JP2007044585A - Manufacturing method of porous composite metal oxide material - Google Patents

Manufacturing method of porous composite metal oxide material Download PDF

Info

Publication number
JP2007044585A
JP2007044585A JP2005229319A JP2005229319A JP2007044585A JP 2007044585 A JP2007044585 A JP 2007044585A JP 2005229319 A JP2005229319 A JP 2005229319A JP 2005229319 A JP2005229319 A JP 2005229319A JP 2007044585 A JP2007044585 A JP 2007044585A
Authority
JP
Japan
Prior art keywords
metal oxide
less
diameter
porous body
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005229319A
Other languages
Japanese (ja)
Inventor
Toshio Yamamoto
敏生 山本
Akihiko Suda
明彦 須田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2005229319A priority Critical patent/JP2007044585A/en
Publication of JP2007044585A publication Critical patent/JP2007044585A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Catalysts (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of obtaining efficiently a porous composite metal oxide material useful as a catalyst for purifying exhaust gas, or the like, which is extremely excellent in durability for high temperature, and in which even under high temperatures a specific surface area and purification capability are maintained in a high level. <P>SOLUTION: The manufacturing method of the porous composite metal oxide material comprises a dispersion mixing process of dispersion-mixing a first metal oxide powder which is an agglomerate of primary particles having a diameter of 50 nm or less, and has an average particle diameter of 200 nm or less, and a second metal oxide powder which is an agglomerate of primary particles having a diameter of 50 nm or less, and has an average particle diameter of 200 nm or less, in a dispersion medium by using microbeads having a diameter of 150 μm or less, to obtain a uniform dispersion liquid of the first metal oxide powder with the second metal oxide powder, and a drying process of drying the uniform dispersion liquid to obtain the porous composite metal oxide material. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は複合金属酸化物多孔体の製造方法に関し、詳しくは、排ガス中のHC、NO、CO等を浄化するための排ガス浄化用触媒等として有用な複合金属酸化物多孔体を製造するための方法に関する。 The present invention relates to a method for producing a composite metal oxide porous body, and more particularly, to produce a composite metal oxide porous body useful as an exhaust gas purification catalyst for purifying HC, NO x , CO x and the like in exhaust gas. Related to the method.

近年、人間を取り巻く環境に存在し得る成分であって人体に影響を及ぼす可能性のある有害ガスの存在が問題視されるようになってきており、例えば排ガス中の有害成分であるHC、NO、CO等をより確実に浄化することが可能な排ガス浄化用触媒の開発が望まれている。 In recent years, the presence of harmful gases that can exist in the environment surrounding humans and can affect the human body has been regarded as a problem. For example, HC and NO that are harmful components in exhaust gas. Development of an exhaust gas purifying catalyst capable of more reliably purifying x , CO x and the like is desired.

このような背景の下で、排ガスを浄化するための各種の触媒が開発されており、例えば特開平6−199582号公報(特許文献1)には10〜100nmのアルミナ粒子と平均粒径が50nm以下のシリカ粒子等を混合することにより、また、特開平7−284672号公報(特許文献2)には50質量%以上の粒子の粒径が100nm以下であるアルミナ粒子と50質量%以上の粒子の粒径が100nm以下であるシリカ粒子等とを混合することにより、1200℃以上の高温でも大きな比表面積を有する多孔体を製造する方法が記載されている。さらに、特開平10−249198号公報(特許文献3)には、貴金属が担持された平均粒径1〜100nmの超微粒子と他の粒子とを混合することにより、浄化活性の耐久性に優れた排ガス浄化用触媒を製造する方法が記載されている。   Under such a background, various catalysts for purifying exhaust gas have been developed. For example, JP-A-6-199582 (Patent Document 1) discloses 10 to 100 nm alumina particles and an average particle diameter of 50 nm. By mixing the following silica particles and the like, and JP-A-7-284672 (Patent Document 2), alumina particles having a particle size of 50% by mass or more and particles having a particle size of 100 nm or less and particles of 50% by mass or more are disclosed. Describes a method for producing a porous body having a large specific surface area even at a high temperature of 1200 ° C. or higher by mixing silica particles having a particle size of 100 nm or less. Furthermore, JP-A-10-249198 (Patent Document 3) is excellent in durability of purification activity by mixing ultrafine particles having an average particle diameter of 1 to 100 nm on which noble metals are supported and other particles. A method for producing an exhaust gas purifying catalyst is described.

しかしながら、排ガス中の有害成分に対する規制が益々強化される昨今の状況下にあって、このような有害成分をより確実に浄化することが可能な排ガス浄化用触媒に要求される触媒性能は厳しくなる一方であり、より高温耐久性に優れた、すなわち高温下であっても比表面積及び浄化性能がより高水準に維持される排ガス浄化用触媒の開発が望まれている。
特開平6−199582号公報 特開平7−284672号公報 特開平10−249198号公報
However, under the recent situation where regulations on harmful components in exhaust gas are increasingly strengthened, the catalyst performance required for exhaust gas purification catalysts capable of more reliably purifying such harmful components becomes severe. On the other hand, it is desired to develop an exhaust gas purification catalyst that is more excellent in durability at high temperatures, that is, that maintains a specific surface area and purification performance at a higher level even under high temperatures.
JP-A-6-199582 JP-A-7-284672 JP-A-10-249198

本発明は、上記従来技術の有する課題に鑑みてなされたものであり、高温耐久性に非常に優れており、高温下であっても比表面積及び浄化性能が高水準に維持され、排ガス浄化用触媒等として有用な複合金属酸化物多孔体を効率良く製造することができる方法を提供することを目的とする。   The present invention has been made in view of the above-described problems of the prior art, has excellent high-temperature durability, maintains a high specific surface area and purification performance even at high temperatures, and is used for exhaust gas purification. It is an object of the present invention to provide a method capable of efficiently producing a porous composite metal oxide useful as a catalyst or the like.

本発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、直径150μm以下という微細なマイクロビーズを用いて分散せしめた第1金属酸化物微粒子を、平均粒径が200nm以下である第2金属酸化物微粒子と分散及び混合せしめることにより、上記目的が達成されることを見出し、本発明を完成するに至った。   As a result of intensive studies to achieve the above object, the present inventors have found that the first metal oxide fine particles dispersed using fine microbeads having a diameter of 150 μm or less have an average particle diameter of 200 nm or less. The inventors have found that the above object can be achieved by dispersing and mixing with the two metal oxide fine particles, and have completed the present invention.

すなわち、本発明の複合金属酸化物多孔体の製造方法は、
直径50nm以下(より好ましくは20nm以下)の一次粒子の凝集体であり且つ平均粒径が200nm以下である第1金属酸化物粉末と、直径50nm以下(より好ましくは20nm以下)の一次粒子の凝集体であり且つ平均粒径が200nm以下である第2金属酸化物粉末とを、直径150μm以下(より好ましくは10〜100μm)のマイクロビーズを用いて分散媒中で分散及び混合せしめ、第1金属酸化物微粒子と第2金属酸化物微粒子との均一分散液を得る分散混合工程と、
前記均一分散液を乾燥して複合金属酸化物多孔体を得る乾燥工程と、
を含むことを特徴とする方法である。
That is, the method for producing a composite metal oxide porous body of the present invention includes:
A first metal oxide powder which is an aggregate of primary particles having a diameter of 50 nm or less (more preferably 20 nm or less) and an average particle size of 200 nm or less, and agglomeration of primary particles having a diameter of 50 nm or less (more preferably 20 nm or less). The second metal oxide powder, which is an aggregate and has an average particle size of 200 nm or less, is dispersed and mixed in a dispersion medium using microbeads having a diameter of 150 μm or less (more preferably 10 to 100 μm), and the first metal A dispersion mixing step of obtaining a uniform dispersion of oxide fine particles and second metal oxide fine particles;
A drying step of drying the uniform dispersion to obtain a composite metal oxide porous body;
It is the method characterized by including.

上記本発明の複合金属酸化物多孔体の製造方法においては、前記分散混合工程における分散媒のpHを、第1金属酸化物のゼータ電位及び第2金属酸化物のゼータ電位の絶対値がいずれも10mV以上となる領域のpHとすることが好ましい。   In the method for producing a composite metal oxide porous body of the present invention, the pH of the dispersion medium in the dispersion mixing step is set so that the absolute values of the zeta potential of the first metal oxide and the zeta potential of the second metal oxide are both. It is preferable to set the pH in a region of 10 mV or more.

また、本発明の複合金属酸化物多孔体の製造方法において前記分散混合工程において得られた前記第1金属酸化物微粒子が、平均粒径が1〜50nmであり且つ80質量%以上の粒子が直径75nm以下のものであることが好ましく、また、同工程において得られた前記第2金属酸化物微粒子が、平均粒径が1〜130nmであり且つ80質量%以上の粒子が直径160nm以下のものであることが好ましい。   Further, in the method for producing a composite metal oxide porous body of the present invention, the first metal oxide fine particles obtained in the dispersion mixing step have an average particle diameter of 1 to 50 nm and particles having a diameter of 80% by mass or more. Preferably, the second metal oxide fine particles obtained in the same step have an average particle diameter of 1 to 130 nm and 80% by mass or more of particles having a diameter of 160 nm or less. Preferably there is.

さらに、本発明の複合金属酸化物多孔体の製造方法においては、
(i)前記第1金属酸化物粉末及び/又は前記第2金属酸化物粉末の表面に貴金属を担持せしめる前担持工程、或いは、
(ii)前記第1金属酸化物微粒子及び前記第2金属酸化物微粒子の表面に貴金属を担持せしめる後担持工程、
を更に含まれていることが好ましい。
Furthermore, in the method for producing a composite metal oxide porous body of the present invention,
(i) a pre-supporting step of supporting a noble metal on the surface of the first metal oxide powder and / or the second metal oxide powder, or
(ii) a post-supporting step of supporting a noble metal on the surfaces of the first metal oxide fine particles and the second metal oxide fine particles;
Is preferably further included.

また、前記乾燥工程において、前記均一分散液に界面活性剤を添加して混合した後に加熱乾燥することが好ましい。   Moreover, in the said drying process, it is preferable to heat-dry, after adding and mixing surfactant into the said uniform dispersion liquid.

なお、本発明の製造方法によって高温耐久性に非常に優れた複合金属酸化物多孔体が得られるようになる理由は必ずしも定かではないが、本発明者らは以下のように推察する。すなわち、直径150μm以下という微細なマイクロビーズを用いて所定の条件を満たす第1金属酸化物粉末と第2金属酸化物粉末とを分散及び混合せしめることにより、両金属酸化物の微粒子がナノレベルで均一に混合され、互いに同種の金属酸化物微粒子の間に他種の金属酸化物微粒子が障壁となって存在する形態となるため、乾燥工程や高温処理時における各金属酸化物微粒子の粒成長が十分に抑制され、結果として高温下であっても比表面積及び浄化性能が高水準に維持されるようになると本発明者らは推察する。   The reason why the composite metal oxide porous body having excellent high-temperature durability can be obtained by the production method of the present invention is not necessarily clear, but the present inventors speculate as follows. That is, by dispersing and mixing the first metal oxide powder and the second metal oxide powder satisfying a predetermined condition using fine micro beads having a diameter of 150 μm or less, the fine particles of both metal oxides can be obtained at the nano level. Since it is uniformly mixed and other types of metal oxide fine particles exist as barriers between the same type of metal oxide fine particles, the particle growth of each metal oxide fine particle during the drying process and high temperature treatment The present inventors presume that the specific surface area and the purification performance are maintained at a high level even when the temperature is sufficiently suppressed and the temperature is high.

本発明によれば、高温耐久性に非常に優れており、高温下であっても比表面積及び浄化性能が高水準に維持され、排ガス浄化用触媒等として有用な複合金属酸化物多孔体を効率良く製造することが可能となる。   According to the present invention, the composite metal oxide porous body, which is very excellent in high temperature durability, maintains a high specific surface area and purification performance even at high temperatures, and is useful as a catalyst for exhaust gas purification, etc. It becomes possible to manufacture well.

以下、本発明をその好適な実施形態に即して詳細に説明する。   Hereinafter, the present invention will be described in detail with reference to preferred embodiments thereof.

本発明の複合金属酸化物多孔体の製造方法においては、先ず、
(i)直径50nm以下の一次粒子の凝集体であり且つ平均粒径が200nm以下である第1金属酸化物粉末と、直径50nm以下の一次粒子の凝集体であり且つ平均粒径が200nm以下である第2金属酸化物粉末とを、直径150μm以下のマイクロビーズを用いて分散媒中で分散及び混合せしめ、第1金属酸化物微粒子と第2金属酸化物微粒子との均一分散液とし(分散混合工程)、さらに、
(iii)前記均一分散液を乾燥して複合金属酸化物多孔体を得る(乾燥工程)。
In the method for producing a composite metal oxide porous body of the present invention, first,
(i) an aggregate of primary particles having a diameter of 50 nm or less and an average particle diameter of 200 nm or less, and an aggregate of primary particles having a diameter of 50 nm or less and an average particle diameter of 200 nm or less. A second metal oxide powder is dispersed and mixed in a dispersion medium using microbeads having a diameter of 150 μm or less to form a uniform dispersion of the first metal oxide fine particles and the second metal oxide fine particles (dispersed and mixed) Process), and
(iii) The uniform dispersion is dried to obtain a composite metal oxide porous body (drying step).

本発明で用いる第1金属酸化物及び第2金属酸化物の種類は特に制限されず、卑金属元素(Y,La,Ce,Pr,Nd,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Lu,Ca,Mg,Al,K,Ti,Cr,Mn,Fe,Co,Ni,Cu,Ga,Rb,Sr,Zr,Nb,Mo,In,Sn,Cs,Ba,Ta,W等)、貴金族元素(Pt,Pd,Rh,Ru,Au,Ag,Os,Ir)及びメタロイド元素(Si,Ge,As,Sb等)からなる群から選択される少なくとも一種の金属の酸化物が挙げられ、中でもCe,Zr,Al,Ti,Si,Mg,Fe,Mn,Ni,Zn及びCuからなる群から選択される少なくとも一種の金属の単独酸化物又は複合酸化物が好ましく、セリア、ジルコニア、セリア−ジルコニア複合酸化物(固溶体)、アルミナ、チタニア、セピオライト、ゼオライトからなる群から選択される少なくとも一種であることがより好ましい。なお、本発明にかかる金属にはメタロイド(半金属)も含まれ、また、金属酸化物はセリア−ジルコニア複合酸化物、セピオライト、ゼオライトのように複数の金属元素を含有していてもよい。   The type of the first metal oxide and the second metal oxide used in the present invention is not particularly limited, and base metal elements (Y, La, Ce, Pr, Nd, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Ca, Mg, Al, K, Ti, Cr, Mn, Fe, Co, Ni, Cu, Ga, Rb, Sr, Zr, Nb, Mo, In, Sn, Cs, Ba, Ta, W, etc. ), An oxide of at least one metal selected from the group consisting of noble metal elements (Pt, Pd, Rh, Ru, Au, Ag, Os, Ir) and metalloid elements (Si, Ge, As, Sb, etc.) Among them, a single oxide or composite oxide of at least one metal selected from the group consisting of Ce, Zr, Al, Ti, Si, Mg, Fe, Mn, Ni, Zn and Cu is preferable, ceria, More preferably, it is at least one selected from the group consisting of zirconia, ceria-zirconia composite oxide (solid solution), alumina, titania, sepiolite, and zeolite. The metal according to the present invention includes metalloid (semimetal), and the metal oxide may contain a plurality of metal elements such as ceria-zirconia composite oxide, sepiolite, and zeolite.

また、本発明で用いる第1金属酸化物と第2金属酸化物との組み合わせも特に制限されず、目的とする複合金属酸化物多孔体の用途等に応じて適宜選択される。例えば、排ガス浄化用触媒として有用な複合金属酸化物多孔体を得る場合は、酸素貯蔵能(OSC)を有するセリア、セリア−ジルコニア複合酸化物、酸化鉄、酸化プラセオジム等からなる酸素貯蔵材と、拡散障壁となり得るアルミナ、ジルコニア、チタニア等からなる拡散障壁材との組み合わせが好ましい。さらに、例えば高温処理後にも互いが拡散障壁となり得る酸化物の組み合わせという観点から、セリア−ジルコニア複合酸化物とアルミナ、セリアとアルミナ、ジルコニアとアルミナ、セリアとチタニア、アルミナとチタニア、アルミナとシリカ等の組み合わせがより好ましい。   Further, the combination of the first metal oxide and the second metal oxide used in the present invention is not particularly limited, and is appropriately selected according to the intended use of the composite metal oxide porous body. For example, when obtaining a composite metal oxide porous body useful as a catalyst for exhaust gas purification, an oxygen storage material composed of ceria having oxygen storage capacity (OSC), ceria-zirconia composite oxide, iron oxide, praseodymium oxide, and the like; A combination with a diffusion barrier material made of alumina, zirconia, titania or the like that can serve as a diffusion barrier is preferable. Further, for example, from the viewpoint of a combination of oxides that can be diffusion barriers even after high temperature treatment, ceria-zirconia composite oxide and alumina, ceria and alumina, zirconia and alumina, ceria and titania, alumina and titania, alumina and silica, etc. The combination of is more preferable.

このような本発明で用いる第1金属酸化物は、直径50nm以下(より好ましくは20nm以下、特に好ましくは2〜10nm)の一次粒子(結晶子)の凝集体からなる粉末であることが必要である。一次粒子の直径が50nmを超えていると、後述のマイクロビーズを用いて分散しても十分に小さいナノサイズの微粒子を得ることができず、結果として高温耐久性に十分に優れた複合金属酸化物多孔体が得られない。また、本発明で用いる第1金属酸化物粉末の平均粒径は、200nm以下であることが必要であり、10〜100nmであることがより好ましい。第1金属酸化物粉末の平均粒径が200nmを超えていると、後述の第2金属酸化物微粒子と分散及び混合せしめてもナノレベルの均一混合状態は達成されず、結果として高温耐久性に十分に優れた複合金属酸化物多孔体が得られない。   The first metal oxide used in the present invention needs to be a powder made of an aggregate of primary particles (crystallites) having a diameter of 50 nm or less (more preferably 20 nm or less, particularly preferably 2 to 10 nm). is there. If the diameter of the primary particles exceeds 50 nm, sufficiently small nano-sized fine particles cannot be obtained even if dispersed using the microbeads described later, and as a result, the composite metal oxidation is sufficiently excellent in high-temperature durability. A porous material cannot be obtained. Moreover, the average particle diameter of the 1st metal oxide powder used by this invention needs to be 200 nm or less, and it is more preferable that it is 10-100 nm. When the average particle diameter of the first metal oxide powder exceeds 200 nm, a nano-level uniform mixed state is not achieved even when dispersed and mixed with the second metal oxide fine particles described later, resulting in high temperature durability. A sufficiently excellent composite metal oxide porous body cannot be obtained.

また、本発明で用いる第2金属酸化物も、直径50nm以下(より好ましくは20nm以下、特に好ましくは2〜10nm)の一次粒子(結晶子)の凝集体からなる粉末であることが必要である。一次粒子の直径が50nmを超えていると、後述のマイクロビーズを用いて分散しても十分に小さいナノサイズの微粒子を得ることができず、結果として高温耐久性に十分に優れた複合金属酸化物多孔体が得られない。また、本発明で用いる第2金属酸化物粉末の平均粒径は、200nm以下であることが必要であり、10〜100nmであることがより好ましい。第2金属酸化物粉末の平均粒径が200nmを超えていると、前述の第1金属酸化物微粒子と分散及び混合せしめてもナノレベルの均一混合状態は達成されず、結果として高温耐久性に十分に優れた複合金属酸化物多孔体が得られない。   Further, the second metal oxide used in the present invention is also required to be a powder composed of aggregates of primary particles (crystallites) having a diameter of 50 nm or less (more preferably 20 nm or less, particularly preferably 2 to 10 nm). . If the diameter of the primary particles exceeds 50 nm, sufficiently small nano-sized fine particles cannot be obtained even if dispersed using the microbeads described later, and as a result, the composite metal oxidation is sufficiently excellent in high-temperature durability. A porous material cannot be obtained. Moreover, the average particle diameter of the 2nd metal oxide powder used by this invention needs to be 200 nm or less, and it is more preferable that it is 10-100 nm. When the average particle diameter of the second metal oxide powder exceeds 200 nm, even if dispersed and mixed with the first metal oxide fine particles, a nano-level uniform mixed state is not achieved, resulting in high temperature durability. A sufficiently excellent composite metal oxide porous body cannot be obtained.

なお、このような第1金属酸化物粉末及び第2金属酸化物粉末の製造方法は特に制限されず、例えば、原料となる金属塩の溶液を用いたいわゆる沈殿法や、それによって得られた沈殿を焼成する方法によって、適宜得ることができる。   In addition, the manufacturing method in particular of such 1st metal oxide powder and 2nd metal oxide powder is not restrict | limited, For example, what is called precipitation method using the solution of the metal salt used as a raw material, and precipitation obtained by it It can obtain suitably by the method of baking.

本発明における分散混合工程で用いるマイクロビーズは、直径150μm以下のものであることが必要であり、10〜100μmのものであることがより好ましく、15〜50μmのものであることが特に好ましい。マイクロビーズの直径が150μmを超えていると、十分に小さいナノサイズの微粒子、更にはナノレベルの均一混合状態が達成されず、結果として高温耐久性に十分に優れた複合金属酸化物多孔体が得られない。また、マイクロビーズの直径が150μmを超えていると、粒子自体の組成変形や結晶の破壊が発生し、この観点からも十分な耐熱性が得られない。   The microbeads used in the dispersion mixing step in the present invention are required to have a diameter of 150 μm or less, more preferably 10 to 100 μm, and particularly preferably 15 to 50 μm. If the diameter of the microbeads exceeds 150 μm, sufficiently small nano-sized fine particles, and furthermore, a nano-level uniform mixed state cannot be achieved, and as a result, a composite metal oxide porous body sufficiently excellent in high-temperature durability is obtained. I can't get it. On the other hand, when the diameter of the microbead exceeds 150 μm, the composition of the particle itself is deformed and the crystal is broken, and sufficient heat resistance cannot be obtained from this viewpoint.

また、分散混合工程において用いるマイクロビーズの直径は、第1金属酸化物粉末及び第2金属酸化物粉末の平均粒径の250〜1000倍のものが好ましい。マイクロビーズの直径が前記下限未満では分散の効率が低下する傾向にあり、他方、前記上限を超えると十分に小さいナノサイズの微粒子が得られにくくなる傾向にある。   The diameter of the microbeads used in the dispersion mixing step is preferably 250 to 1000 times the average particle diameter of the first metal oxide powder and the second metal oxide powder. If the diameter of the microbead is less than the lower limit, the dispersion efficiency tends to decrease. On the other hand, if the microbead exceeds the upper limit, sufficiently small nano-sized fine particles tend to be hardly obtained.

さらに、本発明で用いるマイクロビーズの材質は特に制限されず、例えばジルコニア、ガラス等が挙げられる。このようなマイクロビーズの材質は、用いる第1及び/又は第2金属酸化物に応じて適宜選択されることが好ましい。   Furthermore, the material of the microbead used in the present invention is not particularly limited, and examples thereof include zirconia and glass. The material of such microbeads is preferably selected as appropriate according to the first and / or second metal oxide used.

本発明における分散混合工程で用いる分散媒は、得られる第1金属酸化物微粒子と第2金属酸化物微粒子とを分散させることができる液体であればよく、特に制限されないが、水等が好適に用いられる。また、かかる分散媒に他の成分を添加する必要は特にないが、後述するように分散媒のpHを調整する場合は、そのための酢酸等の酸、アンモニア等の塩基、緩衝剤等を適宜添加してもよい。   The dispersion medium used in the dispersion mixing step in the present invention is not particularly limited as long as it is a liquid that can disperse the obtained first metal oxide fine particles and second metal oxide fine particles, but water or the like is preferably used. Used. In addition, it is not particularly necessary to add other components to such a dispersion medium, but when adjusting the pH of the dispersion medium as will be described later, an acid such as acetic acid, a base such as ammonia, a buffering agent, etc. are appropriately added. May be.

このような分散混合工程において用いる具体的な装置は、上記の分散媒中でマイクロビーズと共に第1金属酸化物粉末及び第2金属酸化物粉末を混合して後述する第1金属酸化物微粒子と第2金属酸化物微粒子との均一分散液を得ることができるものであればよく、特に限定されないが、例えば寿工業株式会社製「ウルトラアペックスミル」を用いれば遠心力による微粒子とマイクロビーズとの効率的な分離が可能となる。   A specific apparatus used in such a dispersion and mixing step is to mix the first metal oxide powder and the second metal oxide powder together with the microbeads in the above dispersion medium, and the first metal oxide fine particles and the first metal particles described later. There is no particular limitation as long as a uniform dispersion with two metal oxide fine particles can be obtained. For example, if “Ultra Apex Mill” manufactured by Kotobuki Industries Co., Ltd. is used, the efficiency of the fine particles and microbeads by centrifugal force Separation becomes possible.

本発明においては、前述の第1金属酸化物粉末と第2金属酸化物粉末とを上記マイクロビーズを用いて分散媒中で分散及び混合せしめ、第1金属酸化物微粒子と第2金属酸化物微粒子とがナノレベルの均一混合状態にある均一分散液を得る(分散混合工程)。この際、得られる第1金属酸化物微粒子の平均粒径が1〜50nm(より好ましくは1〜30nm)であることが好ましく、また、80質量%以上の粒子が直径75nm以下(より好ましくは80質量%以上の粒子が直径50nm以下)であることが好ましい。得られる第1金属酸化物微粒子の平均粒径が50nmを超えている場合、また、直径75nm以下の微粒子の存在割合が80質量%未満の場合はいずれも、十分なナノレベルの均一混合状態となりにくく、得られる複合金属酸化物多孔体の高温耐久性が低下する傾向にある。また、第2金属酸化物微粒子の平均粒径が1〜130nmであることが好ましく、また、80質量%以上の粒子が直径160nm以下であることが好ましい。得られる第2金属酸化物微粒子の平均粒径が130nmを超えている場合、また、直径160nm以下の微粒子の存在割合が80質量%未満の場合はいずれも、十分なナノレベルの均一混合状態となりにくく、得られる複合金属酸化物多孔体の高温耐久性が低下する傾向にある。   In the present invention, the first metal oxide powder and the second metal oxide powder are dispersed and mixed in a dispersion medium using the microbeads, and the first metal oxide fine particles and the second metal oxide fine particles are mixed. To obtain a uniform dispersion in a nano-level uniform mixing state (dispersing and mixing step). At this time, the average particle diameter of the obtained first metal oxide fine particles is preferably 1 to 50 nm (more preferably 1 to 30 nm), and 80% by mass or more of particles have a diameter of 75 nm or less (more preferably 80 nm). It is preferable that particles of mass% or more have a diameter of 50 nm or less. When the average particle diameter of the obtained first metal oxide fine particles exceeds 50 nm, and when the proportion of fine particles having a diameter of 75 nm or less is less than 80% by mass, a sufficiently nano-level uniform mixed state is obtained. It is difficult and the high temperature durability of the obtained composite metal oxide porous body tends to be lowered. Moreover, it is preferable that the average particle diameter of 2nd metal oxide fine particles is 1-130 nm, and it is preferable that 80 mass% or more of particles are 160 nm or less in diameter. When the average particle size of the obtained second metal oxide fine particles exceeds 130 nm, and when the proportion of fine particles having a diameter of 160 nm or less is less than 80% by mass, a sufficiently uniform nano-level mixed state is obtained. It is difficult and the high temperature durability of the resulting composite metal oxide porous body tends to decrease.

さらに、処理前の第1金属酸化物粉末と第2金属酸化物粉末の粒径に大きな差がないことが好ましく、一方の平均粒径が他方の平均粒径の1〜5倍程度であることが好ましい。   Furthermore, it is preferable that there is no great difference in particle size between the first metal oxide powder and the second metal oxide powder before the treatment, and one average particle size is about 1 to 5 times the other average particle size. Is preferred.

このような分散混合工程における分散混合処理の具体的な条件は特に制限されず、通常は室温〜80℃程度の温度で20〜200分程度の処理時間が採用される。   Specific conditions of the dispersion mixing process in such a dispersion mixing process are not particularly limited, and a treatment time of about 20 to 200 minutes is usually employed at a temperature of about room temperature to 80 ° C.

また、かかる分散混合工程においては、分散媒のpHを、第1金属酸化物のゼータ電位及び第2金属酸化物のゼータ電位の絶対値がいずれも10mV以上となる領域のpHとすることが好ましい。分散媒のpHが上記条件を満たさない場合、pHによっては分散効率が低下する傾向にある。例えば、図1に示すセリア−ジルコニア複合酸化物(CZ)とアルミナのゼータ電位から明らかな通り、第1金属酸化物としてセリア−ジルコニア複合酸化物、第2金属酸化物としてアルミナを用いる場合は、分散混合工程における分散媒のpHは6〜9とすることが好ましいこととなる。   Further, in the dispersion mixing step, it is preferable that the pH of the dispersion medium is a pH in a region where the absolute values of the zeta potential of the first metal oxide and the zeta potential of the second metal oxide are both 10 mV or more. . When the pH of the dispersion medium does not satisfy the above conditions, the dispersion efficiency tends to decrease depending on the pH. For example, as apparent from the zeta potential of the ceria-zirconia composite oxide (CZ) and alumina shown in FIG. 1, when using ceria-zirconia composite oxide as the first metal oxide and alumina as the second metal oxide, The pH of the dispersion medium in the dispersion mixing step is preferably 6-9.

さらに、分散混合工程において混合される第1金属酸化物と第2金属酸化物との混合比(質量比)は、特に制限されないが、(第1金属酸化物の質量):(第2金属酸化物の質量)の値が1:10〜5:1であることが好ましい。第1金属酸化物の配合割合が前記下限未満では微粒子と混合した効果が小さくなる傾向にあり、他方、第2金属酸化物の配合割合が前記下限未満ではpHによっては第1金属酸化物の再凝集が起こり易くなる傾向にある。また、第2金属酸化物を拡散障壁として用いる場合、拡散障壁としての機能が低下する傾向にある。   Further, the mixing ratio (mass ratio) of the first metal oxide and the second metal oxide mixed in the dispersion mixing step is not particularly limited, but (mass of the first metal oxide): (second metal oxide) The value of the mass of the product is preferably 1:10 to 5: 1. If the blending ratio of the first metal oxide is less than the lower limit, the effect of mixing with the fine particles tends to be small. On the other hand, if the blending ratio of the second metal oxide is less than the lower limit, the first metal oxide may be re-reacted depending on the pH. Aggregation tends to occur. Moreover, when using a 2nd metal oxide as a diffusion barrier, it exists in the tendency for the function as a diffusion barrier to fall.

上記の分散混合工程に続いて、本発明においては、同工程で得られた第1金属酸化物微粒子と第2金属酸化物微粒子との均一分散液を乾燥して複合金属酸化物多孔体を得る(乾燥工程)。このような均一分散液を乾燥させる乾燥処理の具体的な条件は特に制限されず、例えば、80〜400℃程度の温度で1〜24時間程度の時間をかけて乾燥せしめる常温又は加熱乾燥、液体窒素を用いて0°以下の温度に凍結させた後に減圧下で乾燥せしめる凍結乾燥といった手法が適宜採用される。   Following the above-described dispersion mixing step, in the present invention, a uniform dispersion of the first metal oxide fine particles and the second metal oxide fine particles obtained in the step is dried to obtain a composite metal oxide porous body. (Drying process). The specific conditions of the drying treatment for drying such a uniform dispersion are not particularly limited, and for example, normal temperature or heat drying that allows drying for about 1 to 24 hours at a temperature of about 80 to 400 ° C., liquid A technique such as freeze-drying in which nitrogen is used to freeze at a temperature of 0 ° C. or less and then dried under reduced pressure is appropriately employed.

また、本発明においては、乾燥工程において、以下に詳述するように前記均一分散液に界面活性剤を添加して混合した後に加熱乾燥することが好ましい。このような乾燥方法を採用することにより、多層の構造を有する複合金属酸化物多孔体が得られ、その層の形態を界面活性剤の種類によって制御することが可能となる。また、前記均一分散液に界面活性剤を添加することにより、二次粒子の周囲を界面活性剤で被覆することで二次粒子同士の凝集が抑制されることとなり、さらに界面活性剤の分散効果により凝集により得られた二次粒子の分散性が向上する傾向にある。そして、これらの作用により、所望の中心細孔直径(好ましくは5〜30nm)及び所望の細孔容積(好ましくは0.2cc/g以上)を有する複合金属酸化物多孔体がより効率良く得られ、さらに得られる複合金属酸化物多孔体の高温耐久性がより向上する傾向にある。   Moreover, in this invention, it is preferable to heat-dry, after adding and mixing surfactant in the said uniform dispersion liquid in a drying process so that it may explain in full detail below. By adopting such a drying method, a composite metal oxide porous body having a multilayer structure can be obtained, and the form of the layer can be controlled by the type of the surfactant. In addition, by adding a surfactant to the uniform dispersion, the secondary particles are coated with a surfactant to suppress the aggregation of secondary particles, and further the effect of dispersing the surfactant. Therefore, the dispersibility of secondary particles obtained by aggregation tends to be improved. By these actions, a composite metal oxide porous body having a desired central pore diameter (preferably 5 to 30 nm) and a desired pore volume (preferably 0.2 cc / g or more) can be obtained more efficiently. Further, the high temperature durability of the obtained composite metal oxide porous body tends to be further improved.

かかる乾燥工程で用いる界面活性剤としては、陰イオン系、陽イオン系、非イオン系のいずれのものも用いることができるが、その中でも形成するミセルが内部に狭い空間を形成しうる形状、例えば球状ミセルを形成し易い界面活性剤が好ましい。また、臨界ミセル濃度(cmc)が0.1mol/リットル以下の界面活性剤が好ましく、0.01mol/リットル以下のものがより好ましい。なお、臨界ミセル濃度(cmc)とは、ある界面活性剤がミセルを形成する最低の濃度のことである。   As the surfactant used in the drying step, any of anionic, cationic, and nonionic surfactants can be used. Among them, a shape in which the micelle to be formed can form a narrow space inside, for example, A surfactant that easily forms spherical micelles is preferred. A surfactant having a critical micelle concentration (cmc) of 0.1 mol / liter or less is preferable, and a surfactant having a critical micelle concentration (cmc) of 0.01 mol / liter or less is more preferable. The critical micelle concentration (cmc) is the lowest concentration at which a surfactant forms micelles.

このような界面活性剤としては、以下のものから選ばれる少なくとも一種を用いることができる。
(i)陰イオン性界面活性剤:
アルキルベンゼンスルホン酸及びその塩、αオレフィンスルホン酸及びその塩、アルキル硫酸エステル塩、アルキルエーテル硫酸エステル塩、フェニルエーテル硫酸エステル塩、メチルタウリン酸塩、スルホコハク酸塩、エーテル硫酸塩、アルキル硫酸塩、エーテルスルホン酸塩、飽和脂肪酸及びその塩、オレイン酸等の不飽和脂肪酸及びその塩、その他のカルボン酸、スルホン酸、硫酸、リン酸、フェノールの誘導体等。
(ii)非イオン性界面活性剤:
ポリオキシエチレンポリプロピレンアルキルエーテル、ポリオキシエチレンアルキルエーテル、ポリキシエチレンアルキルフェニルエーテル、ポリオキシエチレンポリスチリルフェニルエーテル、ポリオキシエチレンポリオキシポリプロピレンアルキルエーテル、ポリオキシエチレンポリオキシプロピレングリコール、多価アルコール(グリコール,グリセリン、ソルビトール、マンニトール、ペンタエリスリトール、ショ糖等)、多価アルコールの脂肪酸部分エステル、多価アルコールのポリオキシエチレン脂肪酸部分エステル、多価アルコールのポリオキシエチレン脂肪酸エステル、ポリオキシエチレン化ヒマシ油、ポリグリセリン脂肪酸エステル、脂肪酸ジエタノールアミド、ポリオキシエチレンアルキルアミン、トリエタノールアミン脂肪酸部分エステル、トリアルキルアミンオキサイド等。
(iii)陽イオン牲界面活性剤:
脂肪酸第一アミン塩、脂肪酸第二アミン塩、脂肪酸第三アミン塩、テトラアルキルアンモニウム塩、トリアルキルベンジルアンモニウム塩、アルキルピロジニウム塩、2−アルキル−1−アルキル−1−ヒドロキシエチルイミダゾリニウム塩、N,N−ジアルキルモルホリニウム塩、ポリエチレンポリアミン、脂肪酸アミド塩等の第四級アンモニウム塩等。
(iv)両イオン性界面活性剤:
ベタイン化合物等。
As such a surfactant, at least one selected from the following can be used.
(i) Anionic surfactant:
Alkyl benzene sulfonic acid and its salt, α-olefin sulfonic acid and its salt, alkyl sulfate ester salt, alkyl ether sulfate ester salt, phenyl ether sulfate ester salt, methyl taurate, sulfosuccinate, ether sulfate, alkyl sulfate, ether Sulfonates, saturated fatty acids and salts thereof, unsaturated fatty acids such as oleic acid and salts thereof, other carboxylic acids, sulfonic acids, sulfuric acids, phosphoric acids, phenol derivatives and the like.
(ii) Nonionic surfactant:
Polyoxyethylene polypropylene alkyl ether, polyoxyethylene alkyl ether, polyoxyethylene alkyl phenyl ether, polyoxyethylene polystyryl phenyl ether, polyoxyethylene polyoxypolypropylene alkyl ether, polyoxyethylene polyoxypropylene glycol, polyhydric alcohol (glycol Glycerin, sorbitol, mannitol, pentaerythritol, sucrose, etc.), polyhydric alcohol fatty acid partial ester, polyhydric alcohol polyoxyethylene fatty acid partial ester, polyhydric alcohol polyoxyethylene fatty acid ester, polyoxyethylenated castor oil , Polyglycerol fatty acid ester, fatty acid diethanolamide, polyoxyethylene alkylamine, triethanolamine Fatty acid partial esters, trialkylamine oxide and the like.
(iii) Cationic surfactant:
Fatty acid primary amine salt, fatty acid secondary amine salt, fatty acid tertiary amine salt, tetraalkylammonium salt, trialkylbenzylammonium salt, alkylpyrodinium salt, 2-alkyl-1-alkyl-1-hydroxyethylimidazolinium Quaternary ammonium salts such as salts, N, N-dialkylmorpholinium salts, polyethylene polyamines and fatty acid amide salts.
(iv) Amphoteric surfactant:
Betaine compounds and the like.

このような界面活性剤の添加量は、特に制限されないが、得られる複合金属酸化物多孔体に対して2〜40質量%となる範囲、すなわち質量比で複合金属酸化物多孔体:界面活性剤=98〜60:2〜40の範囲が好ましい。界面活性剤の添加量が2質量%未満では添加した効果が小さく、他方、40質量%を超えて添加すると界面活性剤どうしの凝集によって得られた二次粒子の分散性が低下し、また加熱乾燥時に界面活性剤の燃焼による発熱量が大きくなるため金属酸化物の凝集が生じて比表面積が低下し易くなる傾向にある。   The addition amount of such a surfactant is not particularly limited, but is in the range of 2 to 40% by mass with respect to the obtained composite metal oxide porous body, that is, the composite metal oxide porous body: surfactant in a mass ratio. = The range of 98-60: 2-40 is preferable. When the addition amount of the surfactant is less than 2% by mass, the effect of the addition is small. On the other hand, when the addition amount exceeds 40% by mass, the dispersibility of the secondary particles obtained by the aggregation of the surfactants decreases, and heating is performed. Since the amount of heat generated by combustion of the surfactant increases during drying, the metal oxide tends to aggregate and the specific surface area tends to decrease.

かかる乾燥工程における撹拌速度は1000sec−1以上とすることが好ましく、10〜30℃の温度で5分間以上撹拌することが好ましい。撹拌による剪断力が大き過ぎると発熱したり装置の消耗が激しくなり、他方、剪断力が小さ過ぎると界面活性剤の分散状態が不十分となる傾向にある。また、撹拌時の温度がこの範囲より低いと撹拌時間が長時間となり、他方、この範囲より高い温度では発熱や装置の消耗が生じ易くなる傾向にある。 The stirring speed in the drying step is preferably 1000 sec −1 or more, and is preferably stirred at a temperature of 10 to 30 ° C. for 5 minutes or more. If the shearing force due to agitation is too large, heat will be generated or the apparatus will be exhausted too much. On the other hand, if the shearing force is too small, the dispersed state of the surfactant will tend to be insufficient. Further, if the temperature during stirring is lower than this range, the stirring time becomes longer, and on the other hand, if the temperature is higher than this range, heat generation and apparatus wear tend to occur.

また、このような界面活性剤を用いる乾燥方法における加熱温度は、150〜800℃とすることが好ましい。この温度が150℃より低いと加熱乾燥に長時間必要となり、他方、800℃より高くなると金属酸化物の凝集が生じて比表面積が低下し易くなる傾向にある。また、加熱時間は特に制限されないが、1〜10時間程度が好ましい。   Moreover, it is preferable that the heating temperature in the drying method using such a surfactant shall be 150-800 degreeC. When this temperature is lower than 150 ° C., heat drying is required for a long time. On the other hand, when the temperature is higher than 800 ° C., aggregation of metal oxide occurs and the specific surface area tends to decrease. The heating time is not particularly limited, but is preferably about 1 to 10 hours.

さらに、このような乾燥方法を採用する場合、界面活性剤と混合された均一分散液を噴霧器にかけ、窒素等のキャリアガスによって大きさの揃ったエアロゾル小滴を生成せしめた後、その小滴を加熱器に通してテフロンフィルタ等の捕集手段によって捕集することが好ましい。このようにすることによって、分散性の高い複合金属酸化物多孔体がより効率良く得られる傾向にある。なお、この場合の流速は特に制限されない。   Furthermore, when adopting such a drying method, a uniform dispersion mixed with a surfactant is applied to a sprayer to generate aerosol droplets of uniform size with a carrier gas such as nitrogen, and then the droplets are removed. It is preferable to collect by a collecting means such as a Teflon filter through a heater. By doing so, a composite metal oxide porous body with high dispersibility tends to be obtained more efficiently. In this case, the flow rate is not particularly limited.

また、本発明においては、上記の乾燥工程の後に焼成工程を含んでいてもよく、かかる焼成工程においては複合金属酸化物多孔体を400〜1000℃程度の温度で1〜10時間程度の時間保持することが好ましい。このような焼成工程を採用することにより、耐久試験後における担体の比表面積低下による貴金属凝集を抑制できる傾向にある。   Moreover, in this invention, the baking process may be included after said drying process, In this baking process, the composite metal oxide porous body is hold | maintained for about 1 to 10 hours at the temperature of about 400-1000 degreeC. It is preferable to do. By employing such a firing step, noble metal aggregation tends to be suppressed due to a decrease in the specific surface area of the carrier after the durability test.

さらに、本発明においては、前記第1金属酸化物粉末及び/又は前記第2金属酸化物粉末の表面に貴金属(貴金属微粒子)を担持せしめる前担持工程、或いは、前記第1金属酸化物微粒子及び前記第2金属酸化物微粒子の表面に貴金属(貴金属微粒子)を担持せしめる後担持工程が更に含まれていることが好ましく、前担持工程が含まれていることがより好ましい。かかる担持工程において、金属酸化物粉末又は微粒子に担持される貴金属は特に制限されず、Pt、Pd、Rh、Ru、Au、Ag、Os、Irからなる群から選択される少なくとも一種の貴金属が挙げられ、中でも触媒活性の観点からPt、Rh、Pd、Irが好ましく、Ptが特に好ましい。また、金属酸化物粉末又は微粒子に担持される貴金属の量も特に制限されないが、担持される金属酸化物100質量部に対して貴金属の量が0.1〜10質量部程度であることが好ましい。貴金属の量が上記下限未満では、貴金属により得られる触媒活性が不十分となる傾向にあり、他方、上記上限を超えると、貴金属による触媒活性が飽和すると共にコストが高騰する傾向にある。さらに、金属酸化物粉末又は微粒子に貴金属を担持せしめる具体的な方法も特に制限されず、例えば、貴金属塩の溶液に金属酸化物粉末又は微粒子を接触せしめ、更に必要に応じて還元処理及び/又は焼成処理を施すといった方法が適宜採用される。また、担持される貴金属微粒子の粒径も特に制限されないが、平均粒径が0.1〜10nm程度であることが一般的である。   Furthermore, in the present invention, a pre-supporting step of supporting a noble metal (noble metal fine particles) on the surface of the first metal oxide powder and / or the second metal oxide powder, or the first metal oxide fine particles and the above-mentioned It is preferable that a post-supporting step of supporting a noble metal (noble metal fine particles) on the surface of the second metal oxide fine particles is further included, and a pre-supporting step is more preferable. In such a supporting step, the noble metal supported on the metal oxide powder or the fine particles is not particularly limited, and includes at least one noble metal selected from the group consisting of Pt, Pd, Rh, Ru, Au, Ag, Os, and Ir. Among these, Pt, Rh, Pd, and Ir are preferable from the viewpoint of catalytic activity, and Pt is particularly preferable. The amount of the noble metal supported on the metal oxide powder or fine particles is not particularly limited, but the amount of the noble metal is preferably about 0.1 to 10 parts by mass with respect to 100 parts by mass of the supported metal oxide. . When the amount of the noble metal is less than the above lower limit, the catalytic activity obtained by the noble metal tends to be insufficient, while when the amount exceeds the upper limit, the catalytic activity due to the noble metal is saturated and the cost tends to increase. Further, the specific method for supporting the noble metal on the metal oxide powder or fine particles is not particularly limited. For example, the metal oxide powder or fine particles are brought into contact with a solution of a noble metal salt, and if necessary, reduction treatment and / or A method of performing a baking treatment is appropriately employed. Further, the particle size of the noble metal fine particles supported is not particularly limited, but the average particle size is generally about 0.1 to 10 nm.

なお、このように貴金属を担持せしめる場合、担持される金属酸化物微粒子は第1金属酸化物粉末又は第2金属酸化物粉末のいずれでもよく、最終的に得られた複合金属酸化物多孔体に金属を担持せしめてもよい。しかし、貴金属が担持されるのに最適な担体として第1金属酸化物を用いた場合、すなわち第1金属酸化物に貴金属を担持せしめることが好ましい場合は、かかる担持工程が分散混合工程の前に存在することが好ましい(前担持工程)。そのようにすることによって主として第1金属酸化物に貴金属を担持せしめることが可能となり、得られる複合金属酸化物多孔体の触媒活性及び高温耐久性がより向上する傾向にある。例えば、第1金属酸化物としてセリア−ジルコニア複合酸化物、第2金属酸化物としてアルミナを用いる場合は、貴金属はセリア−ジルコニア複合酸化物の表面上にある方が触媒活性が向上する傾向にあることから、貴金属をセリア−ジルコニア複合酸化物に担持せしめることが好ましい。   When the noble metal is supported in this manner, the supported metal oxide fine particles may be either the first metal oxide powder or the second metal oxide powder, and the finally obtained composite metal oxide porous body A metal may be supported. However, when the first metal oxide is used as an optimum carrier for supporting the noble metal, that is, when it is preferable to support the noble metal on the first metal oxide, the supporting step is performed before the dispersion mixing step. It is preferably present (pre-loading step). By doing so, it becomes possible to mainly support the noble metal on the first metal oxide, and the catalytic activity and high-temperature durability of the resulting composite metal oxide porous body tend to be further improved. For example, when ceria-zirconia composite oxide is used as the first metal oxide and alumina is used as the second metal oxide, the catalytic activity tends to be improved when the noble metal is on the surface of the ceria-zirconia composite oxide. Therefore, it is preferable to support the noble metal on the ceria-zirconia composite oxide.

以上説明した本発明の方法によって得られる複合金属酸化物多孔体は、前述の第1金属酸化物微粒子及び第2金属酸化物微粒子(貴金属を担持させた場合は更に貴金属微粒子)がナノレベルの均一混合状態で凝集したものであり、その比表面積は特に制限されないが、1〜1000m2/g程度であることが好ましい。なお、かかる比表面積は、吸着等温線からBET等温吸着式を用いてBET比表面積として算出することができる。 In the composite metal oxide porous body obtained by the method of the present invention described above, the above-mentioned first metal oxide fine particles and second metal oxide fine particles (more precious metal fine particles when noble metal is supported) are uniform at the nano level. The specific surface area is not particularly limited, but is preferably about 1 to 1000 m 2 / g. The specific surface area can be calculated as a BET specific surface area from an adsorption isotherm using a BET isotherm adsorption formula.

また、本発明により得られる複合金属酸化物多孔体の形状は特に制限されず、粉末状であっても、薄膜状であってもよい。また、粉末状の場合、その粒径は特に制限されず、その用途等に応じて適宜調整されるが、一般的には50〜200μm程度が好ましい。また、本発明により得られる複合金属酸化物多孔体は、必要に応じて成形して使用してもよい。成形する手段はどのようなものでも良いが、押出成形、打錠成形、転動造粒、圧縮成形、CIPなどが好ましい。その形状は使用箇所、方法に応じて決めることができ、たとえば円柱状、破砕状、球状、ハニカム状、凹凸状、波板状等が挙げられる。   Moreover, the shape of the composite metal oxide porous body obtained by the present invention is not particularly limited, and may be a powder or a thin film. In the case of powder, the particle size is not particularly limited and is appropriately adjusted according to the use and the like, but generally about 50 to 200 μm is preferable. Moreover, you may shape | mold and use the composite metal oxide porous body obtained by this invention as needed. Any molding means may be used, but extrusion molding, tablet molding, rolling granulation, compression molding, CIP and the like are preferable. The shape can be determined according to the place of use and method, and examples thereof include a columnar shape, a crushed shape, a spherical shape, a honeycomb shape, an uneven shape, and a corrugated plate shape.

さらに、本発明により得られる複合金属酸化物多孔体の用途は特に制限されず、例えば排ガス浄化用触媒、VOC類浄化用触媒、改質触媒、空気清浄機用触媒等として有効に用いられる。また、本発明により得られる複合金属酸化物多孔体の具体的な使用方法も特に制限されず、例えば排ガス浄化用触媒として用いる場合は、処理対象となる有害成分を含む気体と触媒とをバッチ式あるいは連続的に接触させることによって有害成分の浄化が達成される。処理対象となる有害成分としては、排ガス中のNO、CO、HC、SO等が挙げられる。 Furthermore, the use of the composite metal oxide porous body obtained by the present invention is not particularly limited, and is effectively used as, for example, an exhaust gas purification catalyst, a VOCs purification catalyst, a reforming catalyst, an air cleaner catalyst, and the like. Further, the specific method of using the composite metal oxide porous body obtained by the present invention is not particularly limited. For example, when used as an exhaust gas purification catalyst, a gas containing a harmful component to be treated and a catalyst are batch-typed. Alternatively, harmful components can be purified by continuous contact. Examples of harmful components to be treated include NO x , CO, HC, SO x in exhaust gas.

以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example and a comparative example, this invention is not limited to a following example.

(実施例1)
先ず、直径約8nmの一次粒子の凝集体で且つ平均粒径が100nmであるセリウム−ジルコニウム複合酸化物(CZ)の粉末に、硝酸Ptの硝酸溶液(Pt濃度:4.5wt%)を用いて以下のようにしてPtを担持せしめ、Ptが担持されたCZ粉末(Pt/CZ粉末)を得た(前担持工程)。すなわち、Pt硝酸溶液をCZ粉末に含浸担持せしめ、300℃で3時間焼成した。なお、担持されたPtの量は、CZ粉末100質量部に対して1質量部であった。
Example 1
First, a nitric acid solution of Pt nitrate (Pt concentration: 4.5 wt%) is used as a cerium-zirconium composite oxide (CZ) powder which is an aggregate of primary particles having a diameter of about 8 nm and an average particle diameter of 100 nm. Pt was supported as follows to obtain CZ powder (Pt / CZ powder) supporting Pt (pre-supporting step). That is, a Pt nitric acid solution was impregnated and supported on CZ powder, and calcined at 300 ° C. for 3 hours. The amount of supported Pt was 1 part by mass with respect to 100 parts by mass of the CZ powder.

次に、得られたPt/CZ粉末と、直径約10nmの一次粒子の凝集体で且つ平均粒径が110nmであるアルミナの粉末を、直径50μmのジルコニア製マイクロビーズを用いてpH7の水溶液中で120分間分散及び混合せしめた後(分散混合工程)、得られた均一分散液をプロペラ撹拌器を用いて撹拌しながら、ノニオン系界面活性剤(ライオン社製、商品名:レオコン、物質名:ポリオキシエチレンポリオキシプロピレンモノ−2−エチルヘキシルエーテル)をCZ粉末と同質量となるように添加した。そして、得られた分散液を、プロペラ撹拌と同時にホモジナイザ撹拌を用いて室温で10分間撹拌(撹拌速度:200sec−1)した後、400℃で5時間かけて加熱乾燥し、Pt/CZ微粒子とアルミナ微粒子とからなる触媒粉末(平均粒径:120nm)を得た。さらに、得られた触媒粉末を金型プレス(1t/cm)で圧粉成形し、粉砕して直径0.5〜1mmのペレット状触媒を得た。 Next, the obtained Pt / CZ powder and an alumina powder having an average particle diameter of 110 nm and an aggregate of primary particles having a diameter of about 10 nm are dissolved in an aqueous solution of pH 7 using zirconia microbeads having a diameter of 50 μm. After dispersing and mixing for 120 minutes (dispersing and mixing step), the resulting uniform dispersion was stirred using a propeller stirrer, and a nonionic surfactant (manufactured by Lion, trade name: Leocon, substance name: Poly) Oxyethylene polyoxypropylene mono-2-ethylhexyl ether) was added so as to have the same mass as the CZ powder. The obtained dispersion was stirred for 10 minutes at room temperature using a homogenizer stirring simultaneously with propeller stirring (stirring speed: 200 sec −1 ), and then heat-dried at 400 ° C. for 5 hours to obtain Pt / CZ fine particles and A catalyst powder (average particle size: 120 nm) comprising alumina fine particles was obtained. Further, the obtained catalyst powder was compacted by a mold press (1 t / cm 2 ) and pulverized to obtain a pellet-shaped catalyst having a diameter of 0.5 to 1 mm.

なお、上記分散混合工程におけるPt/CZ粉末とアルミナ粉末との混合比(質量比)は1:1であり、分散混合工程において得られたPt/CZ微粒子の平均粒径が34nmで且つ80質量%以上の粒子が直径41nm以下(D80=41nm)であり、分散混合工程において得られたアルミナ微粒子の平均粒径は87nmで且つ80質量%以上の粒子が直径112nm以下(D80=112nm)であった。また、得られた触媒の比表面積は表2に示すとおりであった。   The mixing ratio (mass ratio) of Pt / CZ powder and alumina powder in the dispersion mixing step is 1: 1, and the average particle size of the Pt / CZ fine particles obtained in the dispersion mixing step is 34 nm and 80 mass. % Of particles having a diameter of 41 nm or less (D80 = 41 nm), the average particle diameter of alumina fine particles obtained in the dispersion mixing step was 87 nm, and 80% by mass or more of particles had a diameter of 112 nm or less (D80 = 112 nm). It was. The specific surface area of the obtained catalyst was as shown in Table 2.

(実施例2)
前記分散混合工程において分散処理時間を180分とした以外は実施例1と同様にして触媒を得た。得られた触媒の比表面積は表2に示すとおりであった。
(Example 2)
A catalyst was obtained in the same manner as in Example 1 except that the dispersion treatment time was 180 minutes in the dispersion mixing step. The specific surface area of the obtained catalyst was as shown in Table 2.

(実施例3)
直径約10nmの一次粒子の凝集体で且つ平均粒径が162nmであるアルミナ粉末を用いた以外は実施例1と同様にして触媒を得た。得られた触媒の比表面積は表2に示すとおりであった。
(Example 3)
A catalyst was obtained in the same manner as in Example 1 except that an alumina powder having an average particle diameter of 162 nm and an aggregate of primary particles having a diameter of about 10 nm was used. The specific surface area of the obtained catalyst was as shown in Table 2.

(実施例4)
前記分散混合工程における水溶液のpHを5とした以外は実施例1と同様にして触媒を得た。得られた触媒の比表面積は表2に示すとおりであった。
Example 4
A catalyst was obtained in the same manner as in Example 1 except that the pH of the aqueous solution in the dispersion mixing step was changed to 5. The specific surface area of the obtained catalyst was as shown in Table 2.

(実施例5)
CZ粉末へのPt担持は実施せず、乾燥工程で得られたCZ微粒子とアルミナ微粒子とからなる触媒粉末に以下のようにしてPtを担持した以外は実施例1と同様にして触媒を得た。すなわち、Pt硝酸溶液(Pt濃度:4.5wt%)を前記触媒粉末に含浸担持せしめ、300℃で3時間焼成した(後担持工程)。なお、担持されたPtの量は、CZ微粒子とアルミナ微粒子との合計量100質量部に対して0.5質量部であった。得られた触媒の比表面積は表2に示すとおりであった。
(Example 5)
Pt was not supported on the CZ powder, and a catalyst was obtained in the same manner as in Example 1 except that Pt was supported on the catalyst powder composed of CZ fine particles and alumina fine particles obtained in the drying step as follows. . That is, a Pt nitric acid solution (Pt concentration: 4.5 wt%) was impregnated and supported on the catalyst powder, and calcined at 300 ° C. for 3 hours (post-supporting step). The amount of supported Pt was 0.5 parts by mass with respect to 100 parts by mass of the total amount of CZ fine particles and alumina fine particles. The specific surface area of the obtained catalyst was as shown in Table 2.

(比較例1)
前記分散混合工程において直径約10nmの一次粒子の凝集体で且つ平均粒径が259nmであるアルミナ粉末を用いるようにした以外は実施例1と同様にして触媒を得た。得られた触媒の比表面積は表2に示すとおりであった。
(Comparative Example 1)
A catalyst was obtained in the same manner as in Example 1 except that alumina powder having an average particle diameter of 259 nm and an aggregate of primary particles having a diameter of about 10 nm was used in the dispersion and mixing step. The specific surface area of the obtained catalyst was as shown in Table 2.

(比較例2)
前記分散混合工程において直径200μmのジルコニア製マイクロビーズを用いるようにした以外は実施例1と同様にして触媒を得た。得られた触媒の比表面積は表2に示すとおりであった。
(Comparative Example 2)
A catalyst was obtained in the same manner as in Example 1 except that zirconia microbeads having a diameter of 200 μm were used in the dispersion mixing step. The specific surface area of the obtained catalyst was as shown in Table 2.

(比較例3)
アルミナ粉末を混合しないようにした以外は実施例1と同様にして触媒を得た。得られた触媒の比表面積は表2に示すとおりであった。
(Comparative Example 3)
A catalyst was obtained in the same manner as in Example 1 except that alumina powder was not mixed. The specific surface area of the obtained catalyst was as shown in Table 2.

(比較例4)
前記分散混合工程において容積1リットルのジルコニア製ポットと直径5mmのジルコニア製ボールとを使用したボールミルを用いるようにした以外は実施例1と同様にして触媒を得た。得られた触媒の比表面積は表2に示すとおりであった。
(Comparative Example 4)
A catalyst was obtained in the same manner as in Example 1 except that a ball mill using a zirconia pot having a volume of 1 liter and a zirconia ball having a diameter of 5 mm was used in the dispersion mixing step. The specific surface area of the obtained catalyst was as shown in Table 2.

Figure 2007044585
Figure 2007044585

Figure 2007044585
Figure 2007044585

<高温耐久性試験1>
表3に示す組成を有するリッチガスとリーンガスを全流量が330ml/minとなるように5分間隔で交互に流した雰囲気中で、前記実施例及び前記比較例で得られた各ペレット状触媒1.5gを1000℃に5時間保持し、かかる耐久試験後の比表面積を測定した。得られた結果を表2に示す。
<High temperature durability test 1>
Each pellet-like catalyst obtained in the above-mentioned Examples and Comparative Examples 1 and 2 in an atmosphere in which rich gas and lean gas having the composition shown in Table 3 were alternately flowed at intervals of 5 minutes so that the total flow rate was 330 ml / min. 5 g was held at 1000 ° C. for 5 hours, and the specific surface area after the durability test was measured. The obtained results are shown in Table 2.

Figure 2007044585
Figure 2007044585

<高温耐久性試験2>
常圧固定床流通反応装置を用い、前記実施例及び前記比較例で得られた各ペレット状触媒(初期品)1gとそれらに高温耐久性試験1を施したもの(耐久試験後品)1gとのそれぞれに対して、表4に示す組成を有するリッチガスとリーンガスを全流量が7L/minとなるように1秒間隔で流通させ、入りガス温度を100〜500℃とした各温度におけるHC浄化率を測定し、それぞれのHC50%浄化温度を求めた。得られた結果を表2に示す。
<High temperature durability test 2>
Using a normal pressure fixed bed flow reactor, 1 g of each pellet-shaped catalyst (initial product) obtained in the above Examples and Comparative Examples, and 1 g of those subjected to high temperature durability test 1 (product after durability test), HC purification rate at each temperature in which a rich gas and a lean gas having the composition shown in Table 4 were circulated at intervals of 1 second so that the total flow rate was 7 L / min, and the inlet gas temperature was 100 to 500 ° C. Was measured, and the HC50 purification temperature of each was determined. The obtained results are shown in Table 2.

Figure 2007044585
Figure 2007044585

表2に示した結果から明らかな通り、本発明の方法によって得られた本発明の複合金属酸化物多孔体からなる触媒(実施例1〜5)は、高温下であっても比表面積及び浄化性能が高水準に維持されており、高温耐久性に非常に優れたものであった。中でも、本発明の方法において貴金属を前担持工程において第1金属酸化物粉末に担持せしめて得た複合金属酸化物多孔体からなる触媒(実施例1〜4)は特に高温耐久性に優れたものであった。   As is apparent from the results shown in Table 2, the catalyst (Examples 1 to 5) comprising the composite metal oxide porous material of the present invention obtained by the method of the present invention had a specific surface area and purification even at high temperatures. The performance was maintained at a high level, and the high temperature durability was very excellent. Among them, the catalysts (Examples 1 to 4) composed of the composite metal oxide porous body obtained by supporting the noble metal on the first metal oxide powder in the pre-supporting step in the method of the present invention are particularly excellent in high temperature durability. Met.

以上説明したように、本発明によれば、高温耐久性に非常に優れており、高温下であっても比表面積及び浄化性能が高水準に維持される複合金属酸化物多孔体を効率良く製造することが可能となる。したがって、本発明の方法は、高温耐久性に優れた排ガス浄化用触媒等の製造方法として非常に有用である。   As described above, according to the present invention, the composite metal oxide porous body that is very excellent in high temperature durability and that maintains the specific surface area and the purification performance at a high level even under high temperature can be efficiently produced. It becomes possible to do. Therefore, the method of the present invention is very useful as a method for producing an exhaust gas purifying catalyst having excellent high temperature durability.

セリア−ジルコニア複合酸化物(CZ)とアルミナのゼータ電位を示すグラフである。It is a graph which shows the zeta potential of a ceria-zirconia composite oxide (CZ) and alumina.

Claims (8)

直径50nm以下の一次粒子の凝集体であり且つ平均粒径が200nm以下である第1金属酸化物粉末と、直径50nm以下の一次粒子の凝集体であり且つ平均粒径が200nm以下である第2金属酸化物粉末とを、直径150μm以下のマイクロビーズを用いて分散媒中で分散及び混合せしめ、第1金属酸化物微粒子と第2金属酸化物微粒子との均一分散液を得る分散混合工程と、
前記均一分散液を乾燥して複合金属酸化物多孔体を得る乾燥工程と、
を含むことを特徴とする複合金属酸化物多孔体の製造方法。
A first metal oxide powder that is an aggregate of primary particles having a diameter of 50 nm or less and an average particle diameter of 200 nm or less, and a second metal oxide powder that is an aggregate of primary particles having a diameter of 50 nm or less and an average particle diameter of 200 nm or less. Dispersing and mixing the metal oxide powder in a dispersion medium using microbeads having a diameter of 150 μm or less to obtain a uniform dispersion of the first metal oxide fine particles and the second metal oxide fine particles,
A drying step of drying the uniform dispersion to obtain a composite metal oxide porous body;
The manufacturing method of the composite metal oxide porous body characterized by including.
前記分散混合工程における分散媒のpHを、第1金属酸化物のゼータ電位及び第2金属酸化物のゼータ電位の絶対値がいずれも10mV以上となる領域のpHとすることを特徴とする請求項1に記載の複合金属酸化物多孔体の製造方法。   The pH of the dispersion medium in the dispersion mixing step is a pH in a region where the absolute values of the zeta potential of the first metal oxide and the zeta potential of the second metal oxide are both 10 mV or more. 2. A method for producing a composite metal oxide porous body according to 1. 前記第1金属酸化物微粒子が、平均粒径が1〜50nmであり且つ80質量%以上の粒子が直径75nm以下のものであることを特徴とする請求項1又は2に記載の複合金属酸化物多孔体の製造方法。   3. The composite metal oxide according to claim 1, wherein the first metal oxide fine particles have an average particle diameter of 1 to 50 nm and 80% by mass or more of particles have a diameter of 75 nm or less. A method for producing a porous body. 前記第2金属酸化物微粒子が、平均粒径が1〜130nmであり且つ80質量%以上の粒子が直径160nm以下のものであることを特徴とする請求項1〜3のうちのいずれか一項に記載の複合金属酸化物多孔体の製造方法。   The second metal oxide fine particles have an average particle diameter of 1 to 130 nm and 80% by mass or more of particles having a diameter of 160 nm or less. The manufacturing method of the composite metal oxide porous body as described in 2. 前記第1金属酸化物粉末及び/又は前記第2金属酸化物粉末の表面に貴金属を担持せしめる前担持工程を更に含むことを特徴とする請求項1〜4のうちのいずれか一項に記載の複合金属酸化物多孔体の製造方法。   5. The method according to claim 1, further comprising a pre-supporting step of supporting a noble metal on a surface of the first metal oxide powder and / or the second metal oxide powder. A method for producing a composite metal oxide porous body. 前記第1金属酸化物微粒子及び前記第2金属酸化物微粒子の表面に貴金属を担持せしめる後担持工程を更に含むことを特徴とする請求項1〜5のうちのいずれか一項に記載の複合金属酸化物多孔体の製造方法。   The composite metal according to any one of claims 1 to 5, further comprising a post-supporting step of supporting a noble metal on the surfaces of the first metal oxide fine particles and the second metal oxide fine particles. Manufacturing method of oxide porous body. 前記乾燥工程において、前記均一分散液に界面活性剤を添加して混合した後に加熱乾燥することを特徴とする請求項1〜6のうちのいずれか一項に記載の複合金属酸化物多孔体の製造方法。   The composite metal oxide porous body according to any one of claims 1 to 6, wherein in the drying step, a surfactant is added to and mixed with the uniform dispersion, followed by drying by heating. Production method. 前記複合金属酸化物多孔体が排ガス浄化用触媒であることを特徴とする請求項1〜7のうちのいずれか一項に記載の複合金属酸化物多孔体の製造方法。   The said composite metal oxide porous body is a catalyst for exhaust gas purification, The manufacturing method of the composite metal oxide porous body as described in any one of Claims 1-7 characterized by the above-mentioned.
JP2005229319A 2005-08-08 2005-08-08 Manufacturing method of porous composite metal oxide material Pending JP2007044585A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005229319A JP2007044585A (en) 2005-08-08 2005-08-08 Manufacturing method of porous composite metal oxide material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005229319A JP2007044585A (en) 2005-08-08 2005-08-08 Manufacturing method of porous composite metal oxide material

Publications (1)

Publication Number Publication Date
JP2007044585A true JP2007044585A (en) 2007-02-22

Family

ID=37847891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005229319A Pending JP2007044585A (en) 2005-08-08 2005-08-08 Manufacturing method of porous composite metal oxide material

Country Status (1)

Country Link
JP (1) JP2007044585A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009227541A (en) * 2008-03-25 2009-10-08 Toyota Central R&D Labs Inc Compound oxide, exhaust gas purification catalyst using the same and production method of compound oxide
JP2009285623A (en) * 2008-05-30 2009-12-10 Mazda Motor Corp Catalyst for cleaning exhaust gas
JP2013513483A (en) * 2009-12-15 2013-04-22 エスディーシー マテリアルズ インコーポレイテッド Method of forming a catalyst with reduced mobility of nanoactive materials
JP2013198879A (en) * 2012-03-26 2013-10-03 Ne Chemcat Corp Exhaust gas purifying catalyst composition
JP2013203639A (en) * 2012-03-29 2013-10-07 Admatechs Co Ltd Complex oxide powder
US8906498B1 (en) 2009-12-15 2014-12-09 SDCmaterials, Inc. Sandwich of impact resistant material
US8969237B2 (en) 2011-08-19 2015-03-03 SDCmaterials, Inc. Coated substrates for use in catalysis and catalytic converters and methods of coating substrates with washcoat compositions
US9023754B2 (en) 2005-04-19 2015-05-05 SDCmaterials, Inc. Nano-skeletal catalyst
US9089840B2 (en) 2007-10-15 2015-07-28 SDCmaterials, Inc. Method and system for forming plug and play oxide catalysts
US9126191B2 (en) 2009-12-15 2015-09-08 SDCmaterials, Inc. Advanced catalysts for automotive applications
US9149797B2 (en) 2009-12-15 2015-10-06 SDCmaterials, Inc. Catalyst production method and system
US9156025B2 (en) 2012-11-21 2015-10-13 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
US9216406B2 (en) 2011-02-23 2015-12-22 SDCmaterials, Inc. Wet chemical and plasma methods of forming stable PtPd catalysts
US9427732B2 (en) 2013-10-22 2016-08-30 SDCmaterials, Inc. Catalyst design for heavy-duty diesel combustion engines
US9511352B2 (en) 2012-11-21 2016-12-06 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
US9517448B2 (en) 2013-10-22 2016-12-13 SDCmaterials, Inc. Compositions of lean NOx trap (LNT) systems and methods of making and using same
US9522388B2 (en) 2009-12-15 2016-12-20 SDCmaterials, Inc. Pinning and affixing nano-active material
US9586179B2 (en) 2013-07-25 2017-03-07 SDCmaterials, Inc. Washcoats and coated substrates for catalytic converters and methods of making and using same
US9687811B2 (en) 2014-03-21 2017-06-27 SDCmaterials, Inc. Compositions for passive NOx adsorption (PNA) systems and methods of making and using same

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9023754B2 (en) 2005-04-19 2015-05-05 SDCmaterials, Inc. Nano-skeletal catalyst
US9180423B2 (en) 2005-04-19 2015-11-10 SDCmaterials, Inc. Highly turbulent quench chamber
US9132404B2 (en) 2005-04-19 2015-09-15 SDCmaterials, Inc. Gas delivery system with constant overpressure relative to ambient to system with varying vacuum suction
US9719727B2 (en) 2005-04-19 2017-08-01 SDCmaterials, Inc. Fluid recirculation system for use in vapor phase particle production system
US9599405B2 (en) 2005-04-19 2017-03-21 SDCmaterials, Inc. Highly turbulent quench chamber
US9216398B2 (en) 2005-04-19 2015-12-22 SDCmaterials, Inc. Method and apparatus for making uniform and ultrasmall nanoparticles
US9592492B2 (en) 2007-10-15 2017-03-14 SDCmaterials, Inc. Method and system for forming plug and play oxide catalysts
US9089840B2 (en) 2007-10-15 2015-07-28 SDCmaterials, Inc. Method and system for forming plug and play oxide catalysts
US9302260B2 (en) 2007-10-15 2016-04-05 SDCmaterials, Inc. Method and system for forming plug and play metal catalysts
US9597662B2 (en) 2007-10-15 2017-03-21 SDCmaterials, Inc. Method and system for forming plug and play metal compound catalysts
US9737878B2 (en) 2007-10-15 2017-08-22 SDCmaterials, Inc. Method and system for forming plug and play metal catalysts
US9186663B2 (en) 2007-10-15 2015-11-17 SDCmaterials, Inc. Method and system for forming plug and play metal compound catalysts
JP2009227541A (en) * 2008-03-25 2009-10-08 Toyota Central R&D Labs Inc Compound oxide, exhaust gas purification catalyst using the same and production method of compound oxide
JP2009285623A (en) * 2008-05-30 2009-12-10 Mazda Motor Corp Catalyst for cleaning exhaust gas
US9308524B2 (en) 2009-12-15 2016-04-12 SDCmaterials, Inc. Advanced catalysts for automotive applications
US9522388B2 (en) 2009-12-15 2016-12-20 SDCmaterials, Inc. Pinning and affixing nano-active material
US9149797B2 (en) 2009-12-15 2015-10-06 SDCmaterials, Inc. Catalyst production method and system
US9126191B2 (en) 2009-12-15 2015-09-08 SDCmaterials, Inc. Advanced catalysts for automotive applications
JP2013513483A (en) * 2009-12-15 2013-04-22 エスディーシー マテリアルズ インコーポレイテッド Method of forming a catalyst with reduced mobility of nanoactive materials
US8992820B1 (en) 2009-12-15 2015-03-31 SDCmaterials, Inc. Fracture toughness of ceramics
US8906498B1 (en) 2009-12-15 2014-12-09 SDCmaterials, Inc. Sandwich of impact resistant material
US9332636B2 (en) 2009-12-15 2016-05-03 SDCmaterials, Inc. Sandwich of impact resistant material
US8932514B1 (en) 2009-12-15 2015-01-13 SDCmaterials, Inc. Fracture toughness of glass
US9533289B2 (en) 2009-12-15 2017-01-03 SDCmaterials, Inc. Advanced catalysts for automotive applications
US9216406B2 (en) 2011-02-23 2015-12-22 SDCmaterials, Inc. Wet chemical and plasma methods of forming stable PtPd catalysts
US9433938B2 (en) 2011-02-23 2016-09-06 SDCmaterials, Inc. Wet chemical and plasma methods of forming stable PTPD catalysts
US8969237B2 (en) 2011-08-19 2015-03-03 SDCmaterials, Inc. Coated substrates for use in catalysis and catalytic converters and methods of coating substrates with washcoat compositions
US9498751B2 (en) 2011-08-19 2016-11-22 SDCmaterials, Inc. Coated substrates for use in catalysis and catalytic converters and methods of coating substrates with washcoat compositions
JP2013198879A (en) * 2012-03-26 2013-10-03 Ne Chemcat Corp Exhaust gas purifying catalyst composition
JP2013203639A (en) * 2012-03-29 2013-10-07 Admatechs Co Ltd Complex oxide powder
US9533299B2 (en) 2012-11-21 2017-01-03 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
US9156025B2 (en) 2012-11-21 2015-10-13 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
US9511352B2 (en) 2012-11-21 2016-12-06 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
US9586179B2 (en) 2013-07-25 2017-03-07 SDCmaterials, Inc. Washcoats and coated substrates for catalytic converters and methods of making and using same
US9427732B2 (en) 2013-10-22 2016-08-30 SDCmaterials, Inc. Catalyst design for heavy-duty diesel combustion engines
US9566568B2 (en) 2013-10-22 2017-02-14 SDCmaterials, Inc. Catalyst design for heavy-duty diesel combustion engines
US9517448B2 (en) 2013-10-22 2016-12-13 SDCmaterials, Inc. Compositions of lean NOx trap (LNT) systems and methods of making and using same
US9950316B2 (en) 2013-10-22 2018-04-24 Umicore Ag & Co. Kg Catalyst design for heavy-duty diesel combustion engines
US9687811B2 (en) 2014-03-21 2017-06-27 SDCmaterials, Inc. Compositions for passive NOx adsorption (PNA) systems and methods of making and using same
US10086356B2 (en) 2014-03-21 2018-10-02 Umicore Ag & Co. Kg Compositions for passive NOx adsorption (PNA) systems and methods of making and using same
US10413880B2 (en) 2014-03-21 2019-09-17 Umicore Ag & Co. Kg Compositions for passive NOx adsorption (PNA) systems and methods of making and using same

Similar Documents

Publication Publication Date Title
JP2007044585A (en) Manufacturing method of porous composite metal oxide material
US7713908B2 (en) Porous composite metal oxide and method of producing the same
US10201804B2 (en) Platinum group metal (PGM) catalysts for automotive emissions treatment
US10183276B2 (en) Rhodium-containing catalysts for automotive emissions treatment
JP2008289971A (en) Core-shell structure and its manufacturing method, and exhaust gas cleaning catalyst containing the core-shell structure
JP2010099638A (en) Catalyst, catalyst for purifying exhaust gas, and method for manufacturing the catalyst
JP5451409B2 (en) Method for producing exhaust gas purification catalyst
JP3371531B2 (en) Catalyst production method
JP2005139029A (en) Oxide powder, its preparation process, and catalyst
JP4998663B2 (en) Composite metal oxide porous body
JP3829792B2 (en) Method for producing carrier for exhaust gas purification catalyst
JPWO2021020104A1 (en) Zirconia-based composite oxide and method for producing zirconia-based composite oxide
JP2010104973A (en) Purifying catalyst
JPH09155192A (en) Exhaust gas purifying catalyst
JP2013103143A (en) METHOD FOR PRODUCING Co3O4/CeO2 COMPOSITE CATALYST FOR EXHAUST GAS PURIFICATION AND CATALYST OBTAINED BY THE SAME
JP4696767B2 (en) Method for producing composite metal oxide porous body
JP5652271B2 (en) Exhaust gas purification catalyst carrier, exhaust gas purification catalyst using the same, and method for producing exhaust gas purification catalyst carrier
CN106984318B (en) Bimetal cobalt-based catalyst, preparation method and application
JP2013071886A (en) Hollow granular particle and method for manufacturing the same, and gas treatment device comprising the same
WO2022107900A1 (en) Zirconia-based porous body and production method for zirconia-based porous body
JP7425416B2 (en) catalyst
JP4273396B2 (en) Exhaust gas purification catalyst
JP2003275580A (en) Oxygen storage material
JP2005104799A (en) Compound oxide and catalyst for cleaning exhaust gas
JP4265276B2 (en) Exhaust gas purification catalyst