JP2006176844A - High-strength and low-density steel sheet superior in ductility and fatigue characteristic, and manufacturing method therefor - Google Patents

High-strength and low-density steel sheet superior in ductility and fatigue characteristic, and manufacturing method therefor Download PDF

Info

Publication number
JP2006176844A
JP2006176844A JP2004372317A JP2004372317A JP2006176844A JP 2006176844 A JP2006176844 A JP 2006176844A JP 2004372317 A JP2004372317 A JP 2004372317A JP 2004372317 A JP2004372317 A JP 2004372317A JP 2006176844 A JP2006176844 A JP 2006176844A
Authority
JP
Japan
Prior art keywords
steel sheet
less
temperature
specific gravity
ductility
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004372317A
Other languages
Japanese (ja)
Other versions
JP4299774B2 (en
Inventor
Masaharu Oka
正春 岡
Nobuhiro Fujita
展弘 藤田
Manabu Takahashi
学 高橋
Takehide Senuma
武秀 瀬沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2004372317A priority Critical patent/JP4299774B2/en
Publication of JP2006176844A publication Critical patent/JP2006176844A/en
Application granted granted Critical
Publication of JP4299774B2 publication Critical patent/JP4299774B2/en
Anticipated expiration legal-status Critical
Active legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high-strength and low-density steel sheet superior in ductility and fatigue characteristics, and to provide a manufacturing method therefor. <P>SOLUTION: The high-strength and low-density steel sheet superior in ductility and fatigue characteristics comprises, by mass%, 0.001% or more but less than 0.02% C, 0.2-3.0% Si, more than 0.2% but 3.0% or less Mn, 0.02% or less P, 0.01% or less S, 3.0-10.0% Al, 0.001-0.05% N, further as needed, one or more elements of Ti, Nb, Cr, Ni, Mo, Cu, B, V, Ca, Mg, Zr and REM, and the balance Fe with unavoidable impurities; has a specific gravity of less than 7.5; includes ferrite of 95% or more by an area rate; has a tensile strength of 380 MPa or higher, an elongation of 25% or longer and a fatigue strength of 0.6 times or more than tensile strength by a both-sided plane bending test. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は,自動車部品などに用いられる延性および疲労特性に優れた高強度低比重鋼板とその製造方法に関するものである。   The present invention relates to a high-strength, low-specific gravity steel plate excellent in ductility and fatigue characteristics used for automobile parts and the like and a method for producing the same.

近年,環境問題への対応のため炭酸ガス排出低減や燃費低減を目的に自動車の軽量化が望まれている。自動車の軽量化のためには鋼材の高強度化が有効な手段であるが,部材の剛性によって板厚が制限されている場合には,高強度化しても板厚を低減することができず,軽量化が困難であった。上記の場合に軽量化を達成する手段としては鋼材に比べて比重の低いアルミ合金板の使用が考えられるが,アルミ合金板は高価格であることに加え鋼材に比べて加工性が劣っていることや鋼板との溶接が困難である等の欠点があるために,自動車部材への適用は限定されたものとなっている。   In recent years, in order to cope with environmental problems, it is desired to reduce the weight of automobiles for the purpose of reducing carbon dioxide emissions and reducing fuel consumption. Increasing the strength of steel is an effective means for reducing the weight of automobiles. However, if the plate thickness is limited by the rigidity of the member, the plate thickness cannot be reduced even if the strength is increased. , It was difficult to reduce the weight. In the above case, it is conceivable to use an aluminum alloy plate having a specific gravity lower than that of steel as a means to achieve weight reduction, but in addition to its high price, aluminum alloy plate is inferior in workability compared to steel. In addition, because of the drawbacks such as difficulty in welding with steel plates, application to automobile members is limited.

そこで,鋼板とアルミ合金板の長所を兼ね備えたものとして鉄にアルミを多量に添加した高Al含有鋼板が考えられ,例えば特許文献1には,C:0.002〜0.1%,Al:3〜10%と,Ni,Co,Cuの1種又は2種以上を0.01〜7%,Mn5%以下,2%以下のSiおよびTiの1種又は2種以上を0.1〜6%,O:0.0005〜0.04%,N:0.0002〜0.05%,残余Feおよび不可避的不純物からなる低比重の吸振合金が開示されている。しかしこのような高Al含有鋼板は,(i)製造性が劣ること(特に圧延時に割れが発生すること),(ii)延性が低いこと,などの理由から,自動車用鋼板として適用することは困難であった。また,多量のAlを含有すると延性,熱間加工性および冷間加工性が大幅に劣化し,特許文献1にあるように比較的高温長時間の焼鈍(650〜1200で5〜600分加熱)により鋼板を製造する必要があり,通常の薄鋼板製造プロセス,例えば連続焼鈍などで高Al含有鋼板を製造することや良好な強度および延性レベルを確保することは困難であった。   Therefore, a high Al content steel plate in which a large amount of aluminum is added to iron can be considered as having both the advantages of a steel plate and an aluminum alloy plate. For example, in Patent Document 1, C: 0.002 to 0.1%, Al: 3 to 10%, one or more of Ni, Co, and Cu is 0.01 to 7%, Mn is 5% or less, and 2% or less of one or more of Si and Ti is 0.1 to 6 %, O: 0.0005 to 0.04%, N: 0.0002 to 0.05%, and a low-density gravity-absorbing alloy composed of residual Fe and inevitable impurities is disclosed. However, such high Al-containing steel sheets can be used as automotive steel sheets because of (i) poor manufacturability (particularly cracking during rolling) and (ii) low ductility. It was difficult. Further, when a large amount of Al is contained, ductility, hot workability and cold workability are greatly deteriorated, and as disclosed in Patent Document 1, annealing at a relatively high temperature for a long time (heating at 650 to 1200 for 5 to 600 minutes). Therefore, it is difficult to produce a high Al-containing steel plate by a normal thin steel plate production process, for example, continuous annealing, and to ensure a good strength and ductility level.

また,高Al含有鋼板の延性を向上させる技術として,例えば特許文献2には,Al:4〜9.5%,Ti:0.5〜2.0%,Mo:0.5〜2%,Zr:0.1〜0.8%,C:0.01〜0.5%および残余Feを含有するアルミニウム含有鉄基合金の技術が提案されているが,低比重に関する言及は無く,重量元素であるMoやZrが必須となっており,低比重化に考慮しているとはいえない。また,製造性についても鍛造することや温間圧延を行うこととしており,いわゆる溶解から熱間圧延,冷間圧延へと至る広く工業的に行われている製造方法,製造設備を用いた製法とは異なる。また,本発明者らの試験によれば,特許文献2の提案は大幅な延性の改善には至っていない。   Moreover, as a technique for improving the ductility of a high Al-containing steel sheet, for example, Patent Document 2 includes Al: 4 to 9.5%, Ti: 0.5 to 2.0%, Mo: 0.5 to 2%, The technology of an aluminum-containing iron-based alloy containing Zr: 0.1 to 0.8%, C: 0.01 to 0.5% and the remaining Fe has been proposed, but there is no mention of low specific gravity, Mo and Zr are essential, and it cannot be said that low specific gravity is taken into consideration. In addition, for manufacturability, forging and warm rolling are performed. A wide range of industrial manufacturing methods, from so-called melting to hot rolling and cold rolling, and methods using manufacturing equipment, Is different. Further, according to the tests by the present inventors, the proposal of Patent Document 2 has not led to a significant improvement in ductility.

また特許文献3には,C:0.05%以下,Si:0.1〜1%,Al:2〜8%,Y:0.01〜1%および残余Feを含有する耐酸化性の鉄合金が提案されているが,低比重に関する言及は無く,耐酸化性を向上させるために重量元素であるYが必須となっており,低比重化に考慮しているとはいえない。また,強度や延性に関する言及は無く,本発明者らの試験によれば,特許文献3の提案も大幅な延性の改善には至っていない。   Patent Document 3 discloses an oxidation-resistant iron containing C: 0.05% or less, Si: 0.1 to 1%, Al: 2 to 8%, Y: 0.01 to 1%, and the remaining Fe. Alloys have been proposed, but there is no mention of low specific gravity, and Y, which is a heavy element, is essential to improve oxidation resistance, and it cannot be said that low specific gravity is considered. Further, there is no mention of strength and ductility, and according to the tests of the present inventors, the proposal of Patent Document 3 has not led to a significant improvement in ductility.

また特許文献4には,C:0.02〜0.1%,Si≦0.5,Mn:0.2〜2.0%,P:≦0.05,S:≦0.01,Al:0.5〜5%および残余Feを含有する鋼板が提案されているが,Al含有量が5%以下と小さいため,低比重化の効果が小さい。また,Alを5%を超えて添加した場合には成形性や冷間加工性が大幅に劣化するため製造が困難であると記載されている。また,C含有量が0.02〜0.1%と比較的高いためAl含有量が高い場合に靭性が大幅に低下するという問題がある。   In Patent Document 4, C: 0.02 to 0.1%, Si ≦ 0.5, Mn: 0.2 to 2.0%, P: ≦ 0.05, S: ≦ 0.01, Al : Steel plates containing 0.5 to 5% and the remaining Fe have been proposed, but since the Al content is as small as 5% or less, the effect of reducing the specific gravity is small. Further, it is described that when Al is added in excess of 5%, the formability and the cold workability are greatly deteriorated, so that the production is difficult. Moreover, since C content is comparatively as high as 0.02 to 0.1%, there exists a problem that toughness falls significantly when Al content is high.

また特許文献5には,Si<0.2%,Mn:0.03〜0.2%,Al:5〜9%,総計で1%以下のCu+Mo+W+Co+Cr+Ni,総計で0.1%以下のSc+Y+REMおよび残余Feを含有する鋼板が提案されており,特許文献6にはC:0.0036〜0.1%,Si<0.2%,Mn:0.03〜0.2%,Al:7〜9%,総計で1%以下のCu+Mo+W+Co+Cr+Ni,総計で0.1%以下のSc+Y+REMおよび残余Feを含有する鋼板が提案されているが,いずれも成形性や製造性を改善するための製造技術はなんら提案されておらず,本発明者らの試験によれば,これらの成分の鋼板を通常の薄鋼板製造プロセスで製造することは困難であった。   In Patent Document 5, Si <0.2%, Mn: 0.03 to 0.2%, Al: 5 to 9%, Cu + Mo + W + Co + Cr + Ni of 1% or less in total, Sc + Y + REM of 0.1% or less in total, and A steel sheet containing residual Fe has been proposed. In Patent Document 6, C: 0.0036 to 0.1%, Si <0.2%, Mn: 0.03 to 0.2%, Al: 7 to Steel sheets containing 9% Cu + Mo + W + Co + Cr + Ni total 1% or less and 0.1% total Sc + Y + REM and residual Fe have been proposed. It has not been proposed, and according to the tests of the present inventors, it has been difficult to manufacture steel sheets having these components by a normal thin steel sheet manufacturing process.

また特許文献7には,Al:6〜10%および残余Feを含有し,平均結晶粒径が300〜700μmの範囲内である制振合金材料が提案されているが,結晶粒径がこれほど大きいとプレス加工時にオレンジピールと呼ばれる表面欠陥(肌荒れ)が生じるために自動車部材への適用は困難である。また,成形性や製造性を改善するための製造技術はなんら提案されていない。   Patent Document 7 proposes a vibration damping alloy material containing Al: 6 to 10% and residual Fe and having an average crystal grain size in the range of 300 to 700 μm. If it is large, a surface defect (rough skin) called orange peel occurs during press working, so that it is difficult to apply to automobile members. In addition, no manufacturing technique has been proposed for improving moldability and manufacturability.

また,高強度低比重鋼板を自動車用足回り部品に適用しようとする場合には疲労強度が重要となるが,高強度低比重鋼板の疲労強度を改善する技術はこれまで提案されていない。以上のように,従来の技術では,延性および疲労特性に優れた高強度低比重鋼板を工業規模で生産することは困難であった。   In addition, fatigue strength is important when applying high strength low specific gravity steel sheets to automobile undercarriage parts, but no technology has been proposed to improve the fatigue strength of high strength low specific gravity steel sheets. As described above, with the conventional technology, it was difficult to produce a high-strength, low-specific gravity steel plate with excellent ductility and fatigue characteristics on an industrial scale.

特開平3−140439号公報JP-A-3-140439 特開平8−253844号公報JP-A-8-253844 米国特許第4,334,923号公報U.S. Pat. No. 4,334,923 特許第2517492号公報Japanese Patent No. 2517492 米国特許第6,383,662B1号公報US Pat. No. 6,383,662B1 特許第3457331号公報Japanese Patent No. 3457331 特開2001−59139号公報JP 2001-59139 A

本発明は,上記したような問題点を解決しようとするものであって,延性および疲労特性に優れた高強度低比重鋼板とその製造方法を提供することを目的とする。   The present invention is intended to solve the above-described problems, and an object of the present invention is to provide a high-strength low specific gravity steel sheet excellent in ductility and fatigue characteristics and a method for manufacturing the same.

本発明者らは,鉄ベースで多量のAlを含有する成分の異なる種々の素材に関し,延性,疲労特性,熱間加工性および冷間加工性を改善するための方法について,成分と製造法の両面から研究を重ねた。その結果,高Al含有鋼では,熱間圧延時の再結晶が大幅に遅延するため,通常の熱間圧延条件では粗大な未再結晶粒が残存し,延性,熱間加工性および冷間加工性の劣化はこの未再結晶部の粒界脆化によるものであるという知見を得た。また,Al含有量を3.0〜10.0%としたうえで,SおよびPを極低化し,さらに極低C化により粒内に析出する炭窒化物を低減して粒界と粒内の強度差を低減し,さらにまた,熱延条件の適性化により熱延時にフェライトの再結晶を促進させ細粒化することにより,粒界強度を向上でき,延性,熱間加工性および冷間加工性を大幅に改善できることを知見した。そしてさらに研究を進めた結果,Al含有量を3.0〜10.0%としたうえで,成分と製造条件を適正化してフェライトの含有率を面積率にて95%以上とし,フェライトの再結晶率を80%以上とすることにより,延性に加えて疲労強度も大幅に向上することを知見した。   For various materials with different components containing iron and a large amount of Al, the present inventors have found out about methods for improving ductility, fatigue properties, hot workability, and cold workability. Researched from both sides. As a result, in high Al content steels, recrystallization during hot rolling is significantly delayed, so coarse unrecrystallized grains remain under normal hot rolling conditions, resulting in ductility, hot workability, and cold work. It was found that the deterioration of the property is due to the grain boundary embrittlement of the non-recrystallized part. In addition, after setting the Al content to 3.0 to 10.0%, S and P are extremely reduced, and carbon nitride that precipitates in the grains is reduced by extremely low C, thereby reducing grain boundaries and grains. The grain boundary strength can be improved by reducing the difference in the strength of the steel and further promoting the recrystallization of ferrite during hot rolling by making the hot rolling conditions suitable, thereby improving the grain boundary strength. It was found that the workability can be greatly improved. As a result of further research, the Al content was adjusted to 3.0 to 10.0%, the components and manufacturing conditions were optimized, and the ferrite content was 95% or more in area ratio. It has been found that when the crystal ratio is 80% or more, fatigue strength is significantly improved in addition to ductility.

(1)
本発明はこのような知見に基づいて構成したものであり,その要旨は,質量%で,C:0.001〜0.02%未満,Si:0.2〜3.0%,Mn:0.2%超〜3.0%,P:0.02%以下,S:0.01%以下,Al:3.0〜10.0%,N:0.001〜0.05%を含有し,残部がFeおよび不可避的不純物からなり,比重<7.5であり,フェライトの含有率が面積率にて95%以上であり,引張強度が380MPa以上であり,伸びが25%以上であり,両振り平面曲げでの疲労強度が引張強度の0.6倍以上であることを特徴とする,延性および疲労特性に優れた高強度低比重鋼板である。
(1)
The present invention is configured based on such knowledge, and the gist thereof is mass%, C: 0.001 to less than 0.02%, Si: 0.2 to 3.0%, Mn: 0. More than 2% to 3.0%, P: 0.02% or less, S: 0.01% or less, Al: 3.0 to 10.0%, N: 0.001 to 0.05% The balance is Fe and inevitable impurities, the specific gravity is less than 7.5, the ferrite content is 95% or more in area ratio, the tensile strength is 380 MPa or more, and the elongation is 25% or more, It is a high-strength, low-specific gravity steel plate with excellent ductility and fatigue characteristics, characterized by fatigue strength in double-bending plane bending of 0.6 times or more of tensile strength.

(2)
前記(1)に記載の成分を含有し,さらに質量%で,Ti:0.005〜0.3%,Nb:0.005〜0.3%の1種または2種を含有しても良い。
(2)
It contains the component described in (1) above, and may further contain one or two of Ti: 0.005 to 0.3% and Nb: 0.005 to 0.3% by mass%. .

(3)
また,前記(1)または(2)に記載の成分を含有し,さらに質量%で,Cr:0.05〜3.0%,Ni:0.05〜5.0%,Mo:0.05〜3.0%,Cu:0.1〜3.0%,B:0.0003〜0.01%,V:0.01〜0.5%の1種または2種以上を含有しても良い。
(3)
Moreover, it contains the component described in the above (1) or (2), and is further in mass%, Cr: 0.05 to 3.0%, Ni: 0.05 to 5.0%, Mo: 0.05 Even if it contains 1 type or 2 types or more of -3.0%, Cu: 0.1-3.0%, B: 0.0003-0.01%, V: 0.01-0.5% good.

(4)
また,前記(1)〜(3)の何れかに記載の成分を含有し,さらに質量%で,Ca:0.001〜0.01%,Mg:0.0005〜0.01%,Zr:0.001〜0.05%,REM:0.001〜0.05%の1種または2種以上を含有しても良い。
(4)
Moreover, it contains the component according to any one of the above (1) to (3), and further, by mass, Ca: 0.001 to 0.01%, Mg: 0.0005 to 0.01%, Zr: You may contain 1 type, or 2 or more types of 0.001-0.05% and REM: 0.001-0.05%.

(5)
また本発明によれば,前記(1)〜(4)のいずれかに記載の高強度低比重鋼板を製造する方法であって,前記(1)〜(4)のいずれかに記載の成分からなる鋼スラブを,1100℃以上1150℃以下の温度に加熱し,1000℃以上1100℃以下の温度で圧下率30%以上の大圧下を少なくとも1パス以上含み総圧下率85%以上の粗圧延を行った後,900℃以上の温度で30秒以上保持し,引き続き800℃以上850℃以下の仕上げ圧延温度で仕上げ圧延を行い,600℃以上750℃以下の温度で巻き取ることを特徴とする,延性および疲労特性に優れた高強度低比重鋼板の製造方法が提供される。
(5)
Moreover, according to this invention, it is a method of manufacturing the high intensity | strength low specific gravity steel plate in any one of said (1)-(4), Comprising: From the component in any one of said (1)-(4). The steel slab is heated to a temperature of 1100 ° C. or higher and 1150 ° C. or lower, and is subjected to rough rolling at a temperature of 1000 ° C. or higher and 1100 ° C. or lower, including at least one pass of large reduction of 30% or more and a total reduction of 85% or more. After being carried out, it is maintained at a temperature of 900 ° C. or higher for 30 seconds or more, and subsequently finish-rolled at a finish rolling temperature of 800 ° C. or higher and 850 ° C. or lower, and wound at a temperature of 600 ° C. or higher and 750 ° C. or lower. A method for producing a high-strength, low-specific gravity steel sheet having excellent ductility and fatigue characteristics is provided.

(6)
鋼板を巻き取った後,700℃以上1100℃以下の温度で焼鈍しても良い。
(6)
After winding the steel plate, it may be annealed at a temperature of 700 ° C. or higher and 1100 ° C. or lower.

(7)
また,鋼板を巻き取った後,酸洗し,1パス目の圧下率を20%以下とする冷間圧延を行い,600℃以上1100℃以下の温度で焼鈍を行い,焼鈍後20℃/秒以上の冷却速度で200℃以下の温度まで冷却しても良い。
(7)
In addition, the steel sheet is wound, pickled, cold-rolled with a reduction rate of the first pass of 20% or less, annealed at a temperature of 600 ° C. to 1100 ° C., and after annealing, 20 ° C./second. You may cool to the temperature of 200 degrees C or less with the above cooling rate.

(8)
また,鋼板を巻き取って焼鈍した後,酸洗し,1パス目の圧下率を20%以下とする冷間圧延を行い,600℃以上1100℃以下の温度で焼鈍を行い,焼鈍後20℃/秒以上の冷却速度で200℃以下の温度まで冷却しても良い。
(8)
In addition, the steel sheet is wound and annealed, then pickled, cold-rolled to a reduction rate of the first pass of 20% or less, annealed at a temperature of 600 ° C. to 1100 ° C., and after annealing, 20 ° C. You may cool to the temperature of 200 degrees C or less with the cooling rate of more than / second.

本発明によれば,延性および疲労特性に優れた高強度低比重鋼板を得ることができる。   According to the present invention, a high-strength low specific gravity steel plate excellent in ductility and fatigue characteristics can be obtained.

以下に,本発明における各要件の意義および限定理由について具体的に説明する。
まず,本発明における延性に優れた高強度低比重鋼板の成分限定理由について説明する。
Below, the significance of each requirement in the present invention and the reason for limitation will be specifically described.
First, the reasons for limiting the components of the high strength and low specific gravity steel sheet excellent in ductility in the present invention will be described.

C:Cは,強度を向上させるために必須の元素であるが,質量%で0.001%未満ではその効果が発現されず,0.02%以上の過剰の添加は粒内への炭化物析出により粒界と粒内の強度差が拡大するために粒界脆化を促進する。従って,C含有量は,質量%で0.001〜0.02%未満とした。   C: C is an essential element for improving the strength. However, if the mass% is less than 0.001%, the effect is not exhibited, and excessive addition of 0.02% or more causes carbide precipitation in the grains. As a result, the difference in strength between the grain boundary and the grain is increased, which promotes grain boundary embrittlement. Therefore, the C content is set to 0.001 to less than 0.02% by mass%.

Si:Siは,固溶強化により鋼板の強度を増大させるのに有用な元素であるが,質量%で0.2%未満ではその効果が発現されず,3%を超える過剰の添加は熱間加工性を低下させるとともに熱間圧延で生じるスケールの剥離性や化成処理性を著しく劣化させるため,Si含有量は,質量%で0.2〜3.0%とした。   Si: Si is an element useful for increasing the strength of a steel sheet by solid solution strengthening, but its effect is not manifested in less than 0.2% by mass, and excessive addition of more than 3% is hot. In order to reduce the workability and significantly deteriorate the peelability of the scale and chemical conversion treatment caused by hot rolling, the Si content was 0.2 to 3.0% by mass.

Mn:Mnは,MnSを形成して固溶Sによる粒界脆化を抑制するために有効な元素である。質量%で0.2%以下ではその効果が発現されず,3.0%を超える過剰の添加は逆に靭性を劣化させる。従って,Mn含有量は,質量%で0.2%超〜3.0%とした。   Mn: Mn is an element effective for forming MnS and suppressing grain boundary embrittlement due to solute S. If the mass% is 0.2% or less, the effect is not exhibited, and excessive addition exceeding 3.0% conversely deteriorates toughness. Therefore, the Mn content is more than 0.2% to 3.0% by mass.

P:Pは,粒界に偏析して粒界強度を低下させ,靱性を劣化させる不純物元素であり,可及的低レベルが望ましいが,現状精錬技術の到達可能レベルとコストを考慮して,上限を質量%で0.02%とした。   P: P is an impurity element that segregates at the grain boundary to lower the grain boundary strength and deteriorates toughness, and is preferably as low as possible, but considering the reachable level and cost of current refining technology, The upper limit was 0.02% by mass.

S:Sは,熱間加工性および靭性を劣化させる不純物元素であり,可及的低レベルが望ましいが,現状精錬技術の到達可能レベルとコストを考慮して,上限を質量%で0.01%とした。   S: S is an impurity element that degrades hot workability and toughness, and is preferably as low as possible. However, the upper limit is set to 0.01% by mass in consideration of the reachable level and cost of current refining technology. %.

Al:Alは,低比重化を達成するための必須の元素である。質量%で3%未満では低比重化の効果が少ないので下限を3%とした。質量%で10.0%を超えると金属間化合物の析出が顕著となり延性,熱間加工性および冷間加工性が劣化するので,Alの含有量を質量%で3.0〜10.0%とした。より良好な延性を得るためには,Alの含有量を質量%で3.0〜6.0%とすることが望ましい。   Al: Al is an essential element for achieving a low specific gravity. If the mass% is less than 3%, the effect of lowering the specific gravity is small, so the lower limit was made 3%. If it exceeds 10.0% by mass%, precipitation of intermetallic compounds becomes prominent and ductility, hot workability and cold workability deteriorate, so the content of Al is 3.0 to 10.0% by mass%. It was. In order to obtain better ductility, the Al content is desirably 3.0 to 6.0% by mass.

N:Nは,窒化物を形成し結晶粒粗大化を抑制する効果があるが,質量%で0.001%未満ではその効果が発現されず,0.05%を超えて添加すると靭性が劣化するため,N含有量を質量%で0.001〜0.05%とした。   N: N has the effect of forming nitrides and suppressing crystal grain coarsening, but the effect is not manifested at less than 0.001% by mass, and toughness deteriorates when added over 0.05%. Therefore, the N content is set to 0.001 to 0.05% by mass.

以上が本発明の基本成分であり,通常,上記以外はFeおよび不可避的不純物からなるが,所望の強度レベルやその他の必要特性に応じて,Ti,Nb,Cr,Ni,Mo,Cu,B,V,Ca,Mg,Zr,REMの1種または2種以上を添加しても良い。   The above are the basic components of the present invention, which are usually composed of Fe and unavoidable impurities other than the above, but depending on the desired strength level and other necessary characteristics, Ti, Nb, Cr, Ni, Mo, Cu, B , V, Ca, Mg, Zr, or REM may be added.

Ti:Tiは,TiNを形成し結晶粒粗大化を抑制する効果があるが,質量%で0.005%未満ではそれらの効果が発現されず,0.3%を超えて過剰添加すると靭性が劣化するため,Tiの含有量を質量%で0.005〜0.3%とした。   Ti: Ti has the effect of suppressing the coarsening of grains by forming TiN, but if the mass% is less than 0.005%, those effects are not expressed, and if it exceeds 0.3%, the toughness is increased. In order to deteriorate, content of Ti was made into 0.005-0.3% by mass%.

Nb:Nbは,微細な炭窒化物を形成し結晶粒粗大化を抑制する効果があるが,質量%で0.005%未満ではその効果が発現されず,0.3%を超えて過剰添加すると靭性が劣化するため,Nbの含有量を質量%で0.005〜0.3%とした。   Nb: Nb has the effect of forming fine carbonitrides and suppressing grain coarsening, but if the mass% is less than 0.005%, the effect is not manifested, and over 0.3% is added excessively. Then, since toughness deteriorates, the Nb content is set to 0.005 to 0.3% by mass.

Cr:Crは,延性および靭性を向上させる有効な元素である。この効果は質量%で0.05%未満では発現されず,3%を超える過剰添加は靭性を劣化させる。従って,Crの含有量を質量%で0.05〜3.0%とした。   Cr: Cr is an effective element that improves ductility and toughness. This effect is not manifested at less than 0.05% by mass, and excessive addition exceeding 3% degrades toughness. Therefore, the Cr content is set to 0.05 to 3.0% by mass.

Ni:Niは,延性および靭性を向上させる有効な元素である。この効果は質量%で0.05%未満では発現されず,5%を超える過剰添加は靭性を劣化させる。従って,Niの含有量を質量%で0.05〜5.0%とした。   Ni: Ni is an effective element that improves ductility and toughness. This effect is not exhibited at less than 0.05% by mass, and excessive addition exceeding 5% deteriorates toughness. Therefore, the Ni content is 0.05 to 5.0% by mass.

Mo:Moは,延性および靭性を向上させる有効な元素である。この効果は質量%で0.05%未満では発現されず,3%を超える過剰添加は靭性を劣化させる。従って,Moの含有量を質量%で0.05〜3.0%とした。   Mo: Mo is an effective element that improves ductility and toughness. This effect is not manifested at less than 0.05% by mass, and excessive addition exceeding 3% degrades toughness. Therefore, the Mo content is set to 0.05 to 3.0% by mass.

Cu:Cuは,延性および靭性を向上させる有効な元素である。この効果は質量%で0.1%未満では発現されず,3%を超える過剰添加は靭性を劣化させる。従って,Cuの含有量を質量%で0.1〜3.0%とした。   Cu: Cu is an effective element that improves ductility and toughness. This effect is not manifested at less than 0.1% by mass, and excessive addition exceeding 3% degrades toughness. Therefore, the Cu content is 0.1 to 3.0% by mass.

B:Bは,自ら粒界に偏析することにより粒界結合力を向上させるとともにPおよびSの粒界偏析を抑制し,粒界強度を高め,延性,靭性,および熱間加工性を向上させるのに有効な元素である。これらの効果は質量%で0.0003%未満では発現されず,0.01%を超えて過剰添加すると粒界に粗大な析出物が生成し熱間加工性が劣化するため,Bの含有量を質量%で0.0003〜0.01%とした。   B: B segregates at the grain boundary by itself and improves the grain boundary bonding force, suppresses the grain boundary segregation of P and S, increases the grain boundary strength, and improves ductility, toughness, and hot workability. It is an effective element. These effects are not manifested at less than 0.0003% by mass, and excessive addition over 0.01% produces coarse precipitates at the grain boundaries and deteriorates hot workability. Was 0.0003 to 0.01% by mass%.

V:Vは,微細な炭窒化物を形成し結晶粒粗大化を抑制する効果があるが,質量%で0.01%未満ではその効果が発現されず,0.5%を超えて過剰添加すると靭性が劣化するため,Vの含有量を質量%で0.01〜0.5%とした。   V: V has the effect of forming fine carbonitrides and suppressing crystal grain coarsening, but the effect is not manifested at less than 0.01% by mass, and excessive addition exceeding 0.5% Then, since toughness deteriorates, the V content is set to 0.01 to 0.5% by mass.

Ca,Mg,Zr,REM:Ca,Mg,Zr,REMはいずれもSによる熱間加工性や靭性の劣化を抑制する有効な元素である。この効果は,Caは質量%で0.001%未満,Mgは質量%で0.0005%未満,Zrは質量%で0.001%未満,REMは質量%で0.001%未満では発現されず,Caは質量%で0.01%,Mgは質量%で0.01%,Zrは質量%で0.05%,REMは質量%で0.05%を超える過剰添加は靭性を劣化させる。従って,Caの含有量を質量%で0.001〜0.01%,Mgの含有量を質量%で0.0005〜0.01%,Zrの含有量を質量%で0.001〜0.05%,REMの含有量を質量%で0.001〜0.05%とした。   Ca, Mg, Zr, REM: Ca, Mg, Zr, and REM are all effective elements that suppress hot workability and toughness deterioration due to S. This effect is exhibited when Ca is less than 0.001% by mass, Mg is less than 0.0005% by mass, Zr is less than 0.001% by mass, and REM is less than 0.001% by mass. Ca is 0.01% by mass, Mg is 0.01% by mass, Zr is 0.05% by mass, REM is over 0.05% by mass and excessive toughness deteriorates. . Therefore, the Ca content is 0.001 to 0.01% by mass, the Mg content is 0.0005 to 0.01% by mass, and the Zr content is 0.001 to 0.00% by mass. The content of REM was set to 0.001 to 0.05% by mass%.

次に本発明における高強度低比重鋼板の組織について説明する。
本発明による鋼板の組織は,フェライトの含有率が面積率にて95%以上とする。フェライトの含有率を95%以上とするのは,オーステナイト,ベイナイト,マルテンサイト,パーライトなどの第2相の含有率が面積率にて合計で5%以上になると,フェライト組織の均一な変形が妨げられ延性が大幅に低下するためである。
Next, the structure of the high strength and low specific gravity steel sheet in the present invention will be described.
The steel sheet structure according to the present invention has a ferrite content of 95% or more in terms of area ratio. The ferrite content of 95% or more is that when the content of the second phase of austenite, bainite, martensite, pearlite, etc. is 5% or more in total, the uniform deformation of the ferrite structure is hindered. This is because the ductility is greatly reduced.

残部組織として,オーステナイト,ベイナイト,マルテンサイト,パーライトの1種又は2種以上を含有してもよい。これらの組織は光学顕微鏡または走査型電子顕微鏡で観察することにより同定することができる。   As the remaining structure, one or more of austenite, bainite, martensite, and pearlite may be contained. These tissues can be identified by observing with an optical microscope or a scanning electron microscope.

なお,本発明において,フェライト相の組織の面積率は,鋼板のC(幅方向)断面t(板厚)/4部を光学顕微鏡または走査型電子顕微鏡により200〜5000倍で10視野観察した場合の平均値と定義する。   In the present invention, the area ratio of the structure of the ferrite phase is as follows when the C (width direction) cross section t (plate thickness) / 4 part of the steel sheet is observed at 10 fields with an optical microscope or a scanning electron microscope at 200 to 5000 times. It is defined as the average value of.

次に特性値の限定理由について述べる。
比重は,7.5以上では自動車用鋼板として通常使用されている鋼板の比重(鉄の比重7.86と同程度)と比較して軽量化効果が小さいので7.5未満とする。
Next, the reason for limiting the characteristic value will be described.
When the specific gravity is 7.5 or more, the weight reduction effect is small as compared with the specific gravity of steel plates normally used as automotive steel plates (same as the specific gravity of iron of 7.86).

強度および延性は,自動車用鋼板として必要な特性を考慮して,引張強度380MPa以上,伸び25%以上とする。   The strength and ductility are set to a tensile strength of 380 MPa or more and an elongation of 25% or more in consideration of characteristics necessary for a steel sheet for automobiles.

疲労強度は,自動車用鋼板として必要な特性を考慮して,両振り平面曲げでの疲労強度が引張強度の0.6倍以上とした。   Considering the characteristics required for automotive steel sheets, the fatigue strength in double-bending plane bending was set to 0.6 times or more of the tensile strength.

次に製造条件の限定理由について述べる。
本発明においては,前記(1)〜(4)のいずれかに記載の成分からなる鋼スラブを,1100℃以上1150℃以下の温度に加熱し,1000℃以上1100℃以下の温度で圧下率30%以上の大圧下を少なくとも1パス以上含み総圧下率85%以上の粗圧延を行う。
Next, the reasons for limiting the manufacturing conditions will be described.
In the present invention, the steel slab composed of the component according to any one of (1) to (4) is heated to a temperature of 1100 ° C. or higher and 1150 ° C. or lower, and the rolling reduction rate is 30 ° C. or higher and 1100 ° C. or lower. % Rough rolling with a total rolling reduction of 85% or more including at least one pass of large rolling or more.

スラブ加熱温度が1100℃未満であると,炭窒化物が十分に固溶せずに必要な強度や延性が得られないため,スラブ加熱温度の下限は1100℃とした。加熱温度が1150℃を超えるとMnSが再固溶し,固溶Sによる粒界脆化が生じるのでスラブ加熱温度の上限は1150℃とした。スラブ加熱温度の上限を1150℃とすることで結晶粒の粗大化も防止できる。   If the slab heating temperature is less than 1100 ° C., the carbonitride is not sufficiently dissolved and the required strength and ductility cannot be obtained, so the lower limit of the slab heating temperature is 1100 ° C. When the heating temperature exceeds 1150 ° C., MnS re-dissolves and grain boundary embrittlement occurs due to the solid solution S, so the upper limit of the slab heating temperature is 1150 ° C. By setting the upper limit of the slab heating temperature to 1150 ° C., coarsening of crystal grains can be prevented.

熱延時にフェライトの再結晶を促進させ細粒化するために,1000℃以上1100℃以下の温度で圧下率30%以上の大圧下を少なくとも1パス以上含み総圧下率85%以上の粗圧延を行うことが必要である。大圧下時の圧延温度が1000℃未満であるか,圧下率が30%未満であるか,総圧下率が85%未満であると,フェライトの再結晶が進まず粗大なフェライト粒が残存し,良好な延性,疲労特性,熱間加工性および冷間加工性が得られない。また,大圧下時の圧延温度が1100℃を超えると,再結晶したフェライトの結晶粒が粗大化するため,良好な靭性,疲労特性延性,熱間加工性および冷間加工性が得られない。   In order to promote recrystallization of ferrite during hot rolling and to make it finer, rough rolling at a temperature of 1000 ° C. or higher and 1100 ° C. or lower, including at least one pass of a large rolling reduction of 30% or more and a total rolling reduction of 85% or more. It is necessary to do. If the rolling temperature at the time of large reduction is less than 1000 ° C., the reduction ratio is less than 30%, or the total reduction ratio is less than 85%, ferrite recrystallization does not proceed and coarse ferrite grains remain, Good ductility, fatigue properties, hot workability and cold workability cannot be obtained. On the other hand, if the rolling temperature under high pressure exceeds 1100 ° C., the recrystallized ferrite crystal grains become coarse, so that good toughness, fatigue property ductility, hot workability and cold workability cannot be obtained.

粗圧延を行った後,更に900℃以上の温度で30秒以上保持し,引き続き800℃以上850℃以下の仕上げ圧延温度で仕上げ圧延を行い,600℃以上750℃以下の温度で巻き取る。900℃以上の温度で30秒以上保持する方法は,放冷でもよいし再加熱してもよく,900℃以上を確保していれば一定温度に保持する必要はない。   After rough rolling, the steel is further maintained at a temperature of 900 ° C. or higher for 30 seconds or more, and then finish-rolled at a finish rolling temperature of 800 ° C. or higher and 850 ° C. or lower and wound at a temperature of 600 ° C. or higher and 750 ° C. or lower. The method of holding at a temperature of 900 ° C. or higher for 30 seconds or more may be allowed to cool or reheat, and if 900 ° C. or higher is secured, it is not necessary to hold at a constant temperature.

900℃以上の温度で30秒以上保持するのは,粗圧延で導入されたひずみにより再結晶が完了するまでの時間を確保するためである。温度が900℃未満であるか,時間が30秒未満であると,粗圧延後の再結晶が完了せず,粗大なフェライト粒が残存したまま仕上げ圧延が行われるため,仕上げ圧延後まで粗大なフェライトが残存する。   The reason why the temperature is maintained at 900 ° C. or higher for 30 seconds or more is to secure time until recrystallization is completed by the strain introduced by rough rolling. If the temperature is less than 900 ° C. or the time is less than 30 seconds, recrystallization after rough rolling is not completed, and finish rolling is performed with coarse ferrite grains remaining. Ferrite remains.

仕上げ圧延温度が800℃未満であると,熱間加工性が劣化し熱延中に割れが生じるため,仕上げ圧延温度の下限は800℃にした。仕上げ温度が850℃を超えると圧延時の歪の蓄積が十分ではなく,後続の巻取りでの回復・再結晶が抑制されるため仕上げ温度の上限を850℃にした。   If the finish rolling temperature is less than 800 ° C, the hot workability deteriorates and cracking occurs during hot rolling, so the lower limit of the finish rolling temperature is set to 800 ° C. When the finishing temperature exceeded 850 ° C., the accumulation of strain during rolling was not sufficient, and recovery / recrystallization during subsequent winding was suppressed, so the upper limit of the finishing temperature was set to 850 ° C.

巻き取り温度が600℃未満であるとフェライトの回復・再結晶が進まないので,巻き取り温度の下限は600℃とした。巻き取り温度が750℃を超えると再結晶したフェライトの結晶粒が粗大化するため,良好な延性,熱間加工性および冷間加工性が得られないので,巻き取り温度の上限は750℃とした。   If the coiling temperature is less than 600 ° C., ferrite recovery / recrystallization does not proceed, so the lower limit of the coiling temperature was set to 600 ° C. When the coiling temperature exceeds 750 ° C., the recrystallized ferrite crystal grains become coarse, and good ductility, hot workability, and cold workability cannot be obtained. Therefore, the upper limit of the coiling temperature is 750 ° C. did.

本発明において,熱延板の延性を向上させるために,再結晶や炭化物析出制御の観点から,熱延板を巻き取った後,700℃以上1100℃以下の温度で焼鈍してもよい。   In the present invention, in order to improve the ductility of the hot-rolled sheet, it may be annealed at a temperature of 700 ° C. or higher and 1100 ° C. or lower after winding the hot-rolled sheet from the viewpoint of recrystallization or carbide precipitation control.

ここで,焼鈍温度が700℃未満ではその効果が小さく,1100℃を超えると結晶粒が粗大化し粒界脆化が助長されるため,熱延板の焼鈍温度は700℃以上1100℃以下の温度範囲とした。   Here, if the annealing temperature is less than 700 ° C., the effect is small, and if the annealing temperature exceeds 1100 ° C., the crystal grains become coarse and grain boundary embrittlement is promoted, so the annealing temperature of the hot-rolled sheet is a temperature of 700 ° C. to 1100 ° C. The range.

本発明において冷延鋼板を製造する場合には,鋼板を巻き取った後,酸洗し,1パス目の圧下率を20%以下とする冷間圧延を行い,600℃以上1100℃以下の温度で焼鈍を行い,焼鈍後20℃/秒以上の冷却速度で200℃以下の温度まで冷却しても良い。   In the case of producing a cold-rolled steel sheet in the present invention, the steel sheet is wound, pickled, and cold-rolled with a reduction rate of the first pass of 20% or less, and a temperature of 600 ° C. or higher and 1100 ° C. or lower. Annealing may be performed, and after annealing, it may be cooled to a temperature of 200 ° C. or less at a cooling rate of 20 ° C./second or more.

この場合,冷間圧延時の割れを防止するため1パス目の圧下率を20%以下とした。   In this case, in order to prevent cracking during cold rolling, the rolling reduction in the first pass was set to 20% or less.

また,焼鈍温度が600℃未満では未再結晶・未回復となり十分な効果が得られず,1100℃を超えると,結晶粒が粗大化し粒界脆化が助長されるため,冷延板の焼鈍温度は600℃以上1100℃以下の温度範囲とした。   Also, if the annealing temperature is less than 600 ° C, it will not be recrystallized / recovered and sufficient effects will not be obtained. If it exceeds 1100 ° C, the crystal grains will become coarse and grain boundary embrittlement will be promoted. The temperature was set to a temperature range of 600 ° C. to 1100 ° C.

また,焼鈍後の冷却速度が20℃/秒未満であるか,冷却停止温度が200℃以上であれば,冷却中に粒成長が起こって結晶粒が粗大化するとともに,粒界へPなどの不純物元素が偏析するために粒界脆化が起こり,延性が劣化するため,焼鈍後は20℃/秒以上の冷却速度で200℃以下の温度まで冷却することにした。   Also, if the cooling rate after annealing is less than 20 ° C / second or the cooling stop temperature is 200 ° C or more, grain growth occurs during cooling and the crystal grains become coarse, and P or the like enters the grain boundary. Grain boundary embrittlement occurs due to segregation of impurity elements and ductility deteriorates. Therefore, after annealing, it was decided to cool to a temperature of 200 ° C. or lower at a cooling rate of 20 ° C./second or higher.

また本発明では,鋼板を巻き取って焼鈍した後,酸洗し,1パス目の圧下率を20%以下とする冷間圧延を行い,600℃以上1100℃以下の温度で焼鈍を行い,焼鈍後20℃/秒以上の冷却速度で200℃以下の温度まで冷却しても良い。   In the present invention, the steel sheet is wound and annealed, then pickled, cold-rolled with a reduction ratio of the first pass of 20% or less, annealed at a temperature of 600 ° C. to 1100 ° C., and annealed. After that, it may be cooled to a temperature of 200 ° C. or lower at a cooling rate of 20 ° C./second or higher.

この場合も,冷間圧延時の割れを防止するため1パス目の圧下率を20%以下とした。   Also in this case, the rolling reduction in the first pass was set to 20% or less in order to prevent cracking during cold rolling.

また,焼鈍温度が600℃未満では未再結晶・未回復となり十分な効果が得られず,1100℃を超えると,結晶粒が粗大化し粒界脆化が助長されるため,この場合も,冷延板の焼鈍温度は600℃以上1100℃以下の温度範囲とした。   In addition, if the annealing temperature is less than 600 ° C, it will not be recrystallized and unrecovered and a sufficient effect will not be obtained. If it exceeds 1100 ° C, the crystal grains will become coarse and grain boundary embrittlement will be promoted. The annealing temperature of the rolled plate was set to a temperature range of 600 ° C to 1100 ° C.

また,焼鈍後の冷却速度が20℃/秒未満であるか,冷却停止温度が200℃以上であれば,冷却中に粒成長が起こって結晶粒が粗大化するとともに,粒界へPなどの不純物元素が偏析するために粒界脆化が起こり,延性が劣化するため,この場合も,焼鈍後は20℃/秒以上の冷却速度で200℃以下の温度まで冷却することにした。   Also, if the cooling rate after annealing is less than 20 ° C / second or the cooling stop temperature is 200 ° C or more, grain growth occurs during cooling and the crystal grains become coarse, and P or the like enters the grain boundary. Grain boundary embrittlement occurs due to segregation of impurity elements and ductility deteriorates. In this case as well, after annealing, it was decided to cool to a temperature of 200 ° C. or lower at a cooling rate of 20 ° C./second or higher.

以下,実施例により本発明の効果をさらに具体的に説明する。
(実施例1)
表1に示す各化学成分(質量%で示す)を含有し,残部がFe及び不可避的不純物からなる鋼(No.1〜11)を,表2に示す条件で熱間圧延した。熱間圧延後に熱延板の割れ発生状況を観察した。結果を表2に合わせて示す。熱延後の板の比重,機械的特性(降伏応力,引張強度及び伸び)および疲労特性を評価した。比重の測定は,ピクノメータを用いて行った。疲労特性は,両振り平面曲げでの疲労試験を行い,10回での疲労限を同定し,疲労強度比(疲労限/引張強度)を求めた。なお,疲労試験はJIS
Z 2275記載の方法により実施した。比重,降伏応力,引張強度,伸びおよび疲労強度比を表2に合わせて示す。
Hereinafter, the effects of the present invention will be described more specifically with reference to examples.
Example 1
Steels (Nos. 1 to 11) containing each chemical component (shown by mass%) shown in Table 1 and the balance being Fe and inevitable impurities were hot-rolled under the conditions shown in Table 2. After hot rolling, the occurrence of cracks in the hot rolled sheet was observed. The results are shown in Table 2. The specific gravity, mechanical properties (yield stress, tensile strength and elongation) and fatigue properties of the plate after hot rolling were evaluated. Specific gravity was measured using a pycnometer. Fatigue performs fatigue test at a bending Reversed plane, identified fatigue limit at 10 7 times to obtain the fatigue strength ratio (fatigue limit / tensile strength). The fatigue test is JIS
Z 2275 was performed. Specific gravity, yield stress, tensile strength, elongation, and fatigue strength ratio are shown in Table 2.

Figure 2006176844
Figure 2006176844
Figure 2006176844
Figure 2006176844

本発明の実施例(No.1〜5)では,比重<7.5を満たしており,引張強度は380MPa以上であり,延性に関しては30%以上の高い伸びが得られており,疲労限度比は0.6以上であり,熱延板および冷延板の割れも発生していない。   In the examples of the present invention (Nos. 1 to 5), the specific gravity <7.5 was satisfied, the tensile strength was 380 MPa or more, and a high elongation of 30% or more was obtained in terms of ductility. Is 0.6 or more, and there is no cracking of the hot-rolled sheet and cold-rolled sheet.

一方,成分のいずれか一つ以上が本発明の成分範囲から逸脱している比較例(No.6,7,8)では,いずれも伸びが20%以下であり,延性に劣ることがわかる。また,疲労限度比は0.5以下であり,疲労特性に劣ることがわかる。また,これらの比較例では,熱延板の割れも発生しており,熱間加工性や冷間加工性にも劣ることがわかる。   On the other hand, in the comparative examples (Nos. 6, 7, and 8) in which any one or more of the components deviate from the component range of the present invention, the elongation is 20% or less, indicating that the ductility is inferior. Further, the fatigue limit ratio is 0.5 or less, which indicates that the fatigue characteristics are inferior. In these comparative examples, cracks in the hot-rolled sheet also occur, indicating that the hot workability and the cold workability are inferior.

また,製造条件が本発明の範囲から逸脱している比較例(No.9,10,11)では,いずれも伸びが20%以下であり,疲労限度比は0.5以下であり,かつ熱延板に割れが発生しており,延性や疲労特性や熱間加工性に劣ることがわかる。   Moreover, in the comparative examples (Nos. 9, 10, and 11) in which the manufacturing conditions deviate from the scope of the present invention, the elongation is 20% or less, the fatigue limit ratio is 0.5 or less, and the heat It is clear that cracks have occurred in the plate, which is inferior in ductility, fatigue characteristics and hot workability.

(実施例2)
また,表1に示す各化学成分(質量%で示す)を含有し,残部がFe及び不可避的不純物からなる鋼(No.1〜11)を表2に示す条件で熱間圧延した熱延板に対して,さらに表3に示す条件で焼鈍を行った熱延焼鈍板についても,比重,機械的特性(降伏応力,引張強度及び伸び)および疲労限度比を評価した。熱延焼鈍板の比重,降伏応力,引張強度,伸びおよび疲労限度比を表3に示す。
(Example 2)
Moreover, the hot-rolled sheet which hot-rolled the steel (No. 1-11) which contains each chemical component (it shows by the mass%) shown in Table 1, and the remainder consists of Fe and an unavoidable impurity on the conditions shown in Table 2. On the other hand, the specific gravity, mechanical properties (yield stress, tensile strength and elongation), and fatigue limit ratio were also evaluated for the hot-rolled annealed sheets annealed under the conditions shown in Table 3. Table 3 shows the specific gravity, yield stress, tensile strength, elongation, and fatigue limit ratio of the hot-rolled annealed sheet.

Figure 2006176844
Figure 2006176844

本発明の実施例(No.1〜5)では,比重<7.5を満たしており,引張強度は380MPa以上であり,延性に関しては30%以上の高い伸びが得られおり,疲労限度比は0.6以上である。   In the examples of the present invention (Nos. 1 to 5), the specific gravity <7.5 is satisfied, the tensile strength is 380 MPa or more, the ductility has a high elongation of 30% or more, and the fatigue limit ratio is It is 0.6 or more.

一方,成分のいずれか一つ以上が本発明の成分範囲から逸脱している比較例(No.6,7,8)では,いずれも伸びが20%以下であり,延性に劣ることがわかる。また,疲労限度比は0.5以下であり,疲労特性に劣ることがわかる。   On the other hand, in the comparative examples (Nos. 6, 7, and 8) in which any one or more of the components deviate from the component range of the present invention, the elongation is 20% or less, indicating that the ductility is inferior. Further, the fatigue limit ratio is 0.5 or less, which indicates that the fatigue characteristics are inferior.

また,製造条件が本発明の範囲から逸脱している比較例(No.9,10,11)では,いずれも伸びが20%以下であり,延性に劣ることがわかる。また,疲労限度比は0.5以下であり,疲労特性に劣ることがわかる。   Moreover, in the comparative examples (No. 9, 10, and 11) in which the manufacturing conditions deviate from the scope of the present invention, it can be seen that the elongation is 20% or less and the ductility is inferior. Further, the fatigue limit ratio is 0.5 or less, which indicates that the fatigue characteristics are inferior.

(実施例3)
また,表1に示す各化学成分(質量%で示す)を含有し,残部がFe及び不可避的不純物からなる鋼(No.1〜11)を表2に示す条件で熱間圧延した熱延板に対し,表4に示す条件で冷間圧延,焼鈍を行い冷延焼鈍板についても,比重,機械的特性(降伏応力,引張強度及び伸び)および疲労特性を評価した。冷延焼鈍板の比重,降伏応力,引張強度,伸びおよび疲労強度比を表4に合わせて示す。また,冷間圧延後に冷延板の割れ発生状況を観察した。結果を表4に合わせて示す。
(Example 3)
Moreover, the hot-rolled sheet which hot-rolled the steel (No. 1-11) which contains each chemical component (it shows by the mass%) shown in Table 1, and the remainder consists of Fe and an unavoidable impurity on the conditions shown in Table 2. On the other hand, cold rolling and annealing were performed under the conditions shown in Table 4, and the specific gravity, mechanical properties (yield stress, tensile strength and elongation) and fatigue properties of the cold-rolled annealed plates were also evaluated. Table 4 shows the specific gravity, yield stress, tensile strength, elongation, and fatigue strength ratio of the cold-rolled annealed sheet. In addition, the occurrence of cracks in cold-rolled sheets was observed after cold rolling. The results are shown in Table 4.

Figure 2006176844
Figure 2006176844

本発明の実施例(No.1〜5)では,比重<7.5を満たしており,引張強度は380MPa以上であり,延性に関しては30%以上の高い伸びが得られており,疲労限度比は0.6以上であり,冷延板の割れも発生していない。   In the examples of the present invention (Nos. 1 to 5), the specific gravity <7.5 was satisfied, the tensile strength was 380 MPa or more, and a high elongation of 30% or more was obtained in terms of ductility. Is 0.6 or more, and the cold-rolled sheet is not cracked.

一方,成分のいずれか一つ以上が本発明の成分範囲から逸脱している比較例(No.6,7,8)では,いずれも伸びが20%以下であり,延性に劣ることがわかる。また,疲労限度比は0.5以下であり,疲労特性に劣ることがわかる。また,これらの比較例では,冷延板の割れも発生しており,冷間加工性にも劣ることがわかる。   On the other hand, in the comparative examples (Nos. 6, 7, and 8) in which any one or more of the components deviate from the component range of the present invention, the elongation is 20% or less, indicating that the ductility is inferior. Further, the fatigue limit ratio is 0.5 or less, which indicates that the fatigue characteristics are inferior. In these comparative examples, cracks in the cold-rolled sheet also occur, indicating that the cold workability is poor.

また,製造条件が本発明の範囲から逸脱している比較例(No.9,10,11)では,いずれも伸びが20%以下であり,疲労限度比は0.5以下でありかつ冷延板に割れが発生しており,延性や疲労特性および冷間加工性に劣ることがわかる。   Further, in the comparative examples (Nos. 9, 10, and 11) in which the manufacturing conditions deviate from the scope of the present invention, the elongation is 20% or less, the fatigue limit ratio is 0.5 or less, and cold rolling is performed. It can be seen that the plate is cracked and inferior in ductility, fatigue properties and cold workability.

以上より,鋼成分を本発明で示した範囲に特定し,本発明で示した条件で製造することにより,延性および疲労特性に優れた高強度低比重鋼板が得られることが明らかである。   From the above, it is clear that a high strength low specific gravity steel plate excellent in ductility and fatigue properties can be obtained by specifying the steel components in the range shown in the present invention and producing them under the conditions shown in the present invention.

本発明の鋼板は,例えば自動車部品などに用いられる。   The steel plate of the present invention is used for automobile parts, for example.

Claims (8)

質量%で,
C:0.001〜0.02%未満,
Si:0.2〜3.0%,
Mn:0.2%超〜3.0%,
P:0.02%以下,
S:0.01%以下,
Al:3.0〜10.0%,
N:0.001〜0.05%
を含有し,残部がFeおよび不可避的不純物からなり,比重<7.5であり,フェライトの含有率が面積率にて95%以上であり,引張強度が380MPa以上であり,伸びが25%以上であり,両振り平面曲げでの疲労強度が引張強度の0.6倍以上であることを特徴とする,延性および疲労特性に優れた高強度低比重鋼板。
% By mass
C: 0.001 to less than 0.02%,
Si: 0.2 to 3.0%,
Mn: more than 0.2% to 3.0%,
P: 0.02% or less,
S: 0.01% or less,
Al: 3.0 to 10.0%,
N: 0.001 to 0.05%
The balance is Fe and inevitable impurities, the specific gravity is <7.5, the ferrite content is 95% or more by area ratio, the tensile strength is 380 MPa or more, and the elongation is 25% or more. A high-strength, low-specific gravity steel sheet with excellent ductility and fatigue properties, characterized by fatigue strength in double-plane bending of 0.6 times or more of tensile strength.
さらに質量%で,
Ti:0.005〜0.3%,
Nb:0.005〜0.3%,
の1種または2種を含有することを特徴とする,請求項1に記載の延性および疲労特性に優れた高強度低比重鋼板。
In addition,
Ti: 0.005 to 0.3%,
Nb: 0.005 to 0.3%,
The high strength low specific gravity steel sheet having excellent ductility and fatigue properties according to claim 1, characterized by containing one or two of the following.
さらに質量%で,
Cr:0.05〜3.0%,
Ni:0.05〜5.0%,
Mo:0.05〜3.0%,
Cu:0.1〜3.0%
B:0.0003〜0.01%,
V:0.01〜0.5%
の1種または2種以上を含有することを特徴とする,請求項1または2に記載の延性および疲労特性に優れた高強度低比重鋼板。
In addition,
Cr: 0.05 to 3.0%,
Ni: 0.05-5.0%,
Mo: 0.05 to 3.0%,
Cu: 0.1 to 3.0%
B: 0.0003 to 0.01%,
V: 0.01 to 0.5%
The high strength low specific gravity steel sheet excellent in ductility and fatigue properties according to claim 1 or 2, characterized by containing one or more of the following.
さらに質量%で,
Ca:0.001〜0.01%,
Mg:0.0005〜0.01%,
Zr:0.001〜0.05%,
REM:0.001〜0.05%,
の1種または2種以上を含有することを特徴とする,請求項1〜3のいずれかに記載の延性および疲労特性に優れた高強度低比重鋼板。
In addition,
Ca: 0.001 to 0.01%,
Mg: 0.0005 to 0.01%,
Zr: 0.001 to 0.05%,
REM: 0.001 to 0.05%,
The high strength low specific gravity steel sheet excellent in ductility and fatigue properties according to any one of claims 1 to 3, characterized by containing one or more of the following.
請求項1〜4の何れかに記載の高強度低比重鋼板を製造する方法であって,請求項1〜4の何れかに記載の成分からなる鋼スラブを,1100℃以上1150℃以下の温度に加熱し,1000℃以上1100℃以下の温度で圧下率30%以上の大圧下を少なくとも1パス以上含み総圧下率85%以上の粗圧延を行った後,900℃以上の温度で30秒以上保持し,引き続き800℃以上850℃以下の仕上げ圧延温度で仕上げ圧延を行い,600℃以上750℃以下の温度で巻き取ることを特徴とする,延性および疲労特性に優れた高強度低比重鋼板の製造方法。   A method for producing the high strength and low specific gravity steel sheet according to any one of claims 1 to 4, wherein the steel slab comprising the component according to any one of claims 1 to 4 is heated to a temperature of 1100 ° C or higher and 1150 ° C or lower. And then rolling at a temperature of 1000 ° C. or higher and 1100 ° C. or lower with a large rolling reduction of 30% or more and including a rolling reduction of 85% or more at a temperature of 900 ° C. or higher for at least 30 seconds. A high strength low specific gravity steel sheet having excellent ductility and fatigue characteristics, characterized in that it is held and subsequently rolled at a finish rolling temperature of 800 ° C. or higher and 850 ° C. or lower and wound at a temperature of 600 ° C. or higher and 750 ° C. or lower. Production method. 鋼板を巻き取った後,700℃以上1100℃以下の温度で焼鈍することを特徴とする,請求項5に記載の延性および疲労特性に優れた高強度低比重鋼板の製造方法。   6. The method for producing a high strength and low specific gravity steel sheet having excellent ductility and fatigue characteristics according to claim 5, wherein the steel sheet is rolled up and then annealed at a temperature of 700 ° C. or higher and 1100 ° C. or lower. 鋼板を巻き取った後,酸洗し,1パス目の圧下率を20%以下とする冷間圧延を行い,600℃以上1100℃以下の温度で焼鈍を行い,焼鈍後20℃/秒以上の冷却速度で200℃以下の温度まで冷却することを特徴とする,請求項5に記載の延性および疲労特性に優れた高強度低比重鋼板の製造方法。   After winding the steel plate, it is pickled, cold-rolled with a reduction rate of the first pass of 20% or less, annealed at a temperature of 600 ° C or higher and 1100 ° C or lower, and 20 ° C / second or higher after annealing. The method for producing a high strength and low specific gravity steel sheet having excellent ductility and fatigue characteristics according to claim 5, wherein the steel sheet is cooled to a temperature of 200 ° C or lower at a cooling rate. 鋼板を巻き取って焼鈍した後,酸洗し,1パス目の圧下率を20%以下とする冷間圧延を行い,600℃以上1100℃以下の温度で焼鈍を行い,焼鈍後20℃/秒以上の冷却速度で200℃以下の温度まで冷却することを特徴とする,請求項6に記載の延性および疲労特性に優れた高強度低比重鋼板の製造方法。   The steel sheet is wound and annealed, then pickled, cold rolled to a reduction rate of 20% or less in the first pass, annealed at a temperature of 600 ° C. to 1100 ° C., and after annealing, 20 ° C./second. The method for producing a high strength and low specific gravity steel sheet having excellent ductility and fatigue characteristics according to claim 6, wherein the steel sheet is cooled to a temperature of 200 ° C or lower at the above cooling rate.
JP2004372317A 2004-12-22 2004-12-22 High strength low specific gravity steel sheet with excellent ductility and fatigue characteristics and method for producing the same Active JP4299774B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004372317A JP4299774B2 (en) 2004-12-22 2004-12-22 High strength low specific gravity steel sheet with excellent ductility and fatigue characteristics and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004372317A JP4299774B2 (en) 2004-12-22 2004-12-22 High strength low specific gravity steel sheet with excellent ductility and fatigue characteristics and method for producing the same

Publications (2)

Publication Number Publication Date
JP2006176844A true JP2006176844A (en) 2006-07-06
JP4299774B2 JP4299774B2 (en) 2009-07-22

Family

ID=36731209

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004372317A Active JP4299774B2 (en) 2004-12-22 2004-12-22 High strength low specific gravity steel sheet with excellent ductility and fatigue characteristics and method for producing the same

Country Status (1)

Country Link
JP (1) JP4299774B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010526939A (en) * 2007-05-16 2010-08-05 アルセロールミタル・フランス Low density steel with good stamping performance
WO2014038759A1 (en) * 2012-09-04 2014-03-13 Posco Ferritic lightweight high-strength steel sheet having excelent stiffness and ductility, and method of manufacturing the same
WO2014178358A1 (en) 2013-05-01 2014-11-06 新日鐵住金株式会社 Galvanized steel sheet and production method therefor
WO2014178359A1 (en) 2013-05-01 2014-11-06 新日鐵住金株式会社 High-strength, low-specific gravity steel plate having excellent spot welding properties
JP2015513608A (en) * 2012-02-20 2015-05-14 タタ、スティール、ネダーランド、テクノロジー、ベスローテン、フェンノートシャップTata Steel Nederland Technology Bv High strength bake hardenable low density steel and method for producing the same
US9777350B2 (en) 2012-04-11 2017-10-03 Tata Steel Nederland Technology B.V. High strength interstitial free low density steel and method for producing said steel
JP2019019382A (en) * 2017-07-18 2019-02-07 新日鐵住金株式会社 Low alloy steel
KR20190121799A (en) * 2017-03-30 2019-10-28 닛테츠 스테인레스 가부시키가이샤 Low specific gravity ferritic stainless steel sheet and its manufacturing method
KR102459460B1 (en) * 2021-06-10 2022-10-25 공주대학교 산학협력단 high-strength ferrite alloys and its manufacturing methods
CN115537660A (en) * 2022-09-30 2022-12-30 武汉钢铁有限公司 Low-density high-strength hot-rolled spring flat steel and production method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102767320B (en) * 2012-08-16 2015-12-16 山东国强五金科技有限公司 Hinge special for refrigerator

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9765415B2 (en) 2007-05-16 2017-09-19 Arcelormittal France Low density steel having good drawability
US9580766B2 (en) 2007-05-16 2017-02-28 Arcelormittal France Low-density steel having good drawability
JP2010526939A (en) * 2007-05-16 2010-08-05 アルセロールミタル・フランス Low density steel with good stamping performance
EP2817428B1 (en) 2012-02-20 2016-04-20 Tata Steel Nederland Technology B.V. High strength bake-hardenable low density steel and method for producing said steel
EP2817428B2 (en) 2012-02-20 2019-06-19 Tata Steel Nederland Technology B.V. High strength bake-hardenable low density steel and method for producing said steel
JP2015513608A (en) * 2012-02-20 2015-05-14 タタ、スティール、ネダーランド、テクノロジー、ベスローテン、フェンノートシャップTata Steel Nederland Technology Bv High strength bake hardenable low density steel and method for producing the same
US9777350B2 (en) 2012-04-11 2017-10-03 Tata Steel Nederland Technology B.V. High strength interstitial free low density steel and method for producing said steel
CN104603308A (en) * 2012-09-04 2015-05-06 Posco公司 Ferritic lightweight high-strength steel sheet having excelent stiffness and ductility, and method of manufacturing the same
WO2014038759A1 (en) * 2012-09-04 2014-03-13 Posco Ferritic lightweight high-strength steel sheet having excelent stiffness and ductility, and method of manufacturing the same
US9856542B2 (en) 2012-09-04 2018-01-02 Posco Ferritic lightweight high-strength steel sheet having excellent stiffness and ductility, and method of manufacturing the same
KR101449119B1 (en) 2012-09-04 2014-10-08 주식회사 포스코 Ferritic lightweight high strength steel sheet having excellent rigidity and ductility and method for manufacturing the same
WO2014178358A1 (en) 2013-05-01 2014-11-06 新日鐵住金株式会社 Galvanized steel sheet and production method therefor
US10294551B2 (en) 2013-05-01 2019-05-21 Nippon Steel & Sumitomo Metal Corporation High-strength low-specific-gravity steel sheet having superior spot weldability
WO2014178359A1 (en) 2013-05-01 2014-11-06 新日鐵住金株式会社 High-strength, low-specific gravity steel plate having excellent spot welding properties
US10336037B2 (en) 2013-05-01 2019-07-02 Nippon Steel & Sumitomo Metal Corporation Galvanized steel sheet and method for producing the same
KR20190121799A (en) * 2017-03-30 2019-10-28 닛테츠 스테인레스 가부시키가이샤 Low specific gravity ferritic stainless steel sheet and its manufacturing method
KR102301968B1 (en) 2017-03-30 2021-09-14 닛테츠 스테인레스 가부시키가이샤 Low specific gravity ferritic stainless steel sheet and manufacturing method thereof
US11242578B2 (en) 2017-03-30 2022-02-08 Nippon Steel Stainless Steel Corporation Ferrite-based stainless steel sheet having low specific gravity and production method therefor
JP2019019382A (en) * 2017-07-18 2019-02-07 新日鐵住金株式会社 Low alloy steel
KR102459460B1 (en) * 2021-06-10 2022-10-25 공주대학교 산학협력단 high-strength ferrite alloys and its manufacturing methods
CN115537660A (en) * 2022-09-30 2022-12-30 武汉钢铁有限公司 Low-density high-strength hot-rolled spring flat steel and production method thereof

Also Published As

Publication number Publication date
JP4299774B2 (en) 2009-07-22

Similar Documents

Publication Publication Date Title
JP4464811B2 (en) Manufacturing method of high strength and low specific gravity steel sheet with excellent ductility
JP4324072B2 (en) Lightweight high strength steel with excellent ductility and its manufacturing method
EP2589678B1 (en) High-strength steel sheet with excellent processability and process for producing same
JP4214006B2 (en) High strength steel sheet with excellent formability and method for producing the same
JP4235077B2 (en) High strength low specific gravity steel plate for automobile and its manufacturing method
JP6779320B2 (en) Clad steel sheet with excellent strength and formability and its manufacturing method
JP5082649B2 (en) High-strength cold-rolled steel sheet with excellent manufacturing stability and manufacturing method thereof
JP5126844B2 (en) Steel sheet for hot pressing, manufacturing method thereof, and manufacturing method of hot pressed steel sheet member
JP5504636B2 (en) High strength hot rolled steel sheet and method for producing the same
JP2010248565A (en) Ultrahigh-strength cold-rolled steel sheet superior in formability for extension flange, and method for manufacturing the same
JP4085826B2 (en) Duplex high-strength steel sheet excellent in elongation and stretch flangeability and method for producing the same
JP4472015B2 (en) High strength low specific gravity steel plate excellent in ductility and method for producing the same
JP2010156031A (en) Hot dip galvanized high strength steel sheet having excellent formability, and method for producing the same
JP4299774B2 (en) High strength low specific gravity steel sheet with excellent ductility and fatigue characteristics and method for producing the same
JP4248430B2 (en) High strength low specific gravity steel plate excellent in ductility and method for producing the same
JP4265152B2 (en) High-tensile cold-rolled steel sheet with excellent elongation and stretch flangeability and method for producing the same
JP2023534180A (en) Heat-treated cold-rolled steel sheet and manufacturing method thereof
JP4265153B2 (en) High-tensile cold-rolled steel sheet with excellent elongation and stretch flangeability and method for producing the same
JP4471688B2 (en) High strength low specific gravity steel plate excellent in ductility and method for producing the same
JP4430502B2 (en) Method for producing low specific gravity steel sheet with excellent ductility
JP4644075B2 (en) High-strength steel sheet with excellent hole expansibility and manufacturing method thereof
JP4772431B2 (en) Manufacturing method of hot-dip galvanized high-strength steel sheet with excellent elongation and hole expansion
JP5034296B2 (en) Hot-rolled steel sheet with excellent strain age hardening characteristics and method for producing the same
JP5515623B2 (en) High-strength cold-rolled steel sheet and manufacturing method thereof
JP2007177293A (en) Ultrahigh-strength steel sheet and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090330

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090407

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090417

R151 Written notification of patent or utility model registration

Ref document number: 4299774

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120424

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120424

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130424

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130424

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130424

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130424

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130424

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140424

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350