JP2006118000A - Lightweight high strength steel having excellent ductility and its production method - Google Patents
Lightweight high strength steel having excellent ductility and its production method Download PDFInfo
- Publication number
- JP2006118000A JP2006118000A JP2004307097A JP2004307097A JP2006118000A JP 2006118000 A JP2006118000 A JP 2006118000A JP 2004307097 A JP2004307097 A JP 2004307097A JP 2004307097 A JP2004307097 A JP 2004307097A JP 2006118000 A JP2006118000 A JP 2006118000A
- Authority
- JP
- Japan
- Prior art keywords
- less
- ductility
- strength steel
- lightweight
- rolling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Heat Treatment Of Sheet Steel (AREA)
Abstract
Description
本発明は、自動車部品などに用いられる延性に優れた高強度低比重鋼およびその製造方法に関するものである。 The present invention relates to a high strength low specific gravity steel excellent in ductility used for automobile parts and the like, and a method for producing the same.
近年、環境問題への対応のため炭酸ガス排出低減や燃費低減を目的に自動車の軽量化が望まれている。自動車の軽量化のためには鋼材の高強度化が有効な手段であるが、部材の剛性によって板厚が制限されている場合には、高強度化しても板厚を低減することができず、軽量化が困難であった。上記の場合に軽量化を達成する手段としては鋼材に比べて比重の低いアルミ合金板の使用が考えられるが、アルミ合金板は高価格であることに加え鋼材に比べて加工性が劣っていることや鋼板との溶接が困難である等の欠点があるために、自動車部材への適用は限定されたものとなっている。そこで、鋼板とアルミ合金板の長所を兼ね備えたものとして鉄にアルミを多量に添加した高Al含有鋼板が考えられる。しかしこのような高Al含有鋼板は、(1)製造性が劣ること(特に圧延時に割れが発生すること)、(2)延性が低いこと、などの理由から、自動車用鋼板として適用することは困難であった。特に、Al含有量が増加するとFe3AlやFeAl等の金属間化合物の析出などにより、延性、熱間加工性及び冷間加工性が大幅に劣化し、通常の薄鋼板製造プロセスでAl含有量の高い鋼を製造することや良好な強度及び延性レベルを確保することは極めて困難であった。 In recent years, in order to cope with environmental problems, it has been desired to reduce the weight of automobiles for the purpose of reducing carbon dioxide emissions and reducing fuel consumption. To reduce the weight of automobiles, increasing the strength of steel is an effective means, but when the plate thickness is limited by the rigidity of the member, the plate thickness cannot be reduced even if the strength is increased. It was difficult to reduce the weight. As a means to achieve weight reduction in the above case, it is possible to use an aluminum alloy plate having a lower specific gravity than steel, but the aluminum alloy plate is inferior to steel in addition to being expensive. In addition, there are drawbacks such as difficulty in welding with steel plates, and therefore, application to automobile members is limited. Therefore, a high Al content steel plate in which a large amount of aluminum is added to iron can be considered as having the advantages of a steel plate and an aluminum alloy plate. However, such a high Al-containing steel sheet can be applied as a steel sheet for automobiles because of (1) inferior productivity (particularly cracking during rolling) and (2) low ductility. It was difficult. In particular, when the Al content is increased, ductility, hot workability and cold workability are greatly deteriorated due to precipitation of intermetallic compounds such as Fe 3 Al and FeAl. It was extremely difficult to produce high-strength steel and to ensure good strength and ductility level.
高Al含有鋼板の延性を向上させる技術として、例えば特許文献1には、Al:4〜9.5%、Ti:0.5〜2.0%、Mo:0.5〜2%、Zr:0.1〜0.8%、C:0.01〜0.5%及び残余Feを含有するアルミニウム含有鉄基合金の技術が提案されているが、低比重に関する言及は無く、重量元素であるMoやZrが必須となっており、低比重化に考慮しているとはいえない。また、製造性についても鍛造することや温間圧延を行うこととしており、いわゆる溶解から熱間圧延、冷間圧延へと至る広く工業的に行われている製造方法、製造設備を用いた製法とは異なる。また、本発明者らの試験では大幅な延性の改善には至っていない。 As a technique for improving the ductility of a high Al-containing steel sheet, for example, in Patent Document 1, Al: 4 to 9.5%, Ti: 0.5 to 2.0%, Mo: 0.5 to 2%, Zr: A technology of an aluminum-containing iron-based alloy containing 0.1 to 0.8%, C: 0.01 to 0.5% and the remaining Fe has been proposed, but there is no mention of low specific gravity, and it is a heavy element Mo and Zr are essential, and it cannot be said that low specific gravity is taken into consideration. In addition, for manufacturability, forging and warm rolling are carried out, so-called melting, hot rolling, cold rolling and widely used manufacturing methods, manufacturing methods using manufacturing equipment, Is different. In addition, the inventors' tests have not led to a significant improvement in ductility.
また、特許文献2にはAl:10〜19%、Ti:2〜8%、Mo:0.5〜10%、Hf:0.1〜1%及び残余Feを含有するアルミニウム含有鉄基合金の技術が提案されているが、重量元素であるHfが必須となっており、低比重というよりも耐熱性に重点がおかれている。また、製造性についても粉末からの製造を基本としており、いわゆる溶解から熱間圧延、冷間圧延へと至る広く工業的に行われている製造方法、製造設備を用いた薄鋼板の製法とは異なる。また、本発明者らの試験では大幅な延性の改善には至っていない。
以上のように、従来の技術では、延性に優れた高強度低比重鋼板を工業規模で生産することは困難であった。
As described above, it has been difficult to produce a high-strength, low-specific gravity steel plate excellent in ductility on an industrial scale with the conventional technology.
本発明は、上記したような問題点を解決しようとするものであって、延性に優れた高強度低比重鋼板及びその製造方法を提供することを目的とする。 The present invention is intended to solve the above-described problems, and an object of the present invention is to provide a high-strength low-specific gravity steel plate excellent in ductility and a method for producing the same.
本発明者らは、鉄ベースで多量のAlを含有し、成分の異なる種々の素材について、延性、熱間加工性及び冷間加工性を改善するため、成分と製造法の両面から研究を重ねた結果、高いAl含有量の鋼においても組織制御により高Al含有鋼の延性、熱間加工性及び冷間加工性の飛躍的な向上が可能であることを見出した。すなわち、複合組織化である。 In order to improve ductility, hot workability and cold workability for various materials containing a large amount of Al on an iron basis, the present inventors have conducted research from both the component and manufacturing methods. As a result, it has been found that the ductility, hot workability and cold workability of the high Al content steel can be dramatically improved by the structure control even in the steel having a high Al content. That is, complex organization.
これまでの高Al含有鋼の延性および靭性の劣化はFe3Al、FeAl等の金属間化合物の析出による粒界脆化によるものであると報告されており、粒界脆化の抑制対策が主であった。
本発明者らは特願2003−354060号において、Al含有量を10超〜22.0%としたうえで、S及びPを極低化し、さらに微細炭窒化物を活用して細粒化を図り鋼鈑の脆化挙動を抑制するとともに、熱延条件の適性化により熱延、冷却及び巻取り時にFe3Al、FeAl等の金属間化合物の析出を極力抑制することにより、延性、熱間加工性及び冷間加工性を大幅に改善できることを開示した。すなわち、強度−延性バランスについてTS(MPa)×El(%)で13000M(Pa・%)程度を達成した。
本発明者らは、590〜780MPa級の鋼との差別化を更に図るために鋭意研究した結果、金属組織の分率を制御してこれまでの鋼の面積率最大であるフェライト相率を低下させ、オーステナイトと複合組織化することで、強度−延性バランスを飛躍的に改善できることを見出した。
It has been reported that the deterioration of ductility and toughness of high Al-containing steels so far is due to grain boundary embrittlement due to precipitation of intermetallic compounds such as Fe 3 Al, FeAl, etc., and mainly measures to suppress grain boundary embrittlement. Met.
In the Japanese Patent Application No. 2003-354060, the present inventors made Al content more than 10 to 22.0%, extremely reduced S and P, and further refined using fine carbonitride. By suppressing the embrittlement behavior of the steel plate and by optimizing the hot rolling conditions, the precipitation of intermetallic compounds such as Fe 3 Al and FeAl during hot rolling, cooling and winding is suppressed as much as possible. It has been disclosed that workability and cold workability can be greatly improved. That is, about 13000M (Pa *%) was achieved by TS (MPa) x El (%) about the strength-ductility balance.
As a result of diligent research to further differentiate the steel from 590 to 780 MPa class, the present inventors have reduced the ferrite phase ratio, which is the maximum area ratio of steel so far, by controlling the fraction of the metal structure. It was found that the strength-ductility balance can be drastically improved by forming a composite structure with austenite.
本発明はこのような知見に基づいて構成したものであり、その要旨は以下の通りである。
(1)質量%で、C:0.1〜1.0%、Si:3.0%以下、Mn:10.0〜50.0%、P:0.01%以下、S:0.01%以下、Al:5.0〜15.0%、N:0.001〜0.05%を含有し、残部がFe及び不可避的不純物からなり、各成分の質量%が下記の式(1)を満たし、比重:7.0以下であり、組織中にフェライト及びオーステナイトを有するとともにその何れかの面積率が組織中で最大であり、引張り強度:TS(MPa)と破断伸び:El(%)の積の値:TS×Elが20000(MPa・%)以上であることを特徴とする延性に優れた軽量高強度鋼。
C≦−0.020×Mn+Al/15+0.53 (1)
(2)さらに質量%で、Cr:0.01〜5.0%、Ni:0.01〜15.0%、Mo:0.01〜5.0%、Co:0.01〜5.0%、Cu:0.01〜5.0%の1種または2種以上を含有することを特徴とする(1)に記載の延性に優れた軽量高強度鋼。
(3)さらに質量%で、Ti:0.005〜1%、V:0.005〜1%、Nb:0.005〜0.5%の1種または2種以上を含有することを特徴とする(1)または(2)記載の延性に優れた軽量高強度鋼。
(4)さらに質量%で、Ca:0.001〜0.01%、Mg:0.0005〜0.3%、REM:0.001〜0.5%、Y:0.001〜0.1%の1種または2種以上を含有することを特徴とする(1)〜(3)のいずれか1項に記載の延性に優れた軽量高強度鋼。
(5)さらに質量%で、B:0.0002〜0.1%を含有することを特徴とする(1)〜(4)のいずれか1項に記載の延性に優れた軽量高強度鋼。
(6)フェライトの面積率が10〜50%であることを特徴とする(1)〜(5)のいずれか1項に記載の延性に優れた軽量高強度鋼。
The present invention is configured based on such knowledge, and the gist thereof is as follows.
(1) By mass%, C: 0.1 to 1.0%, Si: 3.0% or less, Mn: 10.0 to 50.0%, P: 0.01% or less, S: 0.01 % Or less, Al: 5.0 to 15.0%, N: 0.001 to 0.05%, the balance is composed of Fe and inevitable impurities, and the mass% of each component is represented by the following formula (1) Specific gravity: 7.0 or less, ferrite and austenite in the structure, and any area ratio of the structure is maximum in the structure, tensile strength: TS (MPa) and elongation at break: El (%) Value of product: A lightweight high-strength steel excellent in ductility, characterized in that TS × El is 20000 (MPa ·%) or more.
C ≦ −0.020 × Mn + Al / 15 + 0.53 (1)
(2) Further, by mass%, Cr: 0.01 to 5.0%, Ni: 0.01 to 15.0%, Mo: 0.01 to 5.0%, Co: 0.01 to 5.0 %, Cu: 0.01 to 5.0% of one or two or more kinds, the lightweight high-strength steel excellent in ductility according to (1).
(3) Further, by mass%, it contains one or more of Ti: 0.005 to 1%, V: 0.005 to 1%, Nb: 0.005 to 0.5%, The lightweight high-strength steel excellent in ductility as described in (1) or (2).
(4) Further, by mass%, Ca: 0.001-0.01%, Mg: 0.0005-0.3%, REM: 0.001-0.5%, Y: 0.001-0.1 % High-strength steel excellent in ductility according to any one of (1) to (3).
(5) The lightweight high-strength steel excellent in ductility according to any one of (1) to (4), further containing, by mass%, B: 0.0002 to 0.1%.
(6) The lightweight high-strength steel excellent in ductility according to any one of (1) to (5), wherein the area ratio of ferrite is 10 to 50%.
(7)前記(1)〜(6)のいずれか1項に記載の高強度鋼板を製造する方法であって、(1)〜(5)の何れか1項に記載の成分からなる鋼スラブを、1100℃以上1300℃以下の保持温度域において、保持温度;T(K)、保持時間;t(h)としたときに下記の式(2)を満たす条件で加熱保持を行い、1100℃以上の温度域で少なくとも1パス圧下率30%以上で1パス以上の圧下をし、850℃以上の仕上げ圧延温度で熱間圧延し、600℃以下の温度域まで30℃/秒以上で冷却して、600℃以下の温度域で巻き取ることを特徴とする延性に優れた軽量高強度鋼の製造方法。
(9)前記(7)記載の方法にて製造した熱延鋼板を酸洗した後、1パス当たりの圧延率が5%以上20%以下で全圧下率が30%以上の冷延を20℃以上で行い、800〜1200℃で20秒〜5時間の焼鈍を施し、その後30℃/秒以上で600℃以下の温度域に冷却することを特徴とする延性に優れた軽量高強度鋼。
(7) A method for producing the high-strength steel sheet according to any one of (1) to (6), wherein the steel slab is composed of the component according to any one of (1) to (5). In a holding temperature range of 1100 ° C. or higher and 1300 ° C. or lower, and holding temperature; T (K), holding time; t (h), heating and holding are performed under conditions satisfying the following formula (2): 1100 ° C. In the above temperature range, at least one pass reduction ratio of 30% or more is reduced for one pass or more, hot rolled at a finish rolling temperature of 850 ° C. or more, and cooled to a temperature range of 600 ° C. or less at 30 ° C./second or more. And the manufacturing method of the lightweight high strength steel excellent in ductility characterized by winding up in the temperature range of 600 degrees C or less.
(9) After pickling the hot-rolled steel sheet produced by the method described in (7) above, cold rolling with a rolling reduction per pass of 5% to 20% and a total rolling reduction of 30% or more is 20 ° C. A lightweight high-strength steel excellent in ductility, characterized in that it is annealed at 800 to 1200 ° C. for 20 seconds to 5 hours and then cooled to a temperature range of 30 ° C./second or more and 600 ° C. or less.
本発明により、延性に優れた高強度低比重鋼板を得ることができる。 According to the present invention, a high strength and low specific gravity steel sheet having excellent ductility can be obtained.
以下に、本発明における各要件の意義及び限定理由について具体的に説明する。
まず、前記(1)に係る本発明における延性に優れた高強度低比重鋼板の成分限定理由について説明する。
C:Cは強度を向上させ比重を下げる重要な添加元素である。さらに、他の元素に比べ拡散が容易でオーステナイト形成元素であり、製造工程の中での組織制御のためには重要な添加元素であることから、0.1%以上の添加とした。一方、過剰の添加は黒鉛の過剰生成による製造性の劣化の懸念があるため1.0%以下とした。また、本発明の目指すところのフェライトとオーステナイトの組織制御のために、MnおよびAlと併せて、C≦−0.020×Mn+Al/15+0.53を満たす範囲での添加に限定した。
Below, the meaning of each requirement in this invention and the reason for limitation are demonstrated concretely.
First, the reasons for limiting the components of the high-strength low specific gravity steel sheet having excellent ductility in the present invention according to (1) will be described.
C: C is an important additive element that improves strength and lowers specific gravity. Furthermore, it is an austenite forming element that is easier to diffuse than other elements, and is an additive element important for controlling the structure in the manufacturing process. On the other hand, since excessive addition may cause manufacturability deterioration due to excessive graphite production, it was set to 1.0% or less. Further, in order to control the structure of ferrite and austenite, which is the aim of the present invention, the addition is limited to the range satisfying C ≦ −0.020 × Mn + Al / 15 + 0.53 together with Mn and Al.
Si:Siは固溶強化により鋼板の強度を増大させ、低比重化にも有用な元素であるが、Alとの複合添加は靭性および延性および熱間加工性を低下させるとともに熱間圧延で生じるスケールの剥離性や化成処理性を著しく劣化させるため低いことが望ましく、3.0%以下とし、特に靭性を重要視する場合には0.1%以下が望ましい。一方、極低化は精錬上の生産性を著しく低下させることから、靭性劣化が顕著に現れない程度の0.01%以上が望ましい。 Si: Si is an element that increases the strength of the steel sheet by solid solution strengthening and is useful for lowering the specific gravity. However, the combined addition with Al decreases the toughness, ductility and hot workability, and occurs in hot rolling. In order to remarkably deteriorate the peelability of the scale and the chemical conversion treatment, it is preferably low, and it is preferably 3.0% or less, particularly 0.1% or less when toughness is important. On the other hand, since extremely low significantly reduces refining productivity, it is desirable that the amount be 0.01% or more so that deterioration of toughness does not appear remarkably.
Mn:Mnはオーステナイト形成元素で、強化にも効果的であることから、10.0%以上の添加とした。またCおよびAlと併せて、フェライト・オーステナイト複合組織形成のため、C≦−0.020×Mn+Al/15+0.53を満たす範囲での添加に限定した。一方、50.0%を超える過剰の添加は延性・靭性を劣化させる。従って、Mn含有量は10.0〜50.0%とした。 Mn: Since Mn is an austenite forming element and is effective for strengthening, it is added in an amount of 10.0% or more. Further, in combination with C and Al, in order to form a ferrite-austenite composite structure, the addition was limited to the range satisfying C ≦ −0.020 × Mn + Al / 15 + 0.53. On the other hand, excessive addition exceeding 50.0% deteriorates ductility and toughness. Therefore, the Mn content is set to 10.0 to 50.0%.
P:Pは粒界に偏析して粒界強度を低下させ、靱性を劣化させる不純物元素であり、可及的低レベルが望ましいが、現状精錬技術の到達可能レベルとコストを考慮して、上限を0.01%とした。ただし、炭素量やAl添加量が多量な場合には0.0030%以下が望ましい。 P: P is an impurity element that segregates at the grain boundary to lower the grain boundary strength and deteriorates toughness, and is preferably as low as possible. However, the upper limit is considered in consideration of the reachable level and cost of current refining technology. Was set to 0.01%. However, when the amount of carbon and Al added is large, 0.0030% or less is desirable.
S:Sは熱間加工性及び靭性を劣化させる不純物元素であり、可及的低レベルが望ましいが、現状精錬技術の到達可能レベルとコストを考慮して、上限を0.01%とした。ただし、炭素量やAl添加量が多量な場合には0.0030%以下が望ましい。 S: S is an impurity element that deteriorates hot workability and toughness, and is preferably as low as possible. However, the upper limit is set to 0.01% in consideration of the reachable level and cost of the current refining technology. However, when the amount of carbon and Al added is large, 0.0030% or less is desirable.
Al:Alは低比重化を達成するための必須の元素であり、5.0%以上の添加とした。また、低比重の観点からは8.0%以上の添加が望ましい。一方、製造工程の中ではフェライト変態を著しく促進させるため、組織制御の観点から、オーステナイト形成元素であるCおよびMnと併せて、C≦−0.020×Mn+Al/15+0.53を満たす範囲での添加に限定し、15%を超えると金属間化合物による脆化挙動が顕著となるため、これを上限とした。 Al: Al is an essential element for achieving a low specific gravity, and is added at 5.0% or more. Moreover, addition of 8.0% or more is desirable from the viewpoint of low specific gravity. On the other hand, in the manufacturing process, in order to significantly promote ferrite transformation, from the viewpoint of structure control, in combination with C and Mn which are austenite forming elements, C ≦ −0.020 × Mn + Al / 15 + 0.53 is satisfied. When the content is limited to 15% and exceeds 15%, the embrittlement behavior due to the intermetallic compound becomes remarkable, so this was made the upper limit.
N:Nは窒化物を形成し結晶粒粗大化を抑制する効果があるが、0.001%未満ではその効果が発現されず、0.05%を超えて添加すると靭性が劣化するため、N含有量を0.001〜0.05%とした。 N: N has the effect of forming nitrides and suppressing crystal grain coarsening, but if less than 0.001%, the effect is not manifested, and if added over 0.05%, the toughness deteriorates. The content was 0.001 to 0.05%.
以上が本発明の基本成分であり、通常、上記以外はFe及び不可避的不純物からなるが、前記(2)〜(5)に係る発明において、所望の強度レベルやその他の必要特性に応じて、Cr、Ni、Mo、Co、Cu、Ti、V、Nb、Ca、Mg、REM、Y、Bの1種または2種以上を添加しても良い。
Cr:Crは強度・延性バランスを向上させるための添加元素であるため0.01%以上の添加とした。一方、延性・靭性の劣化を防止するために5.0%を上限とした。また、Fe3Al、FeAl等の金属間化合物が析出する場合にはその製造性向上に寄与するため添加することが望ましい。
The above are the basic components of the present invention, usually consisting of Fe and unavoidable impurities other than the above, but in the inventions according to (2) to (5), depending on the desired strength level and other necessary characteristics, One or more of Cr, Ni, Mo, Co, Cu, Ti, V, Nb, Ca, Mg, REM, Y, and B may be added.
Cr: Since Cr is an additive element for improving the balance between strength and ductility, it was added in an amount of 0.01% or more. On the other hand, in order to prevent deterioration of ductility and toughness, 5.0% was made the upper limit. Also, Fe 3 Al, if the intermetallic compound such as FeAl are precipitated is preferably added to contribute to the production improvement.
Ni:Niは延性及び靭性を向上させる有効な元素である。また、Mn同様、オーステナイト形成元素であり、フェライト・オーステナイトの組織複合化にも有効であることから0.01%以上とし、また15.0%以下とすることで延性の劣化を防止できる。従って、Niの含有量を0.01〜15.0%とした。 Ni: Ni is an effective element that improves ductility and toughness. Further, like Mn, it is an austenite-forming element and is effective for the composite formation of ferrite and austenite. Therefore, the content of 0.01% or more and 15.0% or less can prevent ductility deterioration. Therefore, the Ni content is set to 0.01 to 15.0%.
Mo:Moは延性及び靭性を向上させる有効な元素である。この効果は0.01%以上で発現し、また5%以下とすることで靭性の劣化を防止でき、更に低比重化を促進することができる。従って、Moの含有量を0.01〜5.0%とした。 Mo: Mo is an effective element that improves ductility and toughness. This effect is manifested at 0.01% or more, and by making it 5% or less, deterioration of toughness can be prevented and further reduction in specific gravity can be promoted. Therefore, the Mo content is set to 0.01 to 5.0%.
Co:Coは延性及び靭性を向上させる有効な元素である。この効果は0.01%以上で発現し、5%以下とすることで靭性の劣化を防止できるとともに、低比重化を促進することができる。従って、Moの含有量を0.01〜5.0%とした。 Co: Co is an effective element that improves ductility and toughness. This effect is manifested at 0.01% or more, and by setting it to 5% or less, deterioration of toughness can be prevented and reduction in specific gravity can be promoted. Therefore, the Mo content is set to 0.01 to 5.0%.
Cu:Cuは延性及び靭性を向上させる有効な元素である。この効果は0.01%以上で発現し、また5%以下とすることで靭性の劣化を防止できる。従って、Cuの含有量を0.01〜5.0%とした。 Cu: Cu is an effective element that improves ductility and toughness. This effect is manifested at 0.01% or more, and toughness can be prevented by setting it to 5% or less. Therefore, the Cu content is set to 0.01 to 5.0%.
Ti:TiはTiNまたはTiCを形成し結晶粒粗大化を抑制する効果があるが、0.005%以上でこれらの効果が発現し、また1%以下とすることで靭性の劣化を防止できる。よってTiの含有量を0.005〜1%とした。 Ti: Ti forms TiN or TiC and has the effect of suppressing crystal grain coarsening. However, these effects are manifested at 0.005% or more, and toughness can be prevented at 1% or less. Therefore, the Ti content is set to 0.005 to 1%.
V:Vは微細な炭窒化物を形成し結晶粒粗大化を抑制する効果があるが、0.005%以上でその効果が発現され、また1%以下にすることで靭性の劣化を防止できる。従ってVの含有量を0.005〜1%とした。 V: V has the effect of forming fine carbonitrides and suppressing crystal grain coarsening, but the effect is manifested at 0.005% or more, and toughness deterioration can be prevented by making it 1% or less. . Therefore, the content of V is set to 0.005 to 1%.
Nb:Nbは微細な炭窒化物を形成し結晶粒粗大化を抑制する効果があるが、0.005%以上でその効果が発現され、また0.5%以下とすることで低比重化を促進し、靭性の劣化も防止できる。従ってNbの含有量を0.005〜0.5%とした。 Nb: Nb has the effect of forming fine carbonitrides and suppressing crystal grain coarsening, but the effect is manifested at 0.005% or more, and the specific gravity is reduced by making it 0.5% or less. Promote and prevent deterioration of toughness. Therefore, the Nb content is set to 0.005 to 0.5%.
Ca、Mg、REM(Rare Earth Metalの略称でランタノイド系元素を指す)、Y:これらはいずれもS等の偏析元素による熱間加工性や靭性の劣化を抑制する有効な元素である。この効果はCaは0.001%以上、Mgは0.0005%以上、REMは0.001%以上、Yは0.001%以上で発現され、Caは0.01%以下、Mgは0.3%以下、REMは0.5%以下、Yは0.1%以下とすることで靭性の劣化を防止できる。またREMおよびYの添加量を前記上限値以下とすることで低比重化を促進できる。従って、Ca:0.001〜0.01%、Mg:0.0005〜0.3%、REM:0.001〜0.5%、Y:0.001〜0.1%とした。 Ca, Mg, REM (abbreviation of Rare Earth Metal, indicating a lanthanoid element), Y: These are all effective elements that suppress the deterioration of hot workability and toughness due to segregation elements such as S. This effect is exhibited when Ca is 0.001% or more, Mg is 0.0005% or more, REM is 0.001% or more, Y is 0.001% or more, Ca is 0.01% or less, and Mg is 0.00%. Deterioration of toughness can be prevented by setting 3% or less, REM 0.5% or less, and Y 0.1% or less. Moreover, reduction in specific gravity can be promoted by making the addition amount of REM and Y below the said upper limit. Therefore, Ca: 0.001 to 0.01%, Mg: 0.0005 to 0.3%, REM: 0.001 to 0.5%, and Y: 0.001 to 0.1%.
B:Bは微量添加で靭性向上や硬質第2生成を促進する。したがって、0.0002%以上の添加とした。一方、熱間加工性や延性および靭性の劣化を防止するために0.1%を上限とした。 B: B is added in a small amount to promote toughness improvement and hard second generation. Therefore, the addition amount is 0.0002% or more. On the other hand, 0.1% was made the upper limit in order to prevent deterioration of hot workability, ductility and toughness.
次に特性値の限定理由について述べる。
比重は7.0超では自動車用鋼板として通常使用されている鋼板の比重(鉄の比重7.86と同程度)と比較して軽量化効果が小さいので7.0以下とする。
強度及び延性は加工用自動車用鋼板として現行の590〜780MPa級の鋼板と同程度以上であることを必要な特性と考え、引張り強度:TS(MPa)と破断伸び:El(%)の積の値: TS×Elを20000MPa・%以上とする。
Next, the reason for limiting the characteristic value will be described.
If the specific gravity exceeds 7.0, the weight reduction effect is small compared with the specific gravity of steel plates normally used as automotive steel plates (same as the specific gravity of iron 7.86), so the specific gravity is set to 7.0 or less.
The strength and ductility are considered to be necessary characteristics that the steel plate for automobiles for processing is at least as high as the current steel plate of 590 to 780 MPa class, and the product of tensile strength: TS (MPa) and elongation at break: El (%) Value: TS × El is set to 20000 MPa ·% or more.
次に組織分率の限定理由について述べる。
高Al含有鋼のフェライトはAlを多量に含んでいるため、Fe−Alの金属間化合物やそれらクラスターの形成により製造性や材質を劣化させている。したがって、複合組織化を適切に制御することで製造性および材質劣化を抑制できる。ここで、フェライトと複合化する組織としてはマルテンサイトやベイナイトなどの硬質層が考えられるが、Alを含有したフェライトはAlを含有しないものと異なり十分軟質・高靭性ではないため、変形能の小さいマルテンサイトやベイナイトは本発明の目的にはそぐわない。そこで、変形能がある程度高いオーステナイトと複合させることし、鋼の金属組織はフェライト及びオーステナイトを有し、その何れかを面積率最大の相とした。オーステナイト形成にはCやMnといったオーステナイト形成元素が多量に必要であり、これらとの適切な複合と後述する製造条件と併せて、良好な組織制御を行うものである。すなわち、C≦−0.020×Mn+Al/15+0.53を満たすことで、オーステナイトとの複合化を図り、さらに好ましくはフェライトの面積率を50%以下とすることでさらに良好な材質に加えて溶接性なども改善される。一方、上記の効果、特に溶接性や比較的高い耐力を得るためには、面積率でフェライトは10%以上必要である。
Next, the reason for limiting the tissue fraction will be described.
Since the ferrite of the high Al content steel contains a large amount of Al, the productivity and the material are deteriorated by the formation of Fe-Al intermetallic compounds and their clusters. Therefore, manufacturability and material deterioration can be suppressed by appropriately controlling the composite organization. Here, a hard layer such as martensite and bainite can be considered as a structure to be combined with ferrite, but ferrite containing Al is not sufficiently soft and tough unlike those not containing Al, so its deformability is small. Martensite and bainite are not suitable for the purpose of the present invention. Therefore, by combining with austenite having high deformability to some extent, the metal microstructure of the steel has ferrite and austenite, and one of them is the phase with the largest area ratio. Austenite formation requires a large amount of austenite-forming elements such as C and Mn, and a good structure control is performed in combination with an appropriate composite with these and production conditions described later. That is, by satisfying C ≦ −0.020 × Mn + Al / 15 + 0.53, the composite with austenite is achieved, and more preferably, the area ratio of ferrite is 50% or less and welding is performed in addition to a better material. Sex is also improved. On the other hand, in order to obtain the above-described effects, particularly weldability and relatively high yield strength, ferrite needs to be 10% or more in terms of area ratio.
上記の他にミクロ組織の残部組織として、炭化物、窒化物、硫化物、酸化物などの1又は2以上を面積率で1%以下、又はマルテンサイトおよびベイナイトも面積率で3%以下含有する場合でも製造性や材質を大きくは劣化させないことから本発明で用いることができる。なお、上記ミクロ組織の各相、フェライト、ベイナイト、オーステナイト、マルテンサイト、界面酸化相および残部組織の同定、存在位置の観察および面積率の測定は、ナイタール試薬および特開昭59−219473号公報に開示された試薬により鋼板圧延方向断面または圧延直角方向断面を腐食して500倍〜1000倍の光学顕微鏡観察および1000〜100000倍の電子顕微鏡(走査型および透過型)により定量化が可能である。各20視野以上の観察を行い、ポイントカウント法や画像解析により各組織の面積率を求めることができる。また、オーステナイト量についてはX線回折により求めることができる。なお、ミクロ組織の各相の合計は100%となるが、炭化物、酸化物、硫化物等の光学顕微鏡では観察・同定ができない相については面積率最大の相に含めている。 In addition to the above, as the remaining microstructure of the microstructure, 1 or 2 or more of carbides, nitrides, sulfides, oxides, etc. are contained in an area ratio of 1% or less, or martensite and bainite are also contained in an area ratio of 3% or less. However, it can be used in the present invention because it does not significantly degrade manufacturability and materials. In addition, identification of each phase of the above microstructure, ferrite, bainite, austenite, martensite, interfacial oxidation phase and remaining structure, observation of the existing position and measurement of area ratio are described in Nital reagent and JP-A-59-219473. The steel plate rolling direction cross section or the rolling perpendicular direction cross section is corroded with the disclosed reagent, and quantification is possible by observation with an optical microscope of 500 to 1000 times and an electron microscope (scanning type and transmission type) of 1000 to 100,000 times. It is possible to obtain an area ratio of each tissue by observing 20 fields of view or more and using a point counting method or image analysis. The austenite amount can be determined by X-ray diffraction. The total of each phase of the microstructure is 100%, but phases that cannot be observed and identified with an optical microscope such as carbides, oxides, and sulfides are included in the phase with the largest area ratio.
次に製造条件の限定理由について述べる。
前記(7)に係る本発明においては、まず、上記(1)〜(5)の何れか1項に記載の化学成分からなる鋼スラブを1100℃以上1300℃以下の温度範囲に加熱して加熱保持する。その際に、加熱温度;T(K)、加熱時間;t(h)としたときに、下記式(3)を満たす条件で加熱保持を行う。
次に、1100℃以上の温度域で少なくとも1パス圧下率30%以上望ましくは40%以上で1パス以上の圧下をし、50℃以上望ましくは900℃以上の仕上げ圧延温度で熱間圧延し、600℃以下望ましくは500℃以下の温度域まで30℃/秒以上望ましくは50℃/秒以上で冷却して、600℃以下の温度域で巻き取ることにより、熱間圧延を行う。
Next, the reasons for limiting the manufacturing conditions will be described.
In this invention which concerns on said (7), first, the steel slab which consists of a chemical component of any one of said (1)-(5) is heated by heating in the temperature range of 1100 degreeC or more and 1300 degrees C or less. Hold. At that time, the heating and holding are performed under the condition satisfying the following formula (3) when the heating temperature is T (K) and the heating time is t (h).
Next, at least 1 pass reduction in the temperature range of 1100 ° C. or higher, preferably 40% or higher, 1 pass or higher, hot rolled at a finish rolling temperature of 50 ° C. or higher, preferably 900 ° C. or higher, Hot rolling is performed by cooling to a temperature range of 600 ° C. or less, preferably 500 ° C. or less, at 30 ° C./second or more, preferably 50 ° C./second or more, and winding in a temperature range of 600 ° C. or less.
加熱保持する際のスラブ加熱温度が1100℃未満であったり、この温度域での保持時間が、加熱温度;T(K)、加熱時間;t(h)で上記式(3)を満たさないと、高合金であるために十分に偏析等を均質化できないことや炭窒化物が十分に固溶せずに必要な強度や延性が得られず、熱間の靭性が不足して熱間割れなどを引き起こすため、スラブ加熱温度の下限は1100℃とした。加熱温度の上限は特に高炭素系の成分の場合には重要で、熱間加工性確保の点から1300℃以下とする。
また、熱延中の再結晶促進の観点から、1100℃以上の温度域で少なくとも1パス圧下率30%以上望ましくは40%以上で1パス以上の圧下をして850℃以上望ましくは900℃以上の仕上げ圧延温度で熱間圧延することが必要で、FeAl、Fe3Alや(Fe,Mn)3AlC相等の脆化相析出抑制するために熱間仕上げ圧延後は600℃以下望ましくは500℃以下の温度域まで30℃/秒望ましくは50℃/秒以上で冷却して、600℃以下望ましくは500℃以下の温度域で巻き取処理を行う。脆化相析出抑制の観点からは、高温仕上げ(900℃以上)−急冷−低温巻き取り(500℃以下)の条件が望ましい。熱間仕上げ圧延後の冷却速度の上限は特に定めないが、1000℃/秒を超えると設備上特殊な冷却装置が必要になる場合が多く、経済的には好ましくないため、1000℃/秒以下とすることが望ましい。また、冷却停止温度及び巻取り温度の下限は特に定めないが、生産性の観点から、室温以上とする。
When the slab heating temperature at the time of heating and holding is less than 1100 ° C. or the holding time in this temperature range does not satisfy the above formula (3) with the heating temperature; T (K), heating time; t (h) In addition, segregation etc. cannot be sufficiently homogenized due to the high alloy, carbon nitride does not dissolve sufficiently, the required strength and ductility cannot be obtained, hot toughness is insufficient, hot cracking, etc. Therefore, the lower limit of the slab heating temperature is 1100 ° C. The upper limit of the heating temperature is particularly important in the case of a high carbon component, and is set to 1300 ° C. or less from the viewpoint of ensuring hot workability.
Further, from the viewpoint of promoting recrystallization during hot rolling, at least 1 pass reduction rate is 30% or more, desirably 40% or more, and 1 pass or more is reduced at a temperature range of 1100 ° C. or more, and 850 ° C. or more, preferably 900 ° C. or more. It is necessary to perform hot rolling at a finish rolling temperature of 600 ° C. or less after hot finish rolling in order to suppress embrittlement phase precipitation such as FeAl, Fe 3 Al and (Fe, Mn) 3 AlC phase, preferably 500 ° C. Cooling is performed at 30 ° C./second, preferably 50 ° C./second or more, to the following temperature range, and the winding process is performed at a temperature range of 600 ° C. or less, preferably 500 ° C. or less. From the viewpoint of suppressing the embrittlement phase precipitation, the conditions of high-temperature finishing (900 ° C. or higher) -quenching-low-temperature winding (500 ° C. or lower) are desirable. The upper limit of the cooling rate after hot finish rolling is not particularly defined, but if it exceeds 1000 ° C / second, a special cooling device is often required on the equipment, which is not economically preferable, and is 1000 ° C / second or less. Is desirable. Moreover, the lower limit of the cooling stop temperature and the coiling temperature is not particularly defined, but is set to room temperature or higher from the viewpoint of productivity.
前記(8)に係る本発明において、熱延板の延性を向上させるために、再結晶や炭素や炭化物析出制御の観点から、熱延鋼板を、900〜1200℃で1分〜5時間の焼鈍を施し、その後30℃/秒以上で600℃以下に冷却してもよい。焼鈍および冷却中にFeAl、Fe3Alや(Fe、Mn)3AlC相等の脆化相の析出を抑制するため、焼鈍温度は900℃以上とし、焼鈍後30℃/秒望ましくは50℃/秒以上で600℃以下望ましくは500℃以下まで冷却する。また、粒の粗大化を防止するため焼鈍温度を1200℃以下とした。十分な溶体化の目的から、焼鈍時間は1分以上とし、粒の粗大化防止のため5時間以下とした。ただし、連続焼鈍工程を用いることが経済的には有効で1時間以下の保持が望ましい。一方では、箱焼鈍工程を用いる場合には保持時間は5時間以下とした。 In this invention which concerns on said (8), in order to improve the ductility of a hot-rolled sheet, from a viewpoint of recrystallization, carbon, or carbide precipitation control, a hot-rolled steel sheet is annealed at 900-1200 degreeC for 1 minute-5 hours. And then cooled to 30 ° C./second or more and 600 ° C. or less. In order to suppress precipitation of embrittled phases such as FeAl, Fe 3 Al and (Fe, Mn) 3 AlC phase during annealing and cooling, the annealing temperature is set to 900 ° C. or higher, and 30 ° C./second after annealing, preferably 50 ° C./second. The temperature is lowered to 600 ° C. or lower, preferably 500 ° C. or lower. Further, the annealing temperature was set to 1200 ° C. or less in order to prevent the coarsening of the grains. For the purpose of sufficient solution, the annealing time was set to 1 minute or longer, and 5 hours or shorter to prevent grain coarsening. However, it is economically effective to use a continuous annealing step, and it is desirable to keep it for 1 hour or less. On the other hand, when the box annealing process is used, the holding time is set to 5 hours or less.
前記(9)に係る発明において冷延鋼板を製造する場合には,鋼板を巻き取った後、酸洗し、1パス当たりの圧延率が5%以上20%以下で全圧下率が30%以上の冷延を20℃で行った後、800〜1200℃で20秒〜5時間の焼鈍を施し、その後30℃/秒で600℃以下に冷却する。冷延での割れを防止するため1パスあたりの圧下率と圧延温度を上記のように規定した。また焼鈍温度は再結晶させるために全圧下率を30%以上とし、800℃以上で20秒以上の条件とし、粒の粗大化を防止する観点から1200℃以下5時間以下の条件とした。ただし、連続焼鈍工程を用いることが経済的には有効で1時間以下の保持が望ましい。一方では、箱焼鈍工程を用いる場合には保持時間は5時間以下とした。また、焼鈍後の冷却を、30℃/秒望ましくは50℃/秒以上で600℃以下望ましくは500℃以下まで冷却することでFeAl、Fe3Alや(Fe,Mn)3AlC相等の脆化相析出を抑制できる。 When manufacturing a cold-rolled steel sheet in the invention according to (9), after rolling the steel sheet, pickling, rolling rate per pass is 5% or more and 20% or less, and total rolling reduction is 30% or more. After performing cold rolling at 20 ° C., annealing is performed at 800 to 1200 ° C. for 20 seconds to 5 hours, and then cooled to 600 ° C. or less at 30 ° C./second. In order to prevent cracking during cold rolling, the rolling reduction per pass and the rolling temperature were defined as described above. In order to recrystallize, the annealing temperature was set to 30% or more and a condition of 800 ° C. or more and 20 seconds or more, and from the viewpoint of preventing grain coarsening, 1200 ° C. or less and 5 hours or less. However, it is economically effective to use a continuous annealing step, and it is desirable to keep it for 1 hour or less. On the other hand, when the box annealing process is used, the holding time is set to 5 hours or less. Further, the cooling after annealing is performed at 30 ° C./second, preferably 50 ° C./second or more and 600 ° C. or less, preferably 500 ° C. or less, thereby embrittlement of FeAl, Fe 3 Al, (Fe, Mn) 3 AlC phase, etc. Phase precipitation can be suppressed.
以下、実施例により本発明の効果をさらに具体的に説明する。
表1に示す組成を有する鋼スラブA〜IおよびCA〜CEを用意し、表2に示す条件で熱間圧延を行なった。また、一部の鋼スラブについては、表2に示す条件で熱間圧延をしてから、表3に示す条件で焼鈍処理を行なった。更に別の一部の鋼スラブについては、表2に示す条件で熱間圧延をしてから、表3に示す条件で冷間圧延および焼鈍処理を行なった。
Hereinafter, the effects of the present invention will be described more specifically with reference to examples.
Steel slabs A to I and CA to CE having the compositions shown in Table 1 were prepared and hot-rolled under the conditions shown in Table 2. Some steel slabs were hot-rolled under the conditions shown in Table 2 and then annealed under the conditions shown in Table 3. Further, some other steel slabs were hot-rolled under the conditions shown in Table 2 and then cold-rolled and annealed under the conditions shown in Table 3.
これらの処理の後に、それぞれ熱延板及び冷延板の割れ発生状況を観察した。熱延板および熱延焼鈍板は厚さ2.3〜3.2mmとし、冷延焼鈍板は厚さ1.0〜1.8mmの鋼板からJIS5号試験片を採取して試験に供した。結果を表2および表3に合わせて示す。また、得られた鋼板または鋼塊から比重測定用試料を採取して比重を測定した。また、得られた鋼板の機械的特性を評価した。比重の測定はピクノメータを用いて行った。比重、降伏応力、引張強度(TS)及び破断伸び(El)を表4に示す。
更に、各鋼板の圧延方向断面を腐食処理し、顕微鏡観察を行なうことにより、フェライト面積率、オーステナイト面積率、その他組織の面積率を測定した。結果を表4に示す。
After these treatments, the occurrence of cracks in the hot rolled sheet and cold rolled sheet was observed. The hot-rolled sheet and hot-rolled annealed sheet had a thickness of 2.3 to 3.2 mm, and the cold-rolled annealed sheet was subjected to a test by collecting a JIS No. 5 test piece from a steel sheet having a thickness of 1.0 to 1.8 mm. The results are shown in Tables 2 and 3. Moreover, the specific gravity measurement sample was extract | collected from the obtained steel plate or steel ingot, and specific gravity was measured. Further, the mechanical properties of the obtained steel sheet were evaluated. The specific gravity was measured using a pycnometer. Specific gravity, yield stress, tensile strength (TS) and elongation at break (El) are shown in Table 4.
Furthermore, the ferrite area ratio, the austenite area ratio, and the area ratio of other structures were measured by performing corrosion treatment on the cross section in the rolling direction of each steel plate and performing microscopic observation. The results are shown in Table 4.
表4に示すように、本発明鋼では比重:7.0以下でTS×El≧20000MPa・%を満たしていることがわかる。また、比較鋼では熱延及び冷延板の割れも発生しており、熱間加工性や冷間加工性にも劣ることがわかる。また、製造条件が本発明の限定範囲から逸脱している比較鋼ではいずれも比重が大きいことがわかる。
以上より、鋼成分を本発明で示した範囲に特定し、本発明で示した条件で製造することにより、延性に優れた高強度低比重鋼板が得られることが明らかである。
As shown in Table 4, it can be seen that the steel according to the present invention satisfies the specific gravity of 7.0 or less and satisfies TS × El ≧ 20000 MPa ·%. Moreover, in the comparative steel, cracks in the hot rolled and cold rolled sheets are also generated, and it is understood that the hot workability and the cold workability are inferior. It can also be seen that all the comparative steels whose manufacturing conditions deviate from the limited range of the present invention have a large specific gravity.
From the above, it is clear that a high strength low specific gravity steel plate excellent in ductility can be obtained by specifying the steel components in the range shown in the present invention and producing them under the conditions shown in the present invention.
Claims (9)
C:0.1〜1.0%、
Si:3.0%以下、
Mn:10.0〜50.0%、
P:0.01%以下、
S:0.01%以下、
Al:5.0〜15.0%、
N:0.001〜0.05%
を含有し、残部がFe及び不可避的不純物からなり、各成分の質量%が下記の式(1)を満たし、比重:7.0以下であり、組織中にフェライト及びオーステナイトを有するとともにその何れかの面積率が組織中で最大であり、引張り強度:TS(MPa)と破断伸び:El(%)の積の値:TS×Elが20000(MPa・%)以上であることを特徴とする延性に優れた軽量高強度鋼。
C≦−0.020×Mn+Al/15+0.53 (1) % By mass
C: 0.1 to 1.0%
Si: 3.0% or less,
Mn: 10.0-50.0%,
P: 0.01% or less,
S: 0.01% or less,
Al: 5.0 to 15.0%,
N: 0.001 to 0.05%
And the balance consists of Fe and inevitable impurities, the mass% of each component satisfies the following formula (1), the specific gravity is 7.0 or less, and either of them has ferrite and austenite in the structure The area ratio is the largest in the structure, and the product of tensile strength: TS (MPa) and elongation at break: El (%): TS × El is 20000 (MPa ·%) or more. Excellent lightweight high strength steel.
C ≦ −0.020 × Mn + Al / 15 + 0.53 (1)
Cr:0.01〜5.0%、
Ni:0.01〜15.0%、
Mo:0.01〜5.0%、
Co:0.01〜5.0%、
Cu:0.01〜5.0%
の1種または2種以上を含有することを特徴とする請求項1に記載の延性に優れた軽量高強度鋼。 In addition,
Cr: 0.01 to 5.0%,
Ni: 0.01 to 15.0%,
Mo: 0.01 to 5.0%,
Co: 0.01-5.0%
Cu: 0.01 to 5.0%
The lightweight high-strength steel excellent in ductility according to claim 1, comprising one or more of the following.
Ti:0.005〜1%、
V:0.005〜1%、
Nb:0.005〜0.5%
の1種または2種以上を含有することを特徴とする請求項1または2記載の延性に優れた軽量高強度鋼。 In addition,
Ti: 0.005 to 1%
V: 0.005 to 1%,
Nb: 0.005 to 0.5%
The lightweight high-strength steel excellent in ductility according to claim 1 or 2, characterized by containing at least one of the following.
Ca:0.001〜0.01%、
Mg:0.0005〜0.3%、
REM:0.001〜0.5%、
Y:0.001〜0.1%、
の1種または2種以上を含有することを特徴とする請求項1〜3のいずれか1項に記載の延性に優れた軽量高強度鋼。 In addition,
Ca: 0.001 to 0.01%,
Mg: 0.0005 to 0.3%,
REM: 0.001 to 0.5%,
Y: 0.001 to 0.1%
The lightweight high-strength steel excellent in ductility according to any one of claims 1 to 3, characterized by containing one or more of the following.
After pickling the hot-rolled steel sheet produced by the method according to claim 7, cold rolling at a rolling reduction per pass of 5% or more and 20% or less and a total rolling reduction of 30% or more is performed at 20 ° C. or more, A lightweight high-strength steel excellent in ductility, characterized by annealing at 800 to 1200 ° C. for 20 seconds to 5 hours and then cooling to a temperature range of 30 ° C./second to 600 ° C.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004307097A JP4324072B2 (en) | 2004-10-21 | 2004-10-21 | Lightweight high strength steel with excellent ductility and its manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004307097A JP4324072B2 (en) | 2004-10-21 | 2004-10-21 | Lightweight high strength steel with excellent ductility and its manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006118000A true JP2006118000A (en) | 2006-05-11 |
JP4324072B2 JP4324072B2 (en) | 2009-09-02 |
Family
ID=36536152
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004307097A Expired - Lifetime JP4324072B2 (en) | 2004-10-21 | 2004-10-21 | Lightweight high strength steel with excellent ductility and its manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4324072B2 (en) |
Cited By (44)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007084882A (en) * | 2005-09-22 | 2007-04-05 | Tohoku Univ | Low work-hardening type iron alloy |
KR100928795B1 (en) * | 2007-08-23 | 2009-11-25 | 주식회사 포스코 | High manganese hot-dip galvanized steel sheet with excellent workability and strength and manufacturing method |
JP2010526939A (en) * | 2007-05-16 | 2010-08-05 | アルセロールミタル・フランス | Low density steel with good stamping performance |
JP2010209377A (en) * | 2009-03-09 | 2010-09-24 | Honda Motor Co Ltd | High strength steel sheet and method for producing the same |
KR20130006461A (en) * | 2010-03-16 | 2013-01-16 | 잘쯔기터 플래시슈탈 게엠베하 | Method for producing workpieces from lightweight steel having material properties that can be adjusted over the wall thickness |
KR101263790B1 (en) | 2009-12-04 | 2013-05-13 | 주식회사 포스코 | High heat-resistance cold-rolled steel sheet having excellent formability, heat resistance for working and manufacturing method thereof |
KR101263792B1 (en) | 2009-12-04 | 2013-05-13 | 주식회사 포스코 | High heat-resistance cold-rolled steel sheet having excellent formability, heat resistance, surface properties for working and manufacturing method thereof |
KR101308716B1 (en) | 2009-12-04 | 2013-09-13 | 주식회사 포스코 | High heat-resistance cold-rolled steel sheet having excellent formability, heat resistance, surface properties for working and manufacturing method thereof |
WO2013179115A1 (en) | 2012-05-31 | 2013-12-05 | ArcelorMittal Investigación y Desarrollo, S.L. | Low-density hot- or cold-rolled steel, method for implementing same and use thereof |
KR101351950B1 (en) | 2010-12-08 | 2014-01-23 | 주식회사 포스코 | High strength cold-rolled steel sheet having excellent formability, heat resistance for working and manufacturing method thereof |
WO2014038759A1 (en) * | 2012-09-04 | 2014-03-13 | Posco | Ferritic lightweight high-strength steel sheet having excelent stiffness and ductility, and method of manufacturing the same |
WO2014209064A1 (en) * | 2013-06-27 | 2014-12-31 | 현대제철 주식회사 | High-strength steel sheet and manufacturing method therefor |
CN104328323A (en) * | 2014-10-24 | 2015-02-04 | 王健英 | Manganese-iron alloy material and preparation method thereof |
KR101490560B1 (en) | 2012-12-20 | 2015-02-05 | 주식회사 포스코 | Low gravity steel material having excellent ductility and method for manufacturing the same |
KR20150046928A (en) * | 2013-10-23 | 2015-05-04 | 주식회사 포스코 | High strength ultra low carbon cold rolled steel sheet with low specific gravity and manufacturing method the same |
WO2015099223A1 (en) * | 2013-12-24 | 2015-07-02 | 주식회사 포스코 | Lightweight steel sheet having excellent strength and ductility and method for manufacturing same |
WO2015099221A1 (en) | 2013-12-26 | 2015-07-02 | 주식회사 포스코 | Steel sheet having high strength and low density and method of manufacturing same |
KR101560896B1 (en) | 2013-12-05 | 2015-10-15 | 주식회사 포스코 | Lightweight hot rolled steel sheet having excellent hot rolling and corrosion resistance properties and method for manufacturing the same |
KR101568462B1 (en) * | 2013-05-15 | 2015-11-11 | 주식회사 포스코 | High strength hot-dip zinc plated steel sheet having excellent formability and method of manufacturing the same |
US20160017467A1 (en) * | 2013-02-14 | 2016-01-21 | Thyssenkrupp Steel Europe Ag | Cold-Rolled Flat Steel Product for Deep Drawing Applications and Method for Production Thereof |
JP2016512288A (en) * | 2013-03-15 | 2016-04-25 | エクソンモービル リサーチ アンド エンジニアリング カンパニーExxon Research And Engineering Company | Abrasion-resistant reinforced steel and method for producing the same |
JP2016513178A (en) * | 2013-02-14 | 2016-05-12 | ティッセンクルップ スチール ヨーロッパ アーゲーThyssenkrupp Steel Europe Ag | Cold rolled flat steel product used for deep drawing and its manufacturing method |
KR20160064347A (en) * | 2014-11-27 | 2016-06-08 | 한국기계연구원 | High manganese light weight steel with excellent wear resistance and method of manufacturing the same |
KR20160074767A (en) * | 2014-12-18 | 2016-06-29 | 주식회사 포스코 | Steel sheet having excellent strength and ductility and manufacturing method for the same |
KR20160113084A (en) * | 2016-09-19 | 2016-09-28 | 한국기계연구원 | Method of manufacturing austenitic light-weight high-strength steel with excellent balance between strength and ductility |
KR20160113083A (en) * | 2016-09-19 | 2016-09-28 | 한국기계연구원 | Method of manufacturing austenitic light-weight high-strength steel with excellent properties of welds |
EP2653581A4 (en) * | 2010-12-13 | 2016-10-05 | Posco | Austenitic, lightweight, high-strength steel sheet of which the yield ratio and flexibility are outstanding and a production method therefor |
CN106244927A (en) * | 2016-09-30 | 2016-12-21 | 北京理工大学 | A kind of low-density unimach and preparation method thereof |
WO2017203312A1 (en) * | 2016-05-24 | 2017-11-30 | Arcelormittal | Cold rolled and annealed steel sheet, method of production thereof and use of such steel to produce vehicle parts |
CN108950392A (en) * | 2018-07-19 | 2018-12-07 | 首钢集团有限公司 | A kind of superelevation ductility low density steel and preparation method thereof |
KR20180132930A (en) * | 2016-05-24 | 2018-12-12 | 아르셀러미탈 | Cold rolled and annealed steel sheets, methods for their production and uses of such steels for manufacturing automotive parts |
KR20180135966A (en) * | 2016-05-24 | 2018-12-21 | 아르셀러미탈 | Cold rolled and annealed steel sheets, methods for their production and uses of such steels for manufacturing automotive parts |
JP2019510880A (en) * | 2016-03-01 | 2019-04-18 | タタ、スティール、ネダーランド、テクノロジー、ベスローテン、フェンノートシャップTata Steel Nederland Technology Bv | Low density and high strength austenitic steel strip or sheet having high ductility, method for producing the steel and use thereof |
EP3561120A4 (en) * | 2016-12-23 | 2019-11-13 | Posco | Austenite steel material having superb abrasion resistance and toughness, and method for producing same |
US10480053B2 (en) | 2014-11-27 | 2019-11-19 | Korea Institute Of Machinery And Materials | Austenitic light-weight high-strength steel with excellent properties of welds, and method of manufacturing the same |
WO2020111478A1 (en) * | 2018-11-26 | 2020-06-04 | 한국기계연구원 | Austenitic lightweight steel material having high toughness and preparation method therefor |
CN111235484A (en) * | 2020-03-13 | 2020-06-05 | 燕山大学 | High-strength high-hardness low-density steel and preparation method and application thereof |
CN111433381A (en) * | 2017-12-07 | 2020-07-17 | 杰富意钢铁株式会社 | High Mn steel and method for producing same |
JP2021507110A (en) * | 2017-12-19 | 2021-02-22 | アルセロールミタル | Cold-rolled and heat-treated steel sheets, their manufacturing methods and the use of such steels for the manufacture of vehicle parts |
US10995381B2 (en) | 2016-05-24 | 2021-05-04 | Arcelormittal | Method for producing a TWIP steel sheet having an austenitic microstructure |
JP2021530621A (en) * | 2018-07-27 | 2021-11-11 | ポスコPosco | Low specific density clad steel sheet with excellent formability and fatigue characteristics and its manufacturing method |
KR20220032155A (en) * | 2020-09-07 | 2022-03-15 | 주식회사 포스코 | High strength and low density steel plate and manufacturing method thereof |
CN115233112A (en) * | 2022-06-17 | 2022-10-25 | 攀钢集团攀枝花钢铁研究院有限公司 | Austenite-based dual-phase light high-strength steel and preparation method thereof |
RU2819765C1 (en) * | 2023-08-14 | 2024-05-23 | Андрей Владимирович Чайкин | Method of high-manganese steel melting by remelting method |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101461727B1 (en) * | 2012-12-21 | 2014-11-14 | 주식회사 포스코 | Low gravity steel material having excellent ductility and method for manufacturing the same |
KR101965147B1 (en) * | 2017-11-09 | 2019-04-05 | 한국기계연구원 | High strength and high toughness austenitic light-weight steel and method of manufacturing the same |
KR101965149B1 (en) * | 2017-11-09 | 2019-04-05 | 한국기계연구원 | Austenitic lihgt-weight steel with excellent balance between tensile strength and elongation and method of manufacturing the same |
WO2019093740A1 (en) * | 2017-11-09 | 2019-05-16 | 한국기계연구원 | Austenite-based lightweight steel and manufacturing method therefor |
KR101965148B1 (en) * | 2017-11-09 | 2019-04-05 | 한국기계연구원 | Super high strength austenitic lihgt-weight steel and method of manufacturing the same |
CN108754344B (en) * | 2018-07-02 | 2020-08-11 | 澳洋集团有限公司 | High-hardness and high-toughness steel plate and preparation method thereof |
CN111349865A (en) * | 2020-03-13 | 2020-06-30 | 燕山大学 | Aluminum-containing high-strength low-density steel and preparation method and application thereof |
-
2004
- 2004-10-21 JP JP2004307097A patent/JP4324072B2/en not_active Expired - Lifetime
Cited By (98)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4654440B2 (en) * | 2005-09-22 | 2011-03-23 | 国立大学法人東北大学 | Low work hardening type iron alloy |
JP2007084882A (en) * | 2005-09-22 | 2007-04-05 | Tohoku Univ | Low work-hardening type iron alloy |
US9580766B2 (en) | 2007-05-16 | 2017-02-28 | Arcelormittal France | Low-density steel having good drawability |
JP2010526939A (en) * | 2007-05-16 | 2010-08-05 | アルセロールミタル・フランス | Low density steel with good stamping performance |
US9765415B2 (en) | 2007-05-16 | 2017-09-19 | Arcelormittal France | Low density steel having good drawability |
KR100928795B1 (en) * | 2007-08-23 | 2009-11-25 | 주식회사 포스코 | High manganese hot-dip galvanized steel sheet with excellent workability and strength and manufacturing method |
JP2010209377A (en) * | 2009-03-09 | 2010-09-24 | Honda Motor Co Ltd | High strength steel sheet and method for producing the same |
KR101263790B1 (en) | 2009-12-04 | 2013-05-13 | 주식회사 포스코 | High heat-resistance cold-rolled steel sheet having excellent formability, heat resistance for working and manufacturing method thereof |
KR101308716B1 (en) | 2009-12-04 | 2013-09-13 | 주식회사 포스코 | High heat-resistance cold-rolled steel sheet having excellent formability, heat resistance, surface properties for working and manufacturing method thereof |
KR101263792B1 (en) | 2009-12-04 | 2013-05-13 | 주식회사 포스코 | High heat-resistance cold-rolled steel sheet having excellent formability, heat resistance, surface properties for working and manufacturing method thereof |
KR101707019B1 (en) * | 2010-03-16 | 2017-02-15 | 잘쯔기터 플래시슈탈 게엠베하 | Method for producing workpieces from lightweight steel having material properties that can be adjusted over the wall thickness |
KR20130006461A (en) * | 2010-03-16 | 2013-01-16 | 잘쯔기터 플래시슈탈 게엠베하 | Method for producing workpieces from lightweight steel having material properties that can be adjusted over the wall thickness |
KR101351950B1 (en) | 2010-12-08 | 2014-01-23 | 주식회사 포스코 | High strength cold-rolled steel sheet having excellent formability, heat resistance for working and manufacturing method thereof |
EP2653581A4 (en) * | 2010-12-13 | 2016-10-05 | Posco | Austenitic, lightweight, high-strength steel sheet of which the yield ratio and flexibility are outstanding and a production method therefor |
US9738958B2 (en) | 2010-12-13 | 2017-08-22 | Posco | Austenitic, lightweight, high-strength steel sheet having high yield ratio and ductility, and method for producing the same |
JP2015520298A (en) * | 2012-05-31 | 2015-07-16 | アルセロルミタル・インベステイガシオン・イ・デサロジヨ・エセ・エレ | Hot or cold low density rolled steel, its method of implementation and use |
JP2017106108A (en) * | 2012-05-31 | 2017-06-15 | アルセロルミタル・インベステイガシオン・イ・デサロジヨ・エセ・エレ | Hot or cold low density rolled steel, conducting method thereof and use |
US10900105B2 (en) | 2012-05-31 | 2021-01-26 | Arcelormittal | Low-density hot-or cold-rolled steel, method for implementing same and use thereof |
KR20170053727A (en) * | 2012-05-31 | 2017-05-16 | 아르셀러미탈 인베스티가시온 와이 데살롤로 에스엘 | Low-density hot- or cold-rolled steel, method for implementing same and use thereof |
WO2013178887A1 (en) | 2012-05-31 | 2013-12-05 | Arcelormittal Investigación Desarrollo Sl | Low-density hot- or cold-rolled steel, method for implementing same and use thereof |
KR20160129916A (en) * | 2012-05-31 | 2016-11-09 | 아르셀러미탈 인베스티가시온 와이 데살롤로 에스엘 | Surface-treated copper foil and laminate using same, copper foil, printed wiring board, electronic device, and process for producing printed wiring board |
WO2013179115A1 (en) | 2012-05-31 | 2013-12-05 | ArcelorMittal Investigación y Desarrollo, S.L. | Low-density hot- or cold-rolled steel, method for implementing same and use thereof |
US9856542B2 (en) | 2012-09-04 | 2018-01-02 | Posco | Ferritic lightweight high-strength steel sheet having excellent stiffness and ductility, and method of manufacturing the same |
CN104603308A (en) * | 2012-09-04 | 2015-05-06 | Posco公司 | Ferritic lightweight high-strength steel sheet having excelent stiffness and ductility, and method of manufacturing the same |
KR101449119B1 (en) | 2012-09-04 | 2014-10-08 | 주식회사 포스코 | Ferritic lightweight high strength steel sheet having excellent rigidity and ductility and method for manufacturing the same |
WO2014038759A1 (en) * | 2012-09-04 | 2014-03-13 | Posco | Ferritic lightweight high-strength steel sheet having excelent stiffness and ductility, and method of manufacturing the same |
JP2015532682A (en) * | 2012-09-04 | 2015-11-12 | ポスコ | Ferrite-based lightweight high-strength steel sheet having excellent rigidity and ductility and method for producing the same |
KR101490560B1 (en) | 2012-12-20 | 2015-02-05 | 주식회사 포스코 | Low gravity steel material having excellent ductility and method for manufacturing the same |
US20160017467A1 (en) * | 2013-02-14 | 2016-01-21 | Thyssenkrupp Steel Europe Ag | Cold-Rolled Flat Steel Product for Deep Drawing Applications and Method for Production Thereof |
JP2016513178A (en) * | 2013-02-14 | 2016-05-12 | ティッセンクルップ スチール ヨーロッパ アーゲーThyssenkrupp Steel Europe Ag | Cold rolled flat steel product used for deep drawing and its manufacturing method |
US10131976B2 (en) | 2013-02-14 | 2018-11-20 | Thyssenkrupp Steel Europe Ag | Cold-rolled flat steel product for deep drawing applications and method for production thereof |
US10513762B2 (en) | 2013-02-14 | 2019-12-24 | Thyssenkrupp Steel Europe Ag | Cold-rolled flat steel product for deep drawing applications and method for production thereof |
JP2016512288A (en) * | 2013-03-15 | 2016-04-25 | エクソンモービル リサーチ アンド エンジニアリング カンパニーExxon Research And Engineering Company | Abrasion-resistant reinforced steel and method for producing the same |
KR101568462B1 (en) * | 2013-05-15 | 2015-11-11 | 주식회사 포스코 | High strength hot-dip zinc plated steel sheet having excellent formability and method of manufacturing the same |
US10041139B2 (en) | 2013-06-27 | 2018-08-07 | Hyundai Steel Company | High-strength steel sheet and manufacturing method therefor |
WO2014209064A1 (en) * | 2013-06-27 | 2014-12-31 | 현대제철 주식회사 | High-strength steel sheet and manufacturing method therefor |
CN105339519A (en) * | 2013-06-27 | 2016-02-17 | 现代制铁株式会社 | High-strength steel sheet and manufacturing method therefor |
KR20150046928A (en) * | 2013-10-23 | 2015-05-04 | 주식회사 포스코 | High strength ultra low carbon cold rolled steel sheet with low specific gravity and manufacturing method the same |
KR101889110B1 (en) | 2013-10-23 | 2018-08-16 | 주식회사 포스코 | High strength ultra low carbon cold rolled steel sheet with low specific gravity and manufacturing method the same |
KR101560896B1 (en) | 2013-12-05 | 2015-10-15 | 주식회사 포스코 | Lightweight hot rolled steel sheet having excellent hot rolling and corrosion resistance properties and method for manufacturing the same |
US10273556B2 (en) | 2013-12-24 | 2019-04-30 | Posco | Lightweight steel sheet having excellent strength and ductility and method for manufacturing same |
WO2015099223A1 (en) * | 2013-12-24 | 2015-07-02 | 주식회사 포스코 | Lightweight steel sheet having excellent strength and ductility and method for manufacturing same |
US20160319388A1 (en) * | 2013-12-26 | 2016-11-03 | Posco | High specific strength steel sheet and method for manufacturing same |
KR101568552B1 (en) * | 2013-12-26 | 2015-11-11 | 주식회사 포스코 | High specific strength steel sheet and method for manufacturing the same |
US10626476B2 (en) | 2013-12-26 | 2020-04-21 | Posco | High specific strength steel sheet and method for manufacturing same |
WO2015099221A1 (en) | 2013-12-26 | 2015-07-02 | 주식회사 포스코 | Steel sheet having high strength and low density and method of manufacturing same |
CN104328323A (en) * | 2014-10-24 | 2015-02-04 | 王健英 | Manganese-iron alloy material and preparation method thereof |
US10480053B2 (en) | 2014-11-27 | 2019-11-19 | Korea Institute Of Machinery And Materials | Austenitic light-weight high-strength steel with excellent properties of welds, and method of manufacturing the same |
KR101642696B1 (en) * | 2014-11-27 | 2016-07-28 | 한국기계연구원 | High manganese light weight steel with excellent wear resistance and method of manufacturing the same |
KR20160064347A (en) * | 2014-11-27 | 2016-06-08 | 한국기계연구원 | High manganese light weight steel with excellent wear resistance and method of manufacturing the same |
KR101657801B1 (en) | 2014-12-18 | 2016-09-20 | 주식회사 포스코 | Steel sheet having excellent strength and ductility and manufacturing method for the same |
KR20160074767A (en) * | 2014-12-18 | 2016-06-29 | 주식회사 포스코 | Steel sheet having excellent strength and ductility and manufacturing method for the same |
JP2019510880A (en) * | 2016-03-01 | 2019-04-18 | タタ、スティール、ネダーランド、テクノロジー、ベスローテン、フェンノートシャップTata Steel Nederland Technology Bv | Low density and high strength austenitic steel strip or sheet having high ductility, method for producing the steel and use thereof |
WO2017203312A1 (en) * | 2016-05-24 | 2017-11-30 | Arcelormittal | Cold rolled and annealed steel sheet, method of production thereof and use of such steel to produce vehicle parts |
RU2732713C2 (en) * | 2016-05-24 | 2020-09-22 | Арселормиттал | Cold-rolled and annealed steel sheet, method of its production and use in production of automotive parts |
US11486017B2 (en) | 2016-05-24 | 2022-11-01 | Arcelormittal | Cold rolled and annealed steel sheet, method of production thereof and use of such steel to produce vehicle parts |
KR20180132930A (en) * | 2016-05-24 | 2018-12-12 | 아르셀러미탈 | Cold rolled and annealed steel sheets, methods for their production and uses of such steels for manufacturing automotive parts |
KR20180135966A (en) * | 2016-05-24 | 2018-12-21 | 아르셀러미탈 | Cold rolled and annealed steel sheets, methods for their production and uses of such steels for manufacturing automotive parts |
KR20180136539A (en) * | 2016-05-24 | 2018-12-24 | 아르셀러미탈 | Cold rolled and annealed steel sheets, methods for their manufacture, and uses of such steels for manufacturing vehicle parts |
CN109154052A (en) * | 2016-05-24 | 2019-01-04 | 安赛乐米塔尔公司 | The purposes of steel plate, its manufacturing method and such steel to manufacture vehicle part through cold rolling and annealing |
WO2017203347A1 (en) * | 2016-05-24 | 2017-11-30 | Arcelormittal | Cold rolled and annealed steel sheet, method of production thereof and use of such steel to produce vehicle parts |
JP7022703B2 (en) | 2016-05-24 | 2022-02-18 | アルセロールミタル | Cold-rolled and annealed steel sheets, their manufacturing methods, and their use for the manufacture of automobile parts of such steels. |
JP2019520476A (en) * | 2016-05-24 | 2019-07-18 | アルセロールミタル | Cold rolled and annealed steel sheet, method for its production and use of such steel for the production of automotive parts |
JP2019520478A (en) * | 2016-05-24 | 2019-07-18 | アルセロールミタル | Cold rolled and annealed steel sheet, method for its production and use of such steel for the production of automotive parts |
US20190300978A1 (en) * | 2016-05-24 | 2019-10-03 | Arcelormittal | Cold rolled and annealed steel sheet, method of production thereof and use of such steel to produce vehicle parts |
RU2704983C1 (en) * | 2016-05-24 | 2019-11-01 | Арселормиттал | Cold-rolled and annealed sheet steel, method of its production and use of such steel for production of parts of vehicles |
KR102252952B1 (en) | 2016-05-24 | 2021-05-17 | 아르셀러미탈 | Cold rolled and annealed steel sheets, methods of making them and the use of these steels for making automotive parts |
US10995381B2 (en) | 2016-05-24 | 2021-05-04 | Arcelormittal | Method for producing a TWIP steel sheet having an austenitic microstructure |
RU2707775C1 (en) * | 2016-05-24 | 2019-11-29 | Арселормиттал | Cold-rolled and annealed sheet steel, method of its production and use of such steel for production of parts of vehicles |
KR102246751B1 (en) | 2016-05-24 | 2021-05-03 | 아르셀러미탈 | Cold rolled and annealed steel sheets, methods of making them, and the use of such steels for making vehicle parts |
KR102246750B1 (en) | 2016-05-24 | 2021-04-30 | 아르셀러미탈 | Cold rolled and annealed steel sheets, methods of making them and the use of these steels for making automotive parts |
KR20160113084A (en) * | 2016-09-19 | 2016-09-28 | 한국기계연구원 | Method of manufacturing austenitic light-weight high-strength steel with excellent balance between strength and ductility |
KR101687592B1 (en) | 2016-09-19 | 2016-12-21 | 한국기계연구원 | Method of manufacturing austenitic light-weight high-strength steel with excellent properties of welds |
KR101687593B1 (en) | 2016-09-19 | 2016-12-21 | 한국기계연구원 | Method of manufacturing austenitic light-weight high-strength steel with excellent balance between strength and ductility |
KR20160113083A (en) * | 2016-09-19 | 2016-09-28 | 한국기계연구원 | Method of manufacturing austenitic light-weight high-strength steel with excellent properties of welds |
CN106244927B (en) * | 2016-09-30 | 2018-04-03 | 北京理工大学 | A kind of low-density unimach and preparation method thereof |
CN106244927A (en) * | 2016-09-30 | 2016-12-21 | 北京理工大学 | A kind of low-density unimach and preparation method thereof |
US11566308B2 (en) | 2016-12-23 | 2023-01-31 | Posco Co., Ltd | Austenitic steel material having excellent abrasion resistance and toughness and manufacturing method the same |
EP3561120A4 (en) * | 2016-12-23 | 2019-11-13 | Posco | Austenite steel material having superb abrasion resistance and toughness, and method for producing same |
CN111433381A (en) * | 2017-12-07 | 2020-07-17 | 杰富意钢铁株式会社 | High Mn steel and method for producing same |
CN111433381B (en) * | 2017-12-07 | 2021-09-03 | 杰富意钢铁株式会社 | High Mn steel and method for producing same |
JP7138710B2 (en) | 2017-12-19 | 2022-09-16 | アルセロールミタル | Cold-rolled and heat-treated steel sheets, methods for their production and the use of such steels for the production of vehicle parts |
US12060629B2 (en) | 2017-12-19 | 2024-08-13 | Arcelormittal | Method of production of a cold rolled and heat treated steel sheet and use of such steel to produce vehicle parts |
JP2021507110A (en) * | 2017-12-19 | 2021-02-22 | アルセロールミタル | Cold-rolled and heat-treated steel sheets, their manufacturing methods and the use of such steels for the manufacture of vehicle parts |
US11549163B2 (en) | 2017-12-19 | 2023-01-10 | Arcelormittal | Cold rolled and heat treated steel sheet, method of production thereof and use of such steel to produce vehicle parts |
CN108950392A (en) * | 2018-07-19 | 2018-12-07 | 首钢集团有限公司 | A kind of superelevation ductility low density steel and preparation method thereof |
JP7096945B2 (en) | 2018-07-27 | 2022-07-06 | ポスコ | Low density clad steel sheet with excellent formability and fatigue characteristics and its manufacturing method |
JP2021530621A (en) * | 2018-07-27 | 2021-11-11 | ポスコPosco | Low specific density clad steel sheet with excellent formability and fatigue characteristics and its manufacturing method |
US11752752B2 (en) | 2018-07-27 | 2023-09-12 | Posco Co., Ltd | Low-density clad steel sheet having excellent formability and fatigue property |
KR20200062438A (en) * | 2018-11-26 | 2020-06-04 | 한국기계연구원 | Austenitic light-weight steel having high toughness and method of manufacturing the same |
WO2020111478A1 (en) * | 2018-11-26 | 2020-06-04 | 한국기계연구원 | Austenitic lightweight steel material having high toughness and preparation method therefor |
KR102227710B1 (en) | 2018-11-26 | 2021-03-16 | 한국재료연구원 | Austenitic light-weight steel having high toughness and method of manufacturing the same |
CN111235484B (en) * | 2020-03-13 | 2021-05-14 | 燕山大学 | High-strength high-hardness low-density steel and preparation method and application thereof |
CN111235484A (en) * | 2020-03-13 | 2020-06-05 | 燕山大学 | High-strength high-hardness low-density steel and preparation method and application thereof |
KR102415068B1 (en) * | 2020-09-07 | 2022-06-29 | 주식회사 포스코 | High strength and low density steel plate and manufacturing method thereof |
KR20220032155A (en) * | 2020-09-07 | 2022-03-15 | 주식회사 포스코 | High strength and low density steel plate and manufacturing method thereof |
CN115233112A (en) * | 2022-06-17 | 2022-10-25 | 攀钢集团攀枝花钢铁研究院有限公司 | Austenite-based dual-phase light high-strength steel and preparation method thereof |
RU2819765C1 (en) * | 2023-08-14 | 2024-05-23 | Андрей Владимирович Чайкин | Method of high-manganese steel melting by remelting method |
Also Published As
Publication number | Publication date |
---|---|
JP4324072B2 (en) | 2009-09-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4324072B2 (en) | Lightweight high strength steel with excellent ductility and its manufacturing method | |
JP4464811B2 (en) | Manufacturing method of high strength and low specific gravity steel sheet with excellent ductility | |
JP5233142B2 (en) | High-stiffness and high-strength steel sheet excellent in hole expansibility and method for producing the same | |
TWI409344B (en) | High-strength galvanized steel sheet having excellent formability and method for manufacturing the same | |
KR101569977B1 (en) | High-strength cold-rolled steel sheet with high yield ratio having excellent formability and method for producing the same | |
JP4084733B2 (en) | High strength low specific gravity steel plate excellent in ductility and method for producing the same | |
JP5157375B2 (en) | High-strength cold-rolled steel sheet excellent in rigidity, deep drawability and hole expansibility, and method for producing the same | |
JP5316634B2 (en) | High-strength steel sheet with excellent workability and method for producing the same | |
WO2012002566A1 (en) | High-strength steel sheet with excellent processability and process for producing same | |
JP2008156680A (en) | High-strength cold rolled steel sheet having high yield ratio, and its production method | |
JP2005015909A (en) | High-strength low-specific-gravity steel sheet and method for manufacturing the same | |
WO2014097559A1 (en) | Low-yield-ratio high-strength cold-rolled steel sheet and method for manufacturing same | |
JP2008202115A (en) | High-strength steel sheet having excellent ductility, and method for producing the same | |
JP2008174776A (en) | High-strength cold-rolled steel sheet excellent in stretch-flange formability and impact energy absorption characteristic and its production method | |
JP2008056993A (en) | High strength hot dip galvanized steel sheet having excellent elongation and corrosion resistance, and its production method | |
JP4910898B2 (en) | High strength steel plate and manufacturing method thereof | |
JP4528137B2 (en) | Manufacturing method of high strength and high ductility steel sheet with excellent hole expandability | |
JP5338257B2 (en) | High yield ratio ultra high strength steel sheet with excellent ductility and method for producing the same | |
CN114502760B (en) | Ferritic stainless steel sheet, method for producing same, and ferritic stainless steel member | |
JP4472015B2 (en) | High strength low specific gravity steel plate excellent in ductility and method for producing the same | |
JP5821810B2 (en) | Manufacturing method of fine-grained steel sheet | |
JP2009215572A (en) | High strength cold rolled steel sheet having excellent yield stress, elongation and stretch-flange formability | |
JPWO2020148948A1 (en) | High-strength galvanized steel sheet and its manufacturing method | |
JP7136335B2 (en) | High-strength steel plate and its manufacturing method | |
JP2006176844A (en) | High-strength and low-density steel sheet superior in ductility and fatigue characteristic, and manufacturing method therefor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060906 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080618 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080624 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080819 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20081118 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090109 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20090203 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090402 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20090422 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090526 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090605 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4324072 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120612 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130612 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130612 Year of fee payment: 4 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130612 Year of fee payment: 4 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130612 Year of fee payment: 4 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130612 Year of fee payment: 4 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |