と接続する前記入力端子と、前記負荷と接続する出力端子との3端子構成の集積回路化した構成とすることができる。   The backflow prevention unit includes a terminal for supplying an operating voltage of the comparison circuit and operating voltages of the n-type field effect transistor and the control n-type field effect transistor, the input terminal connected to the power supply unit, A three-terminal integrated circuit configuration with an output terminal connected to a load can be adopted.

n型電界効果トランジスタは、p型電界効果トランジスタに比較してオン抵抗が低く、且つ廉価であり、電源部が正常で負荷に電流を供給する状態に於ける電力損失を低減して効率の向上を図ることができる。又従来のブロッキングダイオードと大差のない大きさの集積回路化が可能であり、電源装置の小型化を図ることができる。   An n-type field effect transistor has lower on-resistance and is less expensive than a p-type field effect transistor, and improves efficiency by reducing power loss when the power supply is normal and supplying current to a load. Can be achieved. Further, an integrated circuit having a size that is not much different from that of a conventional blocking diode can be realized, and the power supply device can be miniaturized.

本発明の電源装置は、図2を参照して説明すると、安定化直流電圧を出力する複数の電源部の出力端子にそれぞれ逆流阻止部を介して負荷に直流電流を供給する電源装置に於いて、逆流阻止部は、電源部と接続する入力端子Tinと、負荷と接続する出力端子Toutとの間に接続したn型電界効果トランジスタQ1と、このn型電界効果トランジスタQ1のソースS・ドレインD間の電圧を比較して、ソース電圧Vsがドレイン電圧Vdより高い時にローレベル出力、低い時にハイレベル出力となる比較回路COMと、この比較回路COMのローレベル出力時に前記n型電界効果トランジスタQ1のゲートGに電圧を印加してオン状態とし、比較回路COMのハイレベル出力時に前記n型電界効果トランジスタQ1のゲートに電圧を印加しないでオフ状態とする制御用n型電界効果トランジスタQ2とを含む構成を有するものである。   Referring to FIG. 2, the power supply apparatus of the present invention is a power supply apparatus that supplies a direct current to a load via a backflow prevention unit to output terminals of a plurality of power supply units that output a stabilized DC voltage. The backflow prevention unit includes an n-type field effect transistor Q1 connected between an input terminal Tin connected to the power supply unit and an output terminal Tout connected to the load, and a source S / drain D of the n-type field effect transistor Q1. A comparison circuit COM that outputs a low level when the source voltage Vs is higher than the drain voltage Vd and a high level output when the source voltage Vs is lower than the drain voltage Vd, and the n-type field effect transistor Q1 when the comparison circuit COM outputs a low level. A voltage is applied to the gate G of the n-type field effect transistor to turn it on, and a voltage is applied to the gate of the n-type field effect transistor Q1 when the comparison circuit COM outputs a high level. Ide and has a configuration including a control n-type field effect transistor Q2 to an off state.

図1は、本発明の実施例1の説明図であり、1,2はスイッチング電源等の安定化直流電圧を出力する電源部、3は負荷、4,5は逆流阻止部、Vccは逆流阻止部の動作電圧を示す。逆流阻止部4,5は、n型FETとその駆動部とを含み、電源部1,2の出力端子と負荷3との間に接続する。   FIG. 1 is an explanatory diagram of a first embodiment of the present invention, in which 1 and 2 are power supply units that output a stabilized DC voltage such as a switching power supply, 3 is a load, 4 and 5 are backflow prevention units, and Vcc is a backflow prevention unit. The operating voltage of the part is shown. The backflow prevention units 4 and 5 include n-type FETs and their drive units, and are connected between the output terminals of the power supply units 1 and 2 and the load 3.

図2は、本発明の実施例1の逆流阻止部の説明図であり、図1に於ける逆流阻止部4,5の構成を示すもので、Q1は寄生ダイオードを有するn型電界効果トランジスタ(以下n型FETと略称する)、Q2は寄生ダイオードを有する制御用n型電界効果トランジスタ(以下制御用n型FETと略称する)、Dはドレイン、Sはソース、Gはゲート、COMは比較回路、C1はコンデンサ、ZDはツェナーダイオード、R1〜R3は抵抗、Tinは電源部の出力端子に接続する入力端子、Idは負荷に供給する電流、Vsはソース電圧、Vdはドレイン電圧、Toutは負荷に接続する出力端子、Vccは電源部から供給する動作電圧を示す。   FIG. 2 is an explanatory diagram of the backflow prevention unit according to the first embodiment of the present invention, and shows the configuration of the backflow prevention units 4 and 5 in FIG. 1. Q1 is an n-type field effect transistor having a parasitic diode ( Q2 is a control n-type field effect transistor (hereinafter abbreviated as control n-type FET) having a parasitic diode, D is a drain, S is a source, G is a gate, and COM is a comparison circuit. , C1 is a capacitor, ZD is a Zener diode, R1 to R3 are resistors, Tin is an input terminal connected to the output terminal of the power supply unit, Id is a current supplied to the load, Vs is a source voltage, Vd is a drain voltage, and Tout is a load. An output terminal Vcc connected to Vcc represents an operating voltage supplied from the power supply unit.

動作電圧Vccは、電源部から所望の値として供給し、比較回路COMの動作電圧とすると共に、抵抗R1を介して制御用n型FETQ2のゲートに印加し、又ツェナーダイオードZDと抵抗R2とにより定電圧化して、抵抗R3を介して制御用n型FETQ2のドレインDとn型FETQ1のゲートGとに印加する。又入力端子Tinと出力端子Toutとの間に、n型FETQ1のソースSとドレインDとを接続し、ゲートGに電圧を印加してオン状態とした時に、矢印方向の電流Idを負荷に供給し、電圧を印加しない時にオフ状態とし、寄生ダイオードも逆方向の特性で接続されているから、逆流阻止を行うことができる。又制御用n型FETQ2は、n型FETQ1のゲートGに電圧を印加するか否かを制御するFETであり、寄生ダイオードは、n型FETQ1のゲートGに対して逆方向となるように接続する。又コンデンサC1は、比較回路COMの動作電圧Vccの安定化を図る為のものである。   The operating voltage Vcc is supplied as a desired value from the power supply unit, is used as the operating voltage of the comparison circuit COM, is applied to the gate of the control n-type FET Q2 through the resistor R1, and is also formed by the Zener diode ZD and the resistor R2. The voltage is made constant and applied to the drain D of the control n-type FET Q2 and the gate G of the n-type FET Q1 through the resistor R3. Further, when the source S and drain D of the n-type FET Q1 are connected between the input terminal Tin and the output terminal Tout, and a voltage is applied to the gate G to turn it on, the current Id in the direction of the arrow is supplied to the load. When no voltage is applied, the transistor is turned off, and the parasitic diode is also connected in the reverse direction, so that backflow prevention can be performed. The control n-type FET Q2 is an FET that controls whether or not a voltage is applied to the gate G of the n-type FET Q1, and the parasitic diode is connected in the opposite direction to the gate G of the n-type FET Q1. . The capacitor C1 is for stabilizing the operating voltage Vcc of the comparison circuit COM.

比較回路COMは、n型FETQ1のソース電圧Vsとドレイン電圧Vdとが、Vs>Vdの関係の場合に、ローレベル出力、反対にVs<Vdの関係の場合に、ハイレベル出力となる構成を有し、既に知られているFET等による各種の構成を適用することができる。入力端子Tinに接続した電源部が正常の場合、Vs>Vdの関係となるから、比較回路COMはローレベル出力となり、従って、制御用n型FETQ2はオフ状態となって、抵抗R2の両端の電圧が、n型FETQ1のゲートGに印加され、オン状態となる。このオン状態のn型FETQ1を介して、矢印方向の電流Idが出力端子Toutから負荷に供給される。   The comparison circuit COM is configured to be a low level output when the source voltage Vs and the drain voltage Vd of the n-type FET Q1 have a relationship of Vs> Vd, and on the contrary, a high level output when the relationship of Vs <Vd. It is possible to apply various configurations such as already known FETs. When the power supply connected to the input terminal Tin is normal, the relationship of Vs> Vd is established, so that the comparison circuit COM becomes a low level output. Therefore, the control n-type FET Q2 is turned off, and both ends of the resistor R2 are connected. A voltage is applied to the gate G of the n-type FET Q1 to turn it on. A current Id in the direction of the arrow is supplied from the output terminal Tout to the load through the n-type FET Q1 in the on state.

入力端子Tinに接続した電源部の出力電圧が低下し、出力端子Toutから負荷に印加する電圧が、他の電源部の出力電圧より低下すると、n型FETQ1のソース電圧Vsとドレイン電圧Vdとの関係は、Vs>Vdとなる。それにより、比較回路COMはハイレベル出力となり、抵抗R1を介して制御用n型FETQ2のゲートGに電圧が印加されてオン状態となる。従って、n型FETQ1のゲートGは、制御用n型FETQ2を介してソースSとの間が短絡状態となり、n型FETQ1はオフ状態となる。即ち、逆流阻止状態となる。   When the output voltage of the power supply unit connected to the input terminal Tin is reduced and the voltage applied to the load from the output terminal Tout is lower than the output voltage of the other power supply unit, the source voltage Vs and the drain voltage Vd of the n-type FET Q1 are reduced. The relationship is Vs> Vd. As a result, the comparison circuit COM becomes a high-level output, and a voltage is applied to the gate G of the control n-type FET Q2 via the resistor R1 to turn it on. Accordingly, the gate G of the n-type FET Q1 is short-circuited with the source S via the control n-type FET Q2, and the n-type FET Q1 is turned off. That is, it becomes a backflow prevention state.

逆流阻止部は、n型FETQ1を介して負荷に供給する電流Idの大きさに対応した電流容量の構成とし、他の制御用n型FETQ2や比較回路COM等を含めて集積回路化が可能であり、入力端子Tinと出力端子Toutと動作電圧Vccを印加する端子との3端子構成とすることができる。従って、ブロッキングダイオードを用いる場合に比較しても、特に大型化することはない。逆流阻止部の動作電圧Vccを供給することにより、比較回路COMやn型FETの動作の確実化が可能となる。   The backflow prevention unit has a current capacity configuration corresponding to the magnitude of the current Id supplied to the load via the n-type FET Q1, and can be integrated into an integrated circuit including the other control n-type FET Q2 and the comparison circuit COM. In other words, a three-terminal configuration including an input terminal Tin, an output terminal Tout, and a terminal to which the operating voltage Vcc is applied can be employed. Therefore, even if it uses a blocking diode, it does not increase in size. By supplying the operating voltage Vcc of the backflow prevention unit, it is possible to ensure the operation of the comparison circuit COM and the n-type FET.

本発明の実施例1の説明図である。It is explanatory drawing of Example 1 of this invention. 本発明の実施例1の逆流阻止部の説明図である。It is explanatory drawing of the backflow prevention part of Example 1 of this invention. 従来例の電源回路の要部説明図である。It is principal part explanatory drawing of the power supply circuit of a prior art example.

符号の説明Explanation of symbols

1,2 電源部
3 負荷
4,5 逆流阻止部
Q1 n型電界効果トランジスタ(n型FET)
Q2 制御用n型電界効果トランジスタ(制御用n型FET)
COM 比較回路
C1 コンデンサ
ZD ツェナーダイオード
R1〜R3 抵抗
Vcc 動作電圧
1, 2 Power supply section 3 Load 4, 5 Backflow prevention section Q1 n-type field effect transistor (n-type FET)
Q2 Control n-type field effect transistor (control n-type FET)
COM Comparison circuit C1 Capacitor ZD Zener diode R1 to R3 Resistance Vcc Operating voltage

Claims (2)

安定化直流電圧を出力する複数の電源部の出力端子にそれぞれ逆流阻止部を介して負荷に直流電流を供給する電源装置に於いて、
前記逆流阻止部は、前記電源部と接続する入力端子と、前記負荷と接続する出力端子との間に接続したn型電界効果トランジスタと、該n型電界効果トランジスタのソース・ドレイン間の電圧を比較して、ソース電圧がドレイン電圧より高い時にローレベル出力、低い時にハイレベル出力となる比較回路と、該比較回路のローレベル出力時に前記n型電界効果トランジスタのゲートに電圧を印加してオン状態とし、前記比較回路のハイレベル出力時に前記n型電界効果トランジスタのゲートに電圧を印加しないでオフ状態とする制御用n型電界効果トランジスタとを含む構成を備えた
ことを特徴とする電源装置。
In a power supply apparatus that supplies a direct current to a load via a backflow prevention unit to output terminals of a plurality of power supply units that output a stabilized DC voltage,
The backflow prevention unit includes an n-type field effect transistor connected between an input terminal connected to the power supply unit and an output terminal connected to the load, and a voltage between the source and drain of the n-type field effect transistor. In comparison, a comparison circuit that outputs a low level when the source voltage is higher than the drain voltage and a high level output when the source voltage is low, and a voltage applied to the gate of the n-type field effect transistor when the comparison circuit outputs a low level. And a control n-type field effect transistor that is turned off without applying a voltage to the gate of the n-type field effect transistor when the comparator circuit outputs a high level. .
前記逆流阻止部は、前記比較回路の動作電圧及び前記n型電界効果トランジスタと制御用n型電界効果トランジスタの動作電圧とを供給する端子と、前記電源部と接続する前記入力端子と、前記負荷と接続する出力端子との3端子構成の集積回路化した構成を有することを特徴とする請求項1記載の電源装置。   The backflow prevention unit includes a terminal for supplying an operating voltage of the comparison circuit and operating voltages of the n-type field effect transistor and the control n-type field effect transistor, the input terminal connected to the power supply unit, and the load 2. The power supply device according to claim 1, wherein the power supply device has a three-terminal integrated circuit configuration with an output terminal connected to the power source.
JP2006025230A 2006-02-02 2006-02-02 Power system Pending JP2007209121A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006025230A JP2007209121A (en) 2006-02-02 2006-02-02 Power system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006025230A JP2007209121A (en) 2006-02-02 2006-02-02 Power system

Publications (1)

Publication Number Publication Date
JP2007209121A true JP2007209121A (en) 2007-08-16

Family

ID=38488075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006025230A Pending JP2007209121A (en) 2006-02-02 2006-02-02 Power system

Country Status (1)

Country Link
JP (1) JP2007209121A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010119207A (en) * 2008-10-31 2010-05-27 Silitek Electronic (Guangzhou) Co Ltd Power allocation device
JP2014107741A (en) * 2012-11-28 2014-06-09 Nec Computertechno Ltd Transistor drive control circuit, transistor drive control system and transistor drive control method
KR20190087286A (en) * 2018-01-15 2019-07-24 에이블릭 가부시키가이샤 Backdraft prevention circuit and power supply circuit

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0670544A (en) * 1992-08-11 1994-03-11 Fujitsu Ltd Reverse current preventive circuit for parallel power source
JP2005198375A (en) * 2004-01-05 2005-07-21 Fuji Electric Device Technology Co Ltd Synchronous rectification circuit and power converter

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0670544A (en) * 1992-08-11 1994-03-11 Fujitsu Ltd Reverse current preventive circuit for parallel power source
JP2005198375A (en) * 2004-01-05 2005-07-21 Fuji Electric Device Technology Co Ltd Synchronous rectification circuit and power converter

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010119207A (en) * 2008-10-31 2010-05-27 Silitek Electronic (Guangzhou) Co Ltd Power allocation device
JP2014107741A (en) * 2012-11-28 2014-06-09 Nec Computertechno Ltd Transistor drive control circuit, transistor drive control system and transistor drive control method
KR20190087286A (en) * 2018-01-15 2019-07-24 에이블릭 가부시키가이샤 Backdraft prevention circuit and power supply circuit
KR102483022B1 (en) 2018-01-15 2022-12-29 에이블릭 가부시키가이샤 Backdraft prevention circuit and power supply circuit

Similar Documents

Publication Publication Date Title
JP4483751B2 (en) Power supply reverse connection protection circuit
US8054106B2 (en) Load driving device
JP6669097B2 (en) Power supply control device
US8564359B2 (en) Method and system for controlling HS-NMOS power switches with slew-rate limitation
US7535189B2 (en) Motor drive circuit
JP4103859B2 (en) Reference voltage generation circuit
KR101069485B1 (en) Motor drive circuit
JP2011091694A (en) Rapid discharging circuit upon detection of failure
JP2010533965A5 (en)
US9343901B2 (en) Power system and short-circuit protection circuit thereof
JP2007209121A (en) Power system
JP2010028522A (en) Semiconductor device
US20110317729A1 (en) Current driving device
JP7260234B2 (en) DRIVER CIRCUIT FOR CONTROLLING P-CHANNEL MOSFET AND CONTROL DEVICE INCLUDING THE SAME
JP5435483B2 (en) Power supply device
JP4821394B2 (en) Semiconductor device drive circuit
JP4228960B2 (en) LOAD DRIVE DEVICE AND HIGH VOLTAGE APPLICATION TEST METHOD FOR LOAD DRIVE DEVICE
JP5009083B2 (en) Switching power supply circuit
JP4289195B2 (en) Power supply
JP2005224088A (en) Load protection circuit
JP2007295209A (en) Analog switch circuit
JP4565854B2 (en) Motor drive device
JP7135810B2 (en) Injection control device
JP4055206B2 (en) DC power supply circuit
JP2020096125A (en) Solenoid drive device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080910

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110308

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110802