JP2007165750A - Semiconductor device and its manufacturing method - Google Patents

Semiconductor device and its manufacturing method Download PDF

Info

Publication number
JP2007165750A
JP2007165750A JP2005362908A JP2005362908A JP2007165750A JP 2007165750 A JP2007165750 A JP 2007165750A JP 2005362908 A JP2005362908 A JP 2005362908A JP 2005362908 A JP2005362908 A JP 2005362908A JP 2007165750 A JP2007165750 A JP 2007165750A
Authority
JP
Japan
Prior art keywords
wiring
ferromagnetic film
semiconductor device
metal wiring
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005362908A
Other languages
Japanese (ja)
Inventor
Shinji Fujii
眞治 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2005362908A priority Critical patent/JP2007165750A/en
Publication of JP2007165750A publication Critical patent/JP2007165750A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve the operating speed of a semiconductor device by suppressing the increase of a resistance rate of metallic wiring whose wiring width is narrow. <P>SOLUTION: In this semiconductor device 100, a silicon oxide film 102 and a copper line 105 formed in the silicon oxide film 102 are formed on a semiconductor substrate 101, and the copper wiring 105 is provided with a first ferromagnetic film 104A formed on the lower face, right face side, and left side face and a second ferromagnetic film 104B formed on the upper face. The magnetization directions of the first ferromagnetic film 104A and the second ferromagnetic film 104B are lined up in the same direction so as to be matched with the extended direction of the copper wiring 105. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、狭配線幅の金属配線を備えた半導体装置及びその製造方法に関する。   The present invention relates to a semiconductor device provided with a metal wiring having a narrow wiring width and a manufacturing method thereof.

近年の半導体装置では高集積化を実現するために、配線パターンの微細化及び多層化が進行している。しかし、配線パターンの微細化は配線抵抗の増大を引き起こし、配線パターンの多層化は配線間容量の増加を引き起こしている。配線抵抗が増大する原因は不純物や格子欠陥での静的散乱や、格子振動による動的散乱によって伝導電子の移動が妨げられることにある。このような配線抵抗の増大及び配線間容量の増加は、配線における信号伝達速度の低下を招くことになる。この信号伝達速度の低下が半導体装置の動作の高速化を妨げるので、その対策として、低抵抗の金属配線材料として銅の導入が行われている。   In recent semiconductor devices, miniaturization and multilayering of wiring patterns are progressing in order to realize high integration. However, miniaturization of wiring patterns causes an increase in wiring resistance, and multilayering of wiring patterns causes an increase in inter-wiring capacitance. The cause of the increase in wiring resistance is that the movement of conduction electrons is hindered by static scattering due to impurities and lattice defects and dynamic scattering due to lattice vibration. Such an increase in wiring resistance and an increase in inter-wiring capacitance leads to a decrease in signal transmission speed in the wiring. Since this decrease in the signal transmission speed hinders the speeding up of the operation of the semiconductor device, copper is introduced as a low-resistance metal wiring material as a countermeasure.

しかしながら、銅の結晶粒の大きさや配線の断面の一辺の長さが電子の平均自由行程と同じ程度になると、銅の結晶粒界や配線の側壁における電子散乱の影響が顕在化し、抵抗率が増大することが知られている。図5は、結晶粒界での電子散乱及び配線側壁での電子散乱をパラメータとした銅配線の抵抗率の配線幅依存性を示す図である(例えば、非特許文献1又は2を参照)。図5に示すように、銅配線の配線幅が狭くなるにつれて、配線側壁での散乱及び結晶粒界での散乱による抵抗率が上昇し、配線幅に影響を受けないバルク抵抗率にこれらの抵抗率が加わることがわかる。ここで、配線幅が300nm以上の領域において、配線側壁での散乱による抵抗が見られるが、この実験に用いた配線の厚さが150nmであるために起こる配線幅に平行な面の散乱によるものである。
Semiconductor International 7月号 日本語版 (2005)Reed Electronics Group (https://www.sijapan.com/content/0507vol2/cover/cover_0507.html) W.Steinhoegl, G.Schindler, G.Steinlesberger, M.Traving and M.Engelhardt, “Comp-rehenive Study of Copper Wires With Lateral Dimensions of 100nm and Smaller,”J.Appl.Phys.,2005,Vol.97,p.023706
However, if the size of the copper crystal grains and the length of one side of the cross section of the wiring are the same as the mean free path of electrons, the influence of electron scattering at the copper grain boundaries and the side walls of the wiring becomes obvious, and the resistivity is increased. It is known to increase. FIG. 5 is a diagram showing the wiring width dependence of the resistivity of the copper wiring using the electron scattering at the crystal grain boundary and the electron scattering at the wiring side wall as parameters (see, for example, Non-Patent Document 1 or 2). As shown in FIG. 5, as the wiring width of the copper wiring becomes narrower, the resistivity due to scattering at the wiring sidewall and scattering at the crystal grain boundary increases, and these resistances are not affected by the wiring width. You can see that the rate is added. Here, in the region where the wiring width is 300 nm or more, resistance due to scattering on the wiring side wall is observed, but this is due to scattering of the plane parallel to the wiring width which occurs because the wiring thickness used in this experiment is 150 nm. It is.
Semiconductor International July edition (2005) Reed Electronics Group (https://www.sijapan.com/content/0507vol2/cover/cover_0507.html) W. Steinhoegl, G. Schindler, G. Steinlesberger, M. Traveling and M. Engelhardt, “Comp-rehenive Study of Copper Wires With Lateral Dimensions of 100nm and Smaller,” J. Appl. Phys., 2005, Vol. 97, p.023706

しかしながら、配線パターンの微細化が進行し、配線幅が電子の平均自由行程程度になると、配線の抵抗率が増大し、半導体装置の動作の高速化が妨げられるという問題が生じていた。   However, when the miniaturization of the wiring pattern has progressed and the wiring width becomes about the mean free path of electrons, there has been a problem that the resistivity of the wiring increases and the speeding up of the operation of the semiconductor device is hindered.

前述の問題に鑑みて、本発明は、配線幅が伝導電子の平均自由行程程度に狭くなった場合でも配線の抵抗率が増大することを抑制し、半導体装置の動作速度を向上させることを目的とする。   In view of the above-described problems, the present invention has an object to suppress an increase in the resistivity of a wiring even when the wiring width becomes as narrow as the mean free path of conduction electrons, and to improve the operation speed of a semiconductor device. And

本発明に係る半導体装置は、絶縁膜中に形成された金属配線を備えた半導体装置を対象とし、金属配線において、上面及び下面よりなる第1の一対の対向面並びに左側面又は右側面よりなる第2の一対の対向面のうち少なくとも一方に、磁化方向が金属配線の延びる一の方向を有する強磁性体膜が設けられている。   The semiconductor device according to the present invention is directed to a semiconductor device including a metal wiring formed in an insulating film, and the metal wiring includes a first pair of opposing surfaces including an upper surface and a lower surface, and a left side surface or a right side surface. A ferromagnetic film having a magnetization direction in one direction in which the metal wiring extends is provided on at least one of the second pair of opposed surfaces.

この構成とすることにより、金属配線の側壁部分における伝導電子の散乱を抑制することができる。つまり、金属配線は強磁性体膜で挟まれた構成となり、強磁性体膜の磁化方向が互いに同じ向きで且つ金属配線の延びる方向と一致するため、伝導電子のスピンと強磁性体膜のスピンとの相互作用(界面散乱)が小さくなるために抵抗が低くなる(これを巨大磁気抵抗効果という。)。したがって、配線幅が狭くなっても、抵抗率の増加を抑制し、動作速度を向上させることができる。   With this configuration, scattering of conduction electrons in the side wall portion of the metal wiring can be suppressed. In other words, the metal wiring is sandwiched between the ferromagnetic films, and the magnetization directions of the ferromagnetic films are the same and coincide with the extending direction of the metal wiring. Since the interaction (interfacial scattering) with the resistance becomes smaller, the resistance becomes lower (this is called the giant magnetoresistance effect). Therefore, even if the wiring width becomes narrow, an increase in resistivity can be suppressed and the operation speed can be improved.

また、前述の本発明に係る半導体装置において、第1の対向面及び第2の対向面に磁化方向がすべて等しい強磁性体膜が設けられていることが好ましい。この構成とすることにより、金属配線が延びる方向に対して上下左右全ての面に磁化方向が一方向に揃った強磁性体膜を設けることになるため、金属配線の側壁で生じる抵抗率の上昇を一層抑制することができる。   In the above-described semiconductor device according to the present invention, it is preferable that ferromagnetic films having the same magnetization direction are provided on the first facing surface and the second facing surface. With this configuration, a ferromagnetic film having a uniform magnetization direction is provided on all the top, bottom, left, and right sides with respect to the direction in which the metal wiring extends, so that the resistivity rises on the side wall of the metal wiring. Can be further suppressed.

また、前述の本発明に係る半導体装置において、金属配線は銅を主成分とすることが好ましい。このように金属配線に低抵抗である金属配線材料として銅を用いることで、抵抗率の上昇をさらに抑制することができる。   In the above-described semiconductor device according to the present invention, the metal wiring preferably includes copper as a main component. Thus, by using copper as a metal wiring material having a low resistance for the metal wiring, an increase in resistivity can be further suppressed.

また、本発明の半導体装置の製造方法は、絶縁膜に配線溝を形成する工程と、配線溝に、上面及び下面よりなる第1の対向面並びに左側面及び右側面よりなる第2の対向面のうち少なくとも一方に強磁性体膜を設けた金属配線を形成する工程と、強磁性体膜の磁化方向が金属配線の延びる方向と一致するように強磁性体膜に磁界を印可する工程を備えている。このような構成とすることにより、強磁性体膜の磁化方向を効率良く揃えることができる。   The method for manufacturing a semiconductor device according to the present invention includes a step of forming a wiring groove in an insulating film, a first opposing surface comprising an upper surface and a lower surface, and a second opposing surface comprising a left side and a right side. Forming a metal wiring provided with a ferromagnetic film on at least one of them, and applying a magnetic field to the ferromagnetic film so that the magnetization direction of the ferromagnetic film coincides with the extending direction of the metal wiring. ing. With such a configuration, the magnetization direction of the ferromagnetic film can be efficiently aligned.

本発明に係る半導体装置及びその製造方法によると、配線パターンの微細化に伴って顕在化してくる金属配線の抵抗率の上昇を抑制することができ、配線幅が電子の平均自由行程程度になっても、半道体装置の動作速度を向上させることができる。   According to the semiconductor device and the method for manufacturing the same according to the present invention, it is possible to suppress the increase in resistivity of the metal wiring that becomes apparent as the wiring pattern becomes finer, and the wiring width becomes about the mean free path of electrons. Even so, the operating speed of the halfway apparatus can be improved.

以下に、本発明の一実施形態に係る半導体装置について、図面を用いて説明する。図1は、本実施形態に係る半導体装置の要部断面構造を示している。   A semiconductor device according to an embodiment of the present invention will be described below with reference to the drawings. FIG. 1 shows a cross-sectional structure of a main part of the semiconductor device according to this embodiment.

図1に示すように、本実施形態の半導体装置100は、半導体基板101の上に絶縁膜として形成された膜厚が約100nmのシリコン酸化膜102と、シリコン酸化膜102中に形成された、線幅及び厚さが約50nmの銅配線105と、銅配線105の下面、左側面及び右側面に設けられた第1の強磁性体膜104Aと、銅配線105の上面に設けられた第2の強磁性体104Bとを備えている。   As shown in FIG. 1, the semiconductor device 100 according to the present embodiment includes a silicon oxide film 102 having a thickness of about 100 nm formed as an insulating film on a semiconductor substrate 101, and a silicon oxide film 102 formed in the silicon oxide film 102. A copper wiring 105 having a line width and thickness of about 50 nm, a first ferromagnetic film 104A provided on the lower surface, the left side, and the right side of the copper wiring 105, and a second provided on the upper surface of the copper wiring 105. And the ferromagnetic body 104B.

銅配線105の上面、下面、左側面及び右側面を被覆するように設けられた第1の強磁性体膜104A及び第2の強磁性体膜104Bは、例えば膜厚2nm程度のNd(ネオジウム)からなり、図1の紙面に垂直方向に磁化されており、その磁化方向は全て同じ向きに揃えられている。   The first ferromagnetic film 104A and the second ferromagnetic film 104B provided so as to cover the upper surface, the lower surface, the left side surface, and the right side surface of the copper wiring 105 are, for example, Nd (neodymium) having a film thickness of about 2 nm. 1 and is magnetized in the direction perpendicular to the paper surface of FIG. 1, and the magnetization directions are all aligned in the same direction.

なお、磁化方向は銅配線105が延びる方向と一致していればよく、電流の流れる方向に対して同方向でも反対方向でも構わない。   The magnetization direction only needs to coincide with the direction in which the copper wiring 105 extends, and may be the same direction or the opposite direction to the direction in which the current flows.

以下に、図2(a)及び図2(b)を用いて、本発明における強磁性体膜の作用について説明する。図2(a)及び図2(b)は、強磁性体膜200と金属配線中の伝導電子201のスピンの相互作用、つまり、強磁性体膜200によって挟まれた金属配線中を伝導電子201が移動する様子を示している。図2(a)は、対向する強磁性体膜200の磁化方向(実線矢印又は破線矢印)が互いに同じ向きで且つ金属配線の延びる方向と一致している場合を示し、図2(b)は、磁化方向が互いに反対向きとなる場合を示している。   The operation of the ferromagnetic film according to the present invention will be described below with reference to FIGS. 2 (a) and 2 (b). 2A and 2B show the spin interaction between the ferromagnetic film 200 and the conduction electrons 201 in the metal wiring, that is, the conduction electrons 201 in the metal wiring sandwiched between the ferromagnetic films 200. FIG. Shows the movement. FIG. 2A shows a case where the magnetization directions (solid arrow or broken line arrow) of the opposing ferromagnetic film 200 are in the same direction and coincide with the extending direction of the metal wiring, and FIG. The case where the magnetization directions are opposite to each other is shown.

伝導電子と強磁性体膜との相互作用(界面散乱)は、図2(a)及び図2(b)に示すように、強磁性体膜200の磁化方向により大きく異なる(例えば、特開平11−316918号公報を参照)。図2(a)に示すように、磁化方向が互いに一致した強磁性体膜200に挟まれた金属配線中を移動する伝導電子201のスピンは、強磁性体膜200のスピンとの相互作用が小さい状態で移動することができる。従って、伝導電子201の抵抗は低くなる。   As shown in FIGS. 2A and 2B, the interaction between the conduction electrons and the ferromagnetic film (interface scattering) varies greatly depending on the magnetization direction of the ferromagnetic film 200 (for example, Japanese Patent Laid-Open No. Hei 11). -331618). As shown in FIG. 2A, the spins of the conduction electrons 201 moving in the metal wiring sandwiched between the ferromagnetic films 200 whose magnetization directions coincide with each other have an interaction with the spins of the ferromagnetic film 200. Can move in a small state. Therefore, the resistance of the conduction electron 201 is lowered.

一方、図2(b)に示すように、磁化方向が互いに反対方向である強磁性体膜200に挟まれた金属配線中を移動する伝導電子201のスピンは、強磁性体膜200のスピンとの相互作用が大きい状態で移動するので、伝導電子201の抵抗は高くなる。   On the other hand, as shown in FIG. 2B, the spin of the conduction electrons 201 moving in the metal wiring sandwiched between the ferromagnetic films 200 whose magnetization directions are opposite to each other is the spin of the ferromagnetic film 200. Therefore, the resistance of the conduction electron 201 becomes high.

仮に、金属配線が強磁性体膜で覆われていない場合は、金属配線中の伝導電子は金属配線側壁と衝突することによって、スピンが制御されていない界面散乱が生じるため、配線幅が狭くなると金属配線の抵抗率が上昇することになる。   If the metal wiring is not covered with a ferromagnetic film, the conduction electrons in the metal wiring collide with the metal wiring side wall, resulting in interface scattering with uncontrolled spin. The resistivity of the metal wiring will increase.

つまり、本発明は、磁化方向が互いに同じ向きで且つ金属配線の延びる方向と一致している強磁性体膜で金属配線を覆うことにより、伝導電子の抵抗の上昇を抑制することができる。したがって、金属配線幅が狭くなり、伝導電子の平均自由行程程度になった場合に、抵抗率の増加を効果的に抑制することができる。   That is, according to the present invention, the increase in resistance of conduction electrons can be suppressed by covering the metal wiring with a ferromagnetic film whose magnetization directions are the same as each other and coincides with the extending direction of the metal wiring. Therefore, the increase in resistivity can be effectively suppressed when the width of the metal wiring is reduced and the mean free path of conduction electrons is reached.

以下、本発明の一実施形態に係る半導体装置の製造方法について図3(a)〜図3(f)を参照しながら説明する。ただし、図1と同一構成要素は、同符号を付して説明を省略する。   Hereinafter, a method for manufacturing a semiconductor device according to an embodiment of the present invention will be described with reference to FIGS. However, the same components as those in FIG.

まず、図3(a)に示すように、半導体基板101上に、例えばCVD(Chemical Vapor Deposition)法により、膜厚約100nmのシリコン酸化膜102を形成した後、リソグラフィ法及びドライエッチング法により、配線溝103を形成する。次に、図3(b)に示すように、スパッタ法により、膜厚約2nmのNdよりなる第1の強磁性体膜104Aを堆積する。   First, as shown in FIG. 3A, a silicon oxide film 102 having a thickness of about 100 nm is formed on a semiconductor substrate 101 by, for example, a CVD (Chemical Vapor Deposition) method, and then a lithography method and a dry etching method are performed. A wiring groove 103 is formed. Next, as shown in FIG. 3B, a first ferromagnetic film 104A made of Nd having a thickness of about 2 nm is deposited by sputtering.

次に、図3(c)に示すように、等方性ドライエッチングやCMP(Chemical Mechanical Polish)法により、第1の強磁性体膜104Aにおける配線溝103の外部に存在する部分を除去して、配線溝103の内部のみ第1の強磁性体膜104Aを形成する。続いて、図3(d)に示すように、配線溝103に、例えば無電解めっき法により、膜厚が約50nmとなるように銅を埋め込んで銅配線105を形成する。なお、銅配線105の形成方法は、例えば、スパッタ法により堆積後、CMPやエッチバックで除去する方法、又は無電解めっき法に代えて電解めっき法等の他の方法で行ってもよい。   Next, as shown in FIG. 3C, a portion of the first ferromagnetic film 104A existing outside the wiring trench 103 is removed by isotropic dry etching or CMP (Chemical Mechanical Polish). The first ferromagnetic film 104 </ b> A is formed only inside the wiring trench 103. Subsequently, as shown in FIG. 3D, copper wiring 105 is formed by embedding copper in the wiring groove 103 so as to have a film thickness of about 50 nm by, for example, electroless plating. The copper wiring 105 may be formed by, for example, a method of removing by CMP or etchback after deposition by a sputtering method, or another method such as an electrolytic plating method instead of the electroless plating method.

次に、図3(e)に示すように、半導体基板100上の全面に亘って、膜厚約2nmのNdよりなる第2の強磁性体膜104Bをスパッタ法によって堆積する。続いて、図3(f)に示すように、CMPにより、第2の強磁性体膜104Bにおける配線溝103の外部に存在する部分を除去して、配線溝103の内部側のみ第2の強磁性体膜104Bを形成する。   Next, as shown in FIG. 3E, a second ferromagnetic film 104B made of Nd having a film thickness of about 2 nm is deposited over the entire surface of the semiconductor substrate 100 by sputtering. Subsequently, as shown in FIG. 3F, the portion existing outside the wiring trench 103 in the second ferromagnetic film 104B is removed by CMP, and the second strong film is only on the inner side of the wiring trench 103. A magnetic film 104B is formed.

これにより、下面、左側面及び右側面が第1の強磁性体膜104Aにより被覆され、且つ、上面が第2の強磁性体膜104Bにより被覆された銅配線105が形成される。   As a result, the copper wiring 105 having the lower surface, the left side surface and the right side surface covered with the first ferromagnetic film 104A and the upper surface covered with the second ferromagnetic film 104B is formed.

なお、第1の強磁性体膜104A及び第2の強磁性体膜104Bの材料としては、Nd(ネオジウム)に代えて、B(ボロン)、Ce(セリウム)、Co(コバルト)、Cr(クロム)、Fe(鉄)、La(ランタン)、Mn(マンガン)、Ni(ニッケル)、Sm(サマリウム)、Sr(ストロンチウム)等及びそれらの合金、酸化物、窒化物を用いてもよい。さらに、例えば、分子磁性体として知られるTTTA(環状チアジルラジカル(1,3,5-Trithia-2,4,6-triazapentalenyl))等の有機性材料を用いてもよい。   The material of the first ferromagnetic film 104A and the second ferromagnetic film 104B is B (boron), Ce (cerium), Co (cobalt), Cr (chromium) instead of Nd (neodymium). ), Fe (iron), La (lanthanum), Mn (manganese), Ni (nickel), Sm (samarium), Sr (strontium), and their alloys, oxides, and nitrides may be used. Furthermore, for example, an organic material such as TTTA (cyclic thiazyl radical (1,3,5-Trithia-2,4,6-triazapentalenyl)) known as a molecular magnetic substance may be used.

ここで、第1の強磁性体膜104A及び第2の強磁性体104Bは、スパッタ法により形成されるが、スパッタ法に代えてめっき法を用いて形成してもよい。スパッタ法により形成する場合には、一般的なマグネトロンスパッタ法で行い、銅配線105が延びる方向と一致した向きに、例えば磁束密度が約0.01Tの磁界を印加する。このように磁界を印加することによって、第1の強磁性体膜104A及び第2の強磁性体膜104Bの磁化方向を全て同じ向きに揃えることができるため、銅配線105の上面、下面、左側面及び右側面に形成された第1の強磁性体膜104A及び第2の強磁性体膜104Bは磁化方向が同じ向きに揃うことになる。   Here, the first ferromagnetic film 104 </ b> A and the second ferromagnetic film 104 </ b> B are formed by a sputtering method, but may be formed by using a plating method instead of the sputtering method. When forming by a sputtering method, it is performed by a general magnetron sputtering method, and a magnetic field having a magnetic flux density of about 0.01 T, for example, is applied in a direction coinciding with the direction in which the copper wiring 105 extends. By applying the magnetic field in this way, the magnetization directions of the first ferromagnetic film 104A and the second ferromagnetic film 104B can all be made the same, so that the upper surface, the lower surface, and the left side of the copper wiring 105 The first ferromagnetic film 104A and the second ferromagnetic film 104B formed on the surface and the right side have the same magnetization direction.

以上のように、非磁性体である銅を主成分とする金属配線の周囲に金属配線の延びる方向と一致させるように磁化方向が揃った強磁性体膜を設けることにより、金属配線の側壁での伝導電子の散乱による抵抗の上昇を抑制することができる。したがって、金属配線の狭配線幅化に伴って生じる半導体装置の動作速度の低減を抑制することができる。   As described above, by providing a ferromagnetic film having a uniform magnetization direction so as to coincide with the extending direction of the metal wiring around the metal wiring mainly composed of copper, which is a non-magnetic material, on the side wall of the metal wiring. An increase in resistance due to scattering of conduction electrons can be suppressed. Therefore, it is possible to suppress a reduction in the operation speed of the semiconductor device that occurs with the narrowing of the metal wiring.

なお、本実施形態では金属配線として銅配線を用いたが、金属配線の材料は銅に限らず、他の金属材料を用いても構わない。   In this embodiment, copper wiring is used as the metal wiring, but the material of the metal wiring is not limited to copper, and other metal materials may be used.

以下に、本発明に係る強磁性体膜による効果について、図4を参照しながら説明する。   Hereinafter, the effect of the ferromagnetic film according to the present invention will be described with reference to FIG.

銅配線中の伝導電子の散乱の性質は、式(1)によって表すことができる(例えば、非特許文献1参照)。   The property of scattering of conduction electrons in the copper wiring can be expressed by equation (1) (for example, see Non-Patent Document 1).

Figure 2007165750
Figure 2007165750

ここで、ρ0はバルク金属配線材料の抵抗率、ρは金属配線の抵抗率(任意単位)、wは配線幅、λは金属配線中の伝導電子の平均自由行程(銅の場合、室温においてλ=40nm)である。pは配線側壁で伝導電子が弾性散乱される割合で、0と1の間の値をとる。p=1の場合、すべての伝導電子が弾性散乱するため、金属配線の側壁への伝導電子の衝突があっても抵抗率は変化しない。つまり、抵抗率は配線幅に依存しない。厳密にいうと、式(1)では、結晶粒径の大きさ、配線構造のアスペクト比が考慮されるべきであるが、本発明の場合、配線側壁での伝導電子の弾性散乱の影響を扱っているので、結晶粒径の大きさ、アスペクト比の影響は省略してある。 Where ρ 0 is the resistivity of the bulk metal wiring material, ρ is the resistivity of the metal wiring (arbitrary unit), w is the wiring width, λ is the mean free path of conduction electrons in the metal wiring (in the case of copper at room temperature) (λ = 40 nm). p is a rate at which conduction electrons are elastically scattered on the wiring sidewall, and takes a value between 0 and 1. When p = 1, all conduction electrons are elastically scattered, so the resistivity does not change even if the conduction electrons collide with the side wall of the metal wiring. That is, the resistivity does not depend on the wiring width. Strictly speaking, in the formula (1), the size of the crystal grain size and the aspect ratio of the wiring structure should be considered. In the present invention, however, the influence of the elastic scattering of conduction electrons on the wiring sidewall is treated. Therefore, the influence of the crystal grain size and aspect ratio is omitted.

図4は、式(1)で示される金属配線の抵抗率と弾性散乱率及び印加磁束強度との関係を示しており、銅配線における配線幅w=20、30、50、100、200nmそれぞれの場合を比較している。具体的には、弾性散乱率の変化は強磁性体膜の磁化強度に依存するため、磁性体膜材料を磁化するときに印加した磁束密度を図4の横軸の副軸として示し、印加磁束密度を0.1Tまで変化させた場合の金属配線の抵抗率の変化の配線幅依存性を示している。なお、このときの配線の厚さは、配線幅と等しくしている。   FIG. 4 shows the relationship between the resistivity, elastic scattering rate, and applied magnetic flux intensity of the metal wiring represented by the formula (1), and the wiring width w = 20, 30, 50, 100, and 200 nm in the copper wiring. If you are comparing. Specifically, since the change in the elastic scattering rate depends on the magnetization intensity of the ferromagnetic film, the magnetic flux density applied when magnetizing the magnetic film material is shown as the minor axis of the horizontal axis in FIG. The wiring width dependence of the change in resistivity of the metal wiring when the density is changed to 0.1T is shown. The wiring thickness at this time is made equal to the wiring width.

図4に示すように、例えば、配線幅w=30nm(■印)の場合、弾性散乱率pが0.1から1.0に変化(変化分0.9)すると、金属配線の抵抗率ρは約2.64から約1.2に変化(変化分1.44)する。つまり、pが1だけ変化(変化分1.0)するとき、ρの変化率は1.6となる。したがって、印加磁束密度を10%増加させる(言い換えると、弾性散乱率pを10%改善させるため、印加磁束密度を0.01T増加する)ことにより、抵抗率ρ(配線測壁散乱による抵抗率)を16%減少させることができる。   As shown in FIG. 4, for example, when the wiring width w = 30 nm (marked by ■), the resistivity ρ of the metal wiring is changed when the elastic scattering rate p is changed from 0.1 to 1.0 (change of 0.9). Changes from about 2.64 to about 1.2 (change 1.44). That is, when p changes by 1 (1.0 change), the change rate of ρ is 1.6. Therefore, by increasing the applied magnetic flux density by 10% (in other words, by increasing the applied magnetic flux density by 0.01 T in order to improve the elastic scattering rate p by 10%), the resistivity ρ (the resistivity due to wiring wall scattering) Can be reduced by 16%.

また、配線幅w=50nm(△印)の場合、pが0.9変化すると抵抗率ρは0.864変化する。つまり、pが1だけ変化するとき、ρの変化率は0.96となる。したがって、印加磁束強度を10%増加することにより、抵抗率ρを約10%減少させることができる。   Further, in the case of the wiring width w = 50 nm (Δ mark), when p changes by 0.9, the resistivity ρ changes by 0.864. That is, when p changes by 1, the rate of change of ρ is 0.96. Therefore, the resistivity ρ can be reduced by about 10% by increasing the applied magnetic flux intensity by 10%.

さらに、配線幅w=20nm(◆印)の場合、pが0.9変化すると抵抗率ρは2.16変化する。つまり、pが1だけ変化するとき、ρの変化率は2.4となる。したがって、印加磁束強度を10%増加することにより、抵抗率ρを約25%減少させることができる。   Further, when the wiring width w = 20 nm (marked by ◆), the resistivity ρ changes 2.16 when p changes by 0.9. That is, when p changes by 1, the rate of change of ρ is 2.4. Therefore, the resistivity ρ can be reduced by about 25% by increasing the applied magnetic flux intensity by 10%.

このように、本発明によると、配線幅が細いときほど、磁界を印加することにより、金属配線の抵抗率を効果的に減少させることができる。   Thus, according to the present invention, the resistivity of the metal wiring can be effectively reduced by applying a magnetic field as the wiring width is narrower.

ここで、本発明と比較した従来の金属配線の抵抗率と配線幅依存性について、図5を参照しながら説明する。図5に示すように、配線幅30nmの銅配線の抵抗率はほぼ4μΩ・cmであり、このうちバルク抵抗率は2μΩ・cm、配線側壁散乱による抵抗率は1μΩ・cm、粒界散乱による抵抗率は約1μΩ・cmである。一方、本発明によれば、前述したように、線幅30nmの銅配線における配線側壁散乱による抵抗率を16%減少させることができるため、配線側壁散乱による抵抗率1μΩ・cmを0.84μΩ・cmと抑制することができる。したがって、線幅30nmの銅配線の抵抗率を4μΩ・cmから3.84μΩ・cmに抑制することができる。   Here, the resistivity and wiring width dependence of the conventional metal wiring compared with the present invention will be described with reference to FIG. As shown in FIG. 5, the resistivity of the copper wiring with a wiring width of 30 nm is approximately 4 μΩ · cm, of which the bulk resistivity is 2 μΩ · cm, the resistivity due to wiring side wall scattering is 1 μΩ · cm, and the resistance due to grain boundary scattering The rate is about 1 μΩ · cm. On the other hand, according to the present invention, as described above, the resistivity due to the wiring side wall scattering in the copper wiring having a line width of 30 nm can be reduced by 16%, so that the resistivity due to the wiring side wall scattering is reduced to 0.84 μΩ · cm. It can be suppressed to cm. Therefore, the resistivity of the copper wiring having a line width of 30 nm can be suppressed from 4 μΩ · cm to 3.84 μΩ · cm.

なお、本実施形態において、配線材料である銅が周辺の絶縁膜へ拡散することを防ぐバリア膜(例えば、タンタル膜、窒化タンタル膜)をさらに備えてもよい。   In this embodiment, a barrier film (for example, a tantalum film or a tantalum nitride film) that prevents copper as a wiring material from diffusing into the surrounding insulating film may be further provided.

また、本発明は、配線幅が局所的に狭くなる場合、つまり、配線パターンの微細化が進むとパターンのエッジラフネス(パターン端部の凸凹)が配線の幅に対して無視できない大きさとなる場合にも有効である。例えば、配線幅50nmの規格値に対して、局所的に線幅が30nmの部分が形成された場合である。なお、エッジラフネスの発生原因は、リソグラフィ工程とエッチング工程を用いた配線パターン形成時に、光のパターンエッジ近傍周辺からの反射、散乱による光強度の局所ばらつき、現像工程での化学反応のばらつき等と考えられている。   Further, according to the present invention, when the wiring width is locally narrowed, that is, when the miniaturization of the wiring pattern progresses, the edge roughness of the pattern (pattern edge unevenness) becomes a size that cannot be ignored with respect to the wiring width. Also effective. For example, this is a case where a portion having a line width of 30 nm is locally formed with respect to the standard value of the wiring width of 50 nm. The cause of edge roughness is the reflection of light from the vicinity of the edge of the pattern edge when forming a wiring pattern using the lithography process and the etching process, local variation in light intensity due to scattering, variation in chemical reaction in the development process, etc. It is considered.

本発明は、狭配線幅の金属配線の抵抗率の増大を抑制させ、動作速度を向上させるのに有用である。   The present invention is useful for suppressing an increase in resistivity of a metal wiring having a narrow wiring width and improving an operation speed.

本発明の一実施形態に係る半導体装置の要部断面図である。It is principal part sectional drawing of the semiconductor device which concerns on one Embodiment of this invention. 本発明の一実施形態に係る半導体装置における金属配線の強磁性体膜の作用を説明する図である。It is a figure explaining the effect | action of the ferromagnetic film of the metal wiring in the semiconductor device which concerns on one Embodiment of this invention. 本発明の一実施形態に係る半導体装置の製造方法の工程断面図である。It is process sectional drawing of the manufacturing method of the semiconductor device which concerns on one Embodiment of this invention. 本発明の一実施形態に係る半導体装置における金属配線の抵抗率と弾性散乱率及び印加磁束強度との関係を示す図である。It is a figure which shows the relationship between the resistivity of a metal wiring, the elastic scattering rate, and the applied magnetic flux intensity in the semiconductor device which concerns on one Embodiment of this invention. 従来の金属配線の抵抗率の配線幅依存性を示す図である。It is a figure which shows the wiring width dependence of the resistivity of the conventional metal wiring.

符号の説明Explanation of symbols

100 半導体装置
101 半導体基板
102 シリコン酸化膜
103 配線溝
104A 第1の強磁性体膜
104B 第2の強磁性体膜
105 銅配線
200 強磁性体膜
201 伝導電子
DESCRIPTION OF SYMBOLS 100 Semiconductor device 101 Semiconductor substrate 102 Silicon oxide film 103 Wiring trench 104A 1st ferromagnetic film 104B 2nd ferromagnetic film 105 Copper wiring 200 Ferromagnetic film 201 Conduction electron

Claims (8)

絶縁膜中に形成された金属配線を備えた半導体装置であって、
前記金属配線における上面及び下面よりなる第1の対向面並びに左側面及び右側面よりなる第2の対向面のうち少なくとも一方に、磁化方向が前記金属配線の延びる一の方向を有する強磁性体膜が設けられていることを特徴とする半導体装置。
A semiconductor device having a metal wiring formed in an insulating film,
A ferromagnetic film having a magnetization direction in one direction in which the metal wiring extends in at least one of a first opposing surface composed of an upper surface and a lower surface and a second opposing surface composed of a left surface and a right surface in the metal wiring. A semiconductor device is provided.
前記第1の対向面及び前記第2の対向面に磁化方向がすべて等しい前記強磁性体膜が設けられていることを特徴とする請求項1記載の半導体装置。   2. The semiconductor device according to claim 1, wherein the ferromagnetic film having the same magnetization direction is provided on the first facing surface and the second facing surface. 前記金属配線は銅を主成分とすることを特徴とする請求項1又は2記載の半導体装置。   3. The semiconductor device according to claim 1, wherein the metal wiring contains copper as a main component. 前記強磁性体膜は、B、Ce、Co、Cr、Fe、La、Mn、Nd、Ni、Sm若しくはSr、又はこれらの合金、酸化物若しくは窒化物からなることを特徴とする請求項1又は2記載の半導体装置。   The ferromagnetic film is made of B, Ce, Co, Cr, Fe, La, Mn, Nd, Ni, Sm, or Sr, or an alloy, oxide, or nitride thereof. 2. The semiconductor device according to 2. 絶縁膜に配線溝を形成する工程と、
前記配線溝に、上面及び下面よりなる第1の対向面並びに左側面及び右側面よりなる第2の対向面のうち少なくとも一方に強磁性体膜が設けられた金属配線を形成する工程と、
磁化方向が前記金属配線の延びる方向と一致するように前記強磁性体膜に磁界を印加する工程とを備えることを特徴とする半導体装置の製造方法。
Forming a wiring trench in the insulating film;
Forming a metal wiring having a ferromagnetic film on at least one of a first opposing surface consisting of an upper surface and a lower surface and a second opposing surface consisting of a left side surface and a right side surface in the wiring groove;
And a step of applying a magnetic field to the ferromagnetic film so that the magnetization direction coincides with the extending direction of the metal wiring.
前記強磁性体膜は、スパッタ法又はめっき法を用いて形成されることを特徴とする請求項5記載の半導体装置の製造方法。   6. The method of manufacturing a semiconductor device according to claim 5, wherein the ferromagnetic film is formed using a sputtering method or a plating method. 前記金属配線は銅を主成分とすることを特徴とする請求項5記載の半導体装置の製造方法。   6. The method of manufacturing a semiconductor device according to claim 5, wherein the metal wiring contains copper as a main component. 前記強磁性体膜は、B、Ce、Co、Cr、Fe、La、Mn、Nd、Ni、Sm若しくはSr、又はこれらの合金、酸化物若しくは窒化物からなることを特徴とする請求項5記載の半導体装置の製造方法。

6. The ferromagnetic film is made of B, Ce, Co, Cr, Fe, La, Mn, Nd, Ni, Sm, or Sr, or an alloy, oxide, or nitride thereof. Semiconductor device manufacturing method.

JP2005362908A 2005-12-16 2005-12-16 Semiconductor device and its manufacturing method Pending JP2007165750A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005362908A JP2007165750A (en) 2005-12-16 2005-12-16 Semiconductor device and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005362908A JP2007165750A (en) 2005-12-16 2005-12-16 Semiconductor device and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2007165750A true JP2007165750A (en) 2007-06-28

Family

ID=38248277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005362908A Pending JP2007165750A (en) 2005-12-16 2005-12-16 Semiconductor device and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2007165750A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009295873A (en) * 2008-06-06 2009-12-17 Panasonic Corp Semiconductor device
KR20120044246A (en) * 2010-10-27 2012-05-07 소니 주식회사 Solid-state imaging device, semiconductor device, manufacturing methods thereof, and electronic apparatus

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009295873A (en) * 2008-06-06 2009-12-17 Panasonic Corp Semiconductor device
US8143725B2 (en) 2008-06-06 2012-03-27 Panasonic Corporation Semiconductor device
KR20120044246A (en) * 2010-10-27 2012-05-07 소니 주식회사 Solid-state imaging device, semiconductor device, manufacturing methods thereof, and electronic apparatus
JP2012094720A (en) * 2010-10-27 2012-05-17 Sony Corp Solid state image pick up device, semiconductor device, method for manufacturing solid state image pick up device and semiconductor device, and electronic apparatus
CN102544034A (en) * 2010-10-27 2012-07-04 索尼公司 Solid-state imaging device, semiconductor device, manufacturing methods thereof, and electronic apparatus
US9136304B2 (en) 2010-10-27 2015-09-15 Sony Corporation Solid-state imaging device, semiconductor device, manufacturing methods thereof, and electronic apparatus
KR101930953B1 (en) * 2010-10-27 2018-12-19 소니 주식회사 Solid-state imaging device, semiconductor device, manufacturing methods thereof, and electronic apparatus

Similar Documents

Publication Publication Date Title
US6458603B1 (en) Method of fabricating a micro-technical structure, and micro-technical component
JP5013494B2 (en) Manufacturing method of magnetic memory
TW546647B (en) Magnetic storage element, the manufacturing method and driving method thereof, and memory array
US12035639B2 (en) Spin-current magnetization rotational element and spin orbit torque type magnetoresistance effect element
CN110419117B (en) Method for stabilizing spin element and method for manufacturing spin element
JP2008226919A (en) Magnetic random access memory and its manufacturing method
EP3050081B1 (en) Interconnect wires including relatively low resistivity cores
KR102553611B1 (en) Post-treatment processes for ion beam etching of magnetic tunnel junction and structures formed by the same
CN109841727B (en) Method for manufacturing magneto-resistive random access memory device
TWI343092B (en) Semiconductor structure
CN102412257A (en) Semiconductor memory device and manufacturing method of the same
JP2001143227A (en) Magnetic sensor
TW201539553A (en) Method of forming contact structure of gate structure
JP2006049426A (en) Magnetoresistive device, its manufacturing method, magnetic head using the same, and magnetic reproducing device
JP2007165750A (en) Semiconductor device and its manufacturing method
JP2011009531A (en) Spin transport device
JP5228015B2 (en) Spin wave device
US11925123B2 (en) Spin-orbit torque type magnetization rotational element, spin-orbit torque type magnetoresistance effect element, and magnetic memory
JP6576175B2 (en) Thin film magnetic field sensor and array type thin film magnetic field sensor
US11201273B2 (en) Semiconductor-superconductor heterostructure
US8836438B2 (en) Oscillator element and method for producing the oscillator element
JP4828157B2 (en) Tunnel magnetoresistive element and manufacturing method thereof
Suda et al. Formation scheme of quantum point contacts based on nanogaps using field-emission-induced electromigration
JP2010232475A (en) Magnetic memory device, and method of manufacturing the same
WO2017029720A1 (en) Magnetic sensor and method for manufacturing same