JP2005139029A - Oxide powder, its preparation process, and catalyst - Google Patents
Oxide powder, its preparation process, and catalyst Download PDFInfo
- Publication number
- JP2005139029A JP2005139029A JP2003377099A JP2003377099A JP2005139029A JP 2005139029 A JP2005139029 A JP 2005139029A JP 2003377099 A JP2003377099 A JP 2003377099A JP 2003377099 A JP2003377099 A JP 2003377099A JP 2005139029 A JP2005139029 A JP 2005139029A
- Authority
- JP
- Japan
- Prior art keywords
- oxide powder
- oxide
- precipitation
- catalyst
- pore
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
- Catalysts (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
Description
本発明は、触媒担体として有用なセリア系の酸化物粉末とその製造方法、及びその酸化物粉末を担体として用いた触媒に関する。 The present invention relates to a ceria-based oxide powder useful as a catalyst carrier, a method for producing the same, and a catalyst using the oxide powder as a carrier.
従来より自動車の排ガス浄化用触媒として、排ガス中のCO及びHCの酸化とNOx の還元とを同時に行って浄化する三元触媒が用いられている。このような三元触媒としては、例えばコーディエライトなどからなる耐熱性ハニカム基材にγ-Al2O3からなる担体層を形成し、その担体層に白金(Pt)やロジウム(Rh)などの貴金属を担持させたものが広く知られている。 As an exhaust gas purifying catalyst conventionally automobiles, three-way catalyst for purifying performing the reduction of the oxidized and NO x CO and HC in the exhaust gas simultaneously is used. As such a three-way catalyst, for example, a carrier layer made of γ-Al 2 O 3 is formed on a heat-resistant honeycomb substrate made of cordierite, and platinum (Pt), rhodium (Rh), etc. are formed on the carrier layer. Those carrying a noble metal are widely known.
排ガス浄化用触媒に用いられる担体の条件としては、比表面積が大きく耐熱性が高いことが挙げられ、一般には Al2O3、SiO2、ZrO2、TiO2などが用いられることが多い。また排ガスの雰囲気変動を緩和するために、酸素吸蔵放出能(以下、 OSCという)をもつCeO2や、CeO2の OSC及び耐熱性を向上させたCeO2−ZrO2固溶体を添加することも知られている。 The carrier used for the exhaust gas purification catalyst has a large specific surface area and high heat resistance, and Al 2 O 3 , SiO 2 , ZrO 2 , TiO 2 and the like are often used in general. It is also known to add CeO 2 with oxygen storage / release capacity (hereinafter referred to as OSC) and CeO 2 -ZrO 2 solid solution with improved heat resistance and CeO 2 in order to mitigate atmospheric fluctuations in exhaust gas. It has been.
ところで近年の排ガス温度の上昇に伴い、特にCeO2を含む触媒又は触媒担体の耐熱性の向上が求められている。そこで例えば特開平02−221119号公報には、 350〜 450℃の温度で焼成した後に測定して少なくとも 190m2/gの比表面積を示すCeO2が開示されている。 By the way, with the recent increase in exhaust gas temperature, improvement in heat resistance of a catalyst or catalyst support containing CeO 2 is particularly required. Thus, for example, Japanese Patent Application Laid-Open No. 02-221119 discloses CeO 2 having a specific surface area of at least 190 m 2 / g measured after firing at a temperature of 350 to 450 ° C.
しかし従来のCeO2−ZrO2固溶体は、耐熱性には優れているものの OSCが十分でなく、固溶度も低いことが明らかとなった。そこで本願出願人は、特開平09−211304号公報に、固溶度が高く OSCが高いCeO2−ZrO2固溶体を用いた排ガス浄化用触媒を提案している。また特表平10−512191号公報には、CeO2−ZrO2固溶体が開示され、1000℃もの高温で焼成した後も高い比表面積を示すため、触媒担体として最適であることが記載されている。 However, the conventional CeO 2 —ZrO 2 solid solution is excellent in heat resistance, but it is clear that OSC is insufficient and the solid solubility is low. Therefore, the applicant of the present application has proposed an exhaust gas purification catalyst using CeO 2 —ZrO 2 solid solution having high solid solubility and high OSC in Japanese Patent Application Laid-Open No. 09-211304. In addition, Japanese National Publication No. 10-512191 discloses a CeO 2 —ZrO 2 solid solution, which describes a high specific surface area even after firing at a high temperature of 1000 ° C., and is described as being optimal as a catalyst carrier. .
特開平02−221119号公報に記載のCeO2では、 350〜 450℃の焼成後に測定された細孔容積が0.15〜0.30cc/gであることが記載され、平均細孔直径が2〜10nmであることが記載されている。なお同公報には、「平均細孔直径とは、この直径よりも小さい細孔の全てが60nmよりも小さい直径の細孔の全細孔容積の50%をなすような直径と定義される。」と記載されている。したがって 350〜 450℃の焼成後の平均細孔直径が2〜10nmであると、きわめて小さな径の細孔で全細孔容積の大部分を占めることとなり、耐熱性に不足するという不具合がある。 In CeO 2 described in JP-A-02-221119, it is described that the pore volume measured after firing at 350 to 450 ° C. is 0.15 to 0.30 cc / g, and the average pore diameter is 2 to 10 nm. It is described that there is. In the publication, “average pore diameter is defined as a diameter in which all pores smaller than this diameter form 50% of the total pore volume of pores having a diameter smaller than 60 nm. Is described. Therefore, if the average pore diameter after firing at 350 to 450 ° C. is 2 to 10 nm, the pores with a very small diameter occupy most of the total pore volume, which causes a problem that the heat resistance is insufficient.
また近年では自動車排ガスの高温化が進み、特開平09−211304号公報に開示された触媒では、 OSCは高いものの、耐熱性に不足するという不具合があった。これは、CeO2−ZrO2固溶体にシンタリングが生じて、細孔容積が小さくなるために生じることがわかっている。 Further, in recent years, the temperature of automobile exhaust gas has been increasing, and the catalyst disclosed in Japanese Patent Application Laid-Open No. 09-211304 has a problem of insufficient heat resistance although the OSC is high. It has been found that this occurs because sintering occurs in the CeO 2 —ZrO 2 solid solution and the pore volume is reduced.
一方、特表平10−512191号公報に開示のCeO2−ZrO2固溶体では、1000℃で焼成しても25m2/g以上の比表面積を示すことが記載されている。しかし自動車用の排ガス浄化用触媒に用いる場合には、 900℃までの耐熱性を有すれば十分である。そして特表平10−512191号公報には、比表面積が高いことだけが記載され、貴金属の担持場としてあるいはガス拡散空間として必要な細孔容積とその分布に関する記載が全くない。 On the other hand, the CeO 2 —ZrO 2 solid solution disclosed in JP-T-10-512191 discloses that a specific surface area of 25 m 2 / g or more is exhibited even when fired at 1000 ° C. However, when it is used as an exhaust gas purification catalyst for automobiles, it is sufficient to have heat resistance up to 900 ° C. In Japanese Patent Publication No. 10-512191, only a high specific surface area is described, and there is no description regarding the pore volume and its distribution necessary as a precious metal loading field or as a gas diffusion space.
そこで特開2002−220228号公報には、600℃で5時間の焼成後に細孔直径が 3.5〜 100nmの細孔容積が0.07cc/g以上であり、 800℃で5時間の焼成後に細孔直径が 3.5〜 100nmの細孔容積が0.04cc/g以上の特性を有するセリア系酸化物粉末と、その製造方法が記載されている。したがってこの酸化物粉末は、実際の排ガス中で触媒として使用するのに最適な中心細孔径と細孔容積を有し、耐熱性に優れている。
しかしながら特開2002−220228号公報に記載の製造方法では、得られる酸化物粉末の細孔分布は、制御するというよりむしろ成り行きに任せるものである。 However, in the production method described in Japanese Patent Application Laid-Open No. 2002-220228, the pore distribution of the obtained oxide powder is left to control rather than controlling.
本発明は、細孔分布を細かく制御可能とするとともに、細孔径をさらに微細とし細孔容積をさらに増大させることを目的とする。 An object of the present invention is to make it possible to finely control the pore distribution and to further reduce the pore diameter and further increase the pore volume.
上記課題を解決する本発明の酸化物粉末の特徴は、セリウム酸化物を主成分とし、中心細孔径が20nm以下、30nm以下の細孔容積が 0.1cc/g以上の細孔分布をもつことにある。 A feature of the oxide powder of the present invention that solves the above problems is that the cerium oxide is a main component and the pore size distribution is such that the center pore diameter is 20 nm or less and the pore volume of 30 nm or less is 0.1 cc / g or more. is there.
また本発明の酸化物粉末の製造方法の特徴は、少なくともセリウムを含む化合物が溶解した水溶液又は水を含む溶液に含まれる酸基と等量以上の塩基を添加することで酸化物前駆体の沈殿を析出させる沈殿工程と、沈殿及び界面活性剤を含む懸濁液を撹拌する撹拌工程と、得られた沈殿を濾過し焼成する焼成工程と、を順次行う酸化物粉末の製造方法であって、
撹拌工程では、得られる酸化物粉末の重量が溶媒に対して1〜30%となるように懸濁液を調製する制御、剪断速度が 103〜 104/秒となる条件で撹拌する制御、の少なくとも一方の制御を行うことにある。
In addition, the oxide powder production method of the present invention is characterized by the precipitation of the oxide precursor by adding at least an amount of a base equal to or more than an acid group contained in an aqueous solution in which a compound containing at least cerium is dissolved or a solution containing water. A method for producing an oxide powder, in which a precipitation step for precipitating a precipitate, a stirring step for stirring a suspension containing the precipitate and a surfactant, and a firing step for filtering and firing the resulting precipitate,
In the stirring step, control to prepare a suspension so that the weight of the obtained oxide powder is 1 to 30% with respect to the solvent, control to stir under conditions where the shear rate is 10 3 to 10 4 / sec, It is to perform control of at least one of the following.
本発明の酸化物粉末及びその製造方法において、酸化物はセリア−ジルコニア複合酸化物であることが好ましい。 In the oxide powder of the present invention and the production method thereof, the oxide is preferably a ceria-zirconia composite oxide.
本発明の酸化物粉末の製造方法において、沈殿工程と撹拌工程の間に、沈殿を洗浄する洗浄工程を行うことが望ましい。洗浄工程は、撹拌工程と焼成工程の間にも行うことが好ましい。また界面活性剤は、懸濁液中に得られる酸化物粉末の重量に対して2〜40%含まれていることが好ましい。 In the method for producing oxide powder of the present invention, it is desirable to perform a washing step for washing the precipitate between the precipitation step and the stirring step. The washing step is preferably performed between the stirring step and the firing step. Moreover, it is preferable that 2-40% of surfactant is contained with respect to the weight of the oxide powder obtained in suspension.
そして本発明の触媒の特徴は、本発明の酸化物粉末を含む担体に少なくとも貴金属を担持してなることにある。 The catalyst of the present invention is characterized in that at least a noble metal is supported on a support containing the oxide powder of the present invention.
本発明の酸化物粉末によれば、中心細孔径が20nm以下、30nm以下の細孔容積が 0.1cc/g以上の細孔分布を有しているので、比表面積が極めて大きく触媒担体として有用である。そしてこの酸化物粉末に貴金属を担持した触媒によれば、貴金属が高分散担持され、かつ耐久後も粒成長が抑制されるので、活性点が多く存在して高い浄化活性を有し、耐熱性にも優れている。 According to the oxide powder of the present invention, the pore volume with a center pore diameter of 20 nm or less and a pore volume of 30 nm or less is 0.1 cc / g or more, so that the specific surface area is extremely large and useful as a catalyst support. is there. And according to the catalyst in which the noble metal is supported on the oxide powder, the noble metal is supported in a highly dispersed manner and the grain growth is suppressed even after the endurance, so there are many active sites and high purification activity, and heat resistance. Also excellent.
そして本発明の酸化物粉末の製造方法によれば、本発明の酸化物粉末を安定して確実に製造することができ、細孔分布を細かく制御することが可能となる。 And according to the manufacturing method of the oxide powder of this invention, the oxide powder of this invention can be manufactured stably and reliably, and it becomes possible to control fine pore distribution finely.
従来のセリウム酸化物粉末を担体とした触媒は、実際の排ガス中での使用のような高温耐久後に細孔容積が小さくなって比表面積が低下し、触媒活性が低下するという不具合がある。 A conventional catalyst using cerium oxide powder as a carrier has a problem that the pore volume decreases after a high temperature endurance as in actual exhaust gas, the specific surface area decreases, and the catalytic activity decreases.
そこで本発明の酸化物粉末は、セリウム酸化物を主成分とする一次粒子の凝集体である二次粒子の集合体であり、中心細孔径が20nm以下、30nm以下の細孔容積が 0.1cc/g以上の細孔分布をもつという特性を有している。すなわち微細な細孔をもち、しかも細孔容積が十分に確保されている。 Therefore, the oxide powder of the present invention is an aggregate of secondary particles that are aggregates of primary particles mainly composed of cerium oxide, and has a pore diameter of 0.1 cc / min. It has the characteristic of having a pore distribution of g or more. That is, it has fine pores and a sufficient pore volume is secured.
したがって、この酸化物粉末に貴金属を担持してなる本発明の触媒においては、高温耐久後にも貴金属の担持サイトあるいはガス拡散場である細孔が十分に存在するとともに、比表面積も充分に大きく確保され、触媒活性の低下が抑制される。酸化物粉末の中心細孔径が20nmを超えたり、30nm以下の細孔容積が 0.1cc/g未満になると、上記した特性の発現が困難となる。 Therefore, in the catalyst of the present invention in which noble metal is supported on this oxide powder, there are sufficiently noble metal supporting sites or pores which are gas diffusion fields even after high temperature durability, and a sufficiently large specific surface area is ensured. Thus, a decrease in catalyst activity is suppressed. If the center pore diameter of the oxide powder exceeds 20 nm or the pore volume of 30 nm or less is less than 0.1 cc / g, the above-described characteristics are difficult to be expressed.
本発明の酸化物粉末は、セリア−ジルコニア複合酸化物であることが好ましい。セリアにジルコニアが固溶した複合酸化物とすることで、耐熱性がより向上するとともに、 OSCが格段に向上するので、触媒担体として特に適している。この場合、CeとZrの原子比はCe:Zr=80:20〜20:80であることが好ましく、Ce:Zr=70:30〜30:70、さらにはCe:Zr=60:40〜40:60であることがより好ましい。Ce量がこの範囲より少ないと、触媒として必要な OSCが得られず、Ce量がこの範囲より多くなるとZrO2の固溶量が少なすぎるため耐熱性が低下する。 The oxide powder of the present invention is preferably a ceria-zirconia composite oxide. By using a composite oxide in which zirconia is dissolved in ceria, heat resistance is further improved and OSC is remarkably improved, so that it is particularly suitable as a catalyst carrier. In this case, the atomic ratio of Ce and Zr is preferably Ce: Zr = 80: 20 to 20:80, Ce: Zr = 70: 30 to 30:70, and further Ce: Zr = 60: 40 to 40 : 60 is more preferable. If the Ce content is less than this range, the OSC necessary for the catalyst cannot be obtained. If the Ce content is more than this range, the amount of ZrO 2 solid solution is too small and the heat resistance decreases.
またCeO2−ZrO2固溶体を主成分とする本発明の酸化物粉末では、固溶度が50%以上であることが望ましい。70%以上であることがより好ましく、85%以上であることが特に好ましい。固溶度が50%未満では OSCが不十分であり、固溶度が大きいほど OSCはより大きくなる。 The oxide powder of the present invention containing CeO 2 —ZrO 2 solid solution as a main component preferably has a solid solubility of 50% or more. It is more preferably 70% or more, and particularly preferably 85% or more. If the solid solubility is less than 50%, the OSC is insufficient. The higher the solid solubility, the larger the OSC.
ここで固溶度とは、X線回折のピークシフトから次式によって定義される値をいう。 Here, the solid solubility means a value defined by the following equation from the peak shift of X-ray diffraction.
固溶度(%)= 100×(CeO2に固溶したZrO2の量)/ZrO2の総量
固溶度S(%)は式(1)によって算出される。
Solid solubility (%) = 100 × (amount of ZrO 2 dissolved in CeO 2 ) / total amount of ZrO 2 The solid solubility S (%) is calculated by the equation (1).
S= 100×(x/C)×〔( 100−C)/( 100−x)〕…(1)
ここでCはCeとZrの配合比から求められるZrO2の含有率(%)、xはX線回折から求める格子定数から式(2)によって算出されるCeO2に固溶しているZrO2の濃度(%)である。
S = 100 × (x / C) × [(100−C) / (100−x)] (1)
Here, C is the content (%) of ZrO 2 obtained from the blending ratio of Ce and Zr, and x is ZrO 2 that is dissolved in CeO 2 calculated by the formula (2) from the lattice constant obtained from X-ray diffraction. Concentration (%).
x=( 5.423−a)/0.003 …(2)
なお式(2)のaは格子定数(Å)である。
x = (5.423-a) /0.003 (2)
In the formula (2), a is a lattice constant (Å).
本発明の製造方法では、少なくともセリウムを含む化合物が溶解した水溶液又は水を含む溶液に含まれる酸基と等量以上の塩基を添加することで酸化物前駆体の沈殿を析出させる沈殿工程を行う。あるいは、セリウム化合物とジルコニウム化合物が溶解した水溶液又は水を含む溶液から酸化物前駆体の沈殿を析出させる。セリウム化合物及びジルコニア化合物としては、一般に塩が用いられ、塩としては、硫酸塩、硝酸塩、塩酸塩、酢酸塩などが利用できる。また塩を均一に溶解する溶媒としては、水、アルコール類、それらの混合物が使用できる。 In the production method of the present invention, a precipitation step is performed in which the precipitate of the oxide precursor is precipitated by adding an acid group equal to or more than an acid group contained in an aqueous solution in which a compound containing at least cerium is dissolved or a solution containing water. . Alternatively, the precipitate of the oxide precursor is deposited from an aqueous solution in which the cerium compound and the zirconium compound are dissolved or a solution containing water. As the cerium compound and zirconia compound, a salt is generally used, and as the salt, sulfate, nitrate, hydrochloride, acetate, and the like can be used. Moreover, water, alcohols, and mixtures thereof can be used as the solvent for uniformly dissolving the salt.
セリウム化合物としては、4価のCe塩を用いるのが一般的であるが、4価のCe塩は高価であるという問題がある。そこで安価な3価のCe塩を用い、反応中に酸化によって4価とすることが好ましい。このようにするには、酸化剤として例えば過酸化水素(H2O2)を用いるとよい。H2O2によってCeO2とZrO2の固溶が促進されるという効果も発現される。 As the cerium compound, a tetravalent Ce salt is generally used, but there is a problem that the tetravalent Ce salt is expensive. Therefore, it is preferable to use an inexpensive trivalent Ce salt and make it tetravalent by oxidation during the reaction. For this purpose, for example, hydrogen peroxide (H 2 O 2 ) is preferably used as the oxidizing agent. The effect that the solid solution of CeO 2 and ZrO 2 is promoted by H 2 O 2 is also exhibited.
そしてこの溶液に含まれる酸基と等量以上の塩基を添加することで、酸化物前駆体の沈殿が析出する。等量以上の塩基で中和することにより、酸化物前駆体の析出反応が促進される。塩基としては、アンモニア、炭酸アンモニウム、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウムなどを溶解した水溶液、アルコール溶液が使用できる。焼成時に揮散するアンモニア、炭酸アンモニウムが特に好ましい。なお、塩基性溶液のpHは、9以上であることがより好ましい。 And the precipitation of an oxide precursor precipitates by adding a base equal to or more than the acid group contained in this solution. By neutralizing with an equal amount or more of the base, the precipitation reaction of the oxide precursor is promoted. As the base, an aqueous solution or alcohol solution in which ammonia, ammonium carbonate, sodium hydroxide, potassium hydroxide, sodium carbonate or the like is dissolved can be used. Particularly preferred are ammonia and ammonium carbonate which volatilize during firing. The pH of the basic solution is more preferably 9 or higher.
沈殿の析出方法には、様々な調節方法があり、アンモニア水などを瞬時に添加し強撹拌する方法や、過酸化水素などを加えることで酸化物前駆体の沈殿し始めるpHを調節した後、アンモニア水などで沈殿を析出させる方法などがある。またアンモニア水などで中和させる際にかかる時間を十分に長くし、好ましくは10分以上で中和させたり、pHをモニターしながら段階的に中和する又は所定のpHに保つような緩衝溶液を添加したりすることも好ましい。 There are various adjustment methods for precipitation, such as adding ammonia water instantly and stirring vigorously, or adjusting the pH at which the oxide precursor starts to precipitate by adding hydrogen peroxide, etc. There is a method of depositing a precipitate with ammonia water or the like. Also, a buffer solution that sufficiently lengthens the time required for neutralization with aqueous ammonia, etc., and preferably neutralizes in 10 minutes or more, or neutralizes step by step while monitoring the pH, or maintains a predetermined pH. It is also preferable to add.
沈殿が析出した後に、水又は水を含む溶液を分散媒とした懸濁状態または系内に水が十分に存在する状態で混合物を加温する熟成工程を行うことも好ましい。これにより、メカニズムは不明であるが、細孔が制御された酸化物粉末が得られる。 It is also preferable to carry out an aging step in which the mixture is heated in a suspended state using water or a solution containing water as a dispersion medium or in a state where water is sufficiently present in the system after the precipitation has occurred. Thereby, although the mechanism is unknown, an oxide powder with controlled pores can be obtained.
系内に水分が充分に存在している状態で沈殿を熟成するには、沈殿を含む溶液ごと加熱して溶媒を蒸発させ、そのまま焼成することで行うことができる。あるいは濾別された沈殿物を水蒸気の存在下で焼成してもよい。この場合は、飽和水蒸気雰囲気で焼成することが好ましい。 In order to mature the precipitate in a state where moisture is sufficiently present in the system, the solution containing the precipitate can be heated to evaporate the solvent, and then baked as it is. Alternatively, the precipitate separated by filtration may be calcined in the presence of water vapor. In this case, it is preferable to bake in a saturated steam atmosphere.
熟成工程を行った場合には、加温の熱によって溶解・再析出が促進されるとともに粒子の成長が生じる。本発明では上記したように等量以上の塩基で中和しているため、セリア前駆体及びジルコニア前駆体がより均一に熟成され、細孔が効果的に形成されるとともに、CeO2−ZrO2固溶体からなる酸化物粉末の場合には焼成時の固溶がさらに促進される。 When the aging step is performed, dissolution / reprecipitation is promoted by the heat of heating and particle growth occurs. In the present invention, as described above, since neutralization is performed with an equal amount or more of a base, the ceria precursor and the zirconia precursor are aged more uniformly, effectively forming pores, and CeO 2 —ZrO 2. In the case of an oxide powder made of a solid solution, solid solution during firing is further promoted.
この熟成工程は、室温以上、好ましくは 100〜 200℃で、さらに好ましくは 100〜 150℃で行うことが望ましい。 100℃未満の加温では熟成の促進効果が小さく、熟成に要する時間が長大となる。また 200℃より高い温度では、10気圧以上に耐えうる合成装置が必要となり、設備コストが高くなるため、本発明の主な用途である触媒担体の製造方法には適さない。 This aging step is desirably performed at room temperature or higher, preferably 100 to 200 ° C, more preferably 100 to 150 ° C. When heating at less than 100 ° C., the effect of promoting aging is small, and the time required for aging becomes long. Further, at a temperature higher than 200 ° C., a synthesis apparatus that can withstand 10 atm or more is required, and the equipment cost is high, so that it is not suitable for the catalyst carrier production method which is the main use of the present invention.
本発明の特徴をなす撹拌工程では、得られる酸化物粉末の重量が溶媒に対して1〜30%となるように懸濁液を調製する制御、剪断速度が 103〜 104/秒となる条件で撹拌する制御、の少なくとも一方の制御を行う。両方の制御を行うことが特に好ましい。懸濁液中に含まれる酸化物前駆体の濃度が酸化物粉末として30重量%を超えると、撹拌による剪断効率が低くなるため、中心細孔径が20nm以下、30nm以下の細孔容積が 0.1cc/g以上の細孔分布を形成することが困難となる。また1重量%未満であると、生産性が悪く効率が低い。懸濁液は、得られる酸化物粉末の重量が溶媒に対して10%以下であることが好ましく、5%以下であることが望ましい。 In the stirring step, which is a feature of the present invention, the suspension is controlled so that the weight of the obtained oxide powder is 1 to 30% with respect to the solvent, and the shear rate is 10 3 to 10 4 / sec. At least one control of stirring under conditions is performed. It is particularly preferable to perform both controls. If the concentration of the oxide precursor contained in the suspension exceeds 30% by weight as the oxide powder, the shear efficiency by stirring decreases, so the pore volume with a center pore diameter of 20 nm or less and 30 nm or less is 0.1 cc. It becomes difficult to form a pore distribution greater than / g. If it is less than 1% by weight, productivity is poor and efficiency is low. In the suspension, the weight of the obtained oxide powder is preferably 10% or less, and preferably 5% or less with respect to the solvent.
剪断速度は、例えばロータとステータをもつ撹拌器の場合には、剪断速度Vは、V=v/Dで表される。ここでvはロータとステータの速度差(m/秒)であり、Dはロータとステータの間隙(m)である。剪断速度が103 /秒未満では撹拌による剪断効率が低くなるため、中心細孔径が20nm以下、30nm以下の細孔容積が 0.1cc/g以上の細孔分布を形成することが困難となり、CeO2−ZrO2固溶体の固溶度も低くなる。また剪断速度が104 /秒を超えると、剪断効率が飽和するとともに撹拌装置の摩耗が進み易くなる。剪断速度は、5×103 /秒以上であることが望ましい。 For example, in the case of an agitator having a rotor and a stator, the shear rate V is expressed by V = v / D. Here, v is a speed difference (m / second) between the rotor and the stator, and D is a gap (m) between the rotor and the stator. When the shear rate is less than 10 3 / sec, the shear efficiency by stirring becomes low, so it becomes difficult to form a pore distribution with a pore size of 20 cc or less and a pore volume of 30 cc or less and 0.1 cc / g or more. The solid solubility of 2- ZrO 2 solid solution is also lowered. On the other hand, when the shear rate exceeds 10 4 / sec, the shear efficiency is saturated and the wear of the stirrer easily proceeds. The shear rate is desirably 5 × 10 3 / second or more.
酸化物粉末の重量が溶媒に対して1〜30%となるように含まれた懸濁液を用い、あるいは剪断速度が 103〜 104/秒となる条件で撹拌することによって、最適な剪断効率が発現され、中心細孔径が20nm以下、30nm以下の細孔容積が 0.1cc/g以上の細孔分布を形成することができる。しかもこの方法によれば、3価のCeを用いた場合でも固溶が促進されるため、過酸化水素で4価に酸化しなくとも高い固溶度をもつCeO2−ZrO2複合酸化物を製造することができる。 Optimum shearing is achieved by using a suspension containing the oxide powder in an amount of 1 to 30% with respect to the solvent or by stirring at a shear rate of 10 3 to 10 4 / sec. Efficiency is manifested, and a pore distribution with a pore size of 20 cc or less and a pore volume of 0.1 cc / g or more can be formed. In addition, according to this method, since solid solution is promoted even when trivalent Ce is used, CeO 2 —ZrO 2 composite oxide having high solid solubility without being oxidized to tetravalent with hydrogen peroxide. Can be manufactured.
撹拌工程では、懸濁液中に界面活性剤が含まれている。界面活性剤の作用は明らかではないが、以下のように推察される。つまり、塩基で中和したばかりの状態では、金属元素は数nm以下の粒径の非常に微細な水酸化物又は酸化物の状態で沈殿する。そして界面活性剤の添加により、界面活性剤のミセルの中に沈殿粒子が均一に取り込まれ、焼成工程では濃縮された小さな空間の中で酸化物粒子の生成が進行する。さらに、界面活性剤の分散効果により沈殿微粒子の分散性が向上し、偏析が小さくなって接触度合いが高まる。したがって中心細孔径が20nm以下、30nm以下の細孔容積が 0.1cc/g以上の細孔分布を形成することができる。 In the stirring step, a surfactant is contained in the suspension. The action of the surfactant is not clear, but is presumed as follows. That is, in the state just neutralized with the base, the metal element is precipitated in the form of a very fine hydroxide or oxide having a particle size of several nm or less. By adding the surfactant, the precipitated particles are uniformly taken into the micelles of the surfactant, and generation of oxide particles proceeds in the concentrated small space in the firing step. Furthermore, the dispersibility of the precipitated fine particles is improved by the dispersing effect of the surfactant, the segregation is reduced and the contact degree is increased. Therefore, it is possible to form a pore distribution in which the pore diameter is 20 cc or less and the pore volume is 30 cc or less and the pore volume is 0.1 cc / g or more.
界面活性剤の添加量は、懸濁液中に、得られる酸化物粉末の重量に対して2〜40%とするのが望ましい。2重量%未満であると添加した効果が発現されず、40重量%を超えると界面活性剤どうしの凝集が生じ、前駆体を高分散させるのが困難となる。また焼成時の発熱量が大きく、酸化物粉末の焼結が促進されてしまう。 The addition amount of the surfactant is desirably 2 to 40% with respect to the weight of the obtained oxide powder in the suspension. If the amount is less than 2% by weight, the added effect is not expressed. If the amount exceeds 40% by weight, aggregation of the surfactants occurs, making it difficult to highly disperse the precursor. Moreover, the calorific value at the time of baking is large, and sintering of the oxide powder is promoted.
界面活性剤としては、陰イオン系、陽イオン系及び非イオン系のいずれも用いることができるが、その中でも形成するミセルが内部に狭い空間を形成しうる形状、例えば球状ミセルを形成し易い界面活性剤が望ましい。また臨界ミセル濃度(cmc)が0.1mol/L以下のものが望ましい。より望ましくは、0.01 mol/L以下の界面活性剤が望ましい。 As the surfactant, any of an anionic type, a cationic type, and a non-ionic type can be used. Among them, a shape in which the micelle to be formed can form a narrow space inside, for example, an interface that easily forms a spherical micelle. An activator is desirable. Moreover, the critical micelle concentration (cmc) is preferably 0.1 mol / L or less. More desirably, a surfactant of 0.01 mol / L or less is desirable.
これらの界面活性剤を例示すると、アルキルベンゼンスルホン酸、及びその塩、αオレフィンスルホン酸、及びその塩、アルキル硫酸エステル塩、アルキルエーテル硫酸エステル塩、フェニルエーテル硫酸エステル塩、メチルタウリン酸塩、スルホコハク酸塩、エーテル硫酸塩、アルキル硫酸塩、エーテルスルホン酸塩、飽和脂肪酸、及びその塩、オレイン酸等の不飽和脂肪酸、及びその塩、その他のカルボン酸、スルホン酸、硫酸、リン酸、フェノールの誘導体等の陰イオン性界面活性剤、ポリオキシエチレンポリプロレンアルキルエーテル、ポリオキシエチレンアルキルエーテル、ポリキシエチレンアルキルフェニルエーテル、ポリオキシエチレンポリスチリルフェニルエーテル、ポリオキシエチレンポリオキシポリプロピレンアルキルエーテル、ポリオキシエチレンポリオキシプロピレングリコール、多価アルコール;グリコール;グリセリン;ソルビトール;マンニトール;ペンタエスリトール;ショ糖;など多価アルコールの脂肪酸部分エステル、多価アルコール;グリコール;グリセリン;ソルビトール;マンニトール;ペンタエスリトール;ショ糖;など多価アルコールのポリオキシエチレン脂肪酸部分エステル、ポリオキシエチレン脂肪酸エステル、ポリオキシエチレン化ヒマシ油、ポリグリセン脂肪酸エステル、脂肪酸ジエタノールアミド、ポリオキシエチレンアルキルアミン、トリエタノールアミン脂肪酸部分エステル、トリアルキルアミンオキサイド等の非イオン性界面活性剤、第一脂肪アミン塩、第二脂肪アミン塩、第三脂肪アミン塩、テトラアルキルアンモニウム塩;トリアルキルベンジルアンモニウム塩;アルキルピロジニウム塩;2−アルキル−1−アルキル−1−ヒドロキシエチルイミダゾリニウム塩;N,N−ジアルキルモルホリニウム塩;ポリエチレンポリアミン脂肪酸アミド塩;等の第四吸アンモニウム塩、等の陽イオン性界面活性剤、ベタイン化合物等の両イオン性界面活性剤から選ばれる少なくとも一種である。 Examples of these surfactants include alkylbenzene sulfonic acid and its salt, α-olefin sulfonic acid and its salt, alkyl sulfate ester salt, alkyl ether sulfate ester salt, phenyl ether sulfate ester salt, methyl taurate, sulfosuccinic acid Salts, ether sulfates, alkyl sulfates, ether sulfonates, saturated fatty acids and salts thereof, unsaturated fatty acids such as oleic acid and salts thereof, other carboxylic acids, sulfonic acids, sulfuric acids, phosphoric acids, phenol derivatives Anionic surfactants such as polyoxyethylene polyprolene alkyl ether, polyoxyethylene alkyl ether, polyoxyethylene alkyl phenyl ether, polyoxyethylene polystyryl phenyl ether, polyoxyethylene polyoxypolypropylene alkyl Polyether, polyoxyethylene polyoxypropylene glycol, polyhydric alcohol; glycol; glycerin; sorbitol; mannitol; pentaesitol; sucrose; Pentaerythritol; Sucrose; Polyoxyethylene fatty acid partial ester of polyhydric alcohol, polyoxyethylene fatty acid ester, polyoxyethylenated castor oil, polyglycene fatty acid ester, fatty acid diethanolamide, polyoxyethylene alkylamine, triethanol Nonionic surfactants such as amine fatty acid partial esters and trialkylamine oxides, primary fatty amine salts, secondary fatty amine salts, tertiary fatty amine salts, tetraalkylamines Trialkylbenzylammonium salt; alkylpyrodinium salt; 2-alkyl-1-alkyl-1-hydroxyethylimidazolinium salt; N, N-dialkylmorpholinium salt; polyethylene polyamine fatty acid amide salt; It is at least one selected from cationic surfactants such as quaternary ammonium salt and amphoteric surfactants such as betaine compounds.
なお、上記臨界ミセル濃度(cmc)とは、ある界面活性剤がミセルを形成する最低の濃度のことである。 The critical micelle concentration (cmc) is the lowest concentration at which a certain surfactant forms micelles.
懸濁液は、沈殿工程後の前駆体沈殿を含む溶液に界面活性剤を添加することで調製することもできるが、沈殿工程と撹拌工程の間に、前駆体沈殿を洗浄する洗浄工程を行い、その後新たに懸濁液を調製することが望ましい。沈殿工程で用いた塩基が存在していると、上記した界面活性剤の作用が阻害される場合があるため、塩基を除去しておくのが望ましいからである。 The suspension can be prepared by adding a surfactant to the solution containing the precursor precipitate after the precipitation step, but a washing step for washing the precursor precipitate is performed between the precipitation step and the stirring step. Thereafter, it is desirable to prepare a new suspension. This is because if the base used in the precipitation step is present, the action of the above-described surfactant may be inhibited, and therefore it is desirable to remove the base.
焼成工程は、得られた沈殿を濾過し焼成する工程である。この焼成工程は、大気中 150〜 700℃で加熱することで行うことができる。なお上記した界面活性剤による発熱を抑制するために、撹拌工程と焼成工程の間に、沈殿を洗浄する洗浄工程を行うことが望ましい。 A baking process is a process of filtering and baking the obtained precipitation. This firing step can be performed by heating at 150 to 700 ° C. in the air. In addition, in order to suppress the heat_generation | fever by above-mentioned surfactant, it is desirable to perform the washing | cleaning process which wash | cleans precipitation between a stirring process and a baking process.
本発明の触媒は、上記した本発明の酸化物粉末に少なくとも貴金属を担持してなる。貴金属としては、Pt、Rh、Pd、Irなどを用いることができるが、Ptが特に好ましい。貴金属の担持量は0.05〜20重量%の範囲で任意に選択できる。なお貴金属を担持するには、ジニトロジアンミン白金水溶液などの貴金属薬液を用いて、吸着担持法、含浸担持法など公知の方法を用いて担持することができる。また貴金属に加えて、アルカリ金属やアルカリ土類金属などのNOx 吸蔵材を担持してもよい。触媒の形状としては、ペレット形状あるいはハニカム形状など、特に制限されない。 The catalyst of the present invention comprises at least a noble metal supported on the above-described oxide powder of the present invention. Pt, Rh, Pd, Ir and the like can be used as the noble metal, but Pt is particularly preferable. The amount of the precious metal supported can be arbitrarily selected in the range of 0.05 to 20% by weight. In order to support the noble metal, it can be supported using a known method such as an adsorption support method or an impregnation support method using a noble metal chemical solution such as a dinitrodiammine platinum aqueous solution. In addition to the noble metal, a NO x storage material such as an alkali metal or an alkaline earth metal may be supported. The shape of the catalyst is not particularly limited, such as a pellet shape or a honeycomb shape.
本発明の触媒は、酸化触媒、三元触媒、NOx 吸蔵還元型触媒などの排ガス浄化用触媒、あるいは水素生成触媒として利用することができる。 The catalyst of the present invention can be used as an exhaust gas purification catalyst such as an oxidation catalyst, a three-way catalyst, a NO x storage reduction catalyst, or a hydrogen production catalyst.
以下、実施例により本発明を具体的に説明する。 Hereinafter, the present invention will be described specifically by way of examples.
(実施例1)
<沈殿工程>
3リットルビーカ中で、CeO2として28重量%の濃度の硝酸セリウム水溶液442.29gと、ZrO2として18重量%の濃度のオキシ硝酸ジルコニウム水溶液 601.3gとを、1200gのイオン交換水と混合し、プロペラ撹拌器で撹拌しながら25%アンモニア水 319.9gを添加して、酸化物前駆体を沈殿させた。
(Example 1)
<Precipitation process>
In a 3 liter beaker, 442.29 g of cerium nitrate aqueous solution with a concentration of 28% by weight as CeO 2 and 601.3 g of zirconium oxynitrate aqueous solution with a concentration of 18 wt% as ZrO 2 were mixed with 1200 g of ion-exchanged water, and the propeller was mixed. While stirring with a stirrer, 319.9 g of 25% aqueous ammonia was added to precipitate the oxide precursor.
<洗浄工程>
遠心分離器を用い、イオン交換水にて沈殿物を数回洗浄した。
<Washing process>
The precipitate was washed several times with ion exchange water using a centrifuge.
<撹拌工程>
沈殿物全量を3リットルビーカに移し、イオン交換水1800gを加えて、プロペラ撹拌器とホモジナイザを用いて5分間撹拌した。沈殿物のCeO2−ZrO2に換算した濃度は 8.2重量%、剪断速度は1000/秒である。ここへカチオン系界面活性剤(「アーマック」ライオン社製)を5g加え5分間撹拌した。さらにアニオン系界面活性剤(「アーモフロー」ライオン社製)を5g加え、剪断速度1000/秒でさらに5分間撹拌した。
<Stirring step>
The total amount of the precipitate was transferred to a 3 liter beaker, 1800 g of ion exchange water was added, and the mixture was stirred for 5 minutes using a propeller stirrer and a homogenizer. The concentration of the precipitate converted to CeO 2 —ZrO 2 is 8.2% by weight, and the shear rate is 1000 / sec. To this was added 5 g of a cationic surfactant (“Armac” Lion) and stirred for 5 minutes. Further, 5 g of an anionic surfactant (“Armoflow” Lion) was added, and the mixture was further stirred for 5 minutes at a shear rate of 1000 / sec.
<洗浄工程>
その後、上記と同様にして沈殿を洗浄した。
<Washing process>
Thereafter, the precipitate was washed in the same manner as described above.
<焼成工程>
得られた沈殿物を、脱脂炉を用い大気中にて 400℃で5時間仮焼成し、さらに 700℃で5時間焼成した。
<Baking process>
The obtained precipitate was calcined at 400 ° C. for 5 hours in the air using a degreasing furnace, and further calcined at 700 ° C. for 5 hours.
(実施例2)
<沈殿工程>
3リットルビーカ中で、CeO2として28重量%の濃度の硝酸セリウム水溶液 110.6gと、ZrO2として18重量%の濃度のオキシ硝酸ジルコニウム水溶液 150.3gとを、1500gのイオン交換水と混合し、プロペラ撹拌器で撹拌しながら25%アンモニア水80gを添加して、酸化物前駆体を沈殿させた。
(Example 2)
<Precipitation process>
In a 3 liter beaker, 110.6 g of cerium nitrate aqueous solution with a concentration of 28% as CeO 2 and 150.3 g of zirconium oxynitrate with a concentration of 18% by weight as ZrO 2 were mixed with 1500 g of ion-exchanged water, While stirring with a stirrer, 80 g of 25% aqueous ammonia was added to precipitate the oxide precursor.
<洗浄工程>
遠心分離器を用い、イオン交換水にて沈殿物を数回洗浄した。
<Washing process>
The precipitate was washed several times with ion exchange water using a centrifuge.
<撹拌工程>
沈殿物全量を3リットルビーカに移し、イオン交換水1800gを加えて、プロペラ撹拌器とホモジナイザを用いて5分間撹拌した。沈殿物のCeO2−ZrO2に換算した濃度は 2.8重量%、剪断速度は1000/秒である。ここへカチオン系界面活性剤(「アーマック」ライオン社製)を5g加え、5分間撹拌した。さらにアニオン系界面活性剤(「アーモフロー」ライオン社製)を5g加え、剪断速度1000/秒でさらに5分間撹拌した。
<Stirring step>
The total amount of the precipitate was transferred to a 3 liter beaker, 1800 g of ion exchange water was added, and the mixture was stirred for 5 minutes using a propeller stirrer and a homogenizer. The concentration of the precipitate converted to CeO 2 —ZrO 2 is 2.8% by weight, and the shear rate is 1000 / sec. To this was added 5 g of a cationic surfactant (“Armac” Lion) and stirred for 5 minutes. Further, 5 g of an anionic surfactant (“Armoflow” Lion) was added, and the mixture was further stirred for 5 minutes at a shear rate of 1000 / sec.
<洗浄工程>
その後、実施例1と同様にして沈殿を洗浄した。
<Washing process>
Thereafter, the precipitate was washed in the same manner as in Example 1.
<焼成工程>
得られた沈殿物を、実施例1と同様に焼成した。
<Baking process>
The obtained precipitate was calcined in the same manner as in Example 1.
(実施例3)
<沈殿工程>
3リットルビーカ中で、CeO2として28重量%の濃度の硝酸セリウム水溶液442.29gと、ZrO2として18重量%の濃度のオキシ硝酸ジルコニウム水溶液 601.3gとを、1200gのイオン交換水と混合し、プロペラ撹拌器で撹拌しながら25%アンモニア水 319.9gを添加して、酸化物前駆体を沈殿させた。
(Example 3)
<Precipitation process>
In into 3 liters beaker, and an aqueous solution of cerium nitrate 442.29g of a concentration of 28 wt% CeO 2, a concentration of 18 wt% as ZrO 2 and zirconium oxynitrate solution 601.3G, mixed with ion-exchanged water 1200 g, propeller While stirring with a stirrer, 319.9 g of 25% aqueous ammonia was added to precipitate the oxide precursor.
<洗浄工程>
遠心分離器を用い、イオン交換水にて沈殿物を数回洗浄した。
<Washing process>
The precipitate was washed several times with ion exchange water using a centrifuge.
<撹拌工程>
沈殿物全量を3リットルビーカに移し、イオン交換水1800gを加えて、プロペラ撹拌器とホモジナイザを用いて5分間撹拌した。沈殿物のCeO2−ZrO2に換算した濃度は 8.2重量%、剪断速度は5000/秒である。ここへカチオン系界面活性剤(「アーマック」ライオン社製)を5g加え5分間撹拌した。さらにアニオン系界面活性剤(「アーモフロー」ライオン社製)を5g加え、剪断速度5000/秒でさらに5分間撹拌した。
<Stirring step>
The total amount of the precipitate was transferred to a 3 liter beaker, 1800 g of ion exchange water was added, and the mixture was stirred for 5 minutes using a propeller stirrer and a homogenizer. The concentration of the precipitate converted to CeO 2 —ZrO 2 is 8.2% by weight, and the shear rate is 5000 / sec. To this was added 5 g of a cationic surfactant (“Armac” Lion) and stirred for 5 minutes. Further, 5 g of an anionic surfactant (“Armoflow” Lion) was added, and the mixture was further stirred for 5 minutes at a shear rate of 5000 / sec.
<洗浄工程>
その後、実施例1と同様にして沈殿を洗浄した。
<Washing process>
Thereafter, the precipitate was washed in the same manner as in Example 1.
<焼成工程>
得られた沈殿物を、実施例1と同様に焼成した。
<Baking process>
The obtained precipitate was calcined in the same manner as in Example 1.
(試験・評価)
各実施例における撹拌工程の条件を表1にまとめて示す。
(Examination / Evaluation)
The conditions of the stirring step in each example are summarized in Table 1.
各実施例で得られた酸化物粉末について、水銀ポロシメータを用いてそれぞれ細孔分布を測定するとともに、 BET比表面積を測定した。結果を図1及び表1に示す。 The oxide powder obtained in each example was measured for the pore distribution using a mercury porosimeter and the BET specific surface area. The results are shown in FIG.
図1及び表1より、実施例2,3で得られた酸化物粉末は、中心細孔径が実施例1で得られた酸化物粉末の中心細孔径に比べて小さく、細孔容積が実施例1で得られた酸化物粉末に比べて大きく、比表面積も大きいことがわかる。すなわち、撹拌工程における懸濁液中の前駆体濃度又は剪断速度を調整することで、細孔分布を細かく制御できることが明らかである。 1 and Table 1, the oxide powders obtained in Examples 2 and 3 have a smaller central pore diameter than the central pore diameter of the oxide powder obtained in Example 1, and the pore volume of Examples. 1 is larger than the oxide powder obtained in 1 and has a large specific surface area. That is, it is clear that the pore distribution can be finely controlled by adjusting the precursor concentration or shear rate in the suspension in the stirring step.
次に、各実施例で得られた酸化物粉末に、所定濃度の硝酸白金水溶液の所定量をそれぞれ含浸し、乾燥後、大気中にて 300℃で3時間焼成して、Ptをそれぞれ1重量%担持した。得られた触媒粉末を圧粉成形し、粉砕してペレット触媒をそれぞれ調製した。 Next, the oxide powder obtained in each example was impregnated with a predetermined amount of an aqueous platinum nitrate solution having a predetermined concentration, dried, and then fired in the atmosphere at 300 ° C. for 3 hours, so that 1 wt. % Supported. The obtained catalyst powder was compacted and pulverized to prepare pellet catalysts.
各ペレット触媒を耐久試験装置にそれぞれ 1.5g配置し、表2に示すリッチガスとリーンガスを交互に5分間ずつ繰り返し流通させながら1000℃で5時間保持する耐久試験を行った。耐久試験後の各ペレット触媒1gについて、表3に示すモデルガス中にて 500℃で10分間前処理し、その後表3に示すモデルガスを流量3500cc/分で交互に1秒間ずつ繰り返し流通させながら、室温から 400℃まで12℃/分の速度で昇温し、各温度におけるCO、C3H6及びNOの浄化率を測定して、各50%浄化温度を算出した。結果を図2に示す。 An endurance test was performed in which 1.5 g of each pellet catalyst was placed in an endurance test apparatus, and the rich gas and the lean gas shown in Table 2 were held at 1000 ° C. for 5 hours while alternately flowing for 5 minutes. 1 g of each pellet catalyst after the durability test was pretreated at 500 ° C. for 10 minutes in the model gas shown in Table 3, and then the model gas shown in Table 3 was alternately circulated for 1 second at a flow rate of 3500 cc / min. The temperature was raised from room temperature to 400 ° C. at a rate of 12 ° C./min, and the purification rates of CO, C 3 H 6 and NO at each temperature were measured, and the 50% purification temperature was calculated. The results are shown in FIG.
図2より、実施例2,3の触媒は共に実施例1の触媒に比べて高い浄化性能を示していることがわかり、これは細孔分布の差に起因していることが明らかである。 From FIG. 2, it can be seen that the catalysts of Examples 2 and 3 both show higher purification performance than the catalyst of Example 1, and this is apparently due to the difference in pore distribution.
Claims (8)
該撹拌工程では、得られる酸化物粉末の重量が溶媒に対して1〜30%となるように懸濁液を調製する、剪断速度が 103〜 104/秒となる条件で撹拌する、の少なくとも一方の制御を行うことを特徴とする酸化物粉末の製造方法。 A precipitation step of precipitating the precipitate of the oxide precursor by adding a base equal to or more than an acid group contained in an aqueous solution in which a compound containing at least cerium is dissolved or a solution containing water; and the precipitation and the surfactant A method for producing an oxide powder, in which an agitation step of agitating a suspension containing the mixture and a firing step of filtering and firing the obtained precipitate are sequentially performed,
In the stirring step, the suspension is prepared so that the weight of the obtained oxide powder is 1 to 30% with respect to the solvent, and the stirring is performed under the condition that the shear rate is 10 3 to 10 4 / sec. A method for producing an oxide powder, wherein at least one of the controls is performed.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003377099A JP2005139029A (en) | 2003-11-06 | 2003-11-06 | Oxide powder, its preparation process, and catalyst |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003377099A JP2005139029A (en) | 2003-11-06 | 2003-11-06 | Oxide powder, its preparation process, and catalyst |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2005139029A true JP2005139029A (en) | 2005-06-02 |
Family
ID=34687935
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003377099A Pending JP2005139029A (en) | 2003-11-06 | 2003-11-06 | Oxide powder, its preparation process, and catalyst |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2005139029A (en) |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007254245A (en) * | 2006-03-27 | 2007-10-04 | Sanyo Chem Ind Ltd | Metal oxide nanoparticle water-dispersion liquid |
JP2008150231A (en) * | 2006-12-15 | 2008-07-03 | Toyota Central R&D Labs Inc | Composite oxide powder and method for producing the same |
JP2008239436A (en) * | 2007-03-28 | 2008-10-09 | Tokyo Univ Of Science | Porous zirconium oxide and method for producing the same |
JP2009227541A (en) * | 2008-03-25 | 2009-10-08 | Toyota Central R&D Labs Inc | Compound oxide, exhaust gas purification catalyst using the same and production method of compound oxide |
JP2009263150A (en) * | 2008-04-23 | 2009-11-12 | Toyota Central R&D Labs Inc | Compound oxide powder, method and apparatus for producing the same and catalyst for cleaning exhaust gas |
JP2010502559A (en) * | 2006-09-05 | 2010-01-28 | セリオン テクノロジー, インコーポレーテッド | Method for producing cerium dioxide nanoparticles |
JP2011219328A (en) * | 2010-04-13 | 2011-11-04 | Toyota Motor Corp | Colloidal solution of cobalt hydroxide and method for producing the same |
JP2013103143A (en) * | 2011-11-10 | 2013-05-30 | Toyota Motor Corp | METHOD FOR PRODUCING Co3O4/CeO2 COMPOSITE CATALYST FOR EXHAUST GAS PURIFICATION AND CATALYST OBTAINED BY THE SAME |
JP2013525255A (en) * | 2010-05-06 | 2013-06-20 | ロデイア・オペラシヨン | Compositions comprising zirconium, cerium and at least one other rare earth oxide and having a specific porosity, a process for preparing them, and their use in catalysis |
US9303223B2 (en) | 2006-09-05 | 2016-04-05 | Cerion, Llc | Method of making cerium oxide nanoparticles |
US10143661B2 (en) | 2013-10-17 | 2018-12-04 | Cerion, Llc | Malic acid stabilized nanoceria particles |
KR20190063989A (en) * | 2017-11-30 | 2019-06-10 | 솔브레인 주식회사 | Method of preparing cerium oxide particles, cerium oxide particles and composition of slurry for polishing compring the same |
US10435639B2 (en) | 2006-09-05 | 2019-10-08 | Cerion, Llc | Fuel additive containing lattice engineered cerium dioxide nanoparticles |
KR20190125087A (en) * | 2018-04-27 | 2019-11-06 | 현대자동차주식회사 | Method for manufacturing exhaust gas purifying catalyst and the exhaust gas purifying catalyst therefrom |
KR20190125086A (en) * | 2018-04-27 | 2019-11-06 | 현대자동차주식회사 | Method for manufacturing exhaust gas purifying catalyst and the exhaust gas purifying catalyst therefrom |
JP6991384B1 (en) | 2021-08-12 | 2022-01-12 | 第一稀元素化学工業株式会社 | Zirconia-based porous body and method for producing zirconia-based porous body |
-
2003
- 2003-11-06 JP JP2003377099A patent/JP2005139029A/en active Pending
Cited By (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007254245A (en) * | 2006-03-27 | 2007-10-04 | Sanyo Chem Ind Ltd | Metal oxide nanoparticle water-dispersion liquid |
US9340738B2 (en) | 2006-09-05 | 2016-05-17 | Cerion, Llc | Method of making cerium oxide nanoparticles |
JP2010502559A (en) * | 2006-09-05 | 2010-01-28 | セリオン テクノロジー, インコーポレーテッド | Method for producing cerium dioxide nanoparticles |
US10435639B2 (en) | 2006-09-05 | 2019-10-08 | Cerion, Llc | Fuel additive containing lattice engineered cerium dioxide nanoparticles |
US9993803B2 (en) | 2006-09-05 | 2018-06-12 | Cerion, Llc | Method of preparing cerium dioxide nanoparticles |
US9221032B2 (en) | 2006-09-05 | 2015-12-29 | Cerion, Llc | Process for making cerium dioxide nanoparticles |
US9303223B2 (en) | 2006-09-05 | 2016-04-05 | Cerion, Llc | Method of making cerium oxide nanoparticles |
JP2008150231A (en) * | 2006-12-15 | 2008-07-03 | Toyota Central R&D Labs Inc | Composite oxide powder and method for producing the same |
JP2008239436A (en) * | 2007-03-28 | 2008-10-09 | Tokyo Univ Of Science | Porous zirconium oxide and method for producing the same |
JP2009227541A (en) * | 2008-03-25 | 2009-10-08 | Toyota Central R&D Labs Inc | Compound oxide, exhaust gas purification catalyst using the same and production method of compound oxide |
JP2009263150A (en) * | 2008-04-23 | 2009-11-12 | Toyota Central R&D Labs Inc | Compound oxide powder, method and apparatus for producing the same and catalyst for cleaning exhaust gas |
JP2011219328A (en) * | 2010-04-13 | 2011-11-04 | Toyota Motor Corp | Colloidal solution of cobalt hydroxide and method for producing the same |
JP2013525255A (en) * | 2010-05-06 | 2013-06-20 | ロデイア・オペラシヨン | Compositions comprising zirconium, cerium and at least one other rare earth oxide and having a specific porosity, a process for preparing them, and their use in catalysis |
JP2013103143A (en) * | 2011-11-10 | 2013-05-30 | Toyota Motor Corp | METHOD FOR PRODUCING Co3O4/CeO2 COMPOSITE CATALYST FOR EXHAUST GAS PURIFICATION AND CATALYST OBTAINED BY THE SAME |
US10143661B2 (en) | 2013-10-17 | 2018-12-04 | Cerion, Llc | Malic acid stabilized nanoceria particles |
KR102426197B1 (en) * | 2017-11-30 | 2022-07-29 | 솔브레인 주식회사 | Method of preparing cerium oxide particles, cerium oxide particles and composition of slurry for polishing compring the same |
KR20190063989A (en) * | 2017-11-30 | 2019-06-10 | 솔브레인 주식회사 | Method of preparing cerium oxide particles, cerium oxide particles and composition of slurry for polishing compring the same |
KR102506775B1 (en) | 2018-04-27 | 2023-03-07 | 현대자동차주식회사 | Method for manufacturing exhaust gas purifying catalyst and the exhaust gas purifying catalyst therefrom |
KR20190125086A (en) * | 2018-04-27 | 2019-11-06 | 현대자동차주식회사 | Method for manufacturing exhaust gas purifying catalyst and the exhaust gas purifying catalyst therefrom |
KR20190125087A (en) * | 2018-04-27 | 2019-11-06 | 현대자동차주식회사 | Method for manufacturing exhaust gas purifying catalyst and the exhaust gas purifying catalyst therefrom |
KR102506776B1 (en) | 2018-04-27 | 2023-03-07 | 현대자동차주식회사 | Method for manufacturing exhaust gas purifying catalyst and the exhaust gas purifying catalyst therefrom |
JP6991384B1 (en) | 2021-08-12 | 2022-01-12 | 第一稀元素化学工業株式会社 | Zirconia-based porous body and method for producing zirconia-based porous body |
JP2023025987A (en) * | 2021-08-12 | 2023-02-24 | 第一稀元素化学工業株式会社 | Zirconia-based porous body, and method of producing zirconia-based porous body |
CN115968355A (en) * | 2021-08-12 | 2023-04-14 | 第一稀元素化学工业株式会社 | Zirconia-based porous body and method for producing zirconia-based porous body |
US11958039B2 (en) | 2021-08-12 | 2024-04-16 | Daiichi Kigenso Kagaku Kogyo Co., Ltd. | Zirconia-based porous body and method for manufacturing zirconia-based porous body |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5076377B2 (en) | Exhaust gas purification catalyst | |
RU2423177C1 (en) | Core-shell structure, method of making said structure and catalyst for cleaning exhaust gases, having core-shell structure | |
JP2005139029A (en) | Oxide powder, its preparation process, and catalyst | |
JP3341973B2 (en) | Oxide solid solution particles and method for producing the same | |
JP4503603B2 (en) | Composition and catalyst having improved reducing ability and specific surface area mainly composed of cerium oxide and zirconium oxide | |
US20030224931A1 (en) | Metal oxide and method for producing the same, and catalyst | |
EP1452483B1 (en) | Process for production of compound oxides | |
JPH08325015A (en) | Sol-gel preparative method for producing sphere, microsphereand wash coat of pure and mixed zirconia oxide, useful as catalyst or catalyst carrier | |
JP4218364B2 (en) | Method for producing metal oxide | |
JP3330296B2 (en) | Composite oxide supported catalyst carrier | |
JP4756571B2 (en) | Oxygen storage and release material | |
JP2007044585A (en) | Manufacturing method of porous composite metal oxide material | |
JP3238316B2 (en) | Exhaust gas purification catalyst | |
JP6272609B2 (en) | Method for producing composite oxide and composite oxide catalyst | |
JP5168527B2 (en) | Oxide powder and production method thereof | |
JP4998663B2 (en) | Composite metal oxide porous body | |
JP2011016090A (en) | Exhaust gas cleaning catalyst and method of manufacturing the same | |
JP4298425B2 (en) | Carbon monoxide oxidation catalyst and method for producing the catalyst | |
JP3861385B2 (en) | Lean exhaust gas purification catalyst | |
JP4273396B2 (en) | Exhaust gas purification catalyst | |
JP2003275580A (en) | Oxygen storage material | |
JP4696767B2 (en) | Method for producing composite metal oxide porous body | |
JP2005104799A (en) | Compound oxide and catalyst for cleaning exhaust gas | |
JP4265276B2 (en) | Exhaust gas purification catalyst | |
JP4765381B2 (en) | Manufacturing method of complex oxide with heat resistance |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060322 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20081119 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090210 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090402 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20090521 |